UNIVERSITY OF OSLO

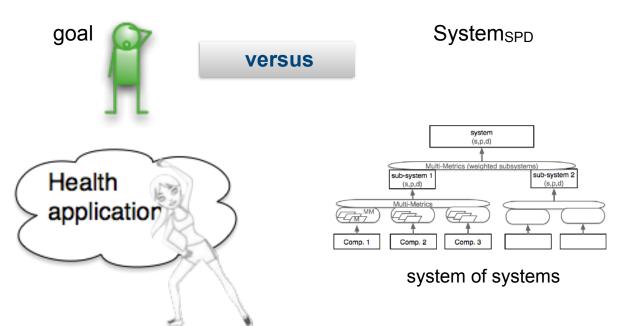
TEK5530 Measurable Security for the Internet of Things

L8 - Security Classification of Smart Home Energy Management Systems

P1	E4	E4	E5	E5	E5
P2	E3	E4	E4	E5	E5
P3	E2	E3	E3	E4	E4
P4	E1	E1	E2	E2	E3
P5	E1	E1	E1	E1	E2
Protection/	C1	C2	С3	C4	C5
Connectivity					

[Courtesy: Manish Shrestha, UiO, 2019]

Josef Noll
Professor
Department of Technology Systems



L9 - Expected Learning outcomes

Having followed the lecture, you can

- explain terminology for security and privacy
- provide examples of security classes
- provide examples of privacy data
- reason over relation between System_{SPD} and security/privacy goals of applications

Acknowledgements

This presentation was developed by

Manish Shrestha

Christian Johansen

Josef Noll

Department of Mathematics and Natural Science University of Oslo/eSmart Systems

- as part of the PhD work
- see: https://its-wiki.no/wiki/Smart_ICT_2019

Smart ICT 2019 [edit]

Title	Smart ICT 2019
Place	Saidia@Morocco
Date, Time	2019/09/26, -28Sep2019
Contact Person	Josef.Noll
Participants	Manish Shrestha
related to Project	SenSecPhD
Keywords	

this page was created by Special:FormEdit/Meeting, and can be edited by Spe

Category:Meeting

https://link.springer.com/conference/smartict @

Thumb	Title
Criteria for Security Classification of Smart Horse Energy Management Systems	Security Classification of Smart Home Energy Ma
0	Click to Open
Black (Sensite Students Andrews Andrew	Smart ICT 2019

Applying Security Classification to Smart Home Energy Management

Background

Problem Statement

Security Classes

Case Study

• Smart Home Energy Management Systems (SHEMS)

Two application scenarios

Implications

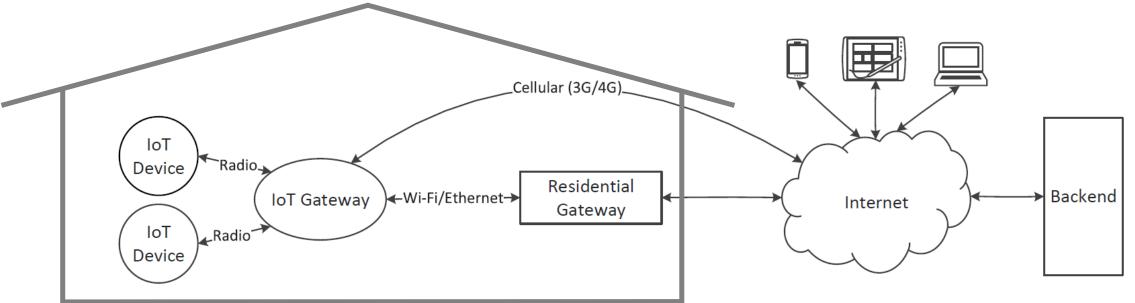
Discussion and Conclusion

Further work

Standards & Certifications

AND CCCT.

