

RFID/NFC TECHNOLOGY

With emphasis on physical layer

Ali Zaher Oslo 28.09.2012

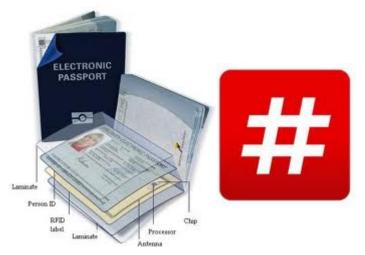
CONTENTS

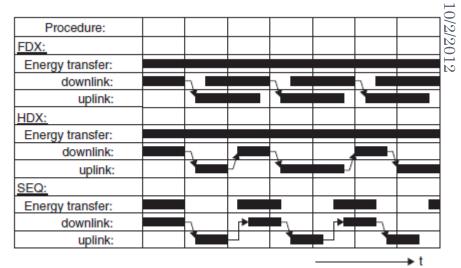
- List of abbreviations.
- RFID/NFC around us.
- RFID Definition.
- RFID Coupling.
- NFC.
- RFID Physical Model.
- NFC Physical Model.
- My work.

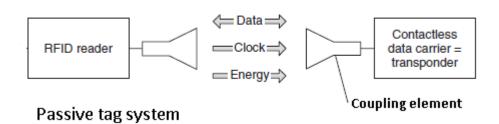
LIST OF ABBREVIATIONS

- RFID: Radio Frequency Identification.
- NFC: Near Field Communication.
- UWB: Ultra Wide Band.
- ASK: Amplitude Shift Keying.
- FSK: Frequency Shift Keying.
- ECMA: European Computer Manufacturers Association.
- FCC: Federal Communications Commission.
- CEPT: European Conference of Postal and Telecommunications Administrations. (French).
- ERP: Equivalent Radiated Power.
- EIRP: Equivalent Isotropically Radiated Power.

10/2/2012


RFID/NFC AROUND US.

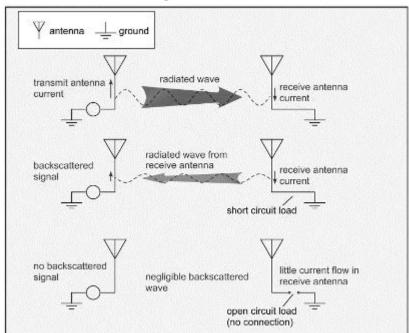


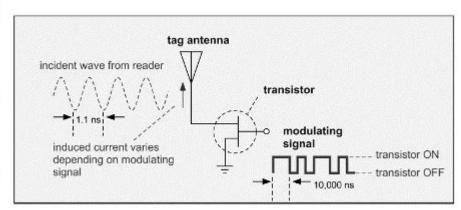

RFID DEFINITION

- Wireless non-contact system.
- Used for automatic identification.
- Made of two separate parts
 - A reader or interrogator.
 - A transponder or tag containing data.
- Works from <1cm range to >10m.
- Frequency: from ~135 Khz to 5.8 Ghz range.
- Two types of tags:
 - Passive: has no energy source except the reader.
 - Active: has a battery or another form of energy source (Energy harvesting).

RFID DEFINITION

- Communication:
 - Full duplex/ Half duplex.
 - Sequential Procedures.
- Data space on the tag: few bytes to several kilobytes.

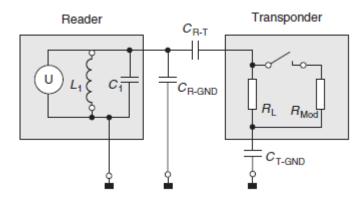




- Klaus Finkenzeller, RFID Handbook Fundamentals and applications in Contactless Smart cards, radio frequency identification and near field communication, Third edition 2010
- Bekir Bilginer, Paul-Luis Ljunggren, Near Field Communication, Master's Thesis, Lund University, February 2011.

