IoT DDoS Attacks Detection based on SDN

RAMTIN ARYAN

Why DDoS Attack on IoT

•On Friday, October 21 2016, a series of Distributed Denial of Service (DDoS) attacks caused widespread disruption of legitimate internet activity in the US.

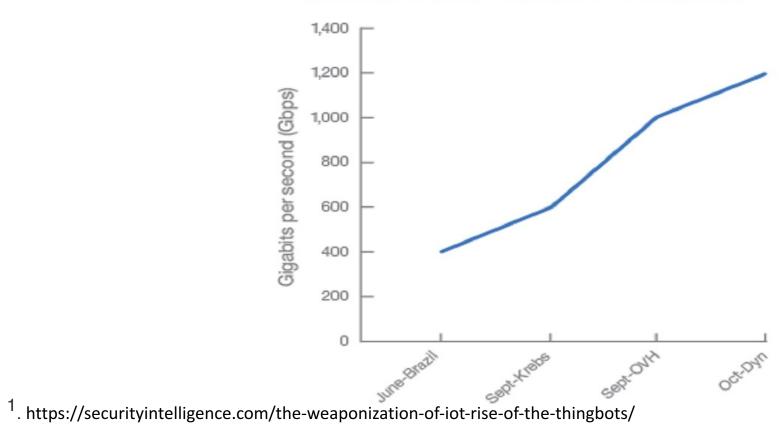
•The attacks were perpetrated by directing huge amounts of bogus traffic at targeted servers, namely those belonging to Dyn, a company that is a major provider of DNS services to other companies.

•This made it hard for some major websites to work properly, including Twitter, Pinterest, Reddit, GitHub, Etsy, Tumblr, Spotify, PayPal, Verizon, Comcast, and the Playstation network.

•The attacks were made possible by the large number of unsecured internet-connected digital devices, such as home routers and surveillance cameras.

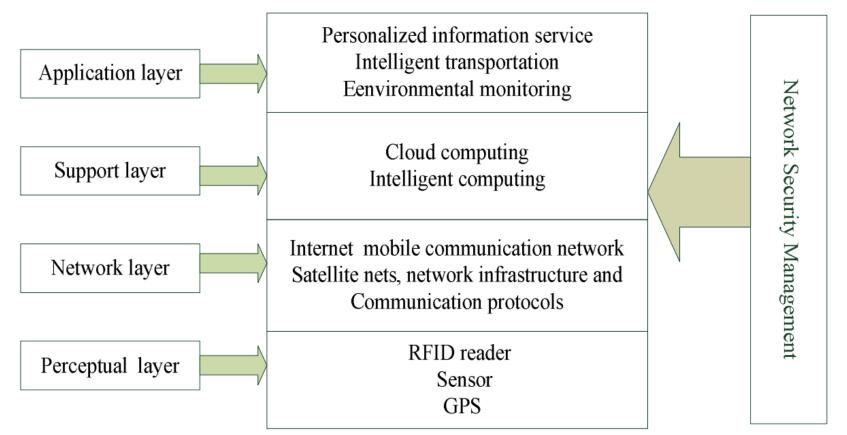
¹.https://www.welivesecurity.com/2016/10/24/10-things-know-october-21-iot-ddos-attacks/

Why DDoS Attack on IoT


•One of the most important changes, the rising use of compromised Internet of Things (IoT) devices in botnet operations.

•The IBM X-Force team has been tracking the threat from weaponized IoT devices, also known as thingbots in 2016.

