UiO ¢ University of Oslo

Elahe Fazeldehkordi

Security and Privacy
Solutions in IoT and
Distributed Systems

Design

Thesis submitted for the degree of Philosophiae Doctor
Department of Technology Systems and

Department of Informatics

Faculty of Mathematics and Natural Sciences

2021

© Elahe Fazeldehkordi, 2021

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2375

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Abstract

New distributed systems in computing technology are appearing on the
market day by day. Consequently, new security and privacy challenges
arise when designing these systems. These challenges demand a need to
look for comprehensive and more precise approaches that can provide
higher levels of security, privacy, and trust from the design phase in these
systems.

In order to develop systems including open distributed systems, we
need techniques and tools for specification, design, and code generation.
For the initial ideas of such systems, it is desirable to use graphical
notations, so that ideas can easily be understood. This is relevant for the
early design phase. Once the ideas are agreed upon, it is then desirable to
have a formal basis for the specifications of the desired system, in order
to support rigorous reasoning about specifications and designs. This can
be done in the late design phase.

Existing documents for security and privacy requirements and
functionalities in IoT systems lack some of the security functionalities,
and in particular, they do not focus on privacy issues or are presented
only in textual form, without defining a framework. Structures of these
documents are also complicated. Systems are often made without the
help of security and privacy experts. So a comprehensive graphical
representation framework is needed and should be easy to follow, even
for non-experts.

Formal methods have come into wide use in the design and
verification of safety, security, and privacy of systems in the industry,
because they are very effective in verifying safety, security, and privacy
requirements of systems, requirements for which testing is mostly
ineffective. Formal verification techniques can guarantee that a design is
free of specific flaws.

Provability of IoT and distributed systems depends on the language
used to model the system, its semantics, and the kind of system properties
to prove and the techniques used to verify them. One may take a
bottom-up approach, starting with low level languages in use, or one

Abstract

may take a top-down approach, starting with a more abstract language
with an expressiveness suitable for IoT and distributed systems. Such a
language can be used to model IoT and distributed systems, and if the
language is executable, it can be used for simulation and prototyping
of IoT and distributed systems, and if the language is imperative with
standard mechanisms such as object orientation, IoT and distributed
models made in the language can easily be translated to more low level
languages. The latter approach also has the advantage that one can define
the language and its semantics so that it is amenable to semantical analysis
and verification. Additionally, this approach makes program reasoning
simple and powerful.

The active object paradigm provides a natural way of modeling
distributed systems in general, and IoT systems in particular, because it
covers the fundamental aspects of 0T systems such as distribution of
concurrent, autonomous units communicating by message passing, where
each unit can run on a device with limited processing power and limited
storage.

In this thesis, we focus on two aspects of the design phase to
develop methodologies to improve security, privacy, and trust levels
of IoT and distributed systems. Firstly, we consider the early design
phase, where the architecture of a system is being developed, focusing
on the setting of IoT systems. Secondly, we consider the late design
phase, where models, in particular executable models and prototypes are
designed, focusing on IoT systems and also the more general setting of
distributed systems. For the modeling related to the late design phase,
we limit our work to the active object paradigm. In particular, we find
techniques for increasing the security level of the overall IoT systems
using a security and privacy functionality framework, and a technique
for detecting potential vulnerabilities that can cause distributed denial of
service (DDoS) attacks using static analysis technique. In addition, we
developed a language-based approach to provide trust, safety, security,
and privacy for smart contracts.

i

Dedication

This thesis is dedicated to my beloved family and my fiancee for their
endless support, encouragement, patience, and love in my life and their
belief in my dreams.

Acknowledgements

This thesis would have been impossible without the support and
mentoring of my main supervisor Olaf Owe. I would like to express my
deep gratitude to him for his priceless time and help whenever I needed.
I am grateful for his continuous encouragement, inspiration, patient
guidance, fruitful discussions, constructive and constant cooperations, and
optimism throughout this work, and for all the knowledge I have learned
from him. I am also grateful for his great friendship and for teaching me
various things of life. I would like to express my special thanks to my co-
supervisor Josef Noll for his great help and support, critical suggestions,
patient guidance, and active collaboration in various papers. I would also
like to thank Martin Steffen for his constructive and useful feedbacks,
comments, discussions, interesting lectures, and for all his help whenever
I needed. I would like to thank my graduate committee members, Jiiri
Vain, Svetlana Boudko, and Paal Engelstad for their great feedbacks, help,
and encouragement. I also thank Toktam Ramezanifarkhani and Christian
Johansen for their feedbacks and guidance during this research.