RFID COUPLING

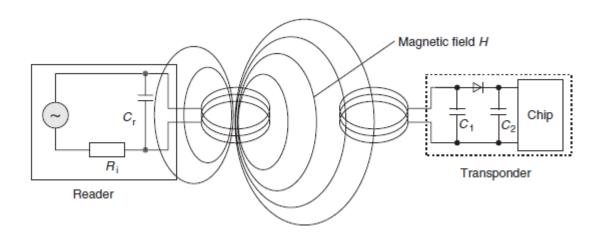
- Backscattering:
 - the signal leaves the reader.
 - hits the tag, parts of the signal is reflected back.
 - The reflected signal properties can be changed by adding a load across the tag antenna (modulating).

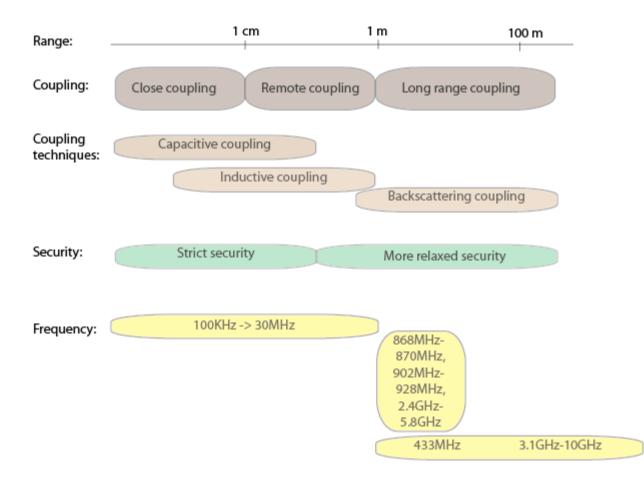


RFID Basics: Backscatter Radio Links and Link Budgets. EETimes. 10/02/2007

RFID COUPLING

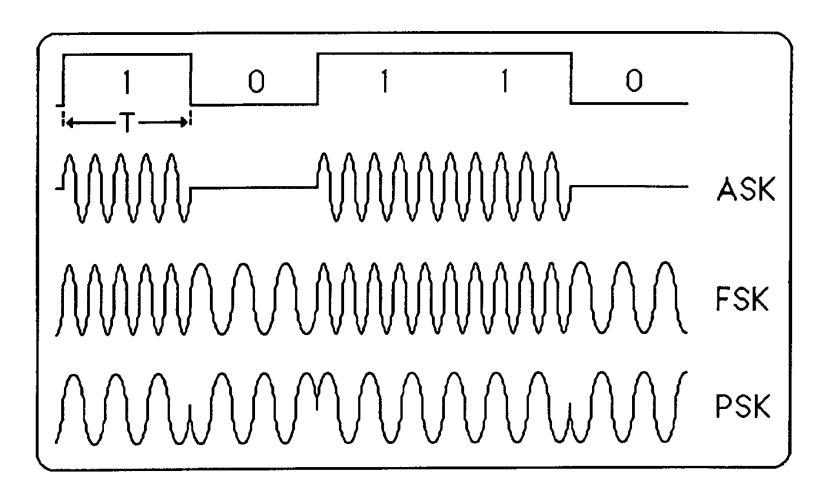
• Capacitive:


- The tag is in very close proximity (inside the reader).
- Plate capacitors constructed from coupling surface isolated from one another.
- Data transmission is done via load modulation.


RFID COUPLING

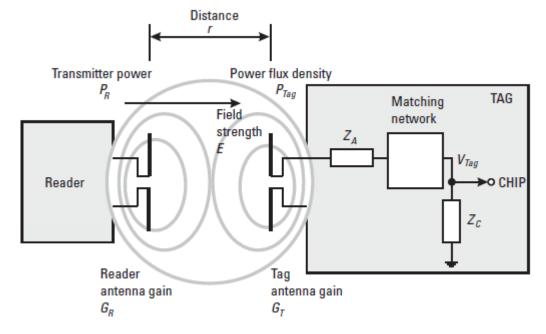
• Inductive:

- The tag is in close proximity (less than $\lambda/2\pi$).
- Mutual inductance between two coils.
- Data transmission is done via load modulation.


