UNIVERSITY OF OSLO

TEK5530 Measurable Security for the Internet of Things

Takeaway - main points from each lecture L1-L15

Josef Noll Professor Department of Technology Systems

UNIVERSITY OF OSLO https://bestructured.com/intrusion-detection-intrusion-prevention-and-antivirus-the-differences/

Take-away L1 Introduction

- Risk analysis
 - Likelihood
 - Impact
- Risk analysis for IoT
 - Likelihood "you are going to be hacked"
 - Exposure

Take-away L2 Internet of Things

Things

- NFC/RFID
- Sensors
- Gateways & Backend-systems
- ➡ Internet
 - IPv4, IPv6
 - Imitations of IoT: bandwidth, latency, reliability, processing power, battery
- Semantics
 - machine-readable understanding
 - context, reasoning

→ 5G

- eMBB, mIoT, URLLC
- network slicing
- Energy networks
 - Smart Grid & energy twins
 - Just transition

Fig. 1. "Internet of Things" paradigm as a result of the convergence of different visions.

TEK5530 - L4 Security Semantics

Feb2024, Josef Noll

D

Take-away L3 Security in IoT

Security challenges in IoT

- examples/classes of IoT
- Imitations of IoT: bandwidth, latency, reliability, processing power, battery
- security challenges
- Smart home example
 - alarm, monitoring,

Threats & vulnerabilities

- physical access, authentication
- DDoS, Botnet, malware, data breach, man-in-themiddle
- Defence
 - Gateway
 - Monitoring

TEK5530 - L4 Security Semantics

Feb2024, Josef Noll

4

Take-away L5 Security Semantics

- IoT System components, Security functionality & Security attributes
- IoT Lifetime security functionality
 - Operations
 - Development, Audit, Maintenance
 - Decommissioning
 - Mechanisms, Humans, Physical, Privacy protection
- Internet, Things, Semantics
 - Semantics vs Syntax
- Operating envelope
 - Meaning, examples
 - communication

1) How does he Operating Envelope look like applying criticality? 2) How can the criticality be failure applied for SPD? critical acce ideal good

TEK5530 - L4 Security Semantics

Take-away L6 Multi-Metrics (MM) Method

- Accountable security MM principle operation
- Privacy: Loan of vehicle
 - difference of scenarios 1-3 (privacy, speeding, crash)
- Privacy labels
 - which data, sharing
 - integrity, storage
 - ownership, further distribution

TEK5530 - L7 Applying Multi-Metrics to AMS

Feb2024, Josef Noll

Take-away L7 Multi-Metrics (MM) Method

- Applications: Smart Meters
- Communication: Smart Meter System
- ➡ SPD
 - from components and functionalities
 - to SPD functionalities
- Operation envelop
- Weighting in MM
- Combining sub-systems through MM

Table 8 Sub-systems and components weights

Sub-system	Sub-sys. Weight	Component	Comp. Weight
AMS	80	Remote Access	70
		Authentication	80
		Encryption	80
Radio link	50	Mesh	60
		Message Rate	80
		Encryption	40
Mobile link	20	Mobile link	70
		Encryption	40

TEK5530 - L7 Applying Multi-Metrics to AMS

Feb2024, Josef Noll

Take-away L8 Risk-Exposure Model

- Why not Impact & Frequency/Likelihood risk analys
- Risk-Exposure model components
 - Exposure: Connectivity & Protection level
 - Connectivity: C1 (isolated) ... C5 (full Internet)
 - Protection level: P1 (lowest) ... P5 (highest)
- Protection: data encryption, communication protection, SW security, HW security controls, Monitoring, Access control, Cryptography, Physical security
- Home control, explain
 - external supervision vs in-house solution

Catastrophic		C	E	F
Major		B	D	Е
Moderate	A	В	C	Е
Minor	А	A	В	D
Insignificant	Α	Α	A	С
Impact/	E1	E2	E3	E4
Exposure				

Main Take-away L9 System Security

- Application-driven SPD_{goal}
 - Provide examples and justify
- how to perform the Multi-**Metrics Method**
 - Components, sub-systems, **Multi-metrics**
 - Result of Multi-Metrics
- Shortcomings of Multi-Metrics?

 $|SPD_{Goal} - SPD |$ level $| = \leq 10$, green \bigcirc . $|\text{SPD}_{Goal} - \text{SPD} \text{ level}| = > 10, \le 20, \text{ yellow } -$. $|\text{SPD}_{Goal} - \text{SPD} \text{ level}| = > 20, \text{ red } \bigcirc$.

Feb2024, Josef Noll

Take away from L10 Mobile Security

Key characteristics of mobile systems

- IG analog voice
- 2G digital voice & SMS
- 3G voice & mobile data
- 4G mobile broadband (MBB)
- 5G eMBB, massive IoT, URLLC (reliable, low latency)
- Security considerations
 - 2G IMSI catcher (mobile authenticates to network)
 - 3G mutual authentication
 - 4G all IP security
 - 5G increased attack surface (cloud computing, IoT devices)

Take away from L11 ZeroTrust Architecture

Why zero trust

- "your system is hacked already"
- "no user or device is trusted until they have proved otherwise"
- what do you do in case of hacking/ ransomware?
- Domain examples
 - Hospital architecture
 - IT-deployment, docker-based
 - Cloud access
- Rollen i organisasjon

https://dtc1.com/how-to-set-up-a-zero-trust-network/

TEK5530 - L11 Zero Trust Architecture

Mar2024, Josef Noll

Take away from L13 Intrusion Detection

- NSM Principles for ICT security (v2.0)
 - what do these terms include?
- Intrusion Prevention System (IPS)
 - stop potential threats before breaching the system
- Intrusion Detection System (IDS)
 - Mitigate the damage

Take away from L14 Cloud & Cloud Security

- Delivery models
 - Infrastructure (IaaS), Platform (PaaS), Software (SaaS) as a Service
- Responsibility of Cloud provider, and of Customer
- Cyber vs Cloud Security
 Threats, reasons, main defence

Take away from L15 Group Work

- Application goals of your scenario Security, Privacy, Dependability goals

 - System analysis
- Main topics
 - functionality, threats, defence
- Main 3-5 take-aways lessons learned

TEK5530 - L14 Cloud Security

Apr2024, Josef Noll