I would like to thank everybody involved in the IOTSEC project, in
particular I thank Habtamu Abie for his great help, support, encourage-
ment, and constructive feedbacks. I am grateful for all the great assistance
and facilities provided by the administration staff and the technical sup-
port at the Department of Technology Systems and the Department of
Informatics, University of Oslo. My thanks also go to all researchers and
professors who have crossed my path as friends and colleagues over the
years, in particular Jiiri Vain.

I am grateful to my family and my fiancee. Words cannot express
how grateful I am to them. They have always encouraged and supported
me in pursuing my dreams with their love and patience, and they have
always been with me despite the distance. Finally, I would like to thank
my friend Mona for her company during these years.

This work was supported by the IOTSEC project. Additional funding
was provided by the Department of Technology Systems, SCOTT and
ConSeRNS projects.

Contents

Abstract
Dedication
Contents

List of Figures

List of Tables

Part I Overview

1 Introduction
1.1 Background and Motivation
1.2 Research Questions
1.3 Methodology
14 Structure of the Thesis

2 Theoretical Background
2.1 Object-Oriented Systems
2.2 Concurrent Object-Oriented Systems
2.3 Creol/ABS Language
2.4 Formal Verification and Specification

3 Summary of Research Papers and Contributions

3.1 Paper1
3.2 Paper2
3.3 Paper3
34 Paper4

3.5 Additional Publications

4 Conclusions and Future Work

iii

vii

xi

xiii

12
13
14

17
17
19
27
29

41
42
43
43
44
47

49

vii

Contents

4.1 Conclusions 49
4.2 Future Work 54
Bibliography 57
Part II Scientific Contributions 67
5 Paper 1: Security and Privacy Functionalities in IoT 69
5.1 Introduction 69
5.2 IoT-Related Standards and Guidelines 72
5.3 Related Work 73
5.4 Framework Explanation 75
5.5 Security Classification 79
5.6 Pacemaker Case Study 81
5.7 Conclusion 92
Bibliography 95
6 Paper 2: A Case Study of Healthcare Products 99
6.1 Introduction 100
6.2 Related Work 102
6.3 Security Classification 103
6.4 Pacemaker Case Study 104
6.5 Discussion 113
6.6 Conclusion 115
Bibliography 117
7 Paper 3: A Language-Based Approach to Prevent
DDoS Attacks 121
7.1 Introduction 121
7.2 Overview 124
7.3 Related Work 126
7.4 Our Framework for Active Object Systems 128
7.5 Static Analysis to Prevent Attacks 130
7.6 Examples of Possible DoS/DDoS Attacks 134

7.7 Conclusion 143

viii

Contents

Bibliography 145
8 Paper 4: An Approach to Smart Contracts Supporting
Safety and Security 149
8.1 Introduction 150
8.2 Smart Contracts and Blockchain 153
8.3 A High-Level Language for Active Object systems 156
8.4 The Proposed Framework 165
8.5 Specification of the Auction Example and Improve-
ments e e e e 179
8.6 Verification 184
8.7 Evaluation 188
8.8 Related Work 193
8.9 Conclusion 196
Bibliography 199

ix

List of Figures

1.1

5.1
5.2
5.3
54
55
5.6
5.7
5.8

5.9
5.10

5.11

6.1

6.2

7.1
7.2
7.3
7.4

7.5
7.6

7.7

An illustration of the system development life cycle

IoT security and privacy functionality framework

Security mechanisms
Human resource security
Physical and environmental security
Privacy protection
Operations security oo
Development, maintenance, and audit
IoT security and privacy tunctionality framework — de-
COMMISSIONING « . o e i e e et et e e
Basic inputs for defining a security class
Case study — scenario 1; with a security controller along
with the pacemaker inside the body
Case study — scenario 2; with a security controller for the
pacemaker out of the body for enhanced security

Case study — scenario 1; with a security controller along
with the pacemaker inside the body
Case study — scenario 2; with a security controller for the
pacemaker out of the body for enhanced security

