UNIK4250 Security in Distributed Systems UNIK University Graduate Center
Spring 2012

Lecture 3
 Public-key Cryptography and Message Authentication

```
Leif Nilsen
```

Ed 1.0
UNIK

Outline

- Message authentication
- Message Authentication Codes (MAC)
- Cryptographic hash functions
- Asymmetric crypto
- Digital signatures
- Elliptic Curve Cryptography

Message Authentication

- message authentication is concerned with:
- protecting the integrity of a message (1)
- validating identity of originator (2)
- non-repudiation of origin (dispute resolution) (3)
- the three alternative functions used:
- hash function
- message encryption
- message authentication code (MAC)

Message Authentication

	protects against active attacks	
	verifies received message is authentic	contents have not been altered from authentic source timely and in correct sequence
	can use conventional encryption	only sender \& receiver share a key
UNiK4250 Security in Distributed Systems 2012		

Message Authentication Codes

The Aftenposten puzzle

Is this the correct version?

Solution (1)

Motivation (2)

Hash function property(1)

Problem 1: Preimage
Instance: A hash function $h: \mathcal{X} \rightarrow \mathcal{Y}$ and an element $y \in \mathcal{y}$
Find: $x \in \mathcal{X}$ such that $h(x)=y$

A oneway hash function is a hash function where the Preimage problem does not have any efficient solution (preimage resistant)

Hash function property(2)

Problem 2: Second Preimage

Instance: A hash function $h: \mathcal{X} \rightarrow \mathcal{Y}$ and an element $x \in \mathcal{X}$ Find: $x^{\prime} \in \mathcal{X}$ such that $x \neq x^{\prime}$ and $h\left(x^{\prime}\right)=h(x)$

A hash function where Second Preimage does not have any efficient solution is called second preimage resistant

Hash function property(3)

Problem 3: Collision
Instance: A hash function $h: \mathcal{X} \rightarrow \boldsymbol{y}$
Find: $x, x^{\prime} \in \mathcal{X}$ such that $x \neq x^{\prime}$ and $h\left(x^{\prime}\right)=h(x)$

A collisionfree hash funktion is a hash function where Collision does not have any efficient solution (Collision

Does hash functions exist?

Random oracle

Security level

- The generic security levels for a strong cryptographic hash functions which outputs n bits are:
- For preimage attacks: 2^{n}
- For second preimage attacks: 2^{n}
- For second preimage attacks: $2^{\text {n/2 }}$
- A hash functions of hash lengths 128 offers at best 64 bits security against a collision attack

The birthday paradox

Given a group of at least 23 persons. The probability for the event that two persons have the same birthday is at least $50 \%(1 / 2)$.

The birthday paradox

- Given a hash function $h:\{0,1\}^{*} \rightarrow\{0,1\}^{M}$. The probability for no collisions after q hash computations is:

$$
p=\prod_{i=1}^{q-1}\left(1-\frac{i}{M}\right) \approx \prod_{i=1}^{q-1} e^{\frac{-i}{M}}=e^{-\sum_{i=1}^{q-1} \frac{i}{M}}=e^{\frac{-q(q-1)}{2 M}}
$$

Set the probability for at least one collision to $1 / 2$, we then have the following approximation for q :

$$
q \approx 1.17 \sqrt{M}
$$

Hash Function Requirements

- can be applied to a block of data of any size
- produces a fixed-length output
- $\mathrm{H}(x)$ is relatively easy to compute for any given x
- one-way or pre-image resident
- computationally infeasible to find x such that $\mathrm{H}(x)=h$
- second pre-image resistant or weak collision resistant
- computationally infeasible to find $y \neq x$ such that $H(y)=H(x)$
- collision resistant or strong collision resistance
- computationally infeasible to find any pair (x, y) such that $\mathrm{H}(x)=\mathrm{H}(y)$

Security of Hash Functions

- there are two approaches to attacking a secure hash function:
- cryptanalysis
- exploit logical weaknesses in the algorithm
- brute-force attack
- strength of hash function depends solely on the length of the hash code produced by the algorithm
- SHA most widely used hash algorithm
- additional secure hash function applications:
- passwords
- hash of a password is stored by an operating system
- intrusion detection
- store $H(F)$ for each file on a system and secure the hash values

Itererated hash functions

Known hash functions

- MD4 (128)
- Desiged by Ron Rivest 1990. Many attacks.
- MD5 (128)
- Desiged by Ron Rivest 1990. Widely used. Today trivially to find collisions.
- RIPEMD-160
- Developed by European project RIPE as an alternative to MD4 and MD5.
- SHA-1
- Developed by NIST 1995 (Modified SHA). Hash value 160 bits. Collision attack of complexity 2^{63}
- SHA-2
- Developed by NIST. Variants SHA-224, SHA-256, SHA-384 and SHA-512

Technology status

- MD5 is totally insecure for use in digital signature schemes. It is urgent to terminate such use.
- SHA-1 does not obtain the targeted security level (63 bits rather than 80)
- NIST recommends replacing SHA-1 for applications where collisions resistance is needed before2010
- Current alternative: use SHA-2

New standard for secure hash functions

- NIST has initiated a new project to develop a new family of secure hash functions - SHA-3
- 51 candidates out of 64 submissions were accepted for the first round 31. October 2008
- 14 candidate made it to the second round 24. July 2009
- 5 finialists published December 10, 2010
- Target for new standard 2012!