- Not adapted to IoT world
- Cost, complexity



Smart Home Energy Management (SHEMS)

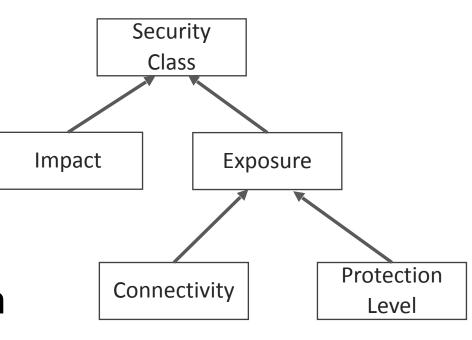
SITAS OSLOPINSIS.

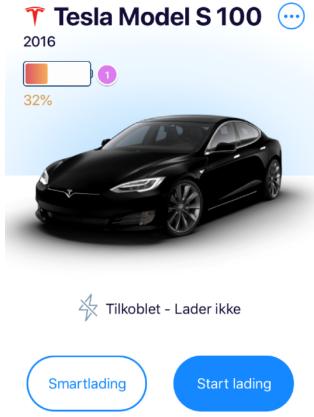
- Adopted from e2U Systems
- Components:
 - IoT hub (IoT Gateway)
 - IoT Devices

- Residential Gateway
- Communication Channels
- Backend System
- Application and Network Data
- Sensor reading & Control Signals

[1] Ghirardello, K., Maple, C., Ng, D., Kearney, P.: Cyber security of smart homes: Development of a reference architecture for

Security Classification Methodology Tibake


Tilbake


Ladestasjon 2 ∨

Based on ANSSI classification

System decomposition

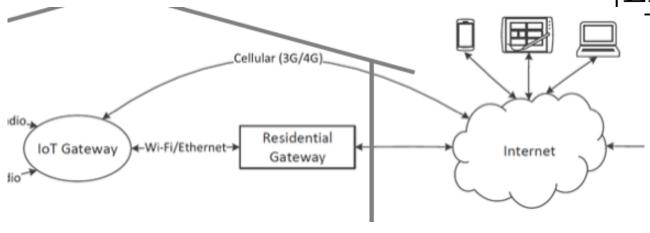
- Impact evaluation
- Exposure evaluation

[Courtesy: Manish Shrestha, UiO, 2019]

Ladelogg

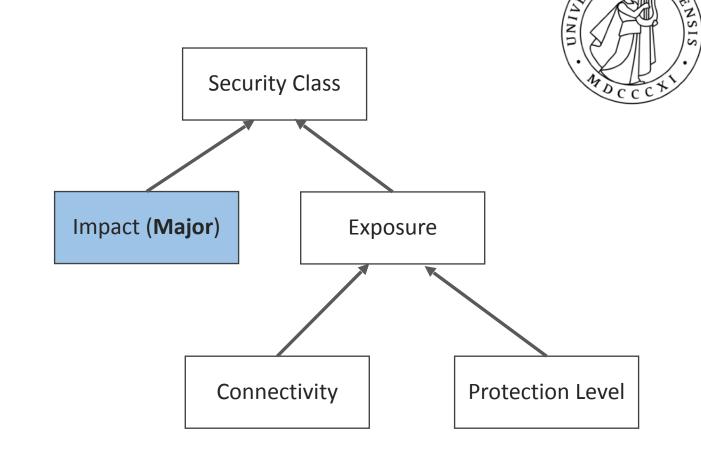
Exposure

- Connectivity
- Protection Level



Impact & Exposure gives Security Class

TAS OSTORIZES


- Within the house
- External provider

Catastrophic	A	С	E	F	F
Major	A	В	D	E	F
Moderate	A	В	С	E	E
Minor	A	A	В	D	D
Insignificant	A	A	A	С	С
Impact/	E1	E2	E3	E4	E5
Exposure					

Impact

- Safety (grid failure)
- Grid stability [2]
- Agents for cyberattacks
- Increased electricity bills
- Privacy