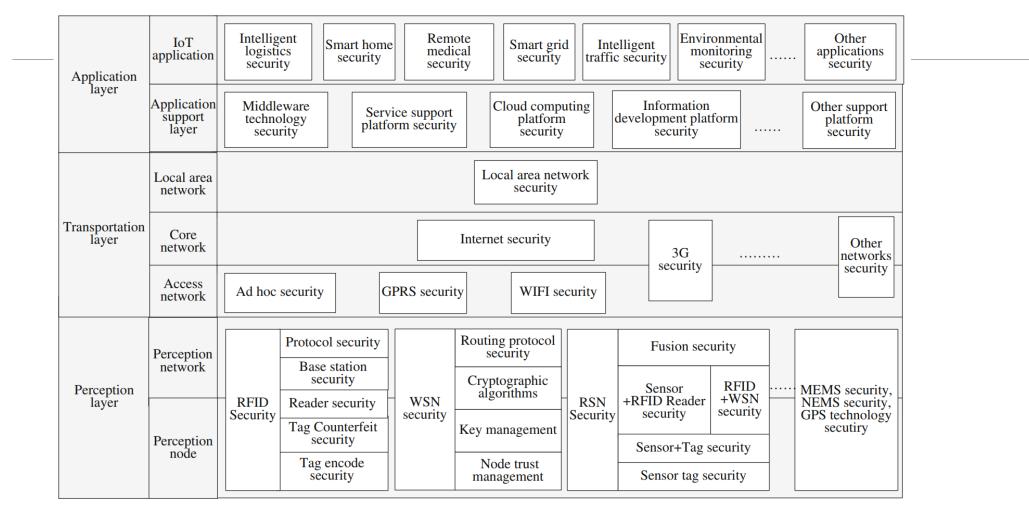
•In October 2016, reports of an IoT DDoS <u>botnet attack</u> against a different target revealed an approximately 200 percent size increase over the attack reported in June 2016.


¹. https://securityintelligence.com/the-weaponization-of-iot-rise-of-the-thingbots/

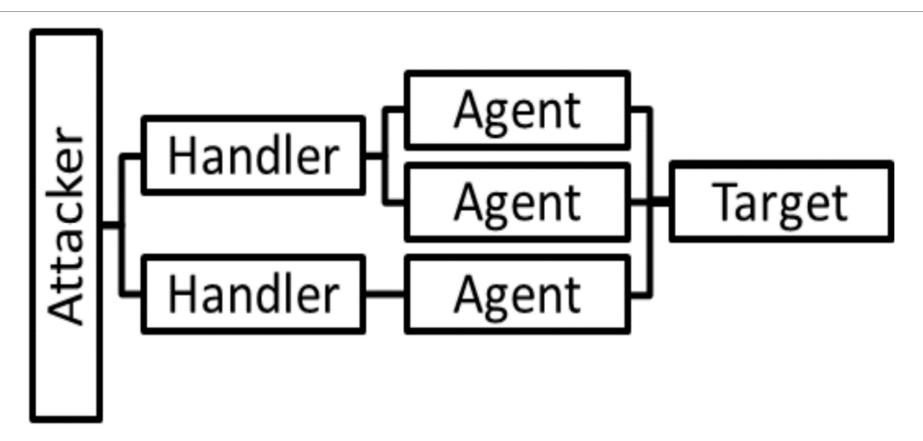
Why DDoS Attack on IoT

Notable 2016 IoT botnet DDOS attacks

IoT Architecture


1. Suo, H., Wan, J., Zou, C., & Liu, J. (2012, March). Security in the internet of things: a review. In Computer Science and Electronics Engineering (ICCSEE), 2012 international conference on (Vol. 3, pp. 648-651). IEEE.

IoT Security Solution


1. Suo, H., Wan, J., Zou, C., & Liu, J. (2012, March). Security in the internet of things: a review. In Computer Science and Electronics Engineering (ICCSEE), 2012 international conference on (Vol. 3, pp. 648-651). IEEE.

IoT Security Solution

1. Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481-2501.

