

IP Security

- have a range of application specific security mechanisms
 - eg. S/MIME, PGP, Kerberos, SSL/HTTPS
- however there are security concerns that cut across protocol layers
- would like security implemented by the network for all applications

IP Security

- general IP Security mechanisms
- provides
 - authentication
 - confidentiality
 - key management
- applicable to use over LANs, across public & private WANs, & for the Internet
- need identified in 1994 report
 - need authentication, encryption in IPv4 & IPv6

IP Security Uses

Benefits of IPSec

- in a firewall/router provides strong security to all traffic crossing the perimeter
- in a firewall/router is resistant to bypass
- is below transport layer, hence transparent to applications
- can be transparent to end users
- can provide security for individual users
- secures routing architecture

IP Security Architecture

- specification is quite complex, with groups:
 - Architecture (IPsec version 3)
 - RFC4301 Security Architecture for Internet Protocol
 - Authentication Header (AH)
 - RFC4302 IP Authentication Header
 - Encapsulating Security Payload (ESP)
 - RFC4303 IP Encapsulating Security Payload (ESP)
 - Internet Key Exchange (IKE)
 - RFC5996 Internet Key Exchange (IKEv2) Protocol
 - NOTE Replaces RFC4306 and RFC4718
 - Cryptographic algorithms
 - Other

IPSEC/IKE Document Interrelationships

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

IPSec Services

- Access control
- Connectionless integrity
- Data origin authentication
- Rejection of replayed packets
 - a form of partial sequence integrity
- Confidentiality (encryption)
- Limited traffic flow confidentiality

Transport and Tunnel Modes

- Transport Mode
 - to encrypt & optionally authenticate IP data
 - can do traffic analysis but is efficient
 - good for ESP host to host traffic
- Tunnel Mode
 - encrypts entire IP packet
 - add new header for next hop
 - no routers on way can examine inner IP header
 - good for VPNs, gateway to gateway security

Transport and Tunnel Modes

Security Associations

- a one-way relationship between sender & receiver that affords security for traffic flow
- defined by 3 parameters:
 - Security Parameters Index (SPI)
 - IP Destination Address
 - Security Protocol Identifier
- has a number of other parameters
 - seq no, AH & EH info, lifetime etc
- have a database of Security Associations

Security Policy Database

- relates IP traffic to specific SAs
 - match subset of IP traffic to relevant SA
 - use selectors to filter outgoing traffic to map
 - based on: local & remote IP addresses, next layer protocol, name, local & remote ports

Protocol	Local IP	Port	Remote IP	Port	Action	Comment
UDP	1.2.3.101	500		500	BYPASS	IKE
ICMP	1.2.3.101	•	*	•	BYPASS	Error messages
•	1.2.3.101	•	1.2.3.0/24	•	PROTECT: ESP intransport-mode	Encrypt intranet traffic
TCP	1.2.3.101	•	1.2.4.10	80	PROTECT: ESP intransport-mode	Encrypt to server
ТСР	1.2.3.101	•	1.2.4.10	443	BYPASS	TLS: avoid double encryption
•	1.2.3.101	*	1.2.4.0/24	*	DISCARD	Others in DMZ
•	1.2.3.101	*	•	*	BYPASS	Internet

Encapsulating Security Payload (ESP)

- provides message content confidentiality, data origin authentication, connectionless integrity, an anti-replay service, limited traffic flow confidentiality
- services depend on options selected when establish Security Association (SA), net location
- can use a variety of encryption & authentication algorithms

Encryption & Authentication Algorithms & Padding

- ESP can encrypt payload data, padding, pad length, and next header fields
 - if needed have IV at start of payload data
- ESP can have optional ICV for integrity
 is computed after encryption is performed
- ESP uses padding
 - to expand plaintext to required length
 - to align pad length and next header fields
 - to provide partial traffic flow confidentiality

Anti-Replay Service

- replay is when attacker resends a copy of an authenticated packet
- use sequence number to thwart this attack
- sender initializes sequence number to 0 when a new SA is established
 - increment for each packet
 - must not exceed limit of $2^{32} 1$
- receiver then accepts packets with seq no within window of (N – W+1)

