

Plans for the next year

Norwegian Computing Center

Svetlana Boudko

Gjøvik

24.10.2019

Goal: Safe and secure IoT-enabled smart power grid infrastructure

- validate using smart home case
- contribute to monitoring of smart grid

Adaptive data collection

- detect security threats and prevent attacks
 - monitor & collect different categories of data
 - data analytics
- improve collection efficiency
 - reduce the amount of collected data /collect relevant data that reflect the current state of the system
 - environmental sensors / other sources
 - ensure detection accuracy
- adapt data collection routines to different contexts and situations

Adaptive Data Collection Framework

We need to consider

- What is the required sample rate?
- What is granularity of monitoring?
- How reliable is the collected data?
- ▶ Is there a common event format across sensors?
- ► How is the current state of the system inferred?
- How much past state may be needed in the future?
- What data need to be archived for validation and verification?
- ► How faithful is the model to the real world?
- Can an adequate model be derived from the available sensor data?

Analyze phase

- Lightweight analitics: support vector machine, k-nearest neighbors, decision tree, random forest
- Datasets
 - KDDCUP
 - Accuracy random forest: 0.9991851851851852
 - UNSW-NB15
 - Accuracy SVM: 0.7200920099614091
 - Accuracy k-nearest neighbors: 0.87424671596677
 - Accuracy decision tree: 0.9474364579966922
 - Accuracy random forest: 0.9585765070433245
 - CIC IDS 2017
- Identification of complex risks and attack patterns
- deep learning / reinforcement learning, etc

Thank you for your attention!