DDoS Attack

DDoS Attack Types

•UDP flood

•ICMP/PING flood

•SYN flood

•Ping of Death

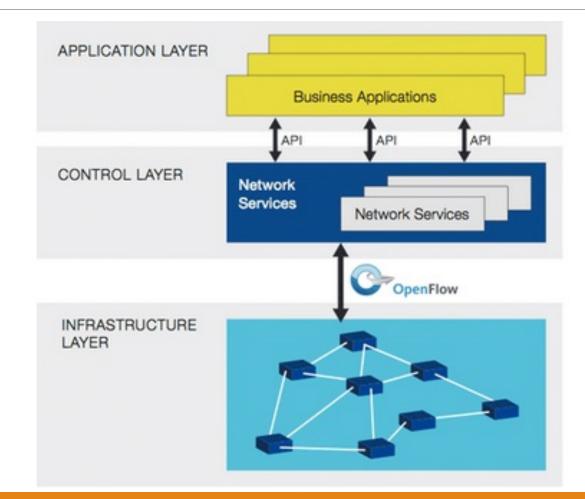
•Zero-day DDoS

DDoS on Perception Layer

- RFID Jamming
- RFID Kill Command Attack
- RFID De-synchronizing Attack

DDoS on Perception Layer

- 802.15.4: Wide-Band Denial and Pulse Denial
- 802.15.4: Node-Specific and Message-Specific Denial
- 802.15.4: Bootstrapping Attacks


DDoS on Network Layer

- Flooding Attacks
 e.g.: UDP flood, ICMP flood, DNS flood etc.
- Reflection-based flooding Attacks
 e.g.: Smurf attack
- Protocol Exploitation flooding attacks
 e.g.: SYN flood, TCP SYN-ACK flood, ACK PUSH flood etc.
- Amplification-b
 - e.g.: BOTNET

DDoS on Application Layer

- Reprogramming Attack
- Path based DoS

DDoS Attack Mitigation based on SDN

Why SDN?

• SDN Is integrated and multiple layer solution.

• SDN Logically has one automated control center.

• SDN Accepts telemetry from multiple sources.

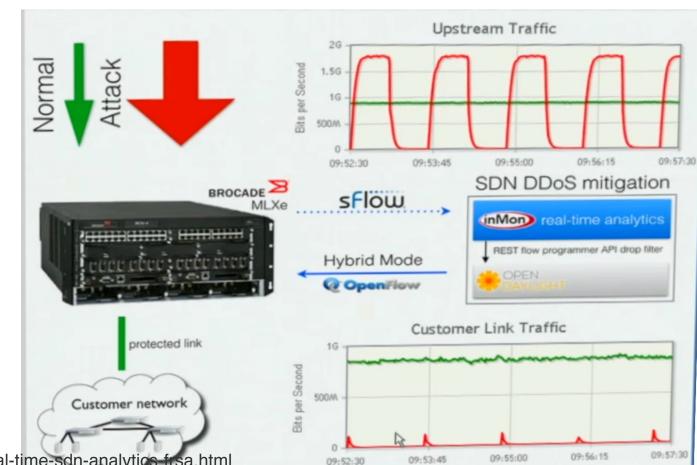
• Multivendor interoperability.

• SDN is suitable for having a timely detection solution.

Radware

https://www.radware.com/Solutions/SDN/

Radware


	Name	Network	R.Total P/sec	N.Total P/sec	R.Total B	Sec N	I Total B/sec	TPS	R.TCP P/sec	N.TCP Pisec	R.TCP B/sec	N.TCP Bisec	RJCMP P/se
•	Cust4	100.0.0.14	726	882	72,549	8	19,925	166	725	881	72,451	89,778	1
	Cust1	100.0.0.11	419	831	41,626	8	2,019	101	417	830	41,430	81,801	2
1	Cust2	100.0.0.12	680	872	67,673	8	9,396	167	679	871	67,575	89,288	1
2	Cust3	100.0.0.13	673	810	67,239	8	3,201	158	673	809	67,190	83,103	0
		led by Scrubt	Network	Detector F	?ate	N. Rate	Allack N	lame		Detected Proto	Src Address	Dest Addres	is Dest Po
Net D	DoS	Cust1	100.0.0.11	Network 1	,960	841	network	flood IF	PV4 TCP-SYN	TCP	110.0.0.110	100.0.0.11	80
-ttaci	k Clategory		Network enseFlow Traff		đack Name		Sar	urce.	Destinal	tion Protoc		ACL Scope	OF Switch DP
9. 4. 3.	« Cattegory				itack Name	~~	So:	irce					OF Switch DP
	MMM				tack Name	~~	3						
			enseFlow Traff	ic Monitor	21:54:00	22:54:30	3		So		r Traffic Mon	itor Muno	22.54.30