Encapsulating Security Payload

AH – Transport mode

ESP – Transport mode

Combining Security Associations

- SA's can implement either AH or ESP
- to implement both need to combine SA's
 - form a security association bundle
 - may terminate at different or same endpoints
 - combined by
 - transport adjacency
 - iterated tunneling
- combining authentication & encryption
 - ESP with authentication, bundled inner ESP & outer AH, bundled inner transport & outer ESP

Combining Security Associations

IPSec Key Management

- handles key generation & distribution
- typically need 2 pairs of keys
 - 2 per direction for AH & ESP
- manual key management
 - sysadmin manually configures every system
- automated key management
 - automated system for on demand creation of keys for SA's in large systems
 - has Oakley & ISAKMP elements (legacy protocols replaced by IKEv1 and IKEv2)

IKE main steps

IKE phase 1

IKE phase 1

IKE phase 2

IKE phase 2

IKEv2 protocol

- Phase 1, Step 1: IKE_SA_INIT
 - Negotiate IKE algorithms
 - Compute secret keys for IKE
 - Compute master secret k_d for computing IPSec keys in Phase 2.
- Phase 1, Step 2: IKE_AUTH
 - Mutual authentications
 - Negotiation of IPsec algorithms (piggybacked here)
- Phase 2: CREATE_CHILD_SA
 - Setup AH or ESP security associations

Phase 1.1: IKE_SA_INIT (1)

Phase 1.1: IKE_SA_INIT (2)

0	After this two messages, each party can generate SKEYSEED based on the values in KEi and KEr by DH
	 SKEYSEED=prf(Ni Nr, g^(s_is_r)) [Remark: s_i the secret of I] Nonces add the freshness to the key materials. {SK_d SK_ai SK_ar SK_ei SK_er SK_pi SK_pr } = prf+ (SKEYSEED, Ni Nr SPIi SPIr) The prefix of output of the function prf+ is cut into pieces as different keys
	 SK_d is the master secret that will be used to compute IPSec SA keys later in Phase 2. Following messages in Phase 1.2 will be encrypted and integrity protected by SK_ai, SK_ei, SK_ar, SK_er respect. SK_pi and SK_pr are pre-shared secret keys for authentication in Phase 1.2 (technical details of this authentication method is omitted here. We will introduce the authentication using digital certificate next only).

Phase 1.2: IKE_AUTH (1)

The Whole Picture of Phase 1

 Two Aut 	hentication Methods	
 Digital 	Signature Based	
• Req	uires individual [CERT] exist in both messages	
• [CEF	RTREQ] indicates to us certificate authentication	
 Initia prf(S 	ator signs the 1 st message appended by Nr and SKai,IDi)	
• Resp prf(S	ponder signs the 2 nd message appended by Ni and SKar,IDr)	t
– Pre-sh	ared Key (SK_pi, SK_pr)	
• HMA	AC using negotiated prf function	
• AUT	H = prf(prf(Shared Secret, "Key Pad for IKEv2"),	

CHILD_SA Negotiations in IKE_AUTH

- Establishment of CHILD_SA is piggybacked in IKE_AUTH
- Initiator proposes SAi2 in message 3
- Responder answers SAr2 in message 4
- Traffic protected by the SA is also negotiated through traffic selectors (TSi, TSr)

Phase 2: CREATE_CHILD_SA

<u>Initiator</u>

Responder

HDR, SK {SA, Nr, [KEr], [TSi, TSr]}

for a long time.

An established IKE SA may be used to create many IPSec SAs and may be used

negotiated in Phase 1.2. However, if a new IPSec SA should be created, then [N] is

used to indicate this. At the same time, new [KEi] and [TSi, TSr] (different from those in Phase 1.2) may be negotiated.

The Ni and Nr here are different from those in Phase 1.1, and will be used to

compute IPSec secret keys.

