
Code Diversification Mechanisms for

Securing the Internet of Things ∗

Shukun Tokas, Olaf Owe, and Christian Johansen

University of Oslo, Norway
{shukunt,olaf,cristi}@ifi.uio.no

Internet of Things (IoT) is the networking of physical objects (or things) having embedded
various forms of electronics, software, and sensors, and equipped with connectivity to enable
the exchange of information. IoT is gaining popularity due to the great benefits it can offer
in domestic and industrial settings as well as public infrastructures. However, securing IoT
systems has proven a complex task, which is largely disregarded by industry for which the
business driving force asks for functionality instead of safety and security. Securing IoT is also
made difficult because of the resource constraints on the majority of these devices, which need
to be cheap. Moreover, IoT devices are meant to be deployed in large numbers.

The fact that such a large amount of devices are programmed in the same way allows an
attacker to exploit one vulnerability in millions of devices at once, thus with much more gains at
the same cost. To address this challenge we propose to consider inclusion of diversification and
randomisation mechanisms, at program design, implementation, and execution levels of IoT
systems, to diversify observable program behaviour and thus increase resilience. By resilience
we mean the ability to resist against attacks and the ability to recover quickly and with limited
damages in case of infringements. Although diversity cannot protect against all kinds of attacks,
it has proven a strong defence mechanism [1].

The idea of software diversity dates back to mid nineties, but still the literature on diversity
grew in the past ten years by more than two dozen papers. Several comprehensive surveys
and techniques made recently are [2, 3, 4]. Diversity techniques can be simply summarized as
introducing uncertainty in the targeted program. Precise knowledge of the target software (i.e.,
the exact binary, not the high level specification) is essential for a wide range of attacks, like
control injection [5, 6, 7, 8]. This makes diversity a broad defence mechanism that offers prob-
abilistic protection similar to cryptography. Diversity techniques strive to include in software
implementations high entropy so the attacker has a hard time figuring out the exact internal
functioning and control of the system. The design space of diversifying program transformations
is large, including approaches that vary with respect to threat models, security, performance,
and practicality. Software diversification has been applied at all levels of software, reaching the
microprocessors level [9], the compiler [10] or the network [11].

We are interested in automated diversification techniques, in particular, techniques that can
be employed at design and compile time. Such techniques could be deployed e.g., on version
servers that distribute updates or patches to upgrade IoT devices in a seamless manner. One
example of a manual diversification technique that one could think of automating is the software
design methodology N-variant [12]. The need for N teams of developers developing N variants
of the same software independently, from a common specification, should be replaced with
automated techniques based on algorithms with mathematical guarantees (e.g., probabilistic or
logical guarantees) that would produce the N variants from the same software specification, or
implementation given by only one team of developers (e.g., [13]).

Automated techniques from programming languages like information flow static analysis [14]
have been extended to the dynamic setting to protect against code injection. Dynamic taint

∗This work was partially supported by the projects IoTSec and Diverse IoT.



Code Diversification Mechanisms for Securing the Internet of Things Tokas, Owe and Johansen

analysis [15] automatically detects injection attacks without need for source code or special
compilation for the monitored program, and hence works on commodity software. TaintCheck
[15] was an example tool that can perform dynamic taint analysis by performing binary rewriting
at run time. The technique was shown useful against cross-site scripting attacks [16]. Such
techniques are still very popular and have been e.g., adopted for mobile operating systems [17]
to protect the privacy of mobile apps [18]. Automated software diversification can also be used
to counter bugs in software at runtime, thus making the system more robust, and applications
to embedded systems have been proposed [19].

However, the diversification techniques are usually developed for standard operating systems
or processor architectures running on powerful computing devices like PCs or phones. There
is very little research on which mechanisms can be applied to IoT and how. In consequence,
we take a particular interest in diversification techniques that are applicable in IoT and their
programming domain, s.a.: program obfuscation, insertion of non-functional code, or function
outlining. Program Obfuscation can be used for generating software variants since it transforms
a source program P into a (functionally) equivalent program P ′ [20], and the program is ob-
fuscated in such a way that it is difficult (not impossible) to reverse engineer (see also patent
[21]). For example, variables and method names can be renamed or local variable names can be
removed to make it difficult for the attacker to extract the values. A code obfuscater contains
several components: preprocessor, intermediate code constructor, random code constructor etc.,
each component adding some form of obfuscation to the code. Obfuscation can be applied to
data as well to prevent attack based on reverse engineering and code tampering. Non-functional
code can be inserted to generate delay in execution or to indicate some space reservation in
program memory. For example, when adding a No Operation Performed (NOP) instruction it
consumes only one clock cycle because it does not affect any register. It can also be used to
detect control flow change due to instruction misalignment. Another IoT relevant technique is
function Outlining, in which a block is extracted from a function and then encapsulated in its
own subroutine [22]. For example, a function may be split into two and all the local variables
up to the point of split are passed as parameters to second function. This technique randomises
the number of function calls, content of function, and code content. It protects systems from
attacks based on code matching.