https://www.radware.com/Solutions/SDN/

Radware

	Protected Ne	tworks Stats										
	Name	Network	R.Total P/sec	N. Total P/sec	R Total B/sec	N.Total B/se	C TPS	R.TCP Pisec	N.TCP P/sec	R.TCP B/sec	N.TCP B/sec	RJCMP P/sex 1
Radware	Cust4	100.0.0.14	943	878	96,007	89,459	168	942	877	95,909	89,312	1 1
rtad ware	Custi	100.0.0.11	637	807	64,667	79,950	130	635	806	64,471	79,732	2 1
	Cust2	100.0.0.12	911	869	92,578	88,979	169	910	868	92,480	88,881	8 1
	Cust3	100.0.0.13	867	809	87,926	82,916	159	366	808	87,828	82,818	1 1
	Apply Attacks, Hand Attack Category	lled by Scrubi Name	bing Center Network	Detector F	Rate N.R	ale Atlac	k Name		Detected Proto	Src Address	Dest Addre	ss DestPort i
	Attacks, Handled by DefenseFlow ACLs											
	Attack Category		Network		Attack Name		Source	Destinat			ACL Scope	OF Switch DPID
	Net DDoS	Custi	100.0.0.11	Network n	etwork flood IPv4	TCP-SYN 1	10.0.0.110	100.0.0	11 6	80	Global	00:00:00:50:56:8
	DefenseFlow Traffic Monitor Scrubbing Center Traffic Monitor											
			× 22.54.00	2254:30 2	255.00 2255	2 2 2 2		25309 22	Mw 250 254	•••••• ••• 0 2254:30	22:55:00	21-56-30
https://www.radware.com/So	utions/SDN/	- No	rmal Stats — I	Realtime Stats				-	Scrubbing IN	- Scrubbing (DUT	

Flow-aware Real-time SDN Analytics (FRSA)

http://blog.sflow.com/2014/02/flow-aware-real-time-sdn-analytics-frsa.html

SDN-based Mitigation Challenges

- DDoS usually do not come from a single identified source.
 - makes remediation very difficult without also affecting legitimate traffic.
- DDoS appears either very suddenly.
 - thus requiring fast reaction to counter their effects.
 - very slow reaction makes the detection even more complicated.

J. Park, K. Iwai, H. Tanaka, and T. Kurokawa, "Analysis of slow read dos attack," in ISITA, 2014, pp. 60–64.

• Stateless

- Switches just send data to the controller.
- Controller handles analyzing, detection and mitigation.

• Stateful

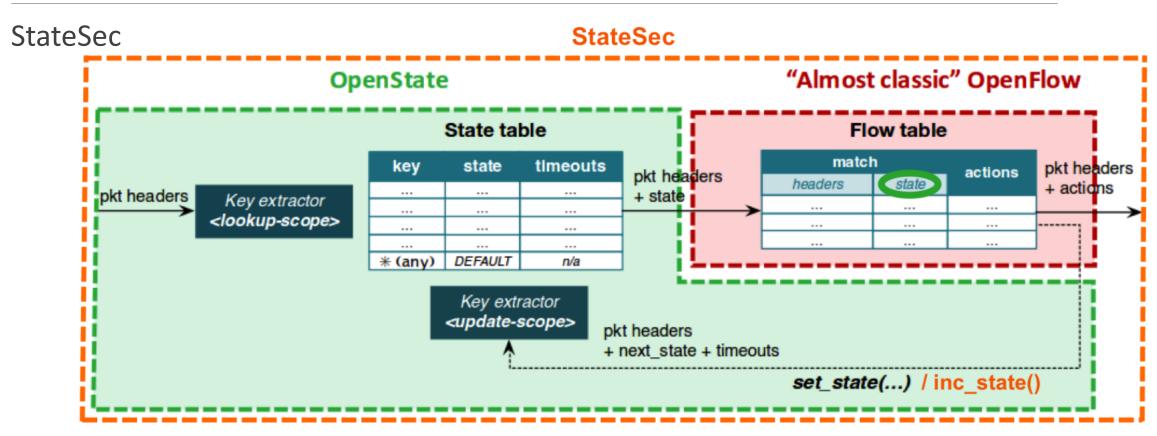
- delegate as much computation as possible to the switches without compromising their performance.
- letting the controller being only in charge of mitigation .