SHA-3 finalists

Hash Name	Principal Submitter	Best Attack on Main NIST Requirements	Best Attack on other Hash Requirements
BLAKE	Jean-Philippe Aumasson		
Grøstl	Lars R. Knudsen		
$J H$	Hongjun Wu	preimage	
Keccak	The Keccak Team		
Skein	Bruce Schneier		

HMAC

- Define: ipad = 3636... 36 (512 bit)
- opad = 5C5C...5C (512 bit)
- $\operatorname{HMAC}_{K}(x)=$ SHA- $1((K \oplus$ opad $) \|$ SHA- $1((K \oplus i p a d) \| x))$

CBC-MAC

- CBC-MAC (x, K)
- sett $x=x_{1}\left\|x_{2}\right\| \ldots . \| x_{n}$
- $\mathrm{IV} \leftarrow 00 \ldots 0$
- $y_{0} \leftarrow \mathrm{IV}$
- for $i \leftarrow 1$ to n
- do $y_{i} \leftarrow e_{K}\left(y_{i-1} \oplus x_{i}\right)$
- return $\left(y_{n}\right)$

Public Key Crypto

The impossible problem

An idea from the past

Asymmetrisk kryptosystem

Public key inventors?

Marty Hellman and Whit Diffie, Stanford 1976
R. Rivest, A. Shamir and L. Adleman, MIT 1978

James Ellis, CESG 1970

C. Cocks, M. Williamson, CESG 1973-1974

Asymmetric crypto

Public key cryptography was born in May 1975, the child of two problems and a misunderstanding!

Key Distribution!

Digital signing!

One-way functions

Modular power function
Given $n=p q$, where p and q are prime numbers. No
efficient algoritms to find p and q.
Chose a positive integer b and define $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$

$$
f(x)=x^{b} \bmod n
$$

Modular exponentiation
Given prime p, generator g and a modular power $a=g^{x}(\bmod p)$. No

efficient algoritms to find x. $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$

$$
f(x)=g^{x} \bmod p
$$

RSA

- An equivalent system was described by Clifford Cocks (CESG) in 1973.
- RSA means Rivest, Shamir, Adleman (MIT) and was indepentently invented by these three in 1977
- RSA is a true asymmetric cryptosystem and can be used both for encryption and digital signatures
- RSA make use of the efficiency modular exponentiation, but to extract the correponding root is computational infeasable, i.e.:
- Given message M, it is easy to compute $C=M^{e}(\bmod n)$, but hard to find e-th root of C.
- Note: RSA uses modular arithmetic over a composite moduli.
- The security of RSA is based on the difficulty of the factoring problem.

RSA parametre (textbook version)

- Bob generates two large prime numbers p and q and computes $n=p \cdot q$.
- He then computes a public encryption exponent e, such that
- $(e,(p-1)(q-1)))=1$ and computes the corresponding decryption exsponent d, by solving:

$$
d \cdot e \equiv 1(\bmod (p-1)(q-1))
$$

- Bob's public key is the pair $\mathrm{P}_{\mathrm{B}}=(e, n)$ and the corresponding private and secret key is $S_{B}=(d, n)$.

> Encryption: $\mathrm{C}=\mathrm{M}^{e}(\bmod n)$
> Decryption: $\mathrm{M}=\mathrm{C}^{d}(\bmod n)$

RSA mini example

- Set $p=157, q=223$. Then $n=p \cdot q=157 \cdot 223=35011$ and $(p-1)(q-1)=156 \cdot 222=34632$
- Set encryption exponent: $e=14213\{\operatorname{gcd}(34632,14213)=1\}$
- Public key: $(14213,35011)$
- Compute: $d=e^{-1}=14213^{-1}(\bmod 34632)=31613$
- Private key: $(31613,35011)$
- Encryption:
- Plaintext $\mathrm{M}=19726$, then $\mathrm{C}=19726^{14213}(\bmod 35011)=32986$
- Decryption:
- Cipherertext $C=32986$, then $M=32986^{31613}(\bmod 35011)=19726$

Factoring record- December 2009

- Find the product of
- $p=33478071698956898786044169848212690817704794983713768568$
- 912431388982883793878002287614711652531743087737814467999489
- and
- $q=367460436667995904282446337996279526322791581643430876426$
- 76032283815739666511279233373417143396810270092798736308917 ?

