Wireless Real-Time Monitoring

TEK5110- Building Mobile and Wireless Networks Department of Technology Systems University of Oslo

Maghsoud Morshedi, Josef Noll

Why Monitoring Wireless?

1. Monitor wireless

- 2. Extract information
- 3. Make proper decision

Monitoring Solutions

- Open source
 - Elastic stack (Elasticsearch, Logstash, Kibana)
- Proprietary
 - EyeSaaS, Cisco Meraki

Elastic Stack

TEK5110-Building Mobile and Wireless Networks by M.Morshedi, J.Noll

Elastic Architecture

Logstash

Monitor Wireless Characteristics

• RSSI

- Noise floor
- Transmit power
- Transmit rate
- Receive rate
- Transmit bytes
- Retransmission
- PER
- Throughput
- •

SignalStrength-2.4GHz

Real-Time Monitoring

• Connect your devices to Wi-Fi access point in the class and answer upcoming questions

Wi-Fi Access Point

TEX6110-Building Mobile and Wireless Networks by M.Morshedi, J.Noll

Which factors affect SNR on wireless devices?

Does the device position affect RSSI?

Is it possible for a device to reach Shannon capacity?

• $C = w \log_2(1 + SNR)$

How much transmit power does affect receiver signal strength?

- Rx signal strength = TX power + TX antenna gain path loss + RX antenna gain
- ITU indoor Path loss L = $20 \log_{10} f + N \log_{10} d + P_f(n) 28$
 - L = the total path loss. Unit: decibel (dB).
 - f = Frequency of transmission. Unit: megahertz(MHz).
 - d = Distance. Unit: meter (m).
 - N = The distance power loss coefficient.
 - n = Number of floors between the transmitter and receiver.
 - Pf(n) = the floor penetration loss factor.

Variable	Frequency	Residential area	Office area	Commercial area
Ν	2.4 GHz	28	30	22
Pf(n)	2.4GHz	4n	15+4(n-1)	6+3(n-1)

1- ITU model for indoor attenuation. https://en.wikipedia.org/wiki/ITU_model_for_indoor_attenuation

How much distance does affect receiver signal strength?

Does access point antenna pattern and polarization affect RSSI?

How much RSSI does affect transmit and receive rate?

How does noise affect wireless signal?

SNR, Retransmission and PER