• Stateless

- Does not have fast and timely reaction.
- Not efficient.
- Not scalable.
- Stateful
 - Fast and timely reaction.
 - Less traffic load on the controller.

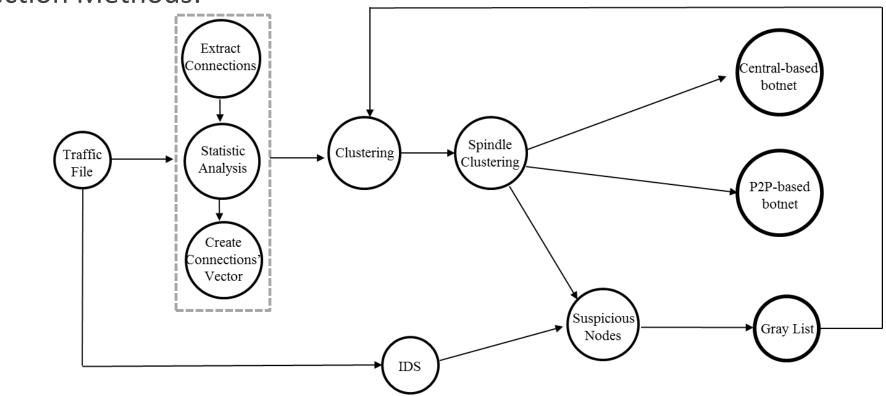
Stateful method has three main steps:

- Monitoring
- Detection
- Mitigation

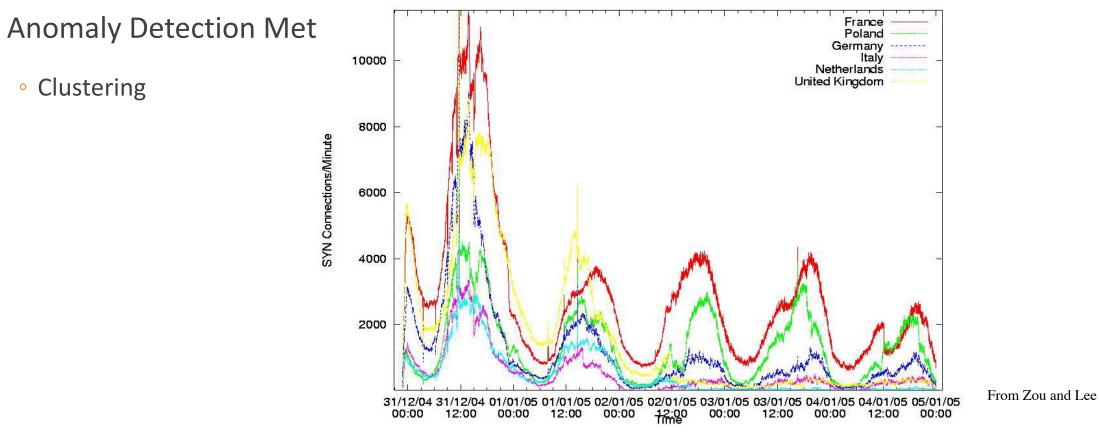

Monitoring Methods:

- Native
 - overhead on the flow tables.
 - need to add more monitoring rules (max length is 3000 rules).
- Sflow
 - periodically take a sample and send the predefine info to the controller.
 - The sample time and the data is important and has a direct effect on the control band overhead.

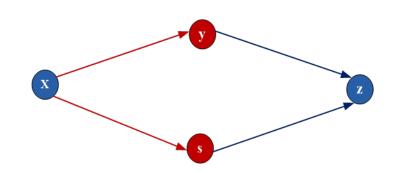
Monitoring Methods:


- StateSec
 - use the state and flow tables in an OpenState-compliant switch to independently from the forwarding rules:
 - list features
 - count the exact number of times they appear

Boite, J., Nardin, P. A., Rebecchi, F., Bouet, M., & Conan, V. (2017). StateSec: Stateful Monitoring for DDoS Protection in Software Defined Networks.


