Feasibility Study of Cloud SDR

Maghsoud Morshedi Chinibolagh

What is SDR?

- SDR is a radio that some or all of the physical layer functions are defined by software
 - The ideal SDR hardware should support any waveform at any carrier frequency!?

LTE Architecture

• Access network

- eNodeB
 - Remote Radio Unit (RRU)
 - Baseband Unit (BBU)
- Backhaul
- Core network
 - Mobility Management Entity
 - Serving Gateway
 - Packet Data Network Gateway
 - Home Subscriber Server

Cloud SDR

- Centralized management
- Lower total cost of ownership
- Better coordination between operators
- High processing power
- Resource pooling
- Save power

Cloud Resource Pool

• Cloud SDR provides processor pool for eNB whenever its BBU demands higher processing power

CRAN industry trend

Infrastructure Feasibility

- Common Public Radio Interface (CPRI) [1]
 - Connect antenna systems to remote processing unit.

Infrastructure Feasibility

- Backhaul network [2]
 - Comprises the intermediate links between the core network and edge network.
 - Microwave link 6-42 GHz and E-band 70-80 GHz support more than 10 Gbps backhaul
 - Satellite backhaul introduces latency
 - Fiber link can support more than 101 Tbps in longer distances.

Latency

- Latency and overall throughput dominated by two factor:
 - Distance
 - Protocols
- Latency causes:
 - Propagation delay = distance / speed
 - Serialization = packet size in bits / transmission rate in bits per second
 - Data protocols
 - TCP handshakes and window size
 - Routing and switching
 - Vendor dependent
 - Queuing and buffering
 - Queue awaiting transmission due to over-utilization

Latency

- Latency causes:
 - Propagation delay
 - Fiber propagation delay
 - Fiber distance= speed of light / refractive index $\approx 205 \text{ m/}\mu\text{s}$
 - Fiber latency for $100 \text{km} \approx 488 \ \mu\text{s}$
 - Serialization
 - Latency for Ethernet packet 1518 bytes on 10 Gbps line = $1.2144 \ \mu s$
 - Latency for Ethernet packet 550 bytes on 10 Gbps line = $0.440 \ \mu s$
 - Routing and switching
 - Fiber switches introduce 380 ns latency
- Round Trip Time:
 - RTT= $(488 + 0.440 + 0.380) * 2 \approx 977.64 \,\mu s$

- User plane latency
 - Frequency Division Duplex Radio interface Technology
 - 4 ms when requires no Hybrid Automatic Repeat reQuest (HARQ)

• Control plane Idle to connected mode latency

Component	Description					
1	Average delay due to RACH scheduling period (1ms RACH cycle)					
2	RACH Preamble	1				
3-4	Preamble detection and transmission of RA response (Time between the end RACH transmission and UE's reception of scheduling grant and timing adjustment)	3				
5	UE Processing Delay (decoding of scheduling grant, timing alignment and C-RNTI assignment + L1 encoding of RRC Connection Request)	5				
6	Transmission of RRC and NAS Request	1				
7	Processing delay in eNB (L2 and RRC)	4				
8	Transmission of RRC Connection Set-up (and UL grant)	1				
9	Processing delay in the UE (L2 and RRC)	12				
10	Transmission of RRC Connection Set-up complete	1				
11	Processing delay in eNB (Uu \rightarrow S1-C)					
12	S1-C Transfer delay					
13	MME Processing Delay (including UE context retrieval of 10ms)					
14	S1-C Transfer delay					
15	Processing delay in eNB (S1-C \rightarrow Uu)	4				
16	Transmission of RRC Security Mode Command and Connection Reconfiguration (+TTI alignment)	1.5				
17	Processing delay in UE (L2 and RRC)	16				
	Total delay	50				

- Control plane Idle to connected mode latency
 - Placing BBU in cloud introduces extra 0.5 ms delay for colored components
 - Total delay $\approx 53 \text{ ms}$

Component	Description	Time (ms)				
1	Average delay due to RACH scheduling period (1ms RACH cycle)					
2	RACH Preamble					
3-4	Preamble detection and transmission of RA response (Time between the end RACH transmission and UE's reception of scheduling grant and timing adjustment)	3				
5	UE Processing Delay (decoding of scheduling grant, timing alignment and C-RNTI assignment + L1 encoding of RRC Connection Request)	5				
6	Transmission of RRC and NAS Request	1				
7	Processing delay in eNB (L2 and RRC)	4				
8	Transmission of RRC Connection Set-up (and UL grant)	1				
9	Processing delay in the UE (L2 and RRC)	12				
10	Transmission of RRC Connection Set-up complete	1				
11	Processing delay in eNB (Uu \rightarrow S1-C)					
12	S1-C Transfer delay					
13	MME Processing Delay (including UE context retrieval of 10ms)					
14	S1-C Transfer delay					
15	Processing delay in eNB (S1-C \rightarrow Uu)	4				
16	Transmission of RRC Security Mode Command and Connection Reconfiguration (+TTI alignment)	1.5				
17	Processing delay in UE (L2 and RRC)	16				
	Total delay	50				

- Control plane dormant to active mode latency
 - Uplink initiated transition from dormant state to active state for synchronized UE; including first uplink data transmission.

Component	Description	Time [ms]
1	Average delay to next SR opportunity (1ms PUCCH cycle)	0.5
2	UE sends Scheduling Request	1
3	eNB decodes Scheduling Request and generates the Scheduling Grant	3
4	Transmission of Scheduling Grant	1
5	UE Processing Delay (decoding of scheduling grant + L1 encoding of UL data)	3
6	Transmission of UL data	1
	Total delay	9.5

- Control plane dormant to active mode latency
 - Placing BBU in cloud introduces extra 0.5 ms delay for colored components
 - Total delay $\approx 11 \text{ ms}$

Component	Description	Time [ms]
1	Average delay to next SR opportunity (1ms PUCCH cycle)	0.5
2	UE sends Scheduling Request	1
3	eNB decodes Scheduling Request and generates the Scheduling Grant	3
4	Transmission of Scheduling Grant	1
5	UE Processing Delay (decoding of scheduling grant + L1 encoding of UL data)	3
6	Transmission of UL data	1
	Total delay	9.5

LTE Delay Budget

• LTE includes quality of service management with up to 9 classes of service

QCI	Priority	Packet Delay Budget	Packet Error Loss Rate	Example Services	
1	2	100 ms	10-2	Conversational Voice	
2	4	150 ms	10-3	Conversational Video (Live Streaming)	
3	3	50 ms	10-3	Real Time Gaming	
4	5	300 ms	10-6	Non-Conversational Video (Buffered Streaming)	
5	1	100 ms	10-6	IMS Signalling	
6	6	300 ms	10-6	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)	
7	7	100 ms	10-3	Voice, Video (Live Streaming) Interactive Gaming	
8	8	300 ms	10-6	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)	

LTE Bandwidth vs Distance

- Huawei DBS 3900 eNodeB equipment [5]:
 - The DBS3900 eNodeB supports main LTE FDD frequency bands
 - The RF modules support main LTE FDD frequency bands and the minimum requirement of 2 x 2 uplink and downlink multiple-input multiple-output (MIMO).

Component DBS3900	Description
Maximum Throughput per eNodeB	Downlink: 450 Mbit/s
	Uplink: 300 Mbit/s
Maximum Number of UEs in RRC-	3600
connected Mode per eNodeB	
eBBU power consumption	333.5W

Component RRU3222 (2T2R)	Description			
	Frequency Band Bandwidth 800 MHz:			
Frequency Band	Download 791 MHz to 821 MHz			
	Upload 832 MHz to 862 MHz			
Bandwidth	5 MHz/10 MHz/20 MHz			
eRRU maximum distance	38 km			
Maximum eRRU output power	$2 \times 40W$			
Receiving sensitivity	1T1R: -106.4dBm			
	1T2R: -109.2 dBm			
eRRU power consumption	300 W			

LTE Bandwidth vs Distance

- Receiver Power calculation
 - $P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2$
 - Assumptions [6][7]:
 - $P_t = 40 W$, $G_t = 18 dBi$, $G_r = 2 dBi$, $\lambda = 0.375 m$
 - LTE User Equipment sensitivity [8]:

Band MHz	E-UTRA Band	Uplink Band	Downlink Band	1.4 MHz	3 MHz	5 MHz	10 MHZ	15 MHz	20 MHz
800 FDD	20	832 MHz - 862 MHz	791 MHz – 821 MHz			-97	-94	-91.2	-90
900 FDD	8	880 MHz - 915 MHz	925 MHz - 960 MHz	-102.2	-99.2	-97	-94		
1800 FDD	3	1710 MHz - 1785 MHz	1805 MHz - 1880 MHz	-101.7	-98.7	-97	-94	-92.2	-91
2100 FDD	1	1920 MHz - 1980 MHz	2110 MHz - 2170 MHz			-100	-97	-95.2	-94
2600 FDD	7	2500 MHz - 2570 MHz	2620 MHz - 2690 MHz			-98	-95	-93.2	-92
3500 FDD	22	3410 MHz - 3490 MHz	3510 MHz - 3590 MHz			-97	-94	-92.2	-91

LTE Bandwidth vs Distance

LTE Backhaul Capacity

- Higher bandwidth => shorter distance from RRU => increase in number of eNodeBs
- Increase in number of eNodeBs => require more capacity in backhaul network
- Maximum throughput of each DBS3900 eNB = 450 Mbps
- Each eNB requires at least 4 Gb fiber link to aggregation point for 2×2 MIMO
- Due to short range coverage, existing aggregation links require upgrade

Cloud SDR implementation feasibility

- CPRI links connect RRU to BBU so it can be extended to cloud
- Latency introduced by moving BBU to cloud is small
- Existing backhaul capacity should be upgraded to support cloud SDR.

Cloud SDR Advantages

- ✓ 333.5 watt BBU moves to data center and will consume efficiently
- ✓ BBU hardware change to software license in cloud
- ✓ Deploying new BBU implementation will just be a software upgrade in cloud
- ✓ BBU centralization in cloud facilitate management
- ✓ Operational expenses of eNBs decline
- ✓ Better coordination between operators
- ✓ High processing power
- ✓ Resource pooling

Energy efficiency

Agile development

Enhance coordination

References

- [1] <u>http://www.ieee802.org/1/files/public/docs2015/liaison-CPRI_Tdoc_1124_presentation-0315.pdf</u>
- [2] <u>https://www.ngmn.org/uploads/media/NGMN_Whitepaper_LTE_Backhauling_Deployment_Scenarios_01.pdf</u>
- [3] <u>http://www.m2optics.com/blog/bid/70587/Calculating-Optical-Fiber-Latency</u>
- [4] TR 36.912: Feasibility study for Further Advancements for E-UTRA (LTE-Advanced) http://www.3gpp.org/dynareport/36912.htm
- [5] eLTE3.3 DBS3900 LTE FDD Product Description Huawei Enterprise <u>www.huawei.com/ilink/enenterprise/download/HW_40106</u>
- [6] LTE (FDD) Transmitter Characteristics <u>https://www.ntia.doc.gov/files/ntia/meetings/lte_technical_characteristics.pdf</u>
- [7] User equipment receiver sensitivity https://docbox.etsi.org/workshop/2013/201310_eeworkshop/s04_ee_applicationofmethodologies/nsn_scheck.pdf
- [8] The timing of the consumer and operator features available from HSPA and LTE <u>https://www.ofcom.org.uk/__data/assets/pdf_file/0015/45501/hspa_vs_lte.pdf</u>

Thank you