Distributed communication (s-obj stands for server object
and c-obj for consumer object)

Distributed object communication in DDoS
Control flow graph

Algorithm for detecting flooding by means of calls and
comps setsinagivencycle

The interfaces of the units in the subscription example

Classes providing an implementation of the subscription
example

DoS attack by a variation of the subscription example

73
73
76
76
76
7
7

77
80

87

87

109

109

123
124
131
132
135
137

xi

List of Figures

7.8

7.9

7.10

7.11

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

8.10
8.11
8.12
8.13

X1l

The graph and call/comp sets for the original version of
the program
The graph and call/comp sets for the modified version of
the program
Flooding by unbounded creation of innocent clients
targeting the same server
Static detection of flooding using unbounded creation

Interfaces for the auction example
Examples of function definitions
The auctionclass
The interfaces of futures and history objects
History objects
Predefined types for transactions
A class implementation of futures and history objects

Illustration of the future mechanism
An implementation of history objects where blacklisted
bidders are blocked,
The privacy-extended history class for auction
A history class implementation with safety check
The auction history interface and class
A trust-extended history class for auction

List of Tables

5.1
5.2
5.3

54
55
5.6

6.1
6.2
6.3

6.4
6.5
6.6

Security classes oo 80
Exposure 80
Security and privacy challenge comparison of scenario 1

and2 L 89
Security class of the sensor 91
Security class of the pacemaker security controller . . . 91
Security class of the mobile phone 91
Exposure 103
Security classeso 103
Security and privacy challenge comparison of scenarios 1

and2 oL 109
Security class of the sensor 113
Security class of the pacemaker 113
Security class of the mobile phone 113

Xiii

Part 1
Overview

CHAPTER 1

Introduction

The modern society is critically depending on information systems,
in particular distributed systems and the Internet of Things (IoT). A
distributed system is a system that consists of components placed on
different networked computers which communicate concurrently by
passing messages to each other. Examples of distributed systems include
computer networks like the Internet, aircraft control systems, distributed
information processing systems like banking systems, mobile phones,
etc. The Internet of Things (IoT) consists of different distributed systems
and is considered one of the most important areas of future technology, it
has received massive attention from a wide variety of industries. 10T is
made from a variety of things or objects — like sensors, mobile phones,
television, refrigerators, actuators, etc. — that are able to interact with
each other and cooperate with their neighbours through the Internet to
reach a common goal using unique addressing schemes.

The aim of 0T is to provide an advanced mode of communication
among the various systems and devices, and also to facilitate the
interaction between humans and the virtual world. With this aim, IoT
plays a significant role in the modern society and has applications in
almost all fields including healthcare systems, automobile, industrial
appliances, sports, homes, entertainments, environmental monitoring, etc.
Services provided by IoT applications offer great benefits for human’s life,
but they can come with a huge price with respect to people’s privacy and
security protection. IoT devices have already outnumbered the number
of people at a computerized workplaces. As a result of this expansion,
and as these things are connecting to the Internet, and generate, process,
and exchange huge amounts of security-critical and privacy-sensitive
information, therefore they are attractive targets of various attacks [21,
29, 41, 47, 54, 55, 57, 61, 62, 63,75, 76, 77, 83, 86]. The same attack
may be used on a large number of (identical) devices.

What makes the IoT different from the traditional Internet is the

absence of human role. IoT offers complex systems that can sense
the external environment and make decisions with no need of human

1. Introduction

intervention. Existing sensors in [oT capture almost every single piece of
information from the environment such as image, video, sound, location,
proximity, temperature, humidity, acceleration, pressure, and heartbeat.
Hence, through these systems a lot of information about human life is
going to be collected and processed with some environments like smart
wearables, smart healthcare products, or smart homes that are able to
sense and manage very sensitive and personal information. This huge
amount of uncontrolled collection of sensitive information requires strong
data protection and privacy controls.

Despite the advanced abilities provided by IoT and distributed systems
in the data communication area, their vulnerability implications from a
security and privacy standpoint are still of great concern. Cyberattacks
on JoT and distributed systems such as healthcare systems, banking
systems, and very recently digital coins are very critical since they can
cause significant physical and economic damages, and even threaten
human lives. It is therefore vital to make these systems more secure and
data privacy-protected. This has made the investment in techniques for
preventing security and privacy attacks very important. Appropriate steps
should be taken in the initial phase of development and design of these
systems.