RFID CLASSIFICATION

NFC

- RFID with the following properties:
 - Frequency: $13.56MHz \pm 7KHz$.
 - Range: < 20 cms.
 - Inductive coupling.
 - Data rate: 106 kbps to 424kbps.
 - Tags can be active/passive.
 - Digital Modulation: ASK, PSK or FSK.
 - Standards: RFID standard ISO 14443, ISO 18092 and ECMA-340.


MODULATION: ASK, FSK, PSK

RFID PHYSICAL MODEL

- 1. Forward Power Transfer:
 - Sufficient power must be transmitted to energize the circuit inside the transponder.
- 2. The Radar Equation:
 - The reader must be able to detect and resolve the scattered signal returned.

RFID: FORWARD POWER TRANSFER

$$E^2/120\pi = P_R G_R/4\pi r^2$$

$$P_{Tag} = (E^2/120\pi)(\lambda^2/4\pi)G_T = V_{tag}^2/R_c$$

$$P_{Tag} = (P_R G_R/4\pi r^2)(\lambda^2 G_T/4\pi) = P_R G_R G_T \lambda^2/(4\pi)^2 r^2$$

$$V_{Tag} = (\lambda/4\pi r)\sqrt{P_R G_R G_T R_c}$$
Power transmitted is regulated by ECC (in EIRP) and CEPT in ER

Power transmitted is regulated by FCC (in EIRP) and CEPT(in ERP).

- Refer to the Antenna presentation (pages 10-12) by Håvard Austad
- Harvey Lehpamer, RFID design principles, Chap 5. Artech House Publishers, December 2007

RFID: FORWARD POWER TRANSFER

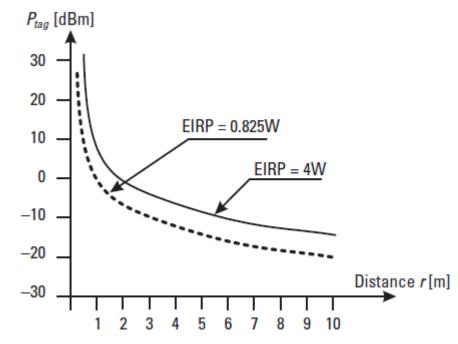
EXAMPLE

Freq = 915 MHz.V= 1.6 Vrms.

Gains = $2dBi (\sim 1.6)$

Distance = 1 m.

$$P_{Tag} = V_{Tag}^2 / R_c = 1.6^2 / 600 = 0.0043 [W]$$


$$P_R = \left(4\pi r V_{Tag}/\lambda\right)^2 \left(1/(G_R G_T G_c)\right)$$

$$P_{R} = (4\pi \cdot 1.16/0.33)^{2} (1/(1.6.16.600))$$

$$P_{\scriptscriptstyle R} = 2.416\, [\mathrm{W}]$$

$$G[dBi] = 10 \log G \rightarrow G = 10^{\frac{G[dBi]}{10}}$$

EIRP = P_R . $G_R \sim 4W$

ERP	EIRP	dBm	Gain	Power amplifier in dB
500mW	825mW	29dBm	2dBi	27dBm
2W	3.3W	35dBm	2dBi	33dBm
2.4W	4W	36dBm	2dBi	34dBm

15

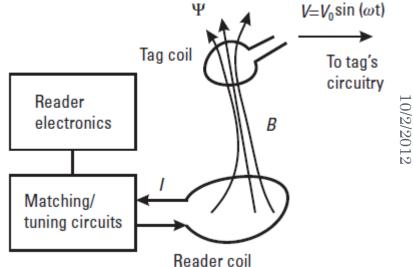
10/2/2012

RFID: RADAR EQUATION

- The larger the reflective area, the greater the reflective energy (Radar cross section, RSC).
- In RFID, Differential RSC or Δ RSC (Due to modulation).
- Effective aperture: $A_{\epsilon} = \lambda^2 G_T / 4\pi \left[m^2 \right]$
- Differential reflection coefficient: $\Delta \rho$ around 0.5 but less than 1.