We plan to adapt, implement, and test the above techniques for IoT systems, and to analyse
how they can be combined. At a higher abstraction level, we want to propose and implement
a new techniques where we want to make use of modern concurrent programming languages
like Creol [23] for developing the IoT system. We then take advantage of the inherent non-

determinism of concurrent programs to produce numerous sequentialized versions based on
varied thread scheduling policies (involving randomness). These sequential programs are the
ones deployed on the actual IoT device, preferably also going through more transformations
as above. This technique would prevent attacks based on knowledge of the precise timing of
events.

References

[1] B. Schneier, Beyond fear: Thinking sensibly about security in an uncertain world. Springer Science
& Business Media, 2006.

[2] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated software diversity,” in
2014 IEEE Symposium on Security and Privacy, pp. 276–291, IEEE, May 2014.

[3] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä, J. Holvitie, S. Hyrynsalmi, and V. Leppänen,
“A survey on aims and environments of diversification and obfuscation in software security,” in

2



Code Diversification Mechanisms for Securing the Internet of Things Tokas, Owe and Johansen

17th Int. Conf. Computer Systems and Technologies, CompSysTech, pp. 113–120, ACM, 2016.

[4] B. Baudry and M. Monperrus, “The multiple facets of software diversity: Recent developments in
year 2000 and beyond,” ACM Computing Surveys (CSUR), vol. 48, no. 1, p. 16, 2015.

[5] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming: A new class of
code-reuse attack,” in 6th ASIACCS Symposium, pp. 30–40, ACM, 2011.

[6] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good instructions go bad: Gen-
eralizing return-oriented programming to risc,” in Proceedings of the 15th ACM Conference on
Computer and Communications Security, CCS ’08, pp. 27–38, ACM, 2008.

[7] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the gadgets: Hindering return-
oriented programming using in-place code randomization,” in 2012 IEEE Symposium on Security
and Privacy, pp. 601–615, IEEE, May 2012.

[8] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented programming: Systems,
languages, and applications,” ACM Trans. Inf. Syst. Secur., vol. 15, pp. 2:1–2:34, Mar. 2012.

[9] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion: Accommodating software
diversity in chip multiprocessors,” in 34th ISCA Symposium, pp. 186–197, ACM, 2007.

[10] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal, S. Brunthaler, C. Wim-
mer, and M. Franz, Compiler-Generated Software Diversity, pp. 77–98. Springer, 2011.

[11] A. J. O’Donnell and H. Sethu, “On achieving software diversity for improved network security
using distributed coloring algorithms,” in 11th CCS Conference, pp. 121–131, ACM, 2004.

[12] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE Transactions on software
engineering, no. 12, pp. 1491–1501, 1985.

[13] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser, “N-variant systems: A secretless framework for security through diversity.,” in USENIX
Security Symposium, pp. 105–120, 2006.

[14] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Journal on
Selected Areas in Communications, vol. 21, pp. 5–19, Jan 2003.

[15] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic detection, analysis, and signa-
turegeneration of exploits on commodity software,” in Proceedings of the Network and Distributed
System Security Symposium, NDSS 2005, San Diego, California, USA, The Internet Society, 2005.

[16] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna, “Cross site scripting
prevention with dynamic data tainting and static analysis,” in Network and Distributed System
Security Symposium, NDSS, The Internet Society, 2007.

[17] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones,” ACM Trans. Comput. Syst., vol. 32, pp. 5:1–5:29, June 2014.

[18] M. L. Polla, F. Martinelli, and D. Sgandurra, “A survey on security for mobile devices,” IEEE
Communications Surveys Tutorials, vol. 15, no. 1, pp. 446–471, 2013.

[19] A. Höller, T. Rauter, J. Iber, and C. Kreiner, “Towards dynamic software diversity for resilient
redundant embedded systems,” in Software Eng. for Resilient Systems, pp. 16–30, Springer, 2015.

[20] C. S. Collberg and C. D. Thomborson, “Watermarking, tamper-proofing, and obfuscation - tools
for software protection,” IEEE Transact. Software Engineering, vol. 28, no. 8, pp. 735–746, 2002.

[21] C. Collberg, C. Thomborson, and D. Low, “Obfuscation techniques for enhancing software secu-
rity,” Dec. 23 2003. US Patent 6,668,325.

[22] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated software diversity,” in
Security and Privacy (SP), 2014 IEEE Symposium on, pp. 276–291, IEEE, 2014.

[23] E. B. Johnsen, O. Owe, and I. C. Yu, “Creol: A type-safe object-oriented model for distributed
concurrent systems,” Theoretical Computer Science, vol. 365, no. 1-2, pp. 23–66, 2006.

3