Available standards & Guidelines

Adopted from standards

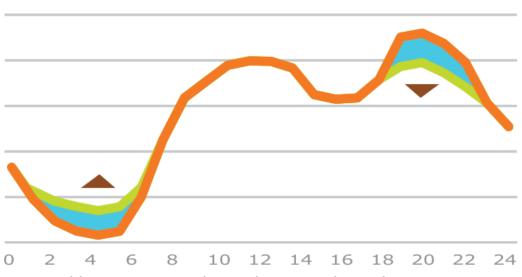
Protection Criteria	Source
Data Encryption	ISO 27002, OWASP, ETSI
Communication and Connectivity Protection	IIC, ISO 27002, ETSI
Software/Firmware Security	ISO 27002, OWASP, ETSI
Hardware-based Security Controls	CSA
Access Control	ISO 27002, OWASP, IIC, CSA, ETSI
Cryptographic Techniques	IIC, ISO 27002
Physical and Environmental Security	ISO 27002, OWASP, CSAs
Monitoring and Analysis	ISO 27002, OWASP, IIC, CSA, ETSI

[Courtesy: Manish Shrestha, UiO, 2019]

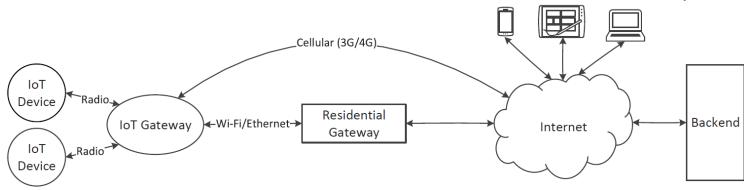
TEK5530 - L8 Exposure Risk Matrix

Protection Criteria	Security Functionality	P5	P4	Р3	P2
	Encryption of data between system components	х	х	х	х
	Strong encryption mechanism	x	x	x	
Data	Credentials should not be exposed in the network	x	x	x	
Encryption	End-to-end encryption	x	x		
	Should not use custom encryption algorithms	x	x		
	Sensitive stored data should be encrypted	x	x		
Communication	Have a minimal number of network ports open	х	х	х	
and	Devices should not be accessible from the Internet	x	x	x	
Connectivity	Only authorized components can join the network	x	x	x	
Protection	Use only standard communication protocol	x	x		
	Updatability of device firmware	х	х		
Software	Updatability of the operating system	x	x		
/Firmware	Automatic updates available	x	x		
Security	Encryption of update files	x	x		
	Signing update files before installing	x	x		
Hardware-	Using Trusted Platform Modules (TPM)	х	х		
based	Use of Memory Protection Units (MPUs)	x	x		
Security	Incorporate Physically Unclonable Functions (PUFs)	x	x		
Controls	Use of Cryptographic Modules	x	x		
	Disable remote access functionality	х			
Access Control	Only authorized devices can join the network	x	x	x	
	Default and weak passwords should not be used	x	x	x	
	Secure bootstrapping	x	х		
	Secure key generation	x	x		
Cryptography	Secure key storage	x	x		
Techniques	Secure key distribution	x	x	x	
	Secure key rotation	x	x		
	Message integrity	x	x	x	
	Tamper resistance	х	х		
Physical and	Minimal physical ports available	x	x	x	
Environmental	Physical security of connections	x	x	x	
Protection	Ability to disable external ports and only minimal- ports enabled	x	x		
	Only authorized physical access	x	x	x	
Monitoring	Monitoring system components	x	х	-	\vdash
and	Analysis of monitored data	x	x		
Analysis	Act on analyzed data	x	-		

Protection levels


- P1-P5 from security functionality
- Encryption of data between components
- Strong encryption mechanism
 - Credentials should not be exposed in the network
- End-to-end encryption
 - Should not use cunsom encryption mechanism
 - Stored data should be encrypted

IoTSF also propose checklist based approach in their compliance framework [Courtesy: Manish Shrestha, UiO, 2019]