A set of IPSec algorithms was already

HDR, SK {[<u>N</u>], SA, Ni, [KEi], [TSi, TSr]}

- [N]: Indication negotiation of new IPSec SA
 [KEx]
 - Diffie-Hellman value, different from those in Phase 1.1
 - Used only when PFS is required. In this case, they will be used in computing new IPSec keys
- [TSx]
 - Traffic Selector Negotiations for new IPSec SA
 - Used only when [N] is used
- If [N] is not used, this is the 1st IPSec SA creation under this IKE SA
- The protection SK{} here is by the IKE SA negotiated before.
- Ni and Nr should be different from those in Phase 1.1.

```
Spring 2012
```

UNIK4250 Security in Distributed Systems

39

Finally, Keys for AH or ESP

- After CREATE_CHILD_SA, the key(s) for AH or ESP will be generated!
- KEYMAT = prf+(SK_d, Ni | Nr)
 - Ni and Nr are the new nonces in Phase 2
- For stronger PFS
 - KEYMAT = prf+(SK_d, g^(s_i s_r) (new) | Ni | Nr),
 - Where s_i and s_r are the new DH values in Phase 2, SK_d is the old one Phase 1, Ni and Nr are new ones in Phase 2.
- 160-bit prt+ is used twice for generating 256-bit Key for AES

Re-keying

- Secret keys of IKE, ESP and AH should be only used in a limited of time.
- After SA lifetime expires, re-keying has to be done.
- Either side thinks an SA has been enough time, it negotiates a new SA.
- After the new SA is setup, delete the old one.

Spring 2012

UNIK4250 Security in Distributed Systems

41

IKE Payloads & Exchanges

- have a number of payload types:
 - Security Association, Key Exchange, Identification, Certificate, Certificate Request, Authentication, Nonce, Notify, Delete, Vendor ID, Traffic Selector, Encrypted, Configuration, Extensible Authentication Protocol
- payload has complex hierarchical structure
- may contain multiple proposals, with multiple protocols & multiple transforms

Cryptographic Suites

- variety of cryptographic algorithm types
- to promote interoperability have
 - RFC4308 defines VPN cryptographic suites
 - VPN-A matches common corporate VPN security using 3DES & HMAC
 - VPN-B has stronger security for new VPNs implementing IPsecv3 and IKEv2 using AES
 - RFC4869 defines four cryptographic suites compatible with US NSA specs
 - provide choices for ESP & IKE
 - AES-GCM, AES-CBC, HMAC-SHA, ECDH, ECDSA

How many keys are needed?

- SK_ei and Sk_ai Used by initiator for encryption and authentication of IKE messages
- SK_er and Sk_ar Used by responder for encryption and authentication of IKE messages
- SK_pr and Sk_pr Used when generating an AUTH payload
- SK_d Used for derivation of further keying material for Child SAs

In total 7 keys are needed

Pseudo-Random Function (PRF)

- PRF function takes a variable length key, variable length data, and produces a fixed length output n e.g. slightly modified HMAC
- For generating keying material and authentication of IKE
- In RFC4307: Recommended PRF
- PRF_HMAC_SHA1 MUST RFC2104
- PRF HMAC MD5 MAY RFC2104
- PRF_AES128_CBC SHOULD+ AES-PRF

Sprina	2012	

UNIK4250 Security in Distributed Systems

45

Derivation of key material – PRF+

- prf+ (K,S) = T1 , T2 , T3 , T4 , ...
- where:
- T1 = prf (K, S | 0x01)
- T2 = prf (K, T1 | S | 0x02)
- T3 = prf (K, T2 | S | 0x03)
- T4 = prf (K, T3 | S | 0x04)
- where
- | means concatenation
- 0x01 etc. are constants
- A number of Ti's are computed iteratively as needed

Generating Keying Material for Child SAs

- A single Child SA is created by the IKE_AUTH exchange, and additional Child SAs can optionally be created in CREATE_CHILD_SA exchanges.
- Keying material for them is generated as follows:
 - KEYMAT = prf+(SK_d, Ni | Nr)
 - Where Ni and Nr are the nonces from the IKE_SA_INIT exchange if this request is the first Child SA created or the fresh Ni and Nr from the CREATE_CHILD_SA exchange if this is a subsequent creation.

