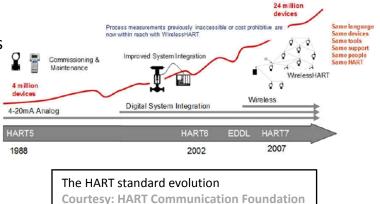
WirelessHART

UNIK9700 – Radio & mobility

Johan Tresvig PhD Candidate Dept. of Physics, UiO j.l.tresvig@fys.uio.no

UiO **Department of Physics** University of Oslo

Outline


- Introduction to WirelessHART
 - Background
 - Motivation
- Architecture
 - PHY layer / lower MAC (IEEE 802.11.4)
 - Upper MAC layer
 - Network layer
 - Network topology
- Comparing wireless network standards
 - Zigbee
 - ISA.100.11.a

Introduction

Background

Highway Addressable remote Transducers (HART)

- Developed in the mid-80s as a propriatary protocol
- Wired sensor/control network
- Targeted automation and monitoring in industrial environments
- Increasingly popular standard
- The HART Communication Foundation created in 1990 to maintain and develop the standard
- Digitalized in the mid-90s
- WirelessHART developed in 2007, defining new PHY, MAC and Network layers, but preserving the upper layers as defined by the HART

Introduction

What is WirlessHART

- WirelessHART is a wireless transducer network
- Developed to meet the requirments need of an industrial environment:
 - Power consumption (battery life)
 - Latency (respons time)
 - Reliability (packet error loss)
 - Cost (CAPEX / OPEX)
- Approved by the International Electrotechnical Commision (IEC) as an standard in Mar. 2010 (IEC-62591)
- Approximately 30 million HART devices installed and in service worldwide, HART technology is the most widely used field communication protocol for intelligent process instrumentation (1)

1) <u>http://www.hartcomm.org/protocol/wihart/wireless_overview.html</u>, Accessed: 27/9/2012

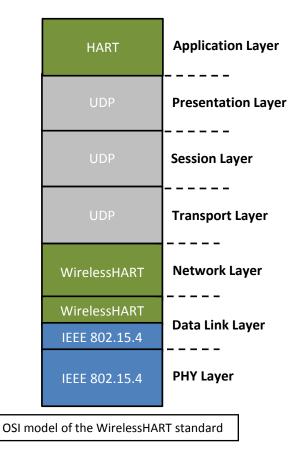
Application Areas

• Industrial

- Process and Automation
- Medium speed
- Medimum security
- Medium reliability and latency
- Noisy environment

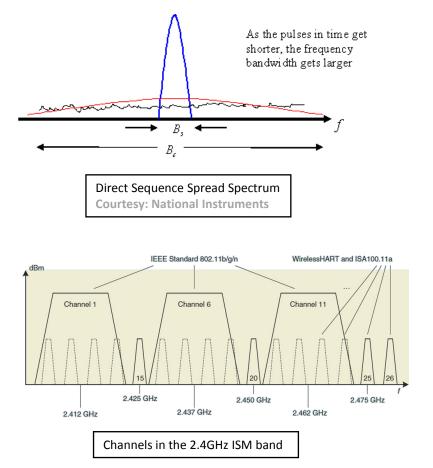
Coexistence

- 2.4GHz ISM transceivers
- 802.15.4 (ISA.100.a, Zigbee)
- 802.11 (WLAN, Bluetooth)



— Architecture

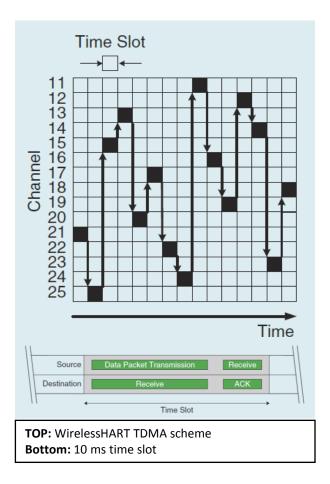
OSI architecture


- Physical layer
 - IEEE 802.15.4
- Sub Medium Access Control (MAC)
 - Packet framing
- Logic Link Control (LLC)
 - Link control: TDMA / FHSS
- Network
 - Source to Destination handling
 - Routing
- Application
 - HART legacy
 - Control and data presentation

Architecture

Physical Layer

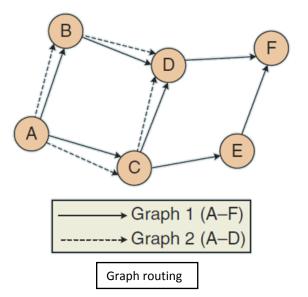
- IEEE 802.15.4-2006
- 2.4-2.48GHz ISM band
- License free
- Ch.11-25
 - Ch.26 not covered
 - 2MHz bandwidth
- Direct Sequence Spread Sequence (DSSS)
 - Multipath-mitigation
 - Resistence to jamming
 - Multiple users on same channel
 - Resistence to interception
- O-QPSK modulation
- 250 kbit/s throughput