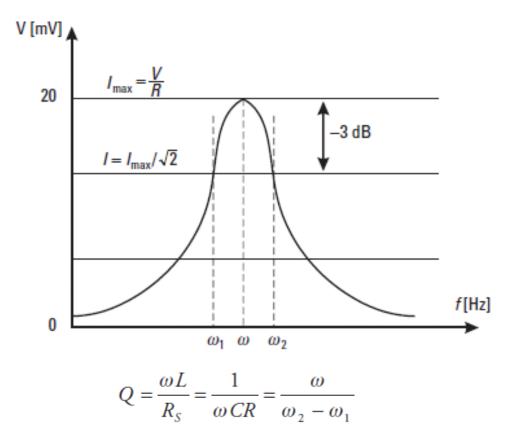
$$\sigma = \Delta_{\text{RCS}} = A_{\epsilon} \cdot G_T \cdot (\Delta \rho)^2 = \frac{\lambda^2 G_T^2 (\Delta \rho)^2}{4\pi} \left[m^2 \right]$$

- o Power Flux density: $S = \frac{P_R}{4\pi r^2} [W/m^2],$
- Directional power flux density: $S_D = S \cdot G_R$
- Power returned to the reader: $P_{Ret} = \frac{P_R}{4\pi r^2} \cdot G_R \cdot \sigma[W]$
- Power density at the reader: $S_{REC} = \frac{P_{Ret}}{4\pi r^2} = \frac{P_R \cdot G_R}{(4\pi)^2 r^4} \cdot \sigma$


f[MHz]	λ [m]	<i>r</i> [m]	<i>P</i> Reader [W]	P Reader [dBm]	Reader Antenna Gain	Tag Antenna Gain	$\Delta\! ho$	σ [m ²]	P Received [μW]	P Received [dBm]	Power Ratio [dB]
915.00	0.33	1.00	2.00	33.01	1.60	1.60	0.50	0.0055	1.5185	-28.19	-61.20

NFC: Inductive Coupling

- Magnetic flux density: $B = \frac{\mu_0 I N a^2}{2r^3}$ [Weber/m² or tesla]
 - I : Current through the coil.
 - N: Number of windings in reader coil.
 - a: radius of the coil.
 - $\mu 0$: permeability of free space $(4\pi \times 10^{-7})$ H/m).
 - r: perpendicular distance from coil center. r>>a.
- Resonance Frequency of the reader:


$$f_0 = 1/2\pi\sqrt{LC}$$

- L: the magnetic flux divided by current. It is affected by: radius of the coil, number of windings, thickness of windings, length of the coil.
- Voltage induced in the tag: $V = -N \frac{d\Psi}{ds}$ $\Psi = \int B \cdot dS$ $V_{Tag} = 2\pi f NQB(S \cos \alpha)$
 - S: Surface area of the tag coil.
 - Q: Quality factor of resonant circuit.
 - N: Number of windings in tag coil.

$$\Psi = \int B \bullet dS \qquad V_{T_{dg}} = 2\pi f NQB(S\cos\alpha)$$

NFC: Inductive Coupling

Q is within the range of 20 to 80.

REFERENCES

- Harvey Lehpamer, RFID design principles, Chap 5. Artech House Publishers, December 2007
- 2. Refer to the Antenna presentation (pages 10-12) by Håvard Austad
- 3. http://www.sit.fi/~grahn/fortmod/MT-6.html
- 4. Klaus Finkenzeller, RFID Handbook Fundamentals and applications in Contactless Smart cards, radio frequency identification and near field communication, Third edition 2010
- 5. RFID Basics: Backscatter Radio Links and Link Budgets. EETimes. 10/02/2007
- 6. Bekir Bilginer, Paul-Luis Ljunggren, Near Field Communication, Master's Thesis, Lund University, February 2011.

My Work

- Nano electronics group at IFI, UiO.
- How smart can and should a Smart Sensor Node be?
- Application: Implanted under the skin glucose sensor (GlucoSence).
- Way forward:
 - A non-volatile memory on the sensor. (Flash)
 - A communication link. (NFC)
 - A communication protocol. (???).
- Interested? Contact me!