Spring 2012	UNIK4250 Security in Distributed Systems	47

IKEv2 exchange types

<u>RFC5996</u>			
Value	Exchange Type	Reference	
0-33	Reserved	<u>RFC5996</u>	
34	IKE_SA_INIT	<u>RFC5996</u>	
35	IKE_AUTH	<u>RFC5996</u>	
36	CREATE_CHILD_SA	<u>RFC5996</u>	
37	INFORMATIONAL	<u>RFC5996</u>	
38	IKE_SESSION_RESUME	RFC5723	
39-239	Unassigned		
240-255	Private use	RFC5996	

IKEv2 DH-groups

Number	Name	Reference
0	NONE	RFC5996
1	Group 1 - 768-bit MODP Group	RFC5996
2	Group 2 - 1024-bit MODP Group	RFC5996
3-4	Reserved	[RFC5996]
5	1536-bit MODP Group	RFC3526
6-13	Unassigned	[RFC5996]
14	2048-bit MODP Group	RFC3526
15	3072-bit MODP Group	RFC3526
16	4096-bit MODP Group	RFC3526
17	6144-bit MODP Group	RFC3526
18	8192-bit MODP Group	RFC3526
19	256-bit random ECP group	RFC5903
20	384-bit random ECP group	RFC5903
21	521-bit random ECP group	RFC5903
22	1024-bit MODP Group with 160-bit Prime Order Subgroup	[RFC5114]
23	2048-bit MODP Group with 224-bit Prime Order Subgroup	[RFC5114]
24	2048-bit MODP Group with 256-bit Prime Order Subgroup	[RFC5114]
25	192-bit Random ECP Group	RFC5114
26	224-bit Random ECP Group	RFC5114
27-1023	Unassigned	
1024-65535	Private use	[RFC5996]

```
Spring 2012
```

UNIK4250 Security in Distributed Systems

49

Derivation of keys using ECDH

..\..\..\OldDisk\Mathematica\ecdh_demo.nb

60 years of experience

52 /

Cryptel[®]-IP – References

National use of Cryptel-IP components

- Various ministries
 - Defence, Interior, Foreign affairs, Justice etc
- Defence forces
 - Army, Navy, Air Force, Special operation forces
- Material commands, Intelligence services
- Rack mounting, communication modules, tracked vehicles, ships, airplanes etc.

Government-to-government sales only

53 /			Cryptel [®]	-IP users
Germany	Netherlands France		Norway Denmark	Czech R
*	NATO users	NATO bodies	Operations	Deland
Canada	SHEDCOINS NNCCRS	BICES (NBA	ISAF	Poland
UK	INGCS-PTC	- NAMSA	KFOR/SFOR	Belgium
Hungony	 Afghan MN 1st,2nd and 3rd 		Partners	Italy
	■ LINC/DCIS		 Eurocorps EUFOR 	
USA	SACEURs VTC	Antonina //	Innersy 1997 Average and the second s	Greece
Slovenia	+ nationa	l use in 25 co	ountries	Slovakia
Slovenia				C
Latvia	Estonia Albania Lithuan	ia Eurocorps	ugal Spain Luxembourg	

54 /

A complete family of products

	Pro	Algorithms and Accreditation levels		
			TCE 621	TCE 621 AES
TCE 621/C	600 Mbit/s	For fixed networks in controlled environment	Cosmic Top Secret	NATO Secret
TCE 621/Z	600 Mbit/s	For fixed networks in less controlled environment		NATO Secret
TCE 621/M	30 Mbit/s	For mobile networks	NATO Secret	NATO Secret
TCE 671	-	For management of TCE 621s in networks	Cosmic Top Secret	NATO Secret

Approvals

- TCE 621/C: CTS
- TCE 621/C AES: NATO Secret
- TCE 621/Z: Under evaluation for Hemmelig expected 4Q11
- TCE 621/M: Hemmelig NATO Secret expected 4Q11
- TCE 621/M AES: Under evaluation for Hemmelig expected 4Q11
 THALES

General security features

Electronic and/or manual key distribution

Manual key distribution on

- SMART cards
- Paper tape (KOI-18)
- Data Transfer Device (DTD)

Tamper protected case

Content erased when opened

Tempest approved

According to SDIP 27 level A

NATO approved crypto algorithms

Secret and/or public algorithm

General features

Low latency - well suited for

VolP

56 /

Video conferencing

No session setup time

- Once configured, always configured
- Crypto system is self synchronising

No or little management traffic

 Dependant on operating mode and configuration

System is flexible and scalable

 From 2 units in manual mode to 1000 units in automatic mode

Easy installation and configuration

- Enter configuration data
- Enter keys for use with SMC

Run-time operation

- No day-to-day operation necessary
 - Unless necessary to declassify unit by removing CIK
 - Personal activation when configured
- Keys for use with SMC loaded at regular intervals

Cryptel[®]-IP technical features

TCE 621/A
TCE 621/B
TCE 621/C
TCE 621/M
TCE 621/B AES
TCE 621/C AES
TCE 621/Z
 TCE 621/M AES

Functional features

- Supports both IPv4 and IPv6
- Quality of Service
 - TOS-byte transferred
- Redundancy
 - Based on VRRP
 - Hot standby on device level
- Multicast
 - Based on IGMP
- UDP encapsulation
 - NAT and firewall traversing
- SW update
 - Remote as well as locally
- Configurable ICMP/SNMP support
 - Monitoring possible
 - Traps to network management centre

TCE 621/C – Features

TCE 621/C

TCE 621/C AES

TCE 621 Black

Infrastructure IP encryption device

- High capacity
- Redundant, multicast
- External power source
 - 110 / 220 VAC

Designed for rack mounting

Invisible for end users

Removable crypto ignition key

Declassified when removed

Fast and reliable high grade IP encryption

57 /

Miniature IP encryption device

- Pocket size (160x120x44mm)
- Two activation modes
 - Personal code or
 - CIK only
- External power source (10-30 VDC)

Designed for rough use

- Water proof, submersible down to 10 meters
- Extended temperature range
- Shock, vibration, etc.
- No light or sound emission
- Low EMC profile

Small, lightweight and robust high grade IP encryption

THALES

60 /

Traditional operation

Traffic enabled when CIK is inserted

- Functionality as of TCE 621/A, /B and /C
- Default configuration also in TCE 621/M

Suitable in controlled area

Personal use

User must authenticate to enable traffic

- Insert CIK and enter PIN at regular intervals
 - Interval is configurable

TCE 621/M operational modes

- Length of PIN is configurable
- Warning before period expires (LED-blink)

TCE 621/M kept under personal control

• CIK should be kept separately as a security measure

TCE 621/M designed to be used outside controlled area

TCE 671 – Security Management Centre

Main features:

- Key Management including Electronic Key Distribution (EKD)
 - Loading of keys from fill device
 - Including import of keys from an offline system
 - Local generation of keys
- Management of Access Control Information
- System Monitoring (Audit functions)
- General Systems Management

Manages all variants of the TCE 621

THALES

Cryptel[®]-IP in fixed networks

Cryptel[®]-IP in mobile networks

LAN

Cryptel[®]-IP key distribution

THALES

63 /

Key Generation Centre

Tailored for Cryptel-IP devices

Main features:

- Offline key production for Cryptel[®]-IP
- Distribution based on
 - Smart card and
 - Floppy
- Dedicated HW for key generation
- Smart card printer/programmer
 - Programmer interface from the dedicated HW
- Automatic courier reports
- Integrated accounting facilities

THALES

Network Planner

Main features

- Offline tool for planning of Cryptel-IP networks
 - Includes all TCE 621 variants

Graphical user interface

- Automated features
- Easy to use application

Produces planning material

- Configuration files
- Access control definitions
- Runs on Windows based PCs

66 /

65 /

System operator tool

Cryptel[®]-IP family today

Slide 67

oas1

- Gjøres uavhengig av versjoner - få med dyn IPadresser a4970; 03.03.2011

Summary

- have considered:
 - IPSec security framework
 - IPSec security policy
 - ESP/AH
 - combining security associations
 - internet key exchange
 - cryptographic suites used
 - TCE 621

Workshop – IPSec issues

- Why is not all header fields protected by the ICV in AH?
- 2. Why can Transport Adjancency (ESP AH) be preferred over ESP with authentication?
- 3. What is an clogging attack on IKE and how is it mitigated?
- 4. What is a replay attack and which mechanism does IPSec use to thwart it?