WirelessHART

- Architecture

Data Link Layer

- Medium Access Control (MAC)
 - Connected mode
 - Packet framing
 - Security: AES-128 Message Integrity Authentication (MIC)
 - Clear Channel Assesment (CCA)
 - Power control (noisy environment)

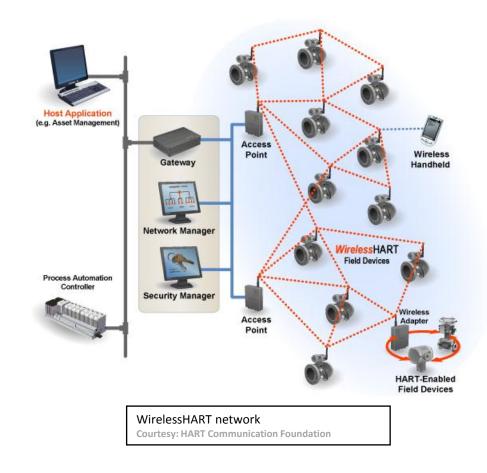

- Logic Link Control (LLC)
 - Time slots 10ms
 - Frequency Hop Spread Spectrum (FHSS)
 - Channel black listing
 - TDMA super frame
 - Retransmission on a different channel

- Architecture

Network layer

- Routing strategies managed by the Network manager
- Graph routing,
 - A set of routes predefined by the network coordinator
 - Each network device has a routing table
- Source routing
 - presets route between source and received
 - used for network diagnostics
- Security
 - AES-128 en-/decryption of payload data

Network Topology


Network components

- Wireless field devices
 - HART devices connected to an wireless adapter
 - Dedicated WirelessHART devices

Gateways

- enable communication between these devices and host applications connected to a high-speed backbone or other existing plant communications network.
- A Network Manager
 - configuring the network
 - scheduling communications between devices
 - managing message routes, and monitoring network health.

* The Network Manager can be integrated into the gateway, host application, or process automation controller

Comparing Zigbee PRO and WirelessHART

• Technology

- Same physical layer (IEEE 802.15.4)
- Carrier Sense Multiple Access w/ Collision Avoidance (CSMA-CA)
- Ad-Hoc On-demand Distance Vector (AODV) routing algorithm
- No frequency hopping, suceptible to jamming and interference
- Encryption of the payload data, but not all vendors support MIC on the MAC layer
- TDMA no collisions (if no other WSN network is present)

• Cost, Determinism and Security

- IEEE 802.15.4 PHY/MAC compliant, cost efficient
- ADOV may create longer latency in the network
- Requires less device memory and processing
- No reliabilty and latency determinism
- CSMA-CD increases the active periods for the devices, results in higher power consumption

Comparing ISA.100.a and WirelessHART

Layer	ISA.100.a	WirelessHART	Comments
РНҮ	IEEE 802.15.4-2006 DSSS	IEEE 802.15.4-2006 DSSS	Uses the same RF interface
MAC	IEEE 802.15.4-2006 Non- compliant	IEEE 802.15.4-2006 Compliant	
LLC	TDMA (Fast/slow hoping) Message Integrity Coding Graph/Source routing Adaptiv black listing Joining of new devices	TDMA (Fast hoping) Message Integrity Coding	ISA.100.a has adjustable latency and power specifications Adaptable network parameters
Network (Transport)	6WLoWPAN A-/symetric encryption	Graph/Source routing Manual black listing Symetric encryption Joining of new devices	
Application	None	HART6	
Capacity	50-100 devices	50-100 devices	
Architecture	Adaptable (optional features) / complex	Locked / lower cost	

UiO : Department of Physics

University of Oslo

Comparing ISA.100.a and WirelessHART

• WirelessHART

- Approved IEC standard (Mar. 2010)
- Legacy HART established protocol
- WirelessHART installed in field applications
- ISA.100.a
 - Approved ANSI standard (Dec. 2011),
 - 1. generation devices not fully compliant with the standard

Future

- Expressed desire from both vendors and customers to avoid 2 competing standards
- Both ISA and HCF is working on adapting the standards for friendly coexistence
- Plans to converge the ISA.100.a towards WirelessHART
- Both standards are working on features to allow other wired network buses (Fieldbus, Modbus, Profibus and so forth)

References

- 1) IEEE 802.15.4-2006
- 2) WirelessHART Applying wireless technology in real-time industrial process control, D. Chen et al., ISBN 978-1- 4419-6046-7, Springer Science+Business Media, LLC 2010
- 3) WirelessHART Versus ISA100.11a The Format War Hits the Factory Floor, S. Petersen, S. Carlsen
- 4) A Comparison of WirelessHART[™] and ISA100.11a, M. Nixon, Emerson Process Management
- 5) A Comparison of WirelessHART and ZigBee for Industrial Applications, T. Lennvall, F. Hekland
- 6) Comparison of Industrial WSN standards" P. Radmand et al.

Questions?