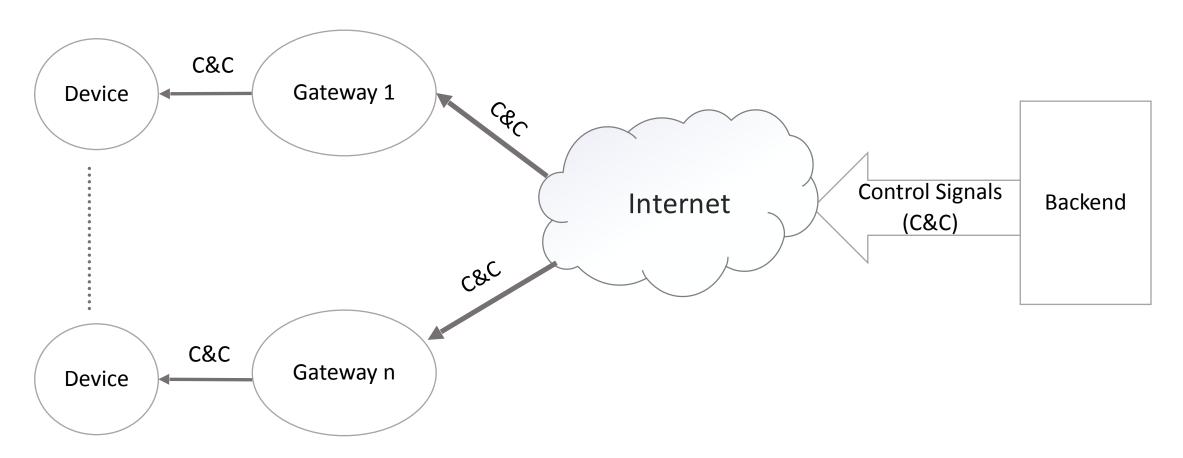

Evaluation of security class

TAS OSLOPINSIS.

- Focus: Control Signal components
 - car charging
 - hot water/heat pump
 - ventilation

https://www.ree.es/sites/default/files/go15_web.pdf

Scenarios



→ SC1: Centralised Control

→ SC2: Edge Control

SC1: Centralised Control

SC1: Exposure calculation

- Assessment: Exposure E3
 - full Internet access (C5)
 - high protection (P4)

P1	E4	E4	E5	E5	E5
P2	E3	E4	E4	E5	E5
P3	E2	E3	E3	E4	E4
P4	E1	E1	E2	E2	E3
P5	E1	E1	E1	E1	E2
Protection/	C1	C2	C3	C4	C5
Connectivity					

SC1: Centralised Control

- → Relevant protection criteria to achieve P4:
 - Data encryption
 - communication and connectivity protection
 - access control and
 - monitoring and analysis

P1	E4	E4	E5	E5	E5
P2	E3	E4	E4	E5	E5
P3	E2	E3	E3	E4	E4
P4	E1	E1	E2	E2	E3
P5	E1	E1	E1	E1	E2
Protection/	C1	C2	C3	C4	C5
Connectivity					

SC1: Relevant Protection Criteria

Protection Criteria	Security Functionality	P5	P 4	Р3	P2
	Encryption of data between system components	х	х	X	x
	Strong encryption mechanism	x	x	X	
Data	Credentials should not be exposed in the network	x	x	X	
Encryption	End-to-end encryption	x	x		
	Should not use custom encryption algorithms	x	x		
	Sensitive stored data should be encrypted	X	x		
Communication	Have a minimal number of network ports open	X	х	X	
and	Devices should not be accessible from the Internet	x	x	x	
Connectivity	Only authorized components can join the network	x	x	x	
Protection	Use only standard communication protocol	X	x		
	Disable remote access functionality	X			
Access Control	Only authorized devices can join the network	x	x	x	
	Default and weak passwords should not be used	X	x	x	
Monitoring	Monitoring system components	х	х		
and	Analysis of monitored data	X	x		
Analysis	Act on analysed data	x			

- Disable remote access functionality
- Only authorised devices can join the network
- → The APIs calls should be authenticated and authorised
- Default and weak passwords should not be used