Boite, J., Nardin, P. A., Rebecchi, F., Bouet, M., & Conan, V. (2017). StateSec: Stateful Monitoring for DDoS Protection in Software Defined Networks.

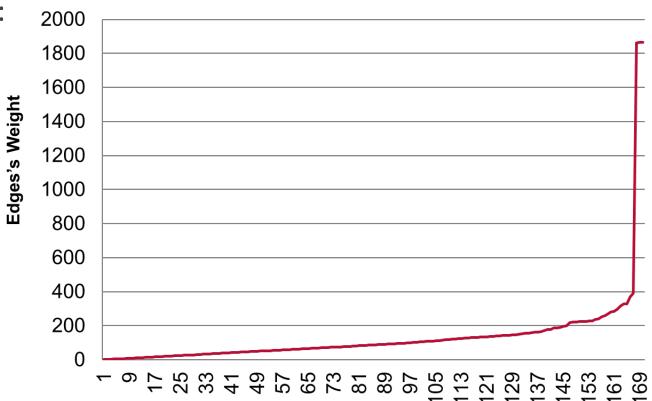
Anomaly Detection Methods:


Anomaly Detection Methods:

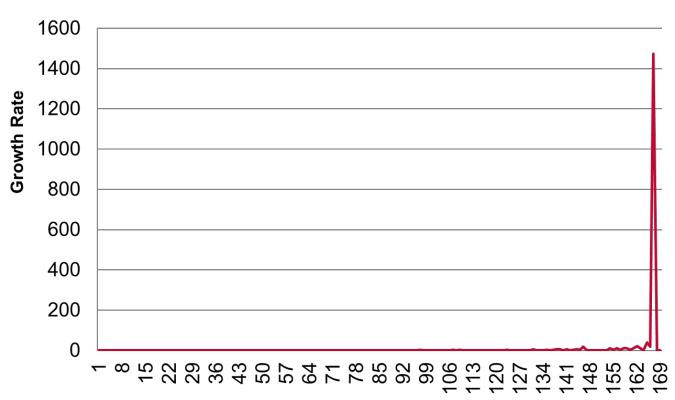
- Clustering
 - ✓ Number of sent packets for each connection
 - ✓ Size of data which has been transferred
 - Connection start time
 - Connection duration
 - Destination port number

Anomaly Detection Methods:

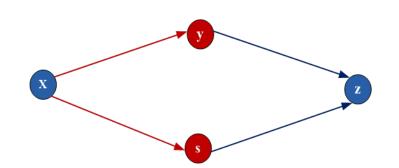
• Spindle Method



$\forall x, y, s, z \in network \ model \ | \\ [link(x, y) \land link(x, s)] \land [link(y, z) \land link(s, z)] \Leftrightarrow infected(y, s)$


Anomaly Detection Methods:

• Spindle Method


Anomaly Detection Methods:

• Spindle Method

Anomaly Detection Methods:

• Spindle Method

 $\forall x, y, s, z \\ \in network \ model \ | \ [link(x, y) \land link(x, s)] \land [link(y, z) \land w(y, z)] \land [link(s, z) \land w(s, z)] \\ \Leftrightarrow infected(y, s)$

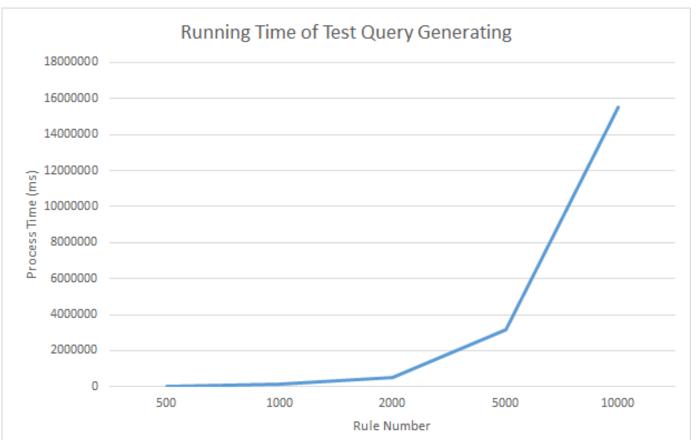
Anomaly Detection Methods:

	Infected	Detected	False negative	False Positive
IRC bot	10	10	0	0
Http bot	10	10	0	0
Zeus	10	9	1	0
Spy bot	10	8	2	0

Mitigation Methods:

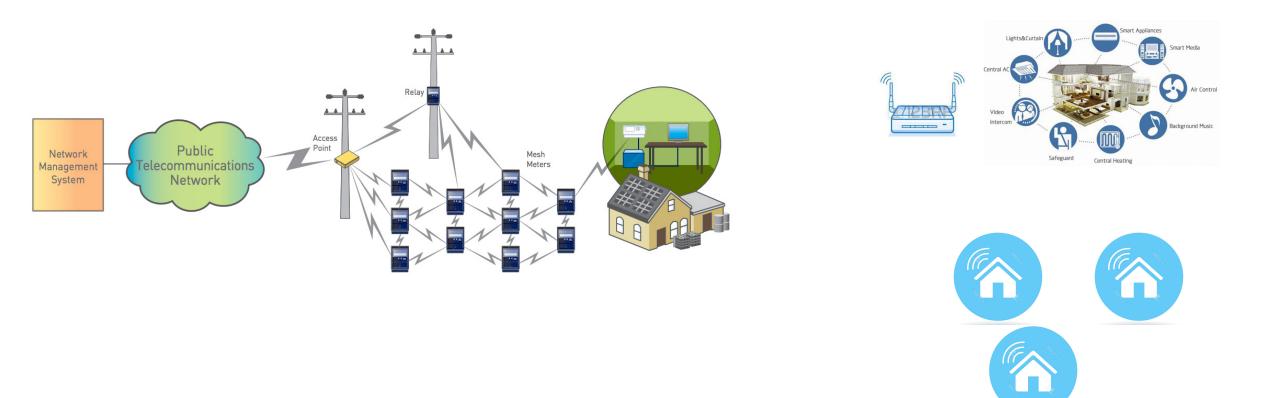
Xu, Yang, and Yong Liu. "DDoS attack detection under SDN context." Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on. IEEE, 2016.

Mitigation Methods:


 $A \rightarrow B$ $A - Victim IP = A' \qquad A' \rightarrow B$ $B - Victim IP = B' \qquad A \rightarrow B'$

Xu, Yang, and Yong Liu. "DDoS attack detection under SDN context." Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on. IEEE, 2016.

Mitigation Methods:


• Subtraction Rules

Rule Number	500	1,000	2,000	5,000	10,000
Process Time (ms)	31,543	126,104	508,206	3.17×10^8	1.55×10^{8}

Aryan, R., Yazidi, A., Engelstad, P. E., & Kure, O. (2017, October). A General Formalism for Defining and Detecting OpenFlow Rule Anomalies. In 2017 IEEE 42nd Conference on Local Computer Networks (LCN) (pp. 426-434). IEEE.

Conlusion

REFERENCES

1.https://www.welivesecurity.com/2016/10/24/10-things-know-october-21-iot-ddos-attacks/

2. https://securityintelligence.com/the-weaponization-of-iot-rise-of-the-thingbots/

3. Suo, H., Wan, J., Zou, C., & Liu, J. (2012, March). Security in the internet of things: a review. In Computer Science and Electronics Engineering (ICCSEE), 2012 international conference on (Vol. 3, pp. 648-651). IEEE.

4. Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481-2501.

5. Sonar, K., & Upadhyay, H. (2014). A survey: DDOS attack on Internet of Things. International Journal of Engineering Research and Development, 10(11), 58-63.

6. https://www.radware.com/Solutions/SDN/

7. http://blog.sflow.com/2014/02/flow-aware-real-time-sdn-analytics-frsa.html

8. Boite, Julien, et al. "StateSec: Stateful Monitoring for DDoS Protection in Software Defined Networks." (2017).