Answer:
$n=123018668453011775513049495838496272077285356959533479219732$ 245215172640050726365751874520219978646938995647494277406384592 519255732630345373154826850791702612214291346167042921431160222 1240479274737794080665351419597459856902143413

Computation time ca. 0.0000003 s on a fast laptop!
RSA768 - Largest RSA-moduli that have been factored (12/12-2009) Up to 2007 there was $50000 \$$ prize money for this factorisation!

Computational effort?

$>$ Factoring using NFS-algorithm (Number Field Sieve)
>6 mnd using 80 cores to find suitable polynomial
$>$ Solding from August 2007 to April 2009 (1500 AMD64-år)
> 192796550 * 192795550 matrise (105 GB)
>119 days on 8 different clusters
$>$ Corresponds to 2000 years processing on one single core 2.2GHz AMD Opteron (ca. 2^{67} instructions)

Trends

Trends

Quantum computation

- P. W. Shor showed in1994 that factoring can be done in expected polynomial time on a quantum computer!??

Warning

- Describing and understanding the RSA textbook version is easy!
- This version to not meet modern levels of security for a public key cryptosystem
- To use RSA encryption securely, we need randomization. E.g. use RSA-OAEP

The discrete logarithm problem

- Problem instance: $I=(p, g, b)$, where p is prime, $g \in \mathbb{Z}_{p}$ is a primitive element and $b \in \mathbb{Z}_{p}{ }^{*}$.
- Question: Find unique $a, 0 \leq a \leq p-2$, such that

$$
g^{a} \equiv b(\bmod p) ?
$$

- We will denote a as $\log _{g} b$.
- Merk at problemet lett kan generaliseres til enhver syklisk gruppe!

Example

- \mathbb{Z}_{11} med $\alpha=2$:
$-2^{1}=2(\bmod 11) 2^{6}=9(\bmod 11)$
$-2^{2}=4(\bmod 11) 2^{7}=7(\bmod 11)$
$-2^{3}=8(\bmod 11) 2^{8}=3(\bmod 11)$
$-2^{4}=5(\bmod 11) 2^{9}=6(\bmod 11)$
$-2^{5}=10(\bmod 11) 2^{10}=1(\bmod 11)$
- $\log _{2} 5=4$
- $\log _{2} 7=7$
- $\log _{2} 1=10(\equiv 0 \bmod 10)$

Diffie-Hellman key exchange

System parameters: p, g

NB! No authentication!!!

ElGamal public key crypto system

- Public key cryptosystem described by Taher El Gamal in 1984
- Makes use of the discrete logarithm problem
- Randomized encryption
- Used in Norwegian electronic voting system 2011

$$
\begin{gathered}
e_{\kappa}(x, k)=\left(y_{1}, y_{2}\right) \\
y_{1}=g^{k}(\bmod p) \circ g y_{2}=x b^{k}(\bmod p)
\end{gathered}
$$

Discrete Log based crypto

- Cryptographic primitives like Diffie-Hellman key excahnge and ElGamal encryption can be implemented in any group where discrete log is infeasable.
- Common groups are $\mathbb{Z}_{p}{ }^{*}$ and $\operatorname{GF}\left(2^{n}\right)^{*}$. Index-calculus algorithm can be used in these groups and large keys are required. (1000-2000 bit).
- Generic algorihtms has complexity $O\left(p^{1 / 2}\right)$.
- Elliptic curves offer a rich source for abelian groups where no subexponential algorithms for DL are known.
- Use of cryptographice applications was proposed bu V. Miller and N. Koblitz in 1985.
- Same security level for shorter keys!

Elliptic curves

- Let $p>3$ be a prime. An elliptic curve $y^{2}=x^{3}+a x+b$ over $\operatorname{GF}(p)=\mathbb{Z}_{p}$ consist of all solutions $(x, y) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ to the equation

$$
y^{2} \equiv x^{3}+a x+b(\bmod p)
$$

- where $a, b \in \mathbb{Z}_{p}$ are constants such that $4 a^{3}+27 b^{2} \neq 0(\bmod p)$, together with a special point O which is denoted as the point at infinity.

Elliptic curve over \mathbb{R}

Point addition

Security levels

Symmetric	56	80	112	128	192	256
RSA n	512^{*}	1024	2048	3072	7680	15360
DSA p	512^{*}	1024	2048	3072	7680	15360
DSA q	112^{*}	160	224	256	384	512
ECC n	112^{*}	161	224	256	384	512

Asterisk (*) means below minimum keysize specified by ANSI X9 standard.
Table 2: Approximate equivalence of keys in bits to known best general attacks

Motivation

How to solve electronic disputes?

Diffie-Hellman approach

Trapdoor One Way Function

Signature is possible if f is a permutation

Signing using hash function

Verification using hash function

Digital Signature Algorithms

- RSA
- DSA
- El Gamal
- ECDSA

Requirements for Public-Key Cryptosystems

Asymmetric Encryption Algorithms

Summary

- have considered:
- Message authentication
- Cryptographic hash functions
- Public key cryptosystems
- RSA
- Discrete logarithms
- Elliptic curve cryptography
- Digital signatures