1.1 Background and Motivation

1.1.1 System Development Life Cycle

System development life cycle (see Figure. 1.1), also referred to as
the software/application development life cycle, is whole process of
developing and maintaining an information system. system development
life cycle comprised of the planning phase, the requirement analysis phase,
the system design phase, the implementation phase, and the integration
and testing phase.

System design phase defines the architecture, modules, interfaces,
and data for a system to satisfy specific requirements. This phase is
very important in the sense that, it bridges the gap between the problem
domain and the system, supposedly in a manageable way. The focus
of this phase is to find a solution of how to make a system that fulfills
the desired purpose. This phase finds a solution to how the system can

4

Background and Motivation

@l Planning
Testing &
Integration

System

Development
Analysis

Life Cycle

S

Design

Figure 1.1: An illustration of the system development life cycle [90]

be implemented and operate in such a way that the specification can be
satisfied. In the design phase, the complex activity of system development
will be divided into several smaller sub-activities, which coordinate with
each other to achieve the main objective of the system development.

In order to develop systems including open distributed systems, we
need techniques and tools for specification, design, and code generation.
For the initial ideas of such systems, it is desirable to use graphical
notations, so that ideas can easily be understood. This is relevant for the
early design phase. Once the ideas are agreed upon, it is then desirable to
have a formal basis for the specifications of the desired system, in order
to support rigorous reasoning about specifications and designs. This can
be done in the late design phase.

1.1.2 Security and Privacy Taxonomy of IoT Systems

Having a comprehensive overview and taxonomy of security and
privacy requirements and functionalities in IoT at the design phase is a
prerequisite for architecting optimal security solutions, designing, and
developing secure and privacy-aware IoT systems that can help both
providers and consumers of IoT devices to have a better understanding of
the security and privacy aspects. By functionality we mean: “The security
and privacy-related features, functions, mechanisms, services, procedures,
and architectures implemented within organizational information systems

5

1. Introduction

or the environments in which those systems operate” [79].

General standards, guidelines, and frameworks [1, 2, 25, 32, 33, 68,
79, 81] for establishing, implementing, maintaining, and continually
improving an information security management system, and protecting
the confidentiality of Controlled Unclassified Information (CUI), exist.
Existing IoT-related documents lack some of the security functionalities,
and in particular, they do not focus on privacy issues or are presented
only in textual form, without defining a framework. Layer structures of
these documents are also complicated. Systems are often made without
the help of security and privacy experts. So a comprehensive graphical
representation framework is needed and should be easy to follow, even
for non-experts. Such a representation should extract all the loT-related
security and privacy functionalities and unify them using a common
vocabulary. The vocabulary should be categorized, and the guidelines
and requirements should be integrated in a uniform style.

1.1.3 Privacy and GDPR

With respect to privacy, the European Union (EU) has passed the General
Data Protection Regulation (GDPR) [84], the toughest privacy and
security law in the world. It came into force on 24th May 2016, and
since 25th May 2018 all the organizations and their software are required
to be compliant. GDPR replaced the European Data Protection Directive
which established minimum data privacy and security standards in 1995
and based on that every member state depends on its implementing law.
The aim of GDPR is to protect and empower all EU citizens/residents’
data privacy and to reshape the way organizations approaching data
privacy of such people. Even though GDPR is passed by the EU, it forces
obligations on organizations anywhere if they collect and process data
related to EU citizens/residents, or offer goods or services to these people.
Penalties for violating the GDPR are very high and can be 4% of global
revenue or €20 million (whichever is greater).

GDPR regulates the following principles:
Accountability; The purpose of limitation principle; Data mini-
mization; Lawfulness, fairness and transparency; Accuracy,; Data
retention periods; and Data security.

Background and Motivation

The key rights of Data Subjects, Controllers, and Processors are as
follows:
Breach notification, right to access, right to rectification, right to
be forgotten, right to restrict processing, right to data portability,
right to object, rights in relation to automated decision making and
profiling, consent, and data protection by design and by default.

The GDPR requirements relate to almost all modern computer systems
and should be taken into consideration in the design phase to support
privacy by design.

1.1.4 System Modeling

Modern computer systems comprise of complex hardware and software
components, nevertheless ensuring the quality and the correctness of the
software part has been often a more significant problem than the one in
the underlying hardware. A documentation of this problem providing
over 100 “software horror stories’” can be found in [30]. The correctness
of the software is, in particular, very important from the security and
privacy point of view. Any single mistake in the software of a system
can be misused by the attackers. We should ensure that the software is
reliable and works correctly and does not have any vulnerability, ideally
during the design process.

One way to promote correct and reliable programs is through
modeling and verification techniques. System modeling develops abstract
models of a system. Each model presents a different view of that
system [10]. Models help to derive detailed requirements for a system:
during the design process they describe the system to engineers, and after
implementation document a system’s structure and operation. System
models simplify a system and do not represent a complete system. By
leaving out details of the system and decreasing the amount of complexity,
we will be able to understand the system and analyze specific properties
related to the system more easily.

Models can be developed from different perspectives of a system [82]:
(1) an external perspective models the context or environment of the
system; (2) an interaction perspective models the interactions between a
system and its environment, or between the components of the system;
(3) a structural perspective models the organization of a system or the

1. Introduction

structure of the data processed by the system, and (4) a behavioral
perspective models the dynamic behavior of the system and how it
responds to events.

1.1.5 Formal Methods

The use of formal methods technology in the industry has been an
objective for researchers for several decades. Formal methods are
mathematically-based approaches to software development that define a
formal model of the software. This model can then be formally analyzed
to look for errors and inconsistencies. Using mathematical approaches,
users will be able to analyze and verify these models at any part of the
program life-cycle (requirements engineering, specification, architecture,
design, implementation, testing, maintenance, and evolution).

Formal methods are important because they increase reliability of
a system. Industrial applications of formal methods and verification
technologies have been discussed in an excellent survey by Woodcock
et al. [89]. Formal methods have come into wide use in the design
and verification of safety-critical systems in the industry, because they
are very effective in verifying safety and security requirements of
systems, requirements for which testing is mostly ineffective. Testing
and simulation are techniques that provide a variety of input conditions
for a system and ensure that the output is as expected. The inputs can be
provided by a designer or randomly generated. These techniques sample
the response of the systems to the chosen inputs [74]. They can sample
functional properties of a system — i.e., what a system is supposed to do,
but they are not able to verify safety and security properties — i.e., what a
system is not supposed to do. For the former properties, given a nominal
input it produces the specified output. It is often assumed that the variety
of designed-in behaviors are usually small enough to adequately test for
compliance. This is only a small fraction of possible valid inputs. The
latter properties are predicated on any path that could bring the system
into an unsafe or insecure state; therefore, the input state space is vast and
almost never accessible by testing. Mathematical analysis and verification
of the program are needed to be sure that safety and security requirements
are met and to guarantee that a design is free of specific flaws.

Formal verification techniques can guarantee that a design is free of
specific flaws. Formal verification is the act of proving or disproving the

Background and Motivation

correctness of intended algorithms of a system concerning a certain formal
specification or property, using formal methods. Formal verification
techniques can check the behavior of a design for all input vectors.

In distributed systems like smart contracts, there is a need for formal
verification in the most popular language, Solidity, that has been used for
writing these contracts [4, 39, 94]. Also, in these systems we can achieve
a high level of trust and privacy with less expensive (with respect to time,
resources, and power consumption) approach using formal methods.

One of the formal verification techniques is program analysis. Pro-
gram analysis offers static (compile-time) techniques for predicting safe
and computable approximations to the set of values or behaviours arising
dynamically at runtime when executing a program on a computer [64].

In services like financial systems, static analysis techniques are very
important. Even a single unfortunate mistake by a financial service
provider could be enough to cause unintended attacks or be misused by
attackers and influence customers and this would of course, destroy the
customer’s trust and confidence and result in financial loss and reputation
damage. One should make sure that the software is not harmful for the
customers before running it, and this makes the static detection very
important in these systems. Most of the existing methods recommend
using of Internet traffic monitoring techniques to detect and react to
possible threats. But, this kind of runtime protection may slow down
or temporarily shut down the websites and their services. Despite the
importance of the static detection method as a valuable complement to
runtime detection methods, it is underrepresented.

Provability of IoT and distributed systems depends on the language
used to model the system, its semantics, and the kind of system properties
to prove and the techniques used to verify them. One may take a bottom-
up approach, starting with low level languages in use, or one may take
a top-down approach, starting with a more abstract language with an
expressiveness suitable for IoT and distributed systems. Such a language
can be used to model IoT and distributed systems, and if the language
is executable, it can be used for simulation and prototyping of IoT and
distributed systems — i.e., the process of building a model of a system,
and if the language is imperative — i.e., describes steps that change a
program’s state and tells how a program should operate, with standard
mechanisms such as object orientation, IoT and distributed models made
in the language can easily be translated to more low level IoT and

9

1. Introduction

distributed languages. The latter approach also has the advantage that
one can define the language and its semantics so that it is amenable to
semantical analysis and verification. Additionally, this approach makes
program reasoning (i.e., proof) simple and powerful.

1.1.6 Suitability of Modeling Paradigms for IoT and
Distributed Systems

Object orientation is the leading paradigm used in the software industry
today and is recommended for open distributed systems [78]. Program
code in class-based object-oriented languages is organized in classes,
encapsulating variables and methods, and classes can be specialized
by subclassing, possibly with a redefinition of methods. Classes can
be instantiated at runtime into objects. Many of the most popular
programming languages are based on object orientation including Java,
C++, C#, Python, etc. The object-oriented paradigm provides flexibility
through polymorphism. A single function can shape-shift to adapt to
whichever class it is in, we can create one function in the parent class
and this one function would work with other functions. Reusable code
through inheritance techniques saves time. Using inheritance, one can
simply reuse existing code instead of duplicating code. Modularity is
provided by the object-oriented paradigm, something which reduces
complexity and makes it easier for troubleshooting. Objects may be
seen as autonomous units. Object orientation provides good structuring
mechanisms and flexibility in applying changes to artifacts produced
during the software development process. This allows the structure to
remain the same in the final system. By combining object orientation
and concurrency, we can benefit from the increased responsiveness and
throughput of distributed system.

Distributed systems are by nature concurrent, therefore modeling
paradigms for distributed systems should support concurrency. Con-
current computing increases program throughput, parallel execution in
concurrent programming allows the number of tasks completed in a
given time to increase at best proportionally to the number of processors.
Concurrent computing also increases responsiveness for input/output, it
allows the time that would be spent mostly waiting for input or output
operations to complete, to be used for other tasks. Concurrent computing

10

Research Questions

can also have more appropriate program structure, while some problems
and problem domains are better-suited for representation as concurrent
tasks or processes.

Standard models of object interaction do not address the specific chal-
lenges of distributed computation. Object interaction based on method
calls is usually synchronous. However, synchronous communication in a
distributed setting, causes undesired and uncontrolled waiting, and possi-
bly deadlocks. Asynchronous message passing provides better control
and efficiency, although it does not provide the structure and discipline
inherent in method calls.

The active object paradigm [13, 91, 92] has evolved from the
actor model [3] and object orientation. In this paradigm each object is
concurrent and autonomous, with its virtual processor, and all interaction
is through method invocations and replies, thus supporting two-way
interaction rather than one-way interaction as in the case of the actor
model. Therefore at most, one process is active on an object at a time,
and method executions are decoupled from method invocations using
underlying asynchronous message passing. Active object languages have
mechanisms for efficient method interaction without active waiting, by
means of the future concept or suspension.

The active object paradigm provides a natural way of modeling
distributed systems in general, and [oT systems in particular, because it
covers the fundamental aspects of [oT systems such as distribution of
concurrent, autonomous units communicating by message passing, where
each unit can run on a device with limited processing power and limited
storage [48].

Each IoT device is modeled as one active object. If a single IoT device
has several concurrent activities, such a device could be modeled by a
group of active objects, using the concept of object groups as suggested
and formalized in [12, 22, 50]. Such an object group can be seen as a
single object for the environment. The modeling of different kinds of IoT
networks, including wireless networks, can be modeled as in [52].

1.2 Research Questions

As discussed earlier, new distributed systems in computing technology
are day by day appearing on the market, e.g., [oT systems. Consequently,

11

1. Introduction

new security and privacy challenges arise when designing these systems.
These challenges demand a need to look for comprehensive and more
precise approaches that can provide higher levels of security, privacy, and
trust from the design phase in these systems. For example, new taxonomy
frameworks that organize all aspects of security and privacy baselines,
guidelines, and recommendations, or the need to formally verify these
systems at the software level. Therefore, this thesis is seeking solutions
to the following main goal:

Main objective: To improve security and privacy of loT and
distributed systems during the design phase.

The main objective is a broad area of research that requires a more defined
focus. Therefore, we focus on two aspects of the design phase. First, the
early design phase, where the architecture of a system is being developed,
considering the setting of IoT systems. Second, the late phase of the
design, where models, in particular executable models and prototypes
are designed, considering IoT systems and also the more general setting
of distributed systems. Having enough information at the architectural
design phase and using graphical notations make it easier to understand
the system components and their specifications for the modeling phase.
These give two subgoals:

Objective 1: To develop a methodology to improve the overall

security and privacy of loT systems in the early design phase.

Objective 2: To develop methodologies to improve the security,
privacy, and trust level of distributed systems in the late design
phase.

To achieve the first subgoal, this thesis will address the following specific
research questions:

RQ1: What are the security and privacy functionalities for IoT systems
relevant at the early design phase?

RQ2: How can we build a security and privacy functionality framework
for IoT systems relevant to the early design phase?

12

Methodology

RQ3: How can the functionality framework help to improve security and
privacy of IoT systems at the early design phase?

To achieve the second subgoal, this thesis will address the following
specific research questions:

RQ4: How can we model distributed systems at a high level of
abstraction?

RQ5: How can we analyze modeling frameworks of distributed systems
to identify and detect possible vulnerabilities in the models in order to
improve the security and trust level at the late design phase in these
systems?

RQ6: How can we improve the security, privacy and trust levels of
distributed systems using a methodology at the late design phase?

RQ7: How can we use formal verification and specification for the
behavior of models of distributed systems?

1.3 Methodology

This thesis consists of several publications that describe our research
results achieved in the direction of answering the above questions.
Besides, the methodology we are looking for should meet the following
requirements:

Model-based approach. A model is mainly a representation of some
aspects of interest from a real-world system [10]. Models provide
an abstraction of a real-world system. Therefore they contain less
complexity than real-world systems. By decreasing the amount of
complexity, we will be able to understand the interesting aspects
better, and analyze specific properties related to them. Therefore
it is desirable for the methodology presented in this thesis to be
model-based. In addition, it is desirable that the model is executable
in order to allow prototyping and verification of specification
requirements of the system, and that it defines a program structure
that can be a guideline for the implementation phase.

13

1. Introduction

Formality. Formal methods are important since they seek to increase
the reliability of systems by adding mathematical rigor to the
design process [15]. For the methodology presented in this thesis,
it is desirable to have a design notation that offers precision,
unambiguity, and abstractions based on a formal syntax and a
well-defined semantics.

The paradigm of concurrent and distributed active objects. We con-
sider programming and specification languages suitable for model-
ing 10T and distributed systems. We define these languages, their
semantics, and systems that are proof oriented towards reasoning
support. In order to make reasoning as simple and powerful as
possible, we focus on languages at a high level of abstraction rather
than low level languages. We consider executable and imperative
languages supporting object-oriented principles, and designed the
languages so as to reduce the complexity of further translation to
low level languages for IoT and distributed systems. The active
object paradigm provides a natural way of modeling distributed
systems in general, and [oT systems in particular, because it cov-
ers fundamental aspects of IoT systems, such as distribution of
concurrent units communicating by message passing, where each
unit can run on a device with limited processing power and limited
storage [48]. Furthermore, the active object model can be seen
as complementary to graphical modeling languages including the
Unified Modeling Language (UML) [53], therefore is a suitable
continuation of the early design phase.

For the modeling related to objective 2, we therefore limit our work
to the active object paradigm.

1.4 Structure of the Thesis

The rest of this thesis is structured as follows: Chapter 2 introduces
Creol/ABS language and discusses its underlying concepts. Chapter 3
gives a short summary of each of the papers collected in this thesis and
contributions of this thesis by answering the research questions presented
in Chapter 1. Chapter 4 concludes the thesis and suggