MOBILE BROADBAND

UNIK4230: Mobile Communications

Abul Kaosher abul.kaosher@nsn.com

Mobile Broadband

Materials used from:

- 1. Nokia Siemens Networks
- 2. LTE for UMTS. Evolution to LTE-Advanced. 2nd Edition. Harri Holma and Antti Toskala

Introduction

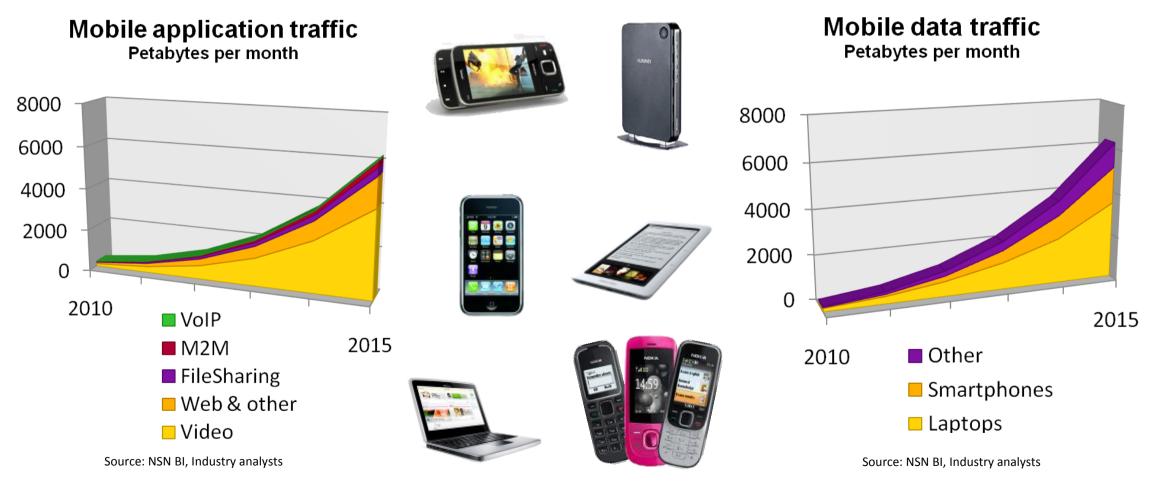
WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Strong momentum in mobile broadband



Source: NSN BI, Industry analysts



Mobile broadband traffic more than doubles every year MOBILE Video traffic has overtaken everything else

Factors impacting MBB/LTE take off & competiveness BROADBAND

- Smart phones, low end MBB phones
- Sticks, tablets, laptops, Mi-Fi
- Subsidizing usage of 3G/LTE devices

- Voice, data, sms, devices, triple/quad play
- Converged fixed and mobile offering
- Content, email, navigation, security

Content & applications

- Own applications, services from Internet
- Partnering with local brands & device vendors
- Foster country specific killer apps

- Capacity, coverage, quality
- 6-sector, active antenna, site density, spectrum
- Small cells, offloading, traffic management

Agenda

MOBILE BROADBAND

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Introduction

HSPA device ecosystem overview

HSPA technology and evolution

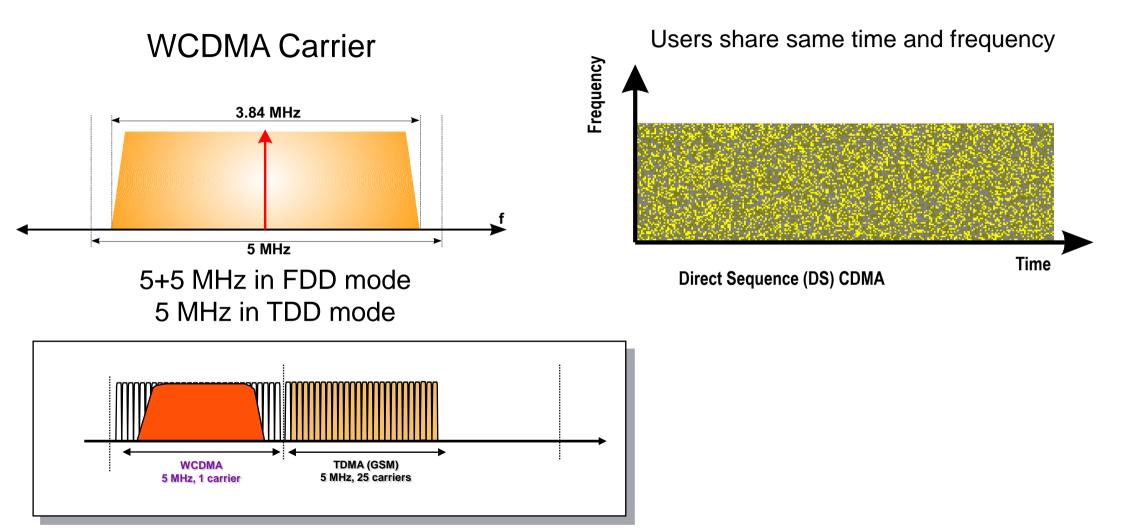
UMTS Air Interface technologies

UMTS Air interface is built based on two technological solutions

- WCDMA FDD
- WCDMA TDD

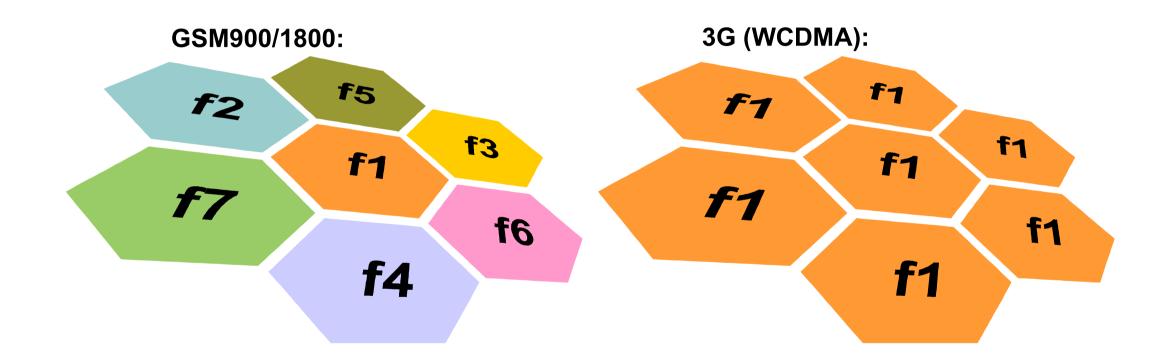
WCDMA – FDD is the more widely used solution

• FDD: Separate UL and DL frequency band


WCDMA – TDD technology is currently used in limited number of networks

• TDD: UL and DL separated by time, utilizing same frequency

Both technologies have own dedicated frequency bands



WCDMA Technology

UMTS & GSM Network Planning

CDMA principle - Chips & Bits & Symbols Bits (In this drawing, 1 bit = 8 Chips \rightarrow SF=8) +1 **Baseband Data** -1 Chip Chip +1 Spreading Code -1 +1 **Spread Signal** -1 Air Interface Despreading +1 -1 +1 Data -1

Nokia Siemens Networks

11 © Nokia Siemens Networks

Agenda

MOBILE BROADBAND

Introduction

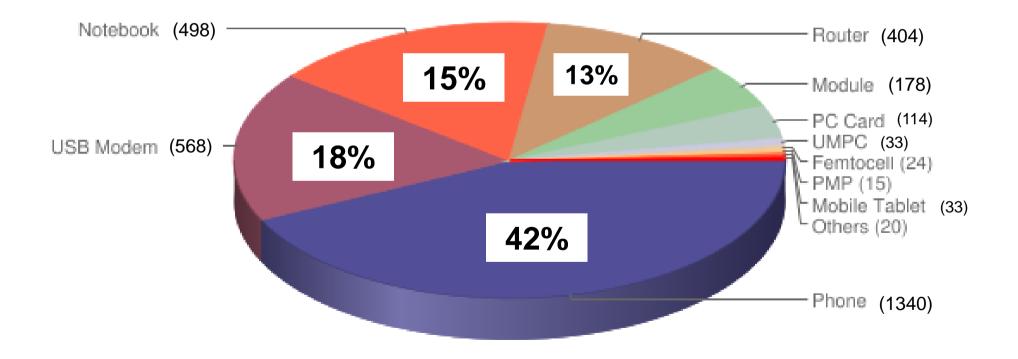
WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Introduction



HSPA technology and evolution

HSPA device landscape (GSA July, 2011)

3227 different kind of HSPA-enabled devices

TRUE world-market HSPA devices available Examples:

Clearly below 100 Euros HSPA phones now available

HSPA device categories and max theoretical data rates

HSDPA Categories (Downlink)

- Cat6 3.6 Mbps, with 16QAM
- Cat8 7.2 Mbps, with 16QAM
- Cat9 10.1 Mbps, with 16QAM
- Cat10 14.4 Mbps, with 16QAM
- Cat14 21 Mbps, with 64QAM
- Cat18 28 Mbps, with MIMO and 16QAM
- Cat20 42 Mbps, with MIMO and 64QAM
- Cat24 42 Mbps, DC-HSDPA and 64QAM
- Cat28 84 Mbps, DC-HSDPA and 64QAM and MIMO
- Cat32 168 Mbps, MC-HSDPA and 64QAM and MIMO

HSUPA Categories (Uplink)

Cat2	1.4 Mbps
Cat5	2.0 Mbps
Cat6	5.76 Mbps
Cat7	11.5 Mbps, with 16QAM
Cat8	11.5 Mbps, DC-HSUPA, 2x Cat6
Cat9	23 Mbps, DC-HSUPA, 2x Cat7

Agenda

MOBILE BROADBAND

Introduction

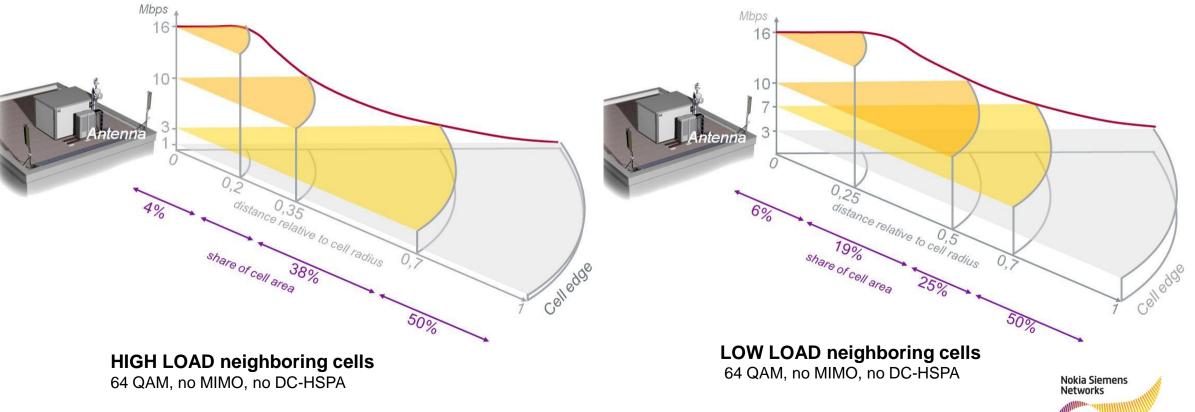
WCDMA/HSPA/HSPA+

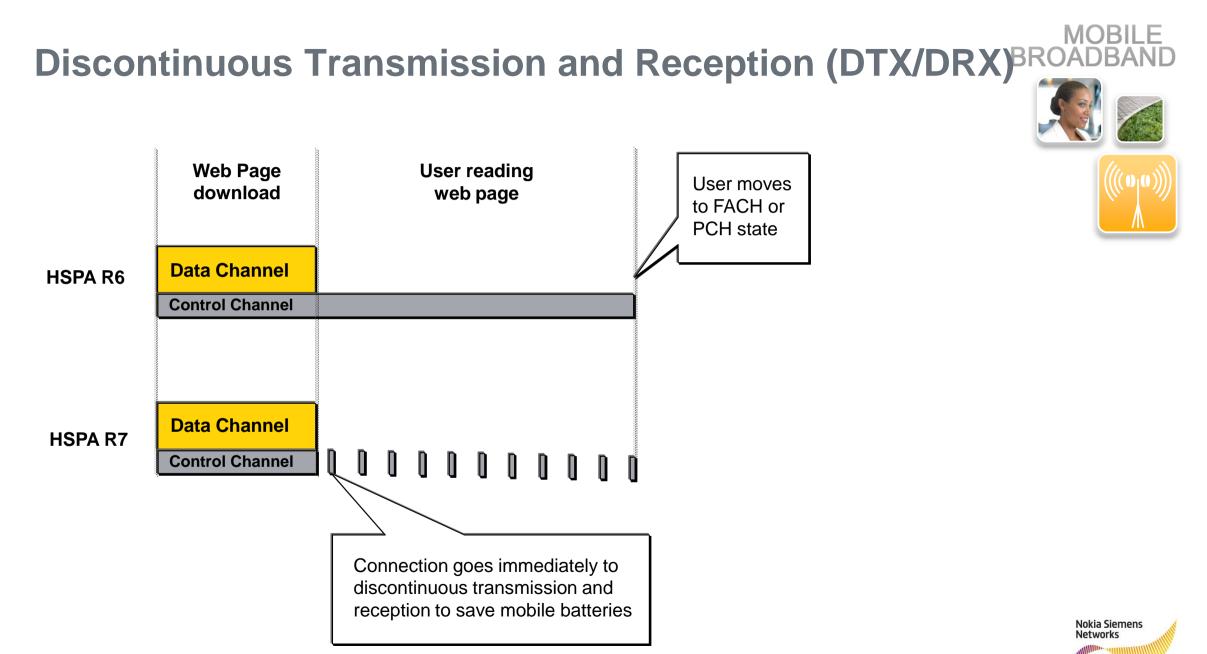
LTE

LTE-Advanced

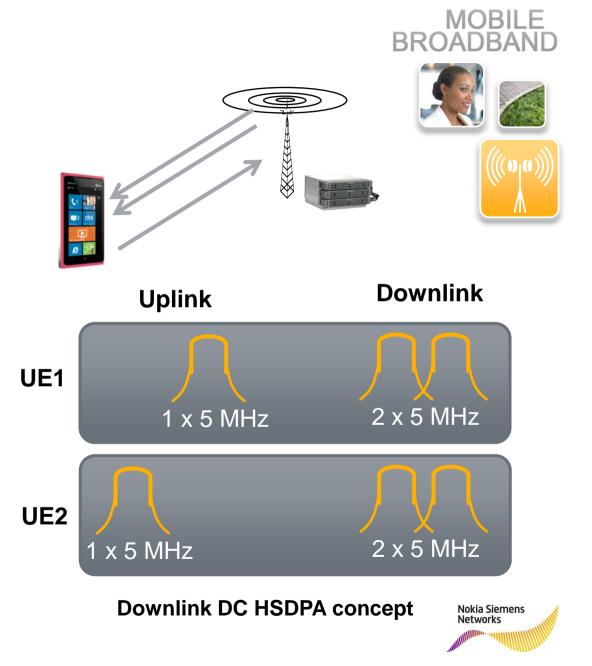
Summary

Introduction

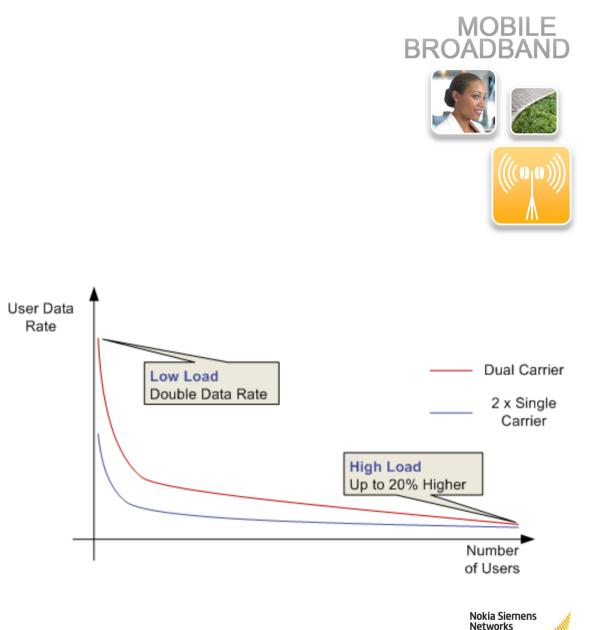

HSPA device ecosystem overview


HSPA technology and evolution

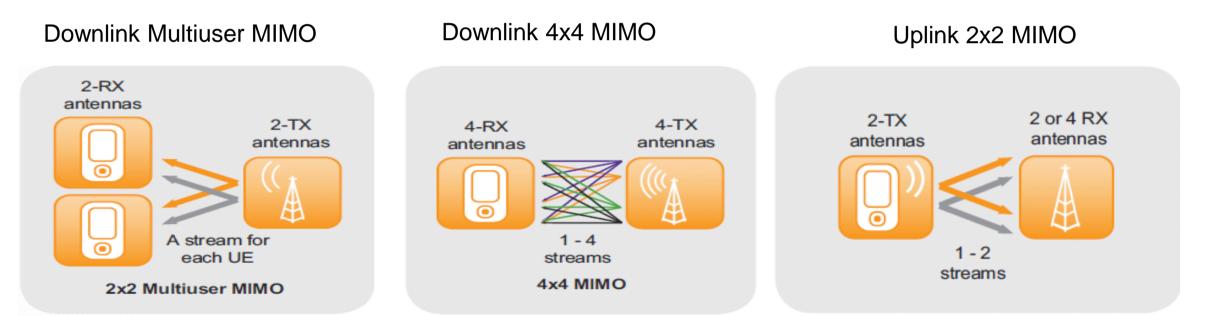
HSPA+ radio performance basics


- HSDPA peak rate depends on adaptive modulation, coding and UE category
- BTS selects modulation and coding based on reported signal quality (affected by e.g. distance from BTS, load in neighboring cells and UE performance)

Dual Cell HSDPA and HSUPA


- DC-HSDPA is a Release 8 enhancement. It provides a method to aggregate two adjacent carriers in the downlink.
- Enables transmission of 2 adjacent carriers of 10MHz bandwidth to single terminal.
- The main reason behind DC-HSDPA, i.e. multi-carrier, is to improve resource utilization and therefore increase spectrum efficiency. This is achieved by having joint resource allocation, as well as load balancing across both carriers.

Dual Cell HSDPA and HSUPA


 DC-HSDPA can double data rate at low loading because the user can access the capacity of two carriers instead of just one. The relative benefit decreases when loading increases.

 There is still some capacity benefits at high load due to frequency domain scheduling and dynamic load balancing between carriers (if both carrier is not 100% loaded at all time).

MIMO Evolution

- Multi-antenna transmission and reception increases
 - peak data rates,
 - cell throughput and
 - cell edge data rates

Dual Cell vs MIMO

	Dual Carrier	MIMO
Peak Rate	42Mbps	42Mbps
Improvement in Spectral Efficiency	20% - Due to improved scheduling in the frequency domain and increased trunking gain.	10% - Since two antennas.
Data Rate Improvement	The gain is similar all over the cell area.	Largest gain close to Node B.
Node B RF Requirements	Single Power Amplifier per sector.	Needs two Power Amplifiers per sector.
UE RF Requirements	Possible with 1 antenna terminal.	2 antennas required.

MOBILE BROADBAND

Multicarrier HSPA Evolution

3GPP Release 7:

UE can receive and transmit on single 5 MHz carrier

1 x 5 MHz 1 x 5 MHz **3GPP Release 8-9:** UE can receive and transmit two adjacent 5 MHz carriers

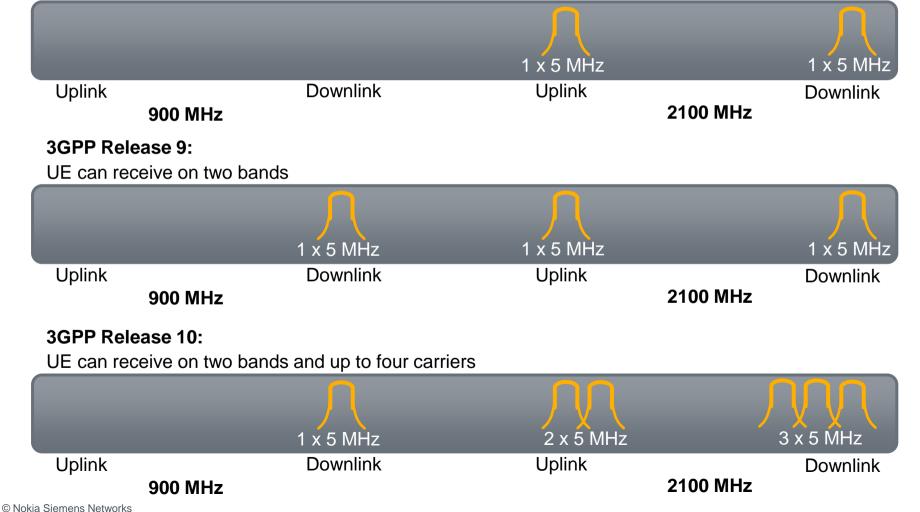
2 x 5 MHz

3GPP Release 8-9:

UE can receive four 5 MHz carriers

 $2 \times 5 MHz$

MOBILE BROADBAND

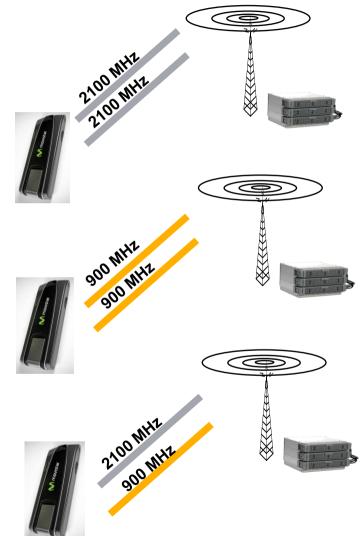


Multiband HSPA Evolution

3GPP Release 7:

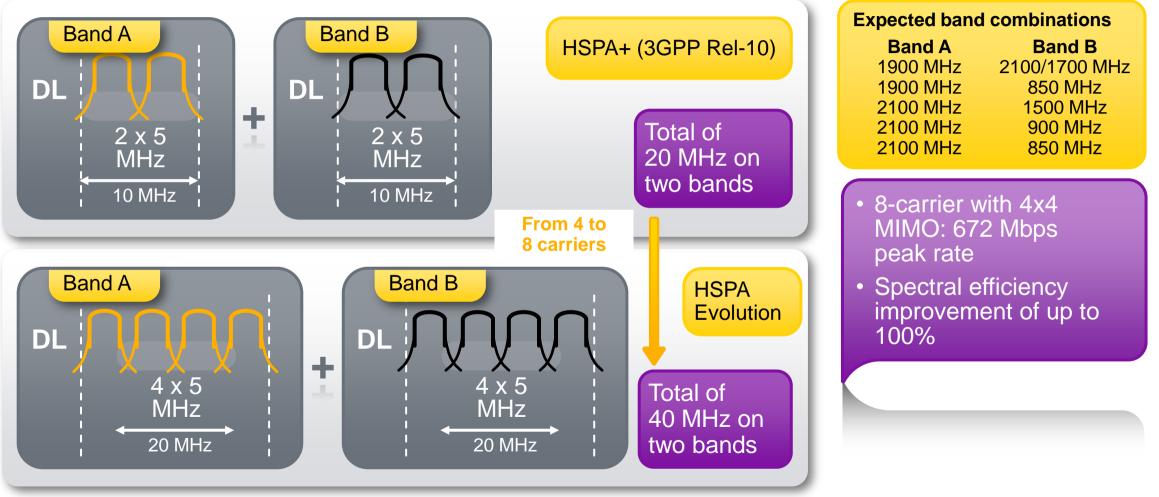
25

UE can receive and transmit on single band

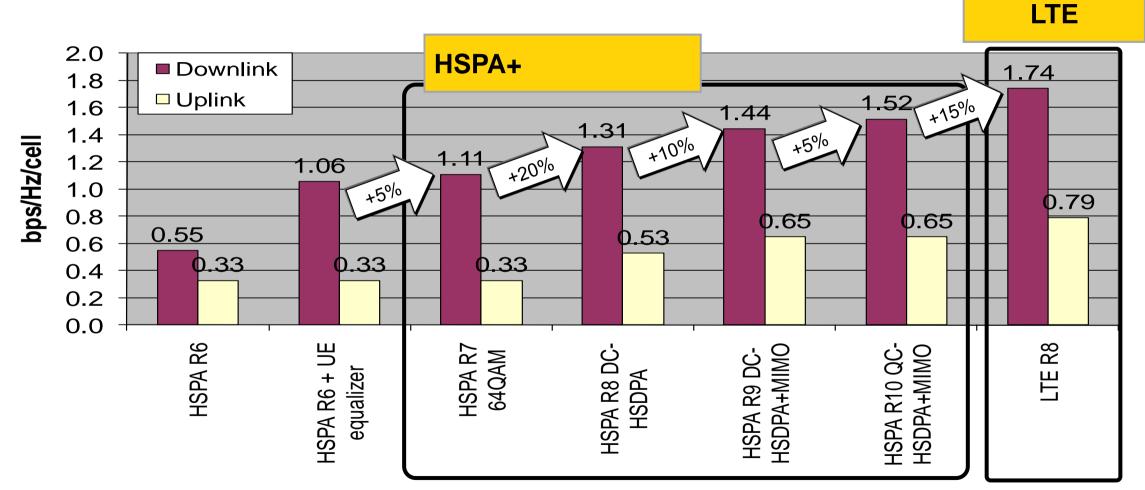


MOBILE BROADBAND

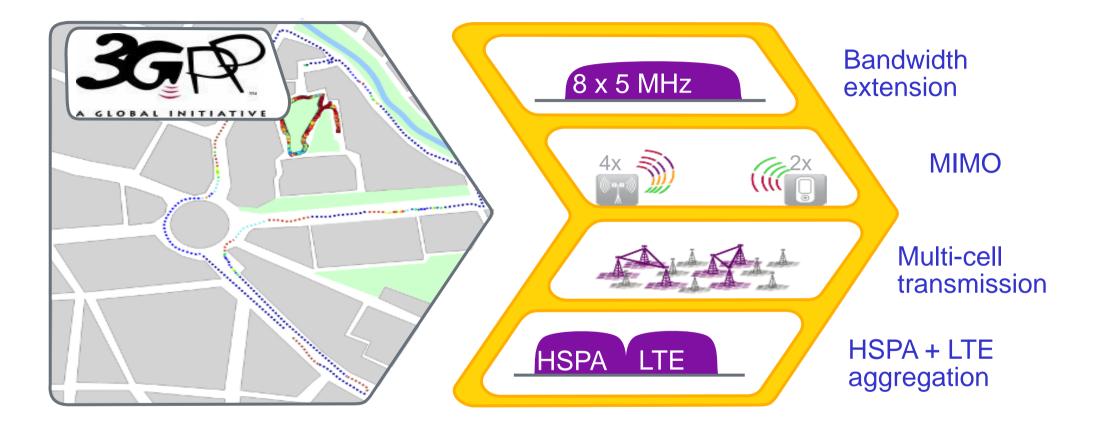
Nokia Siemens Networks


DC-HSPA on 2100, 900 and 2100+900 MHz (dual-band DC)

- DC-HSPA 42 Mbit/s device available currently in the market can support aggregation of two HSPA-carriers on the 2100 MHz band
- Technology-wise DC-HSPA on 900 MHz could be done but typically not included to the early devices/ chipset due lack of operator demand (not many operators that can free 900 for two HSPA-carriers)
- Devices capable for dual-band DC-HSPA 42 Mbit/s are expected earliest year 2013



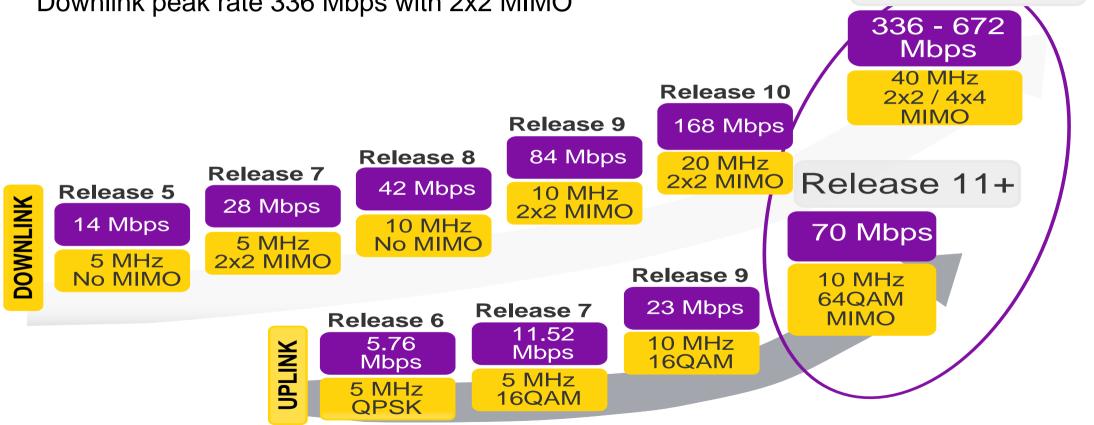
Multicarrier aggregation of up to 8 carriers on two bands for up to 672 Mbps



Spectral Efficiency Evolution

Nokia Siemens Networks

Long Term HSPA Evolution – Technology Components



Similar technical solutions in Long Term HSPA Evolution and in LTE Advanced

Nokia Siemens Networks

HSPA Peak Data Rate Evolution

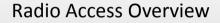
- Downlink peak rate 672 Mbps with 4x4 MIMO ۲
- Downlink peak rate 336 Mbps with 2x2 MIMO

Release 11+

Agenda

Introduction

WCDMA/HSPA/HSPA+


LTE

LTE-Advanced

Summary

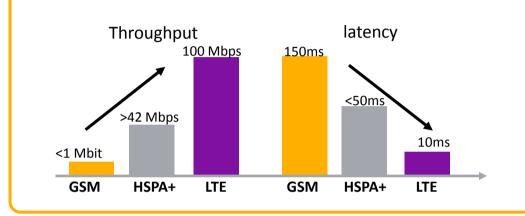
Introduction

LTE Spectrum

Core Network Overview

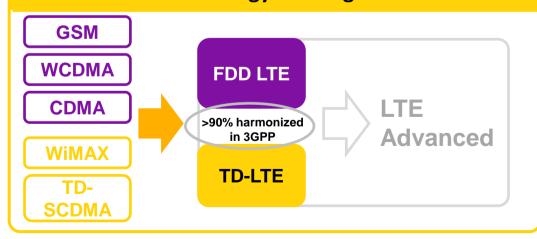
Voice over LTE (VoLTE)

QoS in LTE


Self Organizing Network (SON)

WHY LTE?

Superior mobile broadband user experience


Industry commitment behind the ecosystem

> 380 million LTE subscribers by 2015 Forecast for LTE lead markets by Research and Markets

119 LTE networks expected to be in commercial operation by end 2012

226 LTE network operator commitments in 76 countries

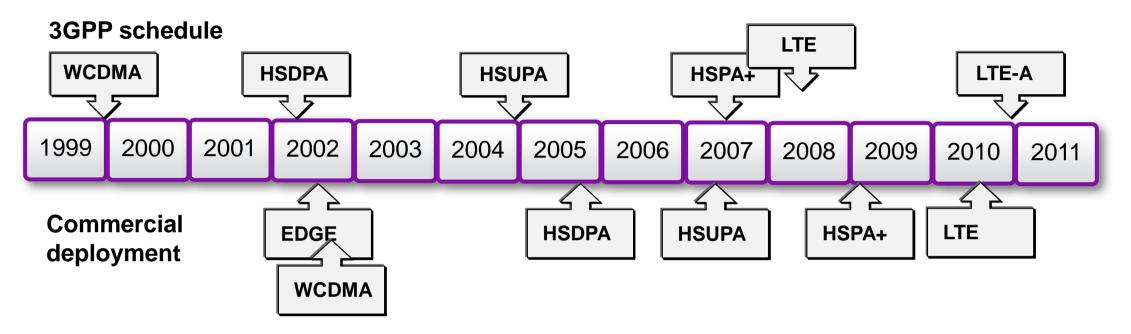
Technology convergence

Extensive range of radio spectrum support

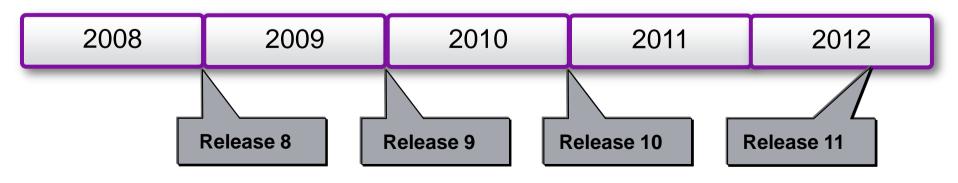
23 different FDD frequency band options 11 different TDD frequency band options

Single operator may deploy both FDD+TDD LTE for maximum utilization of spectrum assets

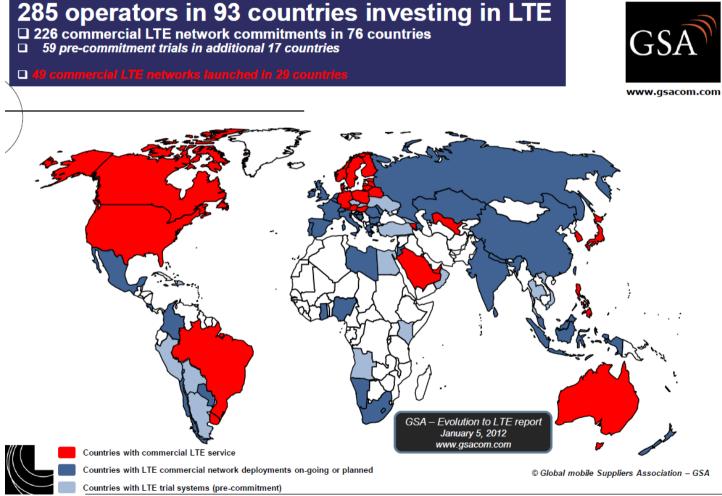
+ new ones still being specified both for new band deployment and re-farming cases


> Nokia Siemens Networks

Motivation and Targets for LTE


- Spectral efficiency 2 to 4 times more than with HSPA Rel-6
- Peak rates exceed 100 Mbps in downlink and 50 Mbps in uplink (which is 10 times more than HSPA Rel-6)
- Enable a round trip time of < 10 ms
- Packet switched optimized
- High level of mobility and security
- Optimized terminal power efficiency
- Frequency flexibility with allocations from below 1.5 MHz up to 20 MHz

3GPP Standard and Release schedule

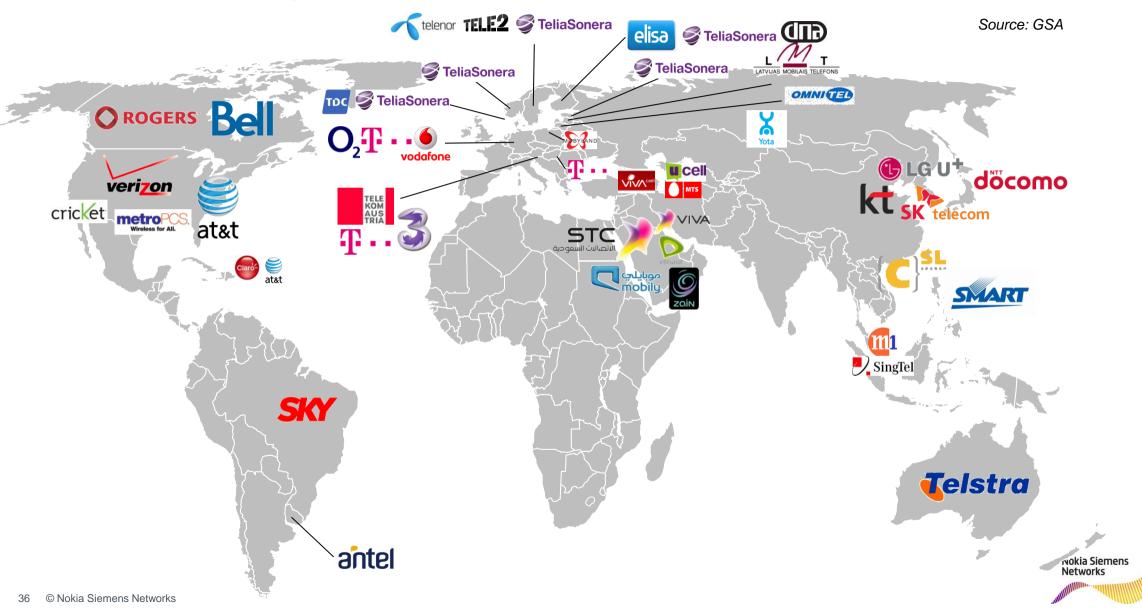

3GPP LTE Release schedule

Nokia Siemens Networks

34 © Nokia Siemens Networks

LTE market status

- 49 operators have commercially launched LTE
- 119 commercial LTE networks in 53 countries expected by end 2012


 226 commercial LTE network commitments in 76 countries

326mn dual-mode (LTE+3G) and 260mn (LTE-FDD + TD-LTE) devices activated by 2016

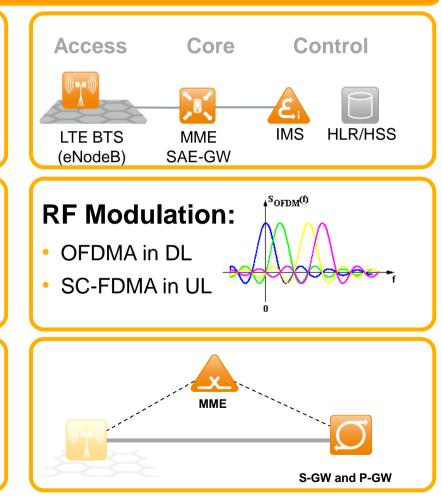
Forecast by Maravedis (May 2011)

49 commercially launched LTE networks, Jan 5th 2012

Basic Concepts / Architecture

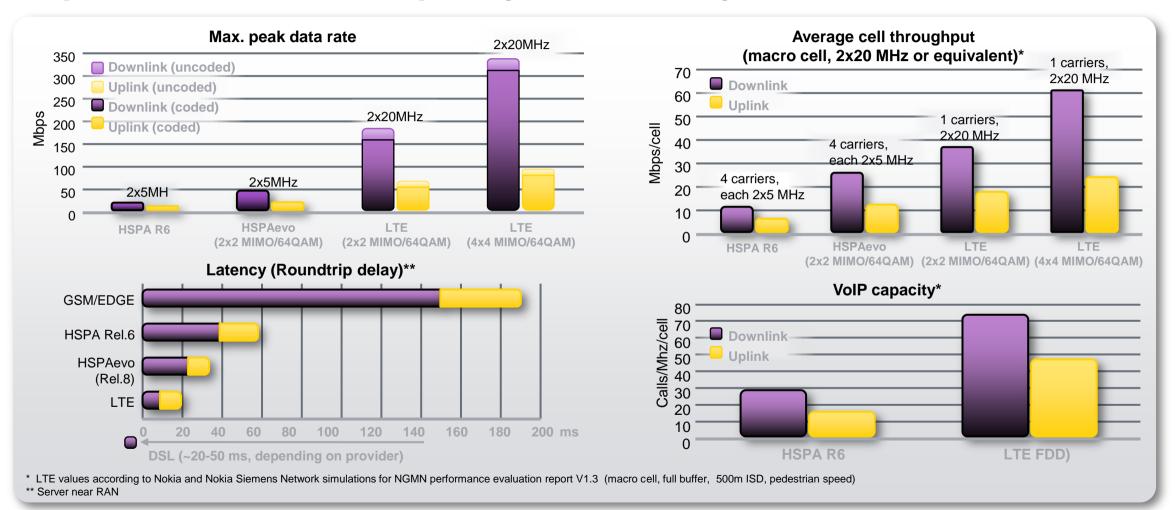
LTE / SAE introduces the mechanism to fulfill the requirements of a next generation mobile network

Flat Overall Architecture


- 2-node architecture
- IP routable transport architecture

Improved Radio Principles

- peak data rates [Mbps] 173 DL , 58 UL
- Scalable BW: 1.4, 3, 5, 10, 15, 20 MHz
- Short latency: 10 20 ms


New Core Architecture

- Simplified Protocol Stack
- Simple, more efficient QoS
- UMTS backward compatible security

LTE for best Mobile Broadband end-user performance Superior data rates, capacity and latency

LTE user devices Ecosystem growing faster than with any previous technology

269 LTE devices have been announced by 57 suppliers (GSA, January 20, 2012)

... devices launched in 2010

Cat. 3 USB-modems launched during 2010

LTE in smartphones, notebooks, tablets, MiFi, ... during 2011

Nokia Siemens Networks

Agenda

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Introduction

LTE Spectrum

Radio Access Overview

Core Network Overview

Voice over LTE (VoLTE)

QoS in LTE

Self Organizing Network (SON)

LTE spectrum & ecosystem

LTE FDD

- Early FDD LTE ecosystem (commercial networks)
 - → 2600 (Europe, APAC)
 → 2100 (Japan)
 → 1900 PCS (US)
 - → 1800
 - → 1700/2100 AWS
 - → 850
 - > 800 Digital Dividend
 - → Upper 700 MHz, C
 - \rightarrow Lower 700 MHz, B/C (

(Japan)
(US)
(GSM refarming)
(NAM incl. Canada)
(South Korea)
(Europe, MEA)
(Verizon)
(AT&T)

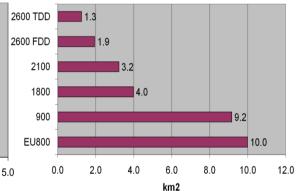
TD-LTE

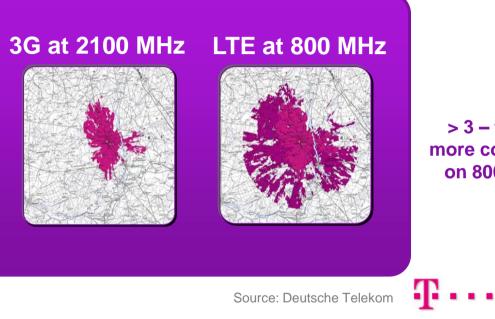
• Early TD-LTE ecosystem mainly building on

>	2300	(MEA, India, China, APAC, Russia)

(China, LatAM, Europe)

Band	MHz	Uplink MHz	Downlink MHz	
1	2x60	1920-1980	2110-2170	UMTS core
2	2x60	1850-1910	1930-1990	US PCS
3	2x75	1710-1785	1805-1880	GSM 1800
4	2x45	1710-1755	2110-2155	NAM AWS
5	2x25	824-849	869-894	850
7	2x70	2500-2570	2620-2690	2600 FDD
8	2x35	880-915	925-960	GSM 900
9	2x35	1749-1784	1844-1879	Japan, Korea 1700
10	2x60	1710-1770	2110-2170	US AWS extension.
11	2x20	1427.9-1447.9	1475.9-1495.9	Japan 1500
12	2x18	698-716	728-746	US
13	2x10	777-787	746-756	Verizon
14	2x10	788-798	758-768	US – Public Safety
17	2x12	704-716	734-746	AT&T
18	2x15	815-830	860-875	Japan – 800 (KDDI)
19	2x15	830-845	875-890	Japan – 800 (DoCoMo)
20	2x30	832-862	791-821	EU 800 DD, MEA
21	2x15	1448-1463	1496-1511	Japan 1500
22	2x80	3410-3490	3510-3590	3.5 GHz FDD
23	2x20	2000-2020	2180-2200	US S-band
24	2x34	1626.5-1660.5	1525-1559	US (LightSquared)
25	2x65	1850-1915	1930-1995	US PCS extension (Sprint)
26	2x35	814-849	859-894	850 extension (Korea-KT, Sprint)
TD-L1	ΓE			
Band	MHz	Uplink MHz	Downlink MHz	
33	1x20	1900-1920	1900-1920	UMTS core – TDD
34	1x15	2010-2025	2010-2025	UMTS core – TDD, China TD/SCDMA
35	1x60	1850-1910	1850-1910	US (band 2 – TDD variant)
36	1x60	1930-1990	1930-1990	US (band 2 – TDD variant)
37	1x20	1910-1930	1910-1930	US PCS centre-gap
38	1x50	2570-2620	2570-2620	China, LatAM, Europe
39	1x40	1880-1920	1880-1920	China PHS
40	1x100	2300-2400	2300-2400	MEA, India, China, Russia
41	1x194	2496-2690	2496-2690	US (Clearwire)
42	1x200	3400-3600	3400-3600	3.4/5 GHz – TDD
43	1x200	3600-3800	3600-3800	3.7/8 GHz – TDD


Source: TS 36.101; commercialized bands



Coverage – Low Band and FDD best for wide area LTE - FDD 800 MHz Example: LTE 800 Coverage (Germany)

Typical site coverage area in urban area 2600 TDD 2600 TDD 2600 FDD 1.0 2600 FDD 19 2100 2100 32 1.7 1800 1800 4.0 2.1 900 900 3.2 EU800 FU800 4.2 0.0 2.0 5.0 0.0 1.0 2.0 30 4.0 km2

Typical site coverage area in suburban area

> 3 - timesmore coverage on 800 MHz

Correction factor [dB] Indoor loss [dB]

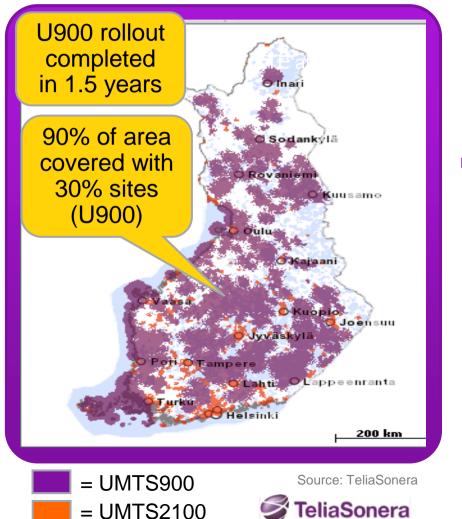
- **Government regulation (USO):**
 - -> specific rollout requirements within 800 MHz spectrum license
- Service provided outside wireline-DSI areas

BS antenna height [m] MS antenna height [m] Standard Deviation [dB] Location Probability Slow Fading Margin [dB]

© Nokia Siemens Networks

42

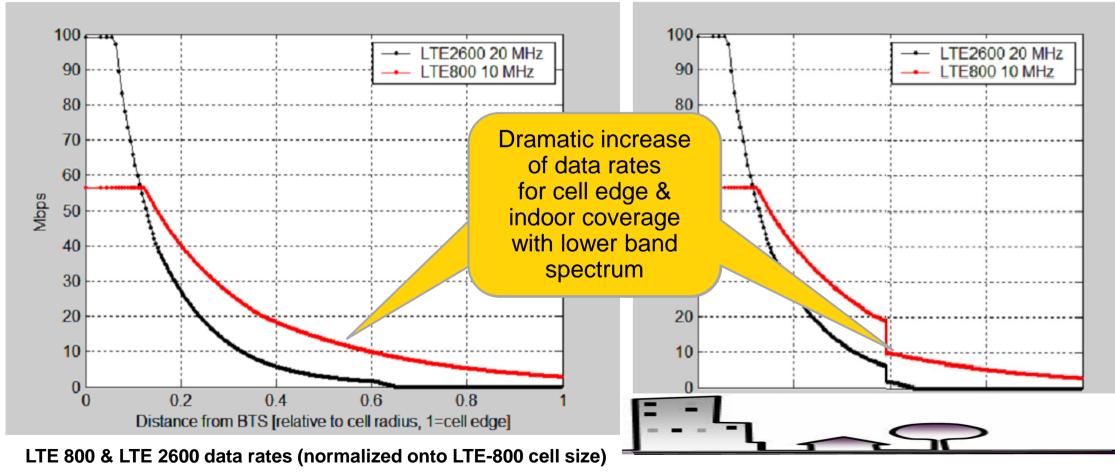
30 1.5 8.0 95 % 8.8

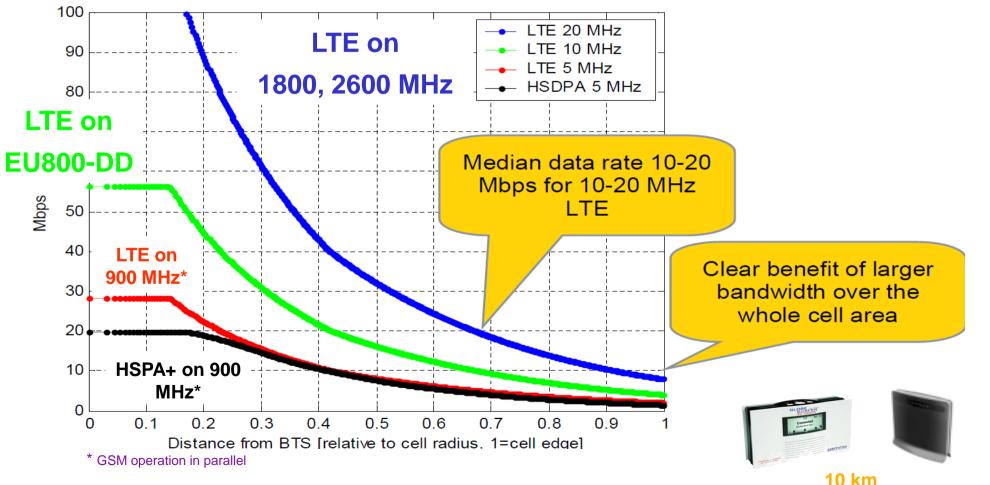

-5

15

Coverage – Low Band and FDD best for wide area WCDMA/HSPA – FDD 900MHz

- Government regulation (USO):
 - -> provide access to 1 Mbps broadband for every household – either wireline or wireless
- Target date: July 1, 2010
- HSPA900 chosen in view of time-line and 800 MHz spectrum availability
- > 500 devices in all form-factors & price-points

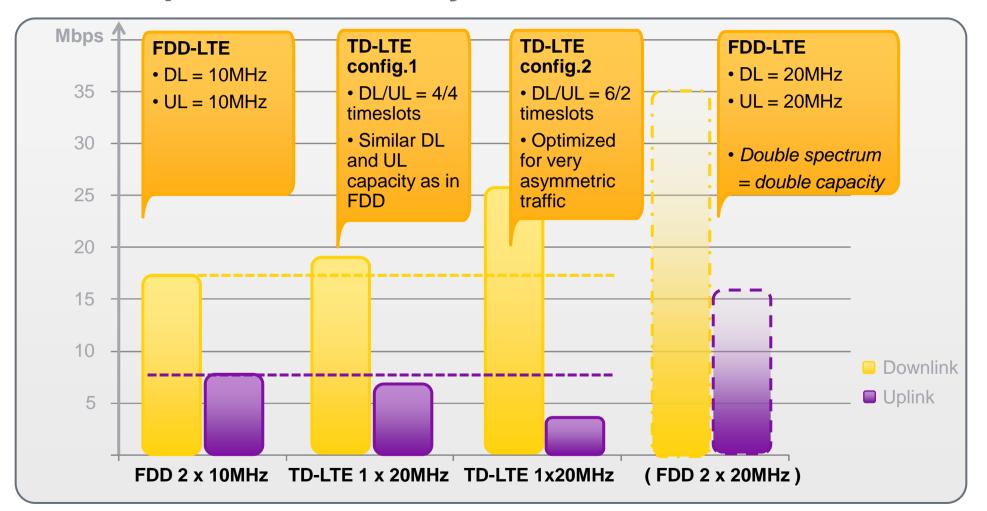

3 – times more coverage on 900 MHz


Coverage – Low Band and FDD The power of 700/800/900 MHz for urban indoor coverage

Nokia Siemens Networks

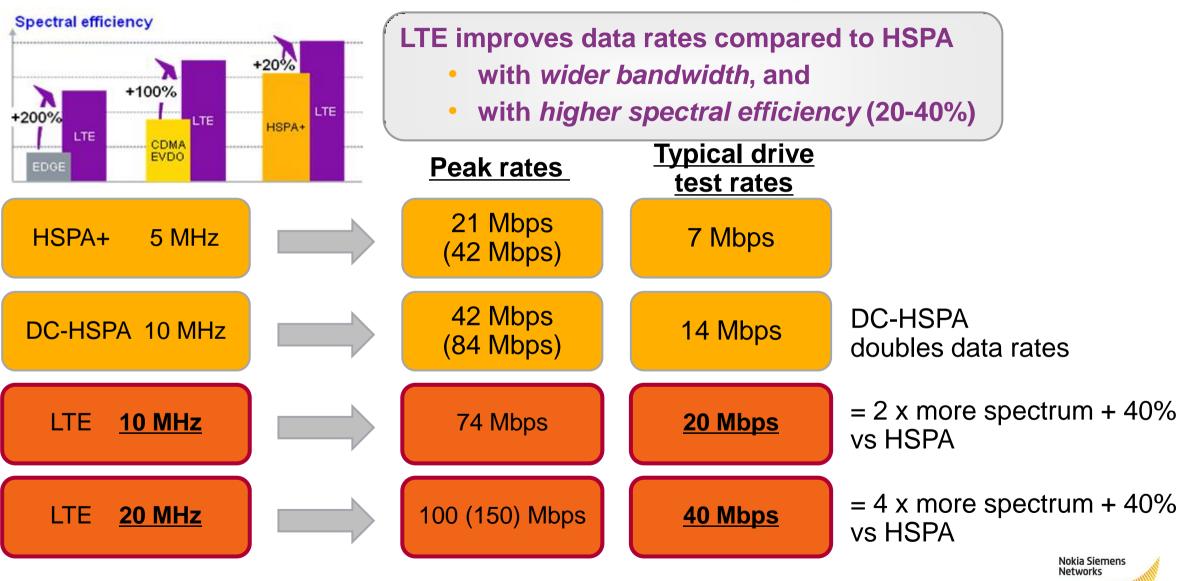
More bandwidth = Superior data rates across cell range LTE Downlink Bit Rates

- Interference Limited, Other Cells 100% Loaded

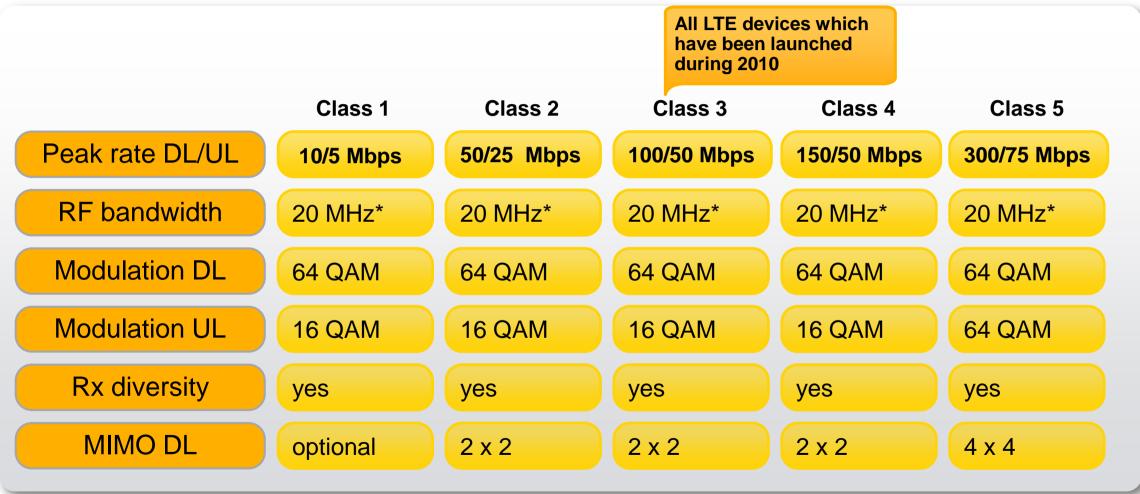


10 KM (indicative range for 30m antennas)

Nokia Siemens Networks

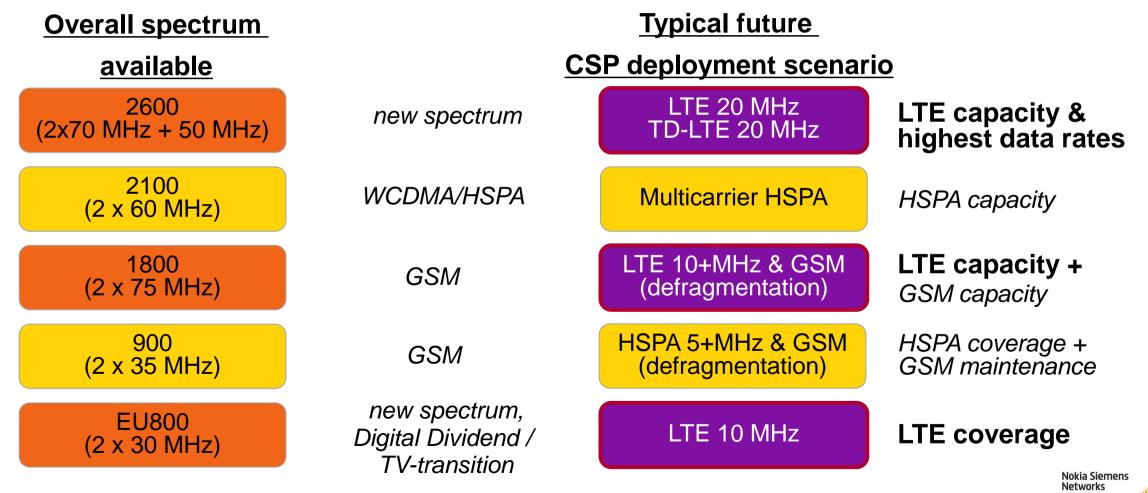

45 © Nokia Siemens Networks

TD-LTE Capacity Similar spectral efficiency for TD-LTE and LTE-FDD


Practical Data Rate Evolution – End-user experience

Peak data rates Driven by LTE terminal capabilities

Nokia Siemens Networks



* All 3GPP Rel.8 LTE terminals can receive 20 MHz bandwidth, but (baseband) processing power is variable

48 © Nokia Siemens Networks

Spectrum Resources – Europe

• Main LTE bands in Europe: 800, 1800 and 2600 MHz

Capacity - Highest spectral efficiency with LTE LTE maintains highest efficiency down to 5 MHz bandwidth

LTE maintains high efficiency with bandwidth down to 3.0 MHz, e.g. for band refarming scenarios LTE spectral efficiency for 1.4 MHz similar to HSPA with 2x2 MIMO and 64-QAM Differences between bandwidths come from frequency scheduling gain and different overheads

120 % Downlink -40% -13% Baseline Uplink 100 % 80 % 60 % 40 % 20 % 0 % 1.4 MHz $3 MH_{7}$ 5 MHz 10 MHz20 MHz

Spectral Efficiency Relative to 10 MHz

Agenda

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

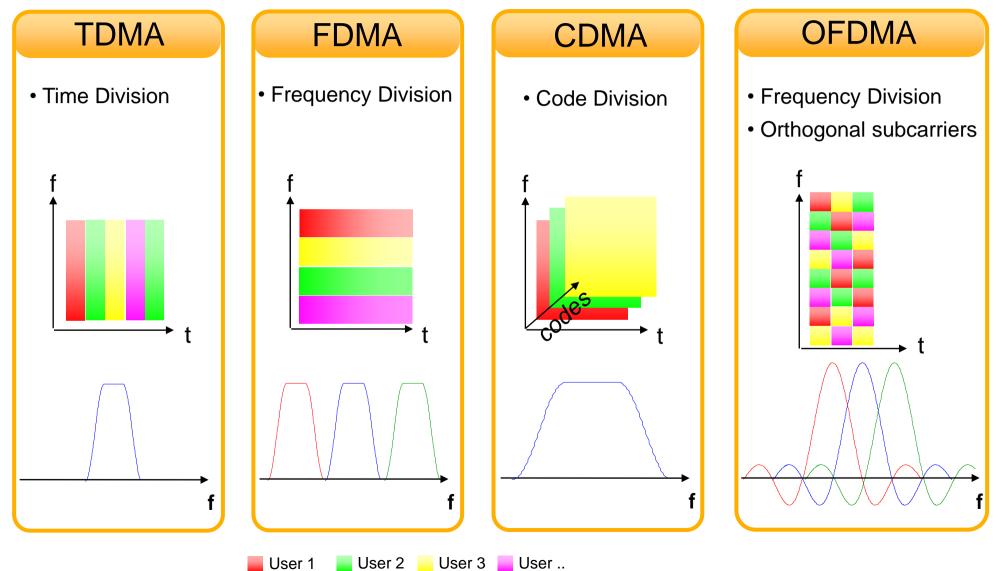
Introduction

LTE Spectrum

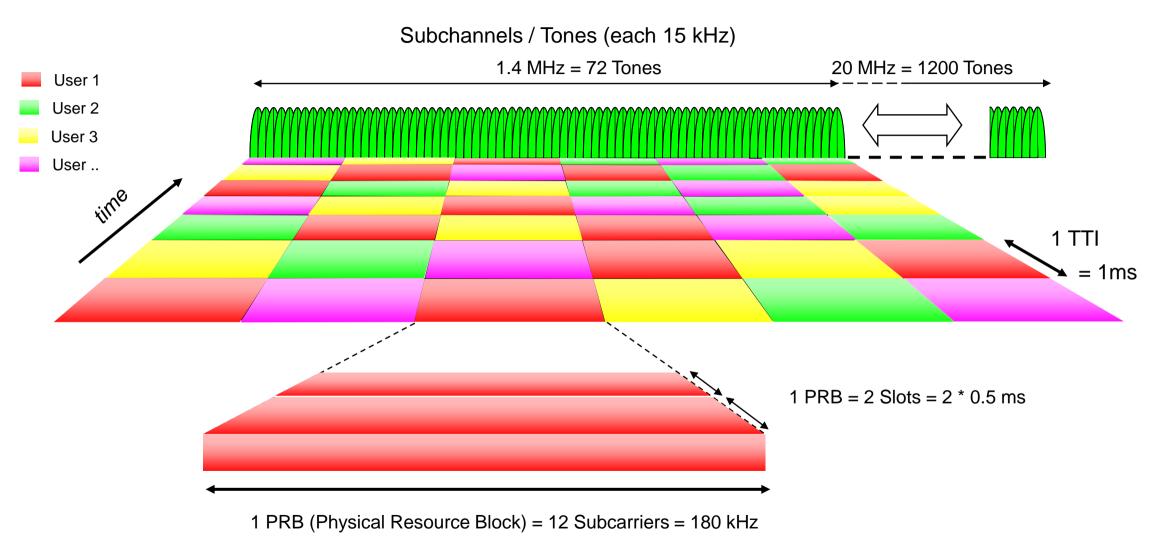
Core Network Overview

Voice over LTE (VoLTE)

QoS in LTE

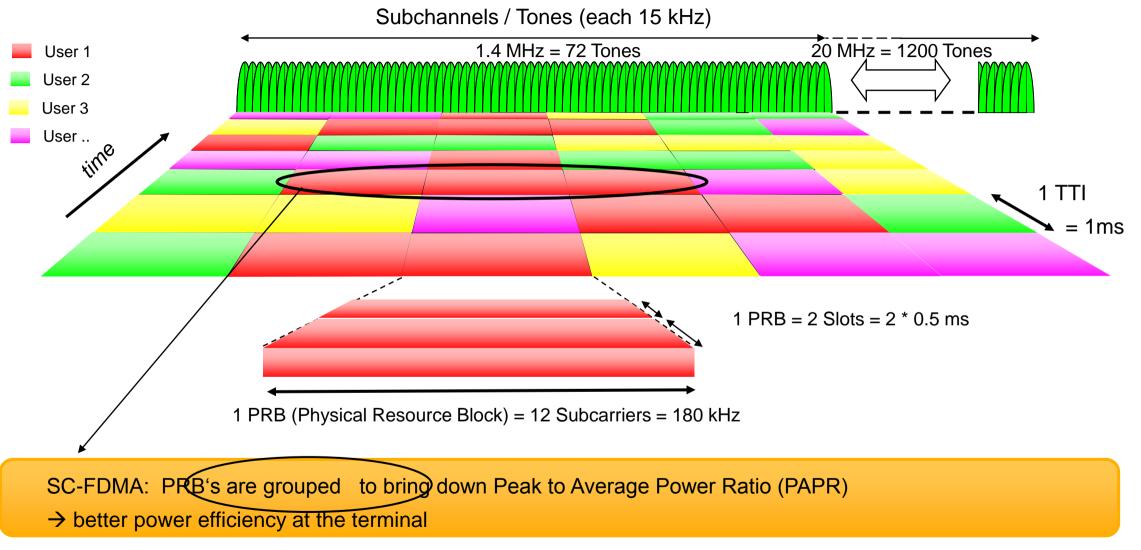

Self Organizing Network (SON)

Multiple Access Methods

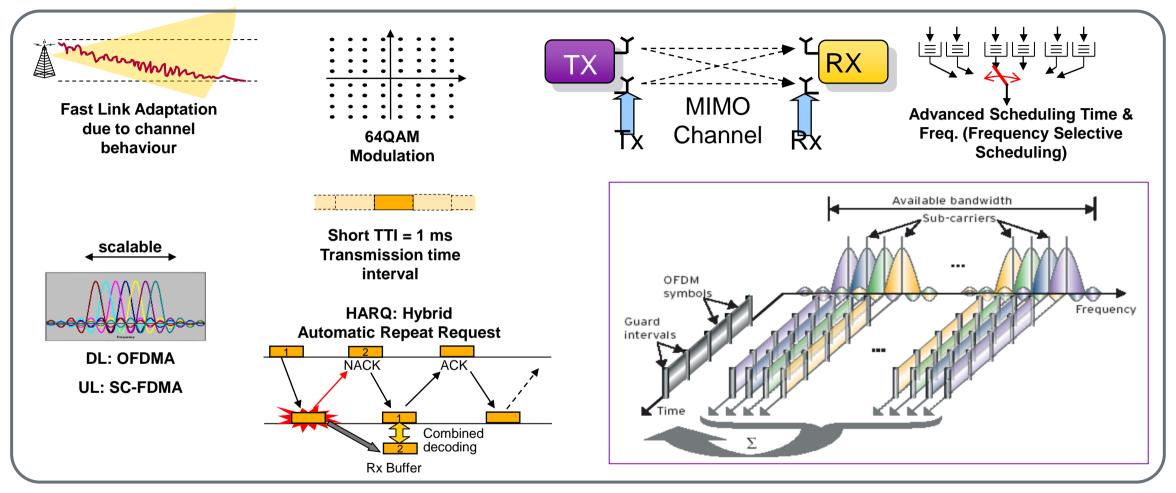


© Nokia Siemens Networks 52

Nokia Siemens


Networks

Downlink - OFDM

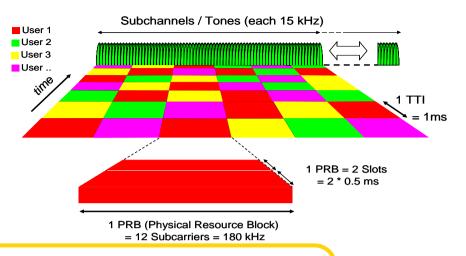


Uplink – Single Carrier FDMA

LTE Radio highlight

Nokia Siemens Networks

LTE: Most efficient Radio Access Technology

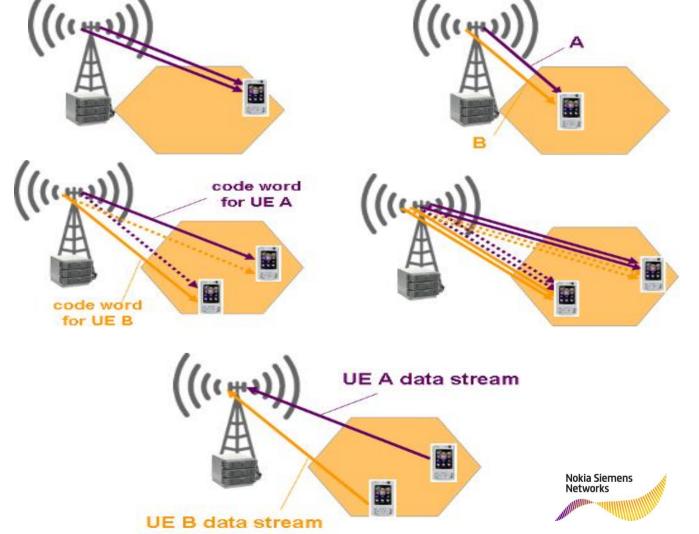

LTE Radio principles

Uplink:

56

SC-FDMA

	 Improved spectral efficiency
Downlink:	 Reduced interference
OFDMA	 Very well suited for MIMO


Nokia Siemens Networks

- Power efficient uplink increasing battery lifetime
 - Improved cell edge performance by low peak to average ratio
 - Reduced Terminal complexity
- Enabling peak cell data rates of 173 Mbps DL and 58 Mbps in UL *
- Scalable bandwidth: 1.4 / 3 / 5 / 10 /15 / 20 MHz also allows deployment in lower frequency bands (rural coverage, refarming)
- Short latency: 10 20 ms **

MIMO Technology Overview

Several antenna technologies are summarized under the term MIMO (Multiple Input / Multiple output):

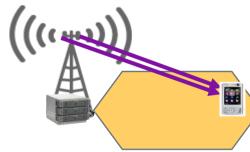
- Single user DL MIMO
 - DL MIMO transmit diversity
 - DL MIMO spatial Multiplexing

• Multi-user MIMO

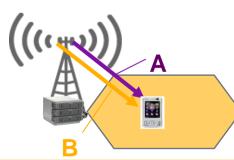
Virtual MIMO (UL MIMO)

DL single user MIMO – with 2 antennas

DL MIMO – Transmit diversity


Enhanced cell edge performance, capacity increase

- 2 TX antennas
- Single stream (code word)


DL MIMO – Spatial multiplexing

Doubles the peak rate at good channel quality (near BTS)

- 2 TX antennas
- Spatial multiplexing with two code words

One code word A is transmitted via two antennas on the same PRB to one far away UE which improves the link budget / SNIR.

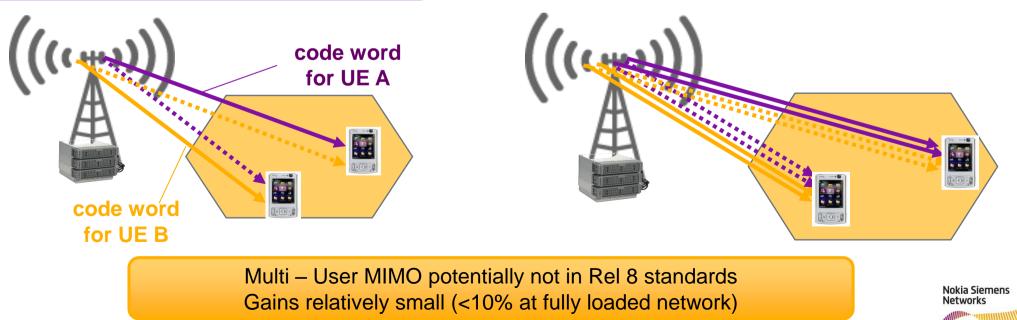
Two code words (A+B) are transmitted in parallel on the same PRB to one UE which doubles the peak rate.

Optimum solution: Dynamic selection between

- Spatial multiplexing with two code words (UE nearthe BTS)
- Transmit diversity with one code word (UE far away from BTS to improve link budget / SNIR)

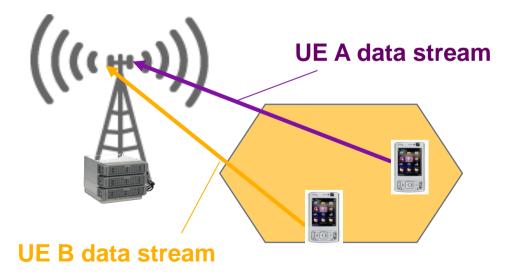
Nokia Siemens Networks

DL multi user MIMO


With 2 antennas

- Higher number of simultaneous users
- Dynamic selection of a pair of UEs using the same PRBs
- One stream has user data meant for particular UE
- Second stream meant for other UE, ignored by particular UE

With 4 antennas


- Improved coverage when compared to 2 Tx Antenna case
- 2 user data streams for particular UE (redundancy)
- Other 2 streams meant for other UE, ignored by particular UE

• 2 code words only (4 code words not standardized)

UL multi user MIMO (virtual MIMO)

- In uplink, multi-stream transmission from single UE is not supported.
 - single Tx antenna and power amplifier at UE
- So-called virtual MIMO or UL MU-MIMO is used instead
 - Two users are scheduled to use the same resource so the base station receives multistream transmission on the same PRB
- Increased UL cell throughput by multi user diversity gains

E-UTRAN Node B (eNodeB)

eNodeB is the only node that controls all radio related functions:

- Acts as layer 2 bridge between UE and EPC
 - Termination point of all radio protocols towards UE
 - -Relaying data between radio connection and corresponding IP connectivity towards EPC
- Performs ciphering/deciphering of the UP data and IP header compression/decompression
- Responsible for Radio Resource Management (RRM)-
 - -allocating resources based on requests
 - -prioritizing and scheduling traffic according to required Quality of Service (QoS).

Mobility Management-

 controls and analyses radio signal level measurements by UE, makes similar measurement itself and based on those makes HO decision.

Nokia Siemens Networks

Agenda

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

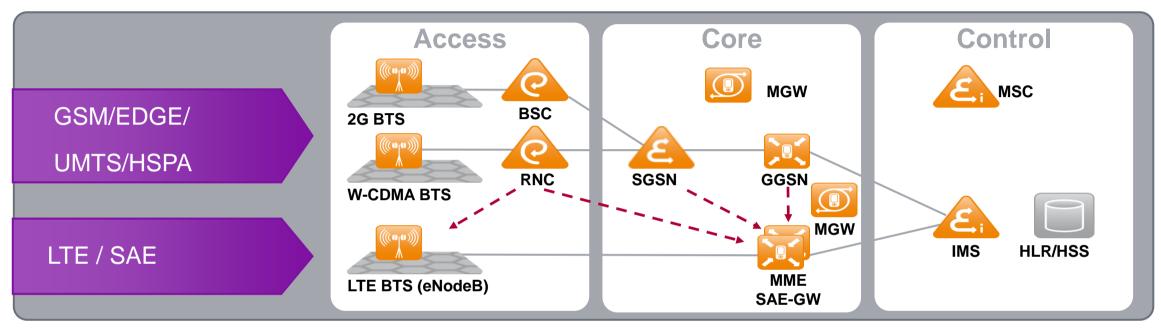
Summary

Introduction

LTE Spectrum

Radio Access Overview

Core Network Overview


Voice over LTE (VoLTE)

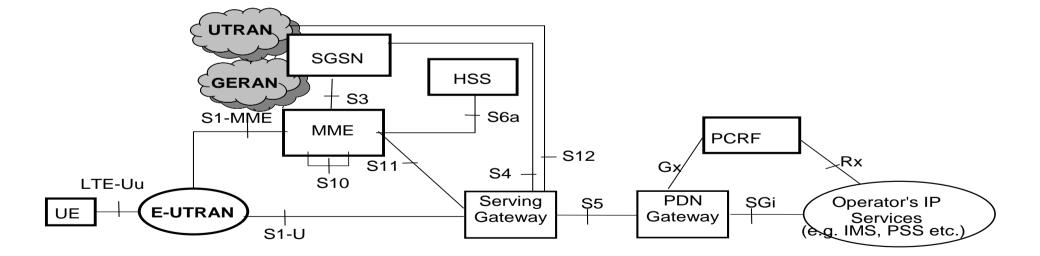
QoS in LTE

Self Organizing Network (SON)

Key architectural concept. Flat and cost effective Mobile Network

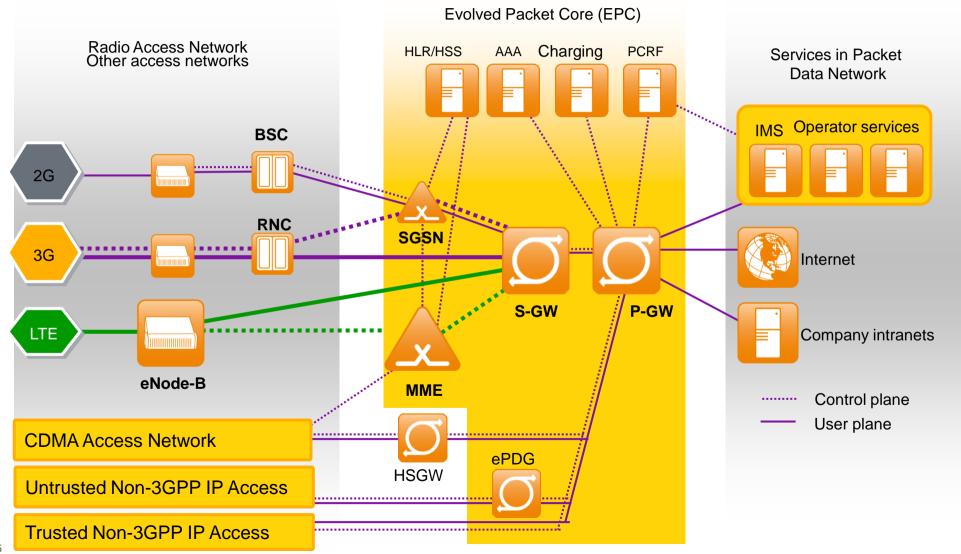
Improved flexible radio technology

- New air I/F providing higher data throughputs
- LTE provides flexibility for spectrum re-farming and new spectrum
- LTE can operate in a number of different frequency bands


Simpler architecture for reduced OPEX

- Simplified, flat network architecture based on IP reduces operators' cost per bit significantly
- Interworking with legacy systems is an integral part of service continuity
- Re-use of existing equipment as much as possible

Main EPS Standards: 23.401

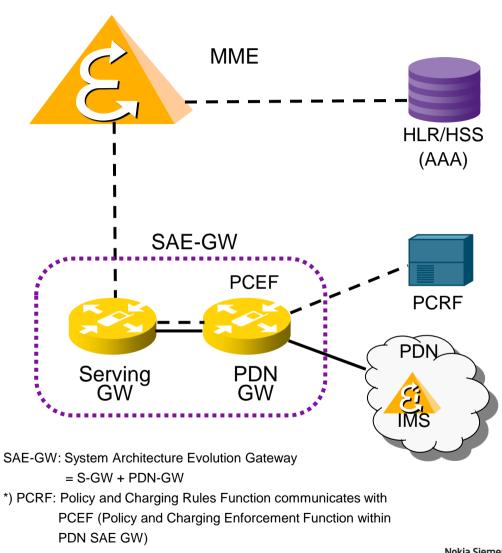

- Defines EPS architectures for 3GPP accesses using GTP protocol (GTP on S5/S8)
 - One example is given below
- Defines role of MME, SGW and PGW
- Two GW configurations: standalone SGW and PGW, co-located SGW/PGW
- Defines high level procedures (mobility management, session management, interworking with existing accesses, etc.)

Non-roaming architecture for 3GPP accesses

3GPP R8 Architecture: Flat architecture for high efficiency

Core Technology Overview

Mobility Management Entity


- C-Plane Part
- Session & Mobility management
- Idle mode mobility management
- Paging
- AAA Proxy

Serving Gateway

- User plane anchor for mobility between the 2G/3G access system and the LTE access system.
- Resides in visited network in roaming cases
- Lawful Interception

Packet Data Network Gateway

- Gateway towards Internet/Intranets
- User plane anchor for mobility between 3GPP and non-3GPP access systems (HA).
- Charging Support
- Policy and Charging Enforcement (PCEF) *)
- Packet Filtering
- Lawful Interception

Agenda

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

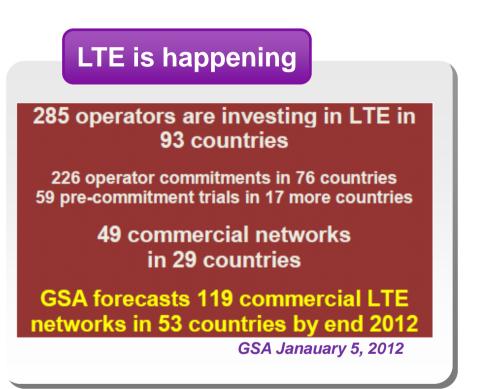
Summary

Introduction

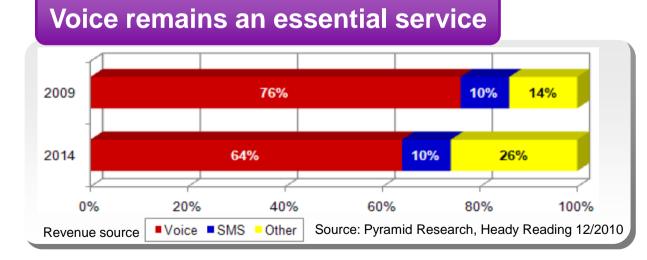
LTE Spectrum

Radio Access Overview

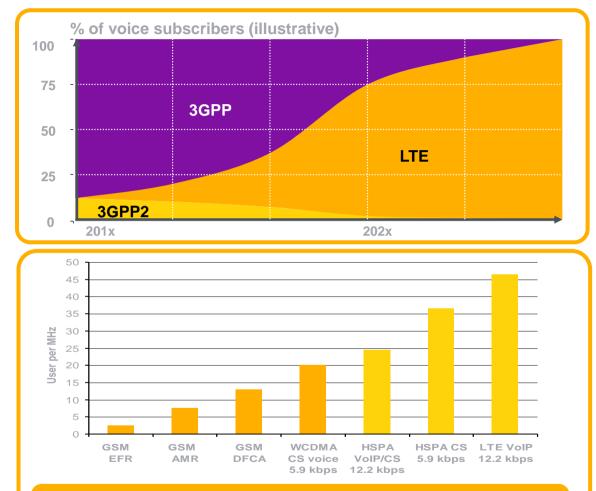
Core Network Overview


Voice over LTE (VoLTE)

QoS in LTE


Self Organizing Network (SON)

LTE is here already



LTE as the fastest developing mobile system technology ever. GSA Janauary 5, 2012

Drivers for Voice over LTE (VoLTE)

- LTE is driven by mobile data growth
- Voice service is mandatory and desirable with increased voice efficiency with LTE
- LTE is full-IP thus voice must be handled over IP
- Although Internet players may enter LTE networks, operators have unique proposition to offer:
 - Same end-user experience and QoS regardless of used access
 - Voice service continuity between different accesses
- Over time Voice over LTE will grow to become the mainstream mobile voice technology

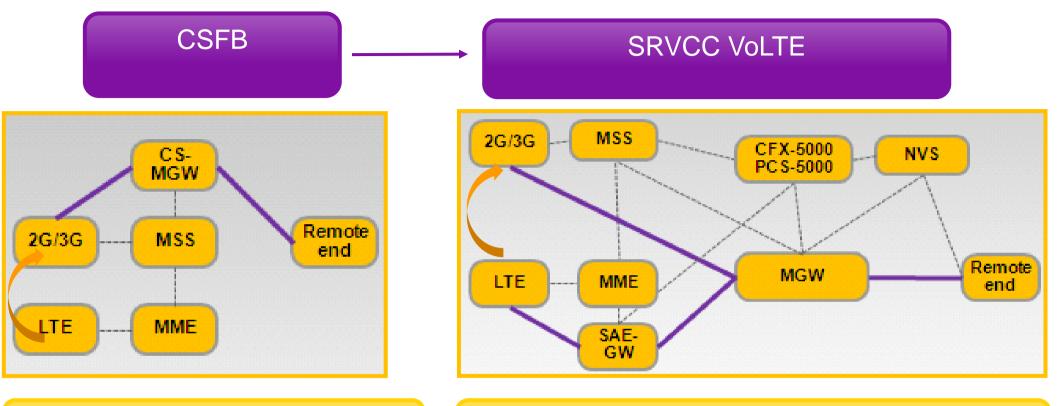
15 x more users per MHz with LTE than with GSM EFR!

Potential voice evolution steps in LTE

LTE used for high speed packet data access only

Operator voice service provided over CS network

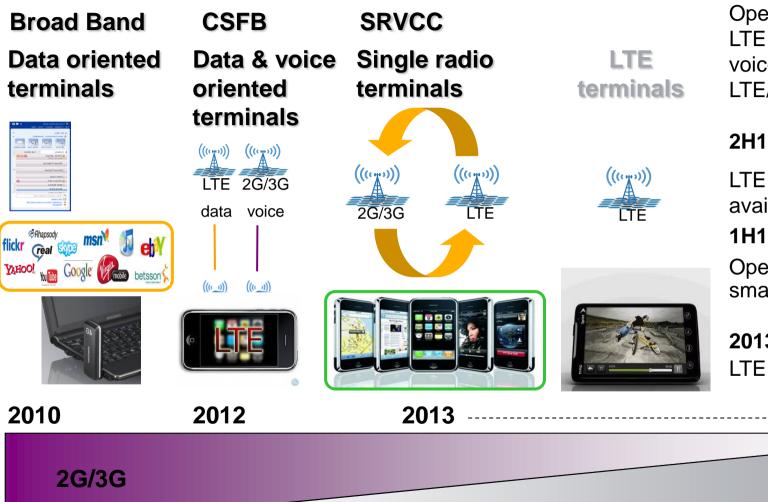
Fallback to CS voice


- LTE network is used for data only
- Terminal is simultaneously registered to both LTE and 2G/3G CS network
- Voice calls are initiated and received over CS network
- Single radio Voice Call Continuity (VCC)
 - Operator provides VoIP over LTE
 - IMS acts as control machinery
 - Voice calls can be handed over to CS network

All-IP network

- Operator provides VoIP over LTE
- IMS acts as control machinery
- Voice calls can be handed over to other packet switched networks

The transition to VoLTE technology



- Fallback to 2G/3G/CDMA access for voice
- LTE SMS
- MSC Server / MSC for voice

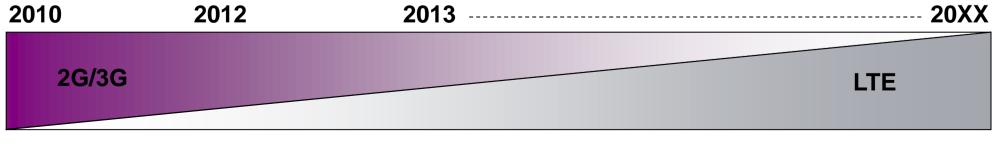
- Voice over LTE
- IMS for voice and Telecom Application Server for voice
- Rich Communication Services

LTE data and voice evolution

2010 (Commercial) – VoLTE

Operator VoIP in laptops + LTE dongles in LTE hot spots or rural areas i.e. VoIP (fixed voice replacement) + velco terminals for LTE/CDMA operators

2H11 (Commercial) – CSFB


LTE smartphones with CSFB capability available.

1H12 (Commercial) – VoLTE with QoS

Operator VoIP in laptops + LTE dongles and smatrphones in LTE hot spots with QoS.

2013 (Commercial) – SR-VCC

LTE smartphones with VoLTE and SR-VCC.

How many bands can current LTE device chipsets support ?

Multimode chipset platformsST-Ericsson M710[LTE/HSPA/EDGE,
d LTE, 3 HSPA, 4 GSM]Qualcomm MDM9200[LTE/DC-HSPA+/GSM]Qualcomm MDM9600[LTE/DC-HSPA+/CDMA/GSM]Nvidia Espresso 410[LTE/HSPA+/GSM]

•1-4 LTE bands with

- up to 4 HSPA bands
- up to 4 GSM bands
- up to 3 CDMA2000 bands
- Possible band combinations
 vary between chipset vendors
- All leading platform vendors are including TDD support on their multimode solutions

Agenda

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

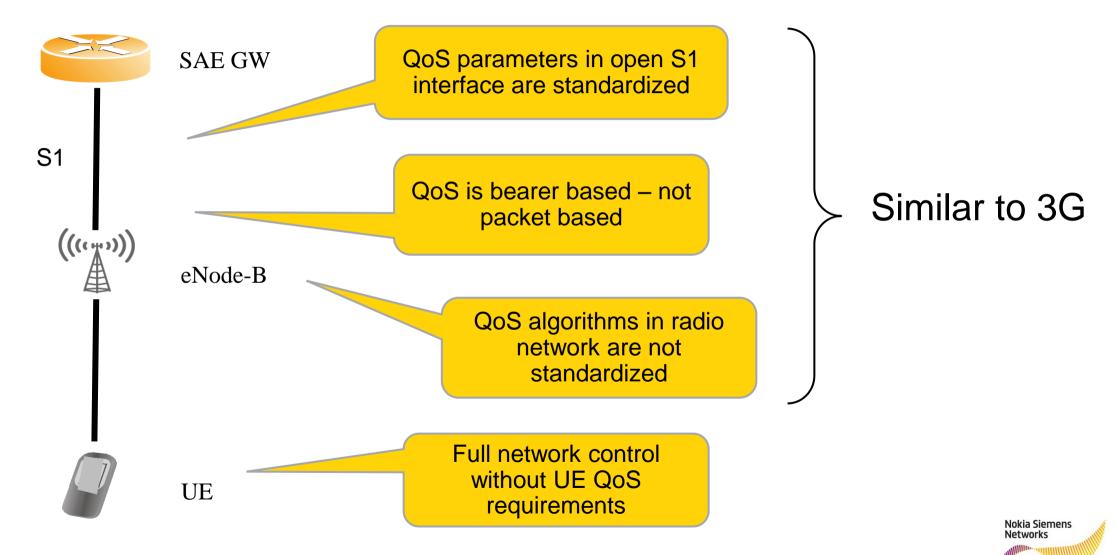
Summary

Introduction

LTE Spectrum

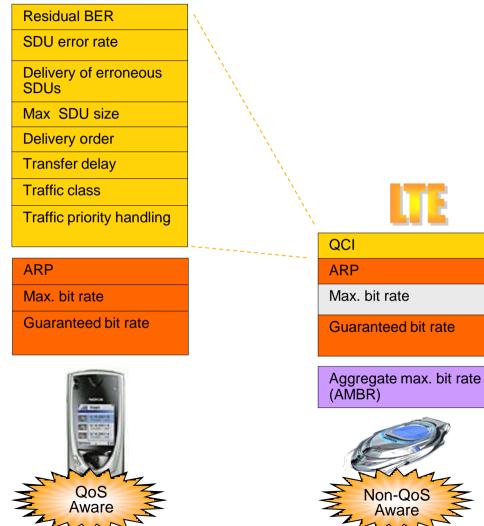
Radio Access Overview

Core Network Overview


Voice over LTE (VoLTE)

QoS in LTE

Self Organizing Network (SON)



LTE QoS Overview

Network-centric QoS scheme

Substantially optimized Bearer handling compared to 3G networks

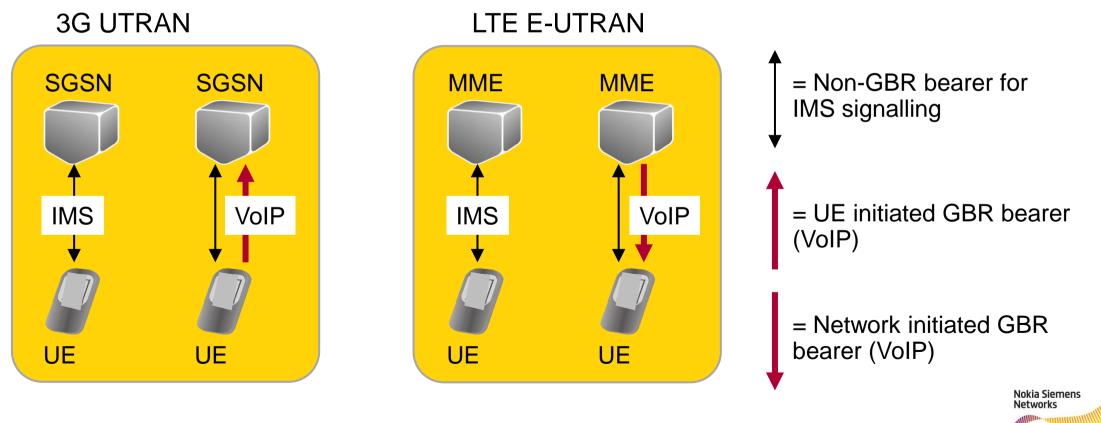
Single scalar label (QCI) is a pointer to a set of QoS parameters

Network-centric QoS scheme reduces complexity of UE implementations

- Always on default EPS bearer available after initial access
- Further dedicated EPS bearer setup on network request (e.g. for VoIP calls)
- Does not require support from terminal application clients or device operating system

QoS Class Indentifier (QCI) Table in 3GPP 23.203

QCI	Guarantee	Priority	Delay budget	Loss rate	Application
1	GBR	2	100 ms	1e-2	VoIP
2	GBR	4	150 ms	1e-3	Video call
3	GBR	5	300 ms	1e-6	Streaming
4	GBR	3	50 ms	1e-3	Real time gaming
5	Non-GBR	1	100 ms	1e-6	IMS signalling
6	Non-GBR	7	100 ms	1e-3	Interactive gaming
7	Non-GBR	6	300 ms	1e-6	
8	Non-GBR	8	300 ms	1e-6	TCP protocols : browsing, email, file download
9	Non-GBR	9	300 ms	1e-6	


Mapping of 3G and LTE QoS Parameters

LTE	UMTS QoS						
QCI	Traffic class	Traffic handling priority	Signalling indication	Source statistic descriptor			
1	Conversational	-	-	Speech			
2	Conversational	-	-	Unknown			
3	Streaming	-	-	Speech			
4	Streaming	-	-	Unknown			
5	Interactive	1	Yes	-			
6	Interactive	1	-	-			
7	Interactive	2	-	-			
8	Interactive	3	-	-			
9	Background	-	-	-			

Network Initiated Bearer in LTE

- Guaranteed bit rate QoS requires its own bearer
- New bearer must be initiated by UE in 3G
- New bearer can be initiated by network in LTE \Rightarrow less requirements for the terminal and better network control

Agenda

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Introduction

LTE Spectrum

Radio Access Overview

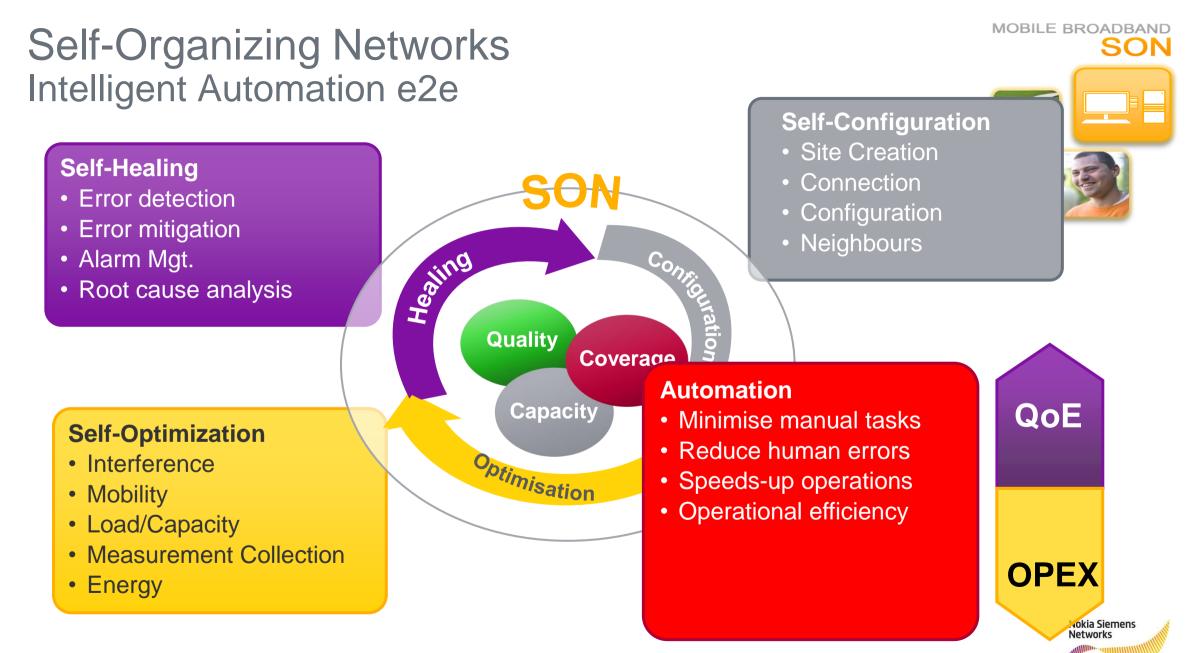
Core Network Overview

Voice over LTE (VoLTE)

QoS in LTE

Self Organizing Network (SON)

What is SON?


- SON originally refers to a network that can organize itself in the form of
 - -Self-Configuration, e.g. initial parameter deployment,...
 - -Self-Optimization, e.g. tuning the handover thresholds, ...
 - -Self-Healing, e.g. recovering from eNB failures automatically,...
- This is implemented as closely network related automation by
 - Centralized SON: associated with slow update rate and based on long term statistics where many cells are involved in optimization process. Implemented using network/element management system (OAM).
 - Distributed SON: require fast reaction time which affect only few cells, parameters have only local impact but configuration or status about neighbour cells are required. Optimization algorithms are implemented in eNodeB
 - Localized SON: require fast reaction time and only single cell involved- no impact on neighbour cells. Implemented by Radio Resource Management (RRM) in eNodeB
 - -Hybrid SON: all the above 3 processes are used simultaneously for different use cases.
- SON can be considered as a specific type of automation

Why SON has been developed

- Group of leading CSP's indentified and specified in 2006 NGMN forum the Self Organising Networks as an important, new solution to meet the challenges of
 - data traffic growth
 - declining voice ARPU
 - investments to new technologies and network expansions
- SON is today 3GPP standardised for LTE
- Standardisation defines concept, interfaces and measurements for SON leaving e.g. implementation methods open.
- SON key objectives
 - Reduce complexity and cost of network operations
 - Maintain and improve quality of the networks
 - Cost effective introduction of new technologies
 - Protect network investments

SON- some important use cases

Configuration of Physical Cell ID (self configuration)

Automatic Neighbor Relations (ANR) (self configuration)

Mobility Load Balancing (MLB) (self optimization)

Mobility Robustness Optimization (MRO) (self optimization)

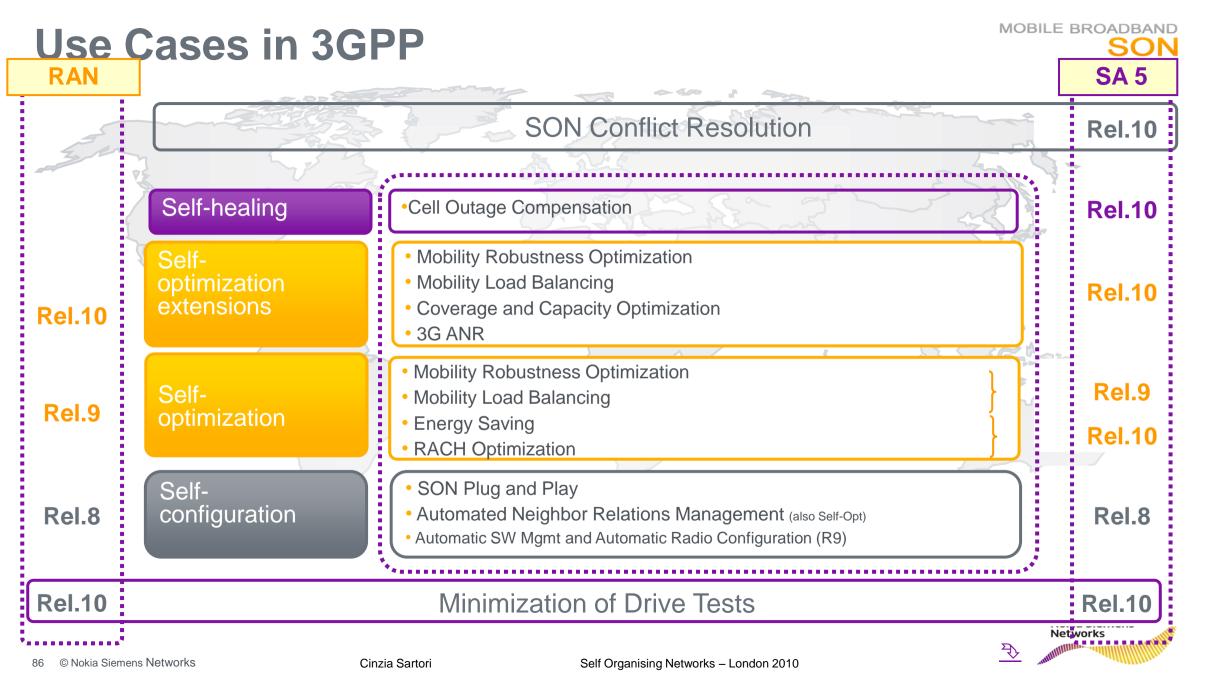
Energy Saving

(self optimization)

Minimization of Drive Test (MDT)

85 © Nokia Siemens Networks

SON framework in 3GPP


- Release 8 functionality
 Self-configuration procedures
- Release 9 enhancements
 - Self-optimization procedures
 - LTE Energy Saving Intra-RAT
- Release 10 objectives
 - Extend Self-optimization procedures , including inter-RAT
 - Minimization of Drive Test (MDT)
 - Energy Saving extension, including Multi-RAT (Study Item)

Cinzia Sartori

- 3G-ANR
- SON Conflict Resolution
- Release 11 proposals on hold until in June 2011 (RAN#52)
 - LTE SON extensions
 - MDT enhancements
 - HSDPA SON

Nokia Siemens Networks

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Why do we now talk about LTE-Advanced?

- ITU-R has issued a Circular Letter early 2008 to invite candidate Radio Interface Technologies (RIT) for IMT-Advanced
- ITU-R requires "enhanced peak data rates" for IMT-Advanced:
 - 100 Mbit/s for high mobility
 - 1 Gbit/s for low mobility
- World Radio Conference (WRC-07) took decisions on Frequency Band identifications in November 2007 impacting IMT-2000 and IMT-Advanced
- In March 2008 3GPP has started a new Study Item on LTE-Advanced to enhance LTE to fulfill all IMT-Advanced requirements and to become IMT-Advanced candidate
- Currently, 3GPP RAN is studying and evaluating the performance of the new relevant technology components.

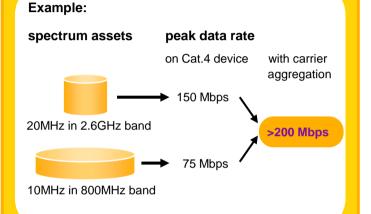
LTE-Advanced – Requirements and expectations:

Performance improvement and Backward Compatibility

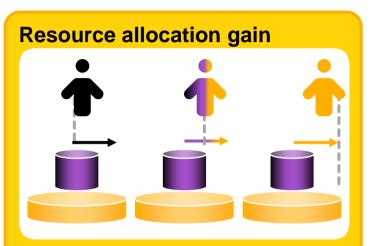
- Meet and exceed capabilities requested for IMT-Advanced
- Meet 3GPP operators' requirements for LTE evolution
- Backward compatibility:
 - Release 8 UEs work in LTE-Advanced network
 - LTE-Advanced UEs work in Release 8 network
- Flexible and optimized spectrum usage
- Enable heterogeneous networks incl. Relays, HeNBs, etc.
- Bandwidth extension up to 100 MHz

Enhanced performance

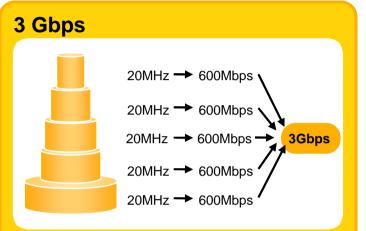
- Peak data rates of
 1 Gbps DL and 500 Mbps UL
- 50% higher average cell spectral efficiency than LTE Release 8


LTE-A provides a toolbox of solutions improving radio performance:

	Peak rate	Average rate (capacity)	Cell edge rate (interference)	Coverage (noise limited)	
Carrier aggregation	++	+	++	+	
MIMO enhancements ¹	++ (0)	++ (+)	++ (+)	0	
CoMP ²	о	+	+	++	
Heterogeneous networks	0	++	++	+	
Relays	0	0	+	++	
	= clear gain	= mode	rate gain		



LTE-Advanced: Carrier aggregation More dynamic spectrum usage for better user experience

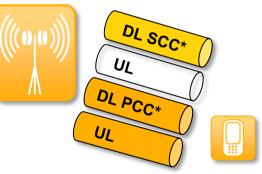

Peak data rate addition

- enables competitive peak data rates on non-contiguous spectrum
- Mitigates the challenge of fragmented spectrum

- Ultrafast resource allocation by scheduler instead of handover
- Users dynamically get the best resources of aggregated carrier
- Higher average data rates

- Will be specified in **3GPP Rel.11** or later
- Most operators have significantly less spectrum for LTE
- Even HD streaming services demand less than 20Mbps

Relevant scenarios under standardisation (3GPP Rel.10/11)


LTE-Advanced: Carrier aggregation Initial focus on Downlink

CA 40

CA Band

CA 1-5

- Downlink carrier aggregation • for 2 component carriers
- Up to 40 MHz combined bandwidth
 - Inter-band •
 - Intra-band • contiguous allocation
- PCC* based mobility •
- 3GPP defined band combinations

*Primary component carrier: (from 3GPP Rel.8) -> mobility, data

*Secondary component carrier: where available -> add-on data speed

		egation bands in 3GPP (36.104, version 10.4.0) d CA:	el 10					
	CA Band E-UTRA operating band							
CA_1 1 (generic example)								

40 (generic example)

E-UTRA operating bands

1 + 5 (generic, Korea)

CA band WI	(planned for	Dec. 2012)

Inter-band CA:

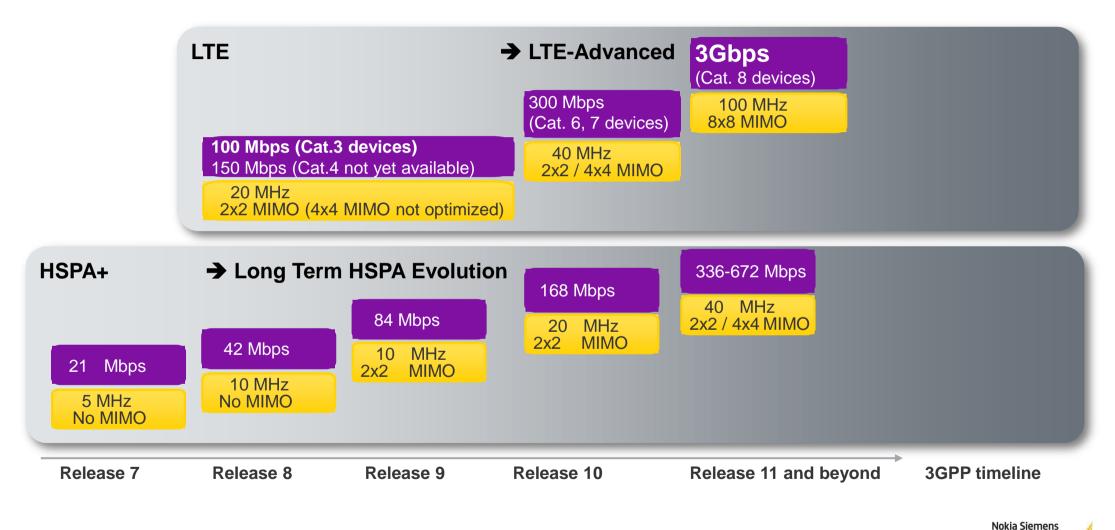
Inter-band CA:

CA Band E-UTRA operating band				
	<u> </u>			
CA_3-7	3 + 7 (TeliaSonera)			
CA_4-13	4 + 13 (Verizon)			
CA_4-17	4 + 17 (AT&T)			
CA_20-7	20 + 7 (Orange etc.)			
CA_5-12	5 + 12 (US Cellular)			
CA_4-12	4 + 12 (Cox)			
CA_2-17	2 + 17 (AT&T)			
CA_4-5	4 + 5 (AT&T)			
CA_5-17	5 + 17 (AT&T)			
CA_1-7	1 + 7 (China Telecom)			
CA_3-5	3 + 5 (SK Telecom)			
CA_4-7	4 + 7 (Rogers)			
CA_20-3	20 + 3 (Vodafone)			
CA_20-8	20 + 8 (Vodafone)			

Intra-band CA.

	CA Band	E-UTRA operating band					
	CA_41	41 (Clearwire, CMCC)					
	CA_38	38 (CMCC)					
	CA_7	7 (CUC,CTC,Telenor, etc.)					
	CA_25	25 (Sprint;target June 2013)					
\sim			r				

Dand	MHz	Linink Mile	Downlink MH			
Band	INITIZ	Uplink MHz	Downlink MHz			
1	2x60	1920-1980	2110-2170	UMTS core		
2	2x60	1850-1910	1930-1990	US PCS		
3	2x75	1710-1785	1805-1880	GSM 1800		
4	2x45	1710-1755	2110-2155	NAM AWS		
5	2x25	824-849	869-894	850		
7	2x70	2500-2570	2620-2690	2600 FDD		
8	2x35	880-915	925-960	GSM 900		
9	2x35	1749-1784	1844-1879	Japan, Korea 1700		
10	2x60	1710-1770	2110-2170	US AWS extension.		
11	2x20	1427.9-1447.9	1475.9-1495.9	Japan 1500		
12	2x18	698-716	728-746	US		
13	2x10	777-787	746-756	Verizon		
14	2x10	788-798	758-768	US – Public Safety		
17	2x12	704-716	734-746	AT&T		
18	2x15	815-830	860-875	Japan – 800 (KDDI)		
19	2x15	830-845	875-890	Japan – 800 (DoCoMo)		
20	2x30	832-862	791-821	EU 800 DD, MEA		
21	2x15	1448-1463	1496-1511	Japan 1500		
22	2x80	3410-3490	3510-3590	3.5 GHz FDD (band 42–FDD varian		
23	2x20	2000-2020	2180-2200	US S-band		
24	2x34	1626.5-1660.5	1525-1559	US (LightSquared)		
25	2x65	1850-1915	1930-1995	US PCS extension (Sprint)		
26	2x35	814-849	859-894	850 extension (Korea-KT, Sprint)		
TD-L	ΓE					
Band	MHz	Uplink MHz	Downlink MHz			
33	1x20	1900-1920	1900-1920	UMTS core – TDD		
34	1x15	2010-2025	2010-2025	UMTS core – TDD, China TD/SCDMA		
35	1x60	1850-1910	1850-1910	US (band 2 – TDD variant)		
36	1x60	1930-1990	1930-1990	US (band 2 – TDD variant)		
37	1x20	1910-1930	1910-1930	US PCS centre-gap		
38	1x50	2570-2620	2570-2620	China, LatAM, Europe		
39	1x40	1880-1920	1880-1920	China PHS		
40	1x100	2300-2400	2300-2400	MEA, India, China, Russia		
41	1x194	2496-2690	2496-2690	US (Clearwire)		
42	1x200	3400-3600	3400-3600	3.4/5 GHz – TDD		
43	1x200	3600-3800	3600-3800	3.7/8 GHz – TDD		


Source: TS 36.101; commercialized bands

Networks

LTE-Advanced: Carrier aggregation Terminal categories for LTE-Advanced

	LTE (Rel.8) UE categor		All commercial LTE devices in the market 2010 / 2011			LTE-Advanced devices based on these User Equipment categories		n these
	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8
Peakrate DL/UL	10/5 Mbps	50/25 Mbps	100/50 Mbps	150/50 Mbps	300/75 Mbps	300/50 Mbps	300/100 Mbps	3000/1500Mbps
RF Bandwidth	20 MHz	20 MHz	20 MHz	20 MHz	20 MHz	40 MHz	40 MHz	100 MHz
Modulation DL	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Modulation UL	16 QAM	16 QAM	16 QAM	16 QAM	64 QAM	16 QAM	16 QAM	64 QAM
MIMO DL	optional	2 x 2	2 x 2	2 x 2	4 x 4	2x2(CA) or 4x4	2x2(CA) or 4x4	8 x 8
MIMO UL	no	no	no	no	no	no	2 x 2	4 x 4
Defined in initial LTE release (3GPP Release 8) Defined in initial LTE-A release (3GPP Rel. 10) Carrier aggregation of up to 40MHz Notia Siemens								

Overview - Mobile Broadband Downlink peak data rate evolution

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Summary (1/3)

WCDMA/HSPA/HSPA+

- Strong momentum and growth in Mobile Broadband with terminals, network technology and applications
- WCDMA has both FDD (widely used) and TDD variant with FDD using 5+5 MHz and TDD 5 MHz as single carrier
- HSPA/HSPA+ is a mature technology with broad ecosystem support, which will further evolve and will remain dominant technology for many years to come
- Carrier aggregation and MIMO pushes the peak data rates and cell throughput

Summary (2/3)

LTE

- Motivation of LTE is need for higher peak data rate, spectral efficiency, less round trip delay, packet optimized network, high degree of mobility and spectrum flexibility
- LTE has both FDD and TDD variant with frequency allocation flexibility with 1.4, 3, 5, 10, 15 and 20 MHz spectrum
- LTE frequency bands for Europe are 2600 (capacity), 1800 (capacity) and 800 (coverage) MHz
- LTE uses OFDMA in DL and SC-FDMA UL for multiple access technology. OFDMA in DL minimizes receiver complexity while SC-FDMA improves battery life time in receiver
- LTE is packet oriented flat network with minimum no. of nodes- only eNodeB in access and MME, SAE-GW (S-GW/P-GW) in core networks. (additionally, HLR/HSS, PCRF and IMS is required in core)
- Voice in LTE is accomplished by CS Fallback (initially) and SR-VCC (later).

Summary (3/3)

SON

- SON is a set of network algorithms for simplifying network configuration, optimization and healing
- SON algorithms can be centralized targeting multi-cell optimization or distributed for fast and local optimization or a hybrid (combination of all)
- SON is not limited to LTE only but many of these SON algorithms are applied to 3G/HSPA networks as well

LTE-Advanced

- LTE-A in Rel-10 adds several enhancements in LTE
- Improvements in peak and average data rates using carrier aggregation, increased number of antennas and advanced antenna technologies
- Further improvements by use of relay and interference management
- LTE-A with Rel-10 fulfills and exceeds requirements for IMT-Advanced
- LTE-A can achieve peak data rates as high as 3 Gbps in DL and 1.5 Gbps in UL direction with 100 MHz spectrum