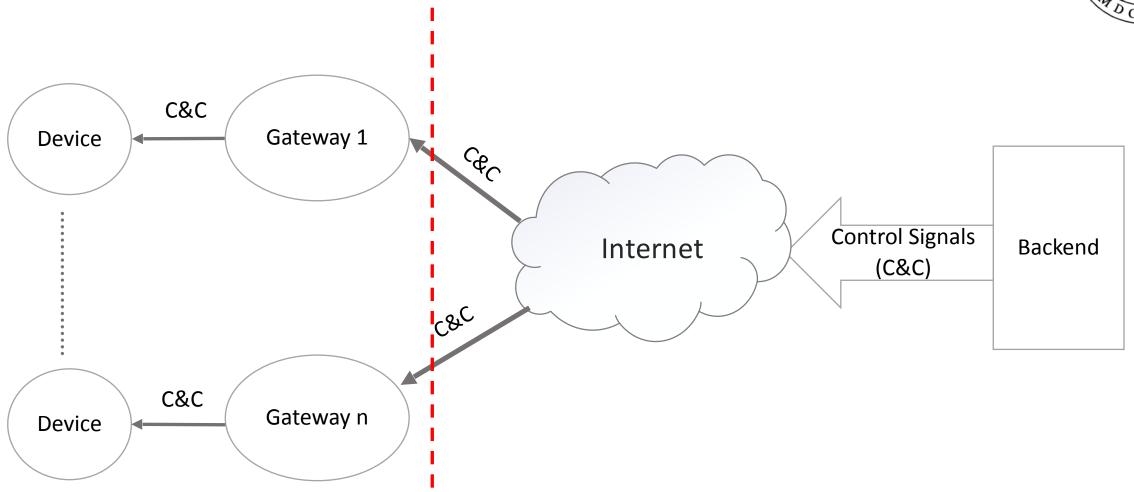
SC1: Centralised Control

Exposure = E3

P1	E4	E4	E5	E	E5
P2	E3	E4	E4	E5	E5
P3	E2	E3_	<u>E3</u>	F4	F.4
P4	E1	E1	E2	E2	E3
P5	E1	E1	E1	E1	E2
Protection/	C1	C2	C3	C4	C5
Connectivity					

Scenario I: Centralized Control

SC1: Security Class D

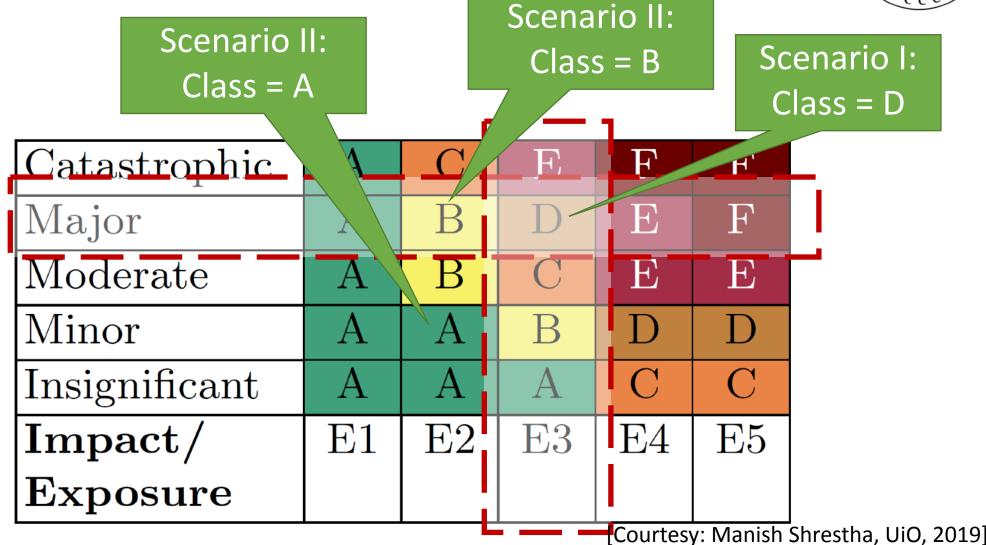

Class: D

<u>Catastrophic</u>	A	\mathbf{C}	\mathbf{E}	7	_F_	L
Major	A	В	D	E	F	I
Moderate	A	В	C	Е	E	_
Minor	A	A	В	D	D	
Insignificant	A	A	A	С	С	
Impact/	E1	E2	E3	E4	E5	
Exposure						
	•				•	

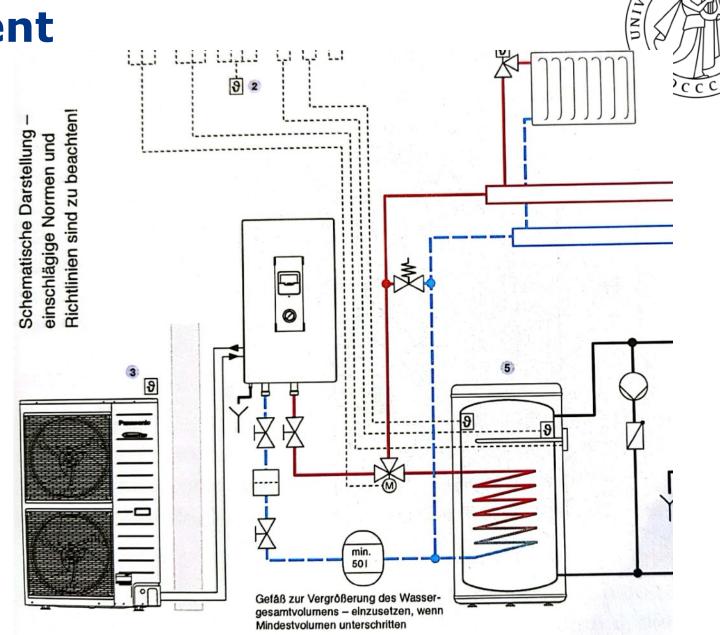
SC2: Edge Control

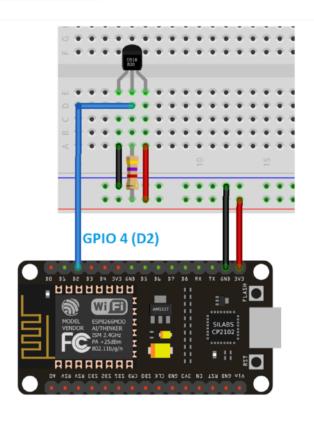
SC2: Assessme

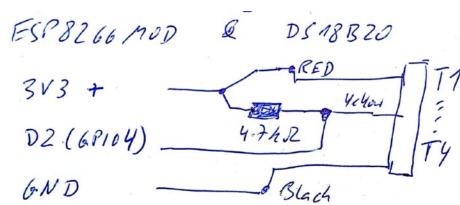
Scenario II: Exposure = E2

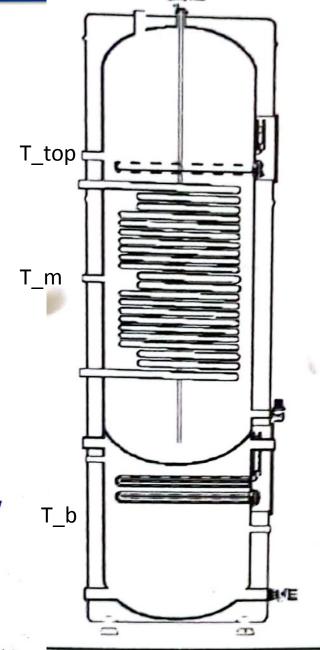

Scenario I: Exposure = E3

P1	E4	E	E5	E5	E_5	
P2	E3	E4	E4	E5	E_5	
P3	E2	E3_	73	_E4	E4/	
P4	E1	E1	E2	E2	E3	
P5	E1	Ei	Εİ	Ēĺ	E2	
Protection/	C1	C2	C3	C4	C5	
Connectivity						


SC2: Edge Control - Security Class A / B

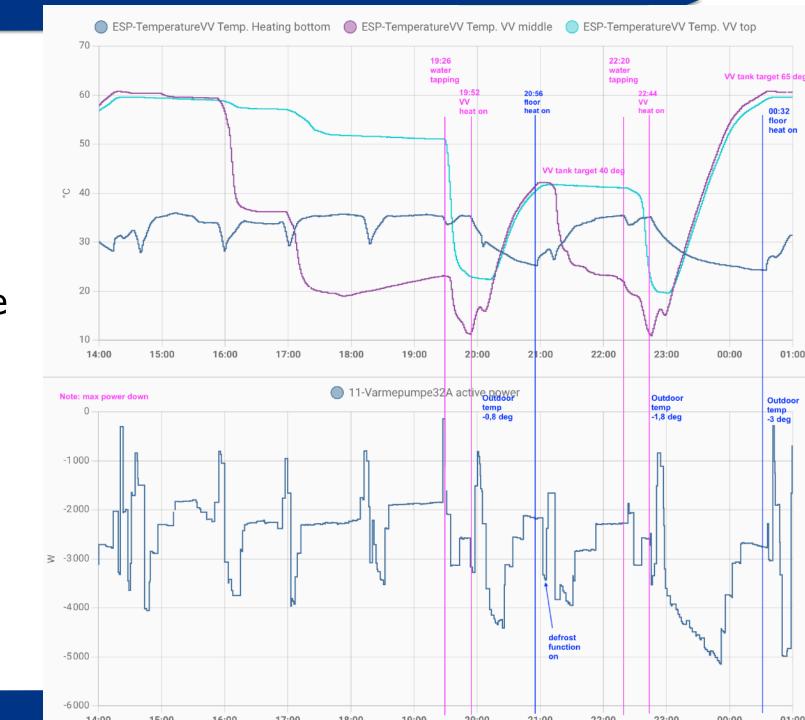

Real world assessment Heat pump control


- Heat pump drives tank
 - Top: 240 I hot water
 - Bottom: 120 I floor heating
- → Goal:
 - set temperature of water
 - price, convenience,



Temperature control

- → ESP8266Mod
 - Tank top
 - Tank middle
 - Tank bottom
- connected to Raspberry Pi with Home Assistant



Tank simulation

- Switch heat pump off
 - set water temperature
- → (Invers) power profiel

Heat pump

Assessment Detail ?

Name

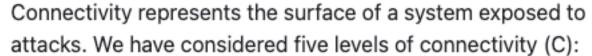
Heat pump control

Component Type

lot Device

Description ?

Heat pump measure and switch on/off


Select Connectivity (?)

C3

Select Impacts

Major

Connectivity

- C1 Includes completely closed/isolated systems
- C2 Includes the system with wired Local Area Network and does not permit operations from outside the network
- C3 Includes all C2 systems that also use wireless technologies.
- 4. C4 Includes the system with private or leased infrastructure, which may permit remote operations (e.g., VPN, private APN, etc). An example could be allowing to access the corporate network only via VPN. Another example could be the operators being able to connect to their field devices system through their mobile device using a private Access Point Name (APN)
- 5. C5 Includes distributed systems with public infrastructure, i.e., like the C4 category except that the communication infrastructure is public. Example: Web applications and services accessible using Internet.

Protection Assessment

Security Criterion	Yes	No		N/A	
Data Encryption	•	0		0	
Security Functionality			Yes	No	N/A
Encryption of data between system comp	onents		•	0	0
Strong encryption mechanism			0	•	0
Credentials should not be exposed in the	network		•	0	0
End-to-end encryption			•	0	0
Should not use custom encryption algorith	nms		•	0	0
Sensitive stored data should be encrypted	i		•	0	0

Security Criterion	Yes	No
Software/Firmware Security	•	0
Security Functionality	Yes	No
Updatability of device firmware	•	0
Updatability of the operating system	•	0
Automatic updates available	0	•
Encryption of update files	0	•
Signing update files before installing	0	•

ESP8266 for heat pump control

You obtained Class <E, 100.00, 0.00 >

Details

Connectivity C3

Protection Level ? P2

Major Impact

Exposure ? E4

Security Class Ε

Table: Exposure Lookup

Protection Level

P1	E4	E4	E5	E5	E5
P2	E3	E4	E4	E5	E5
Р3	E2	E3	E3	E4	E4
P4	E1	E1	E2	E2	E3
P5	E1	E1	E1	E1	E2
	C1	C2	С3	C4	C5

Connectivity

Table: Class Lookup

Catastrophic	Α	С	Е	F	F
Major	Α	В	D	Е	F
Moderate	Α	В	С	Е	Е
Minor	Α	Α	В	D	D
Insignificant	Α	Α	Α	С	С
	E1	E2	E3	E4	E5

Exposure

Class

Conclusion and Discussion

- Security classification for Smart Home
- Appropriate security functionalities for
 - Scenario I -> class D
 - Scenario II-> class B, single device leads to class A
- Security Classification Method provides to end users
- transparency and
- security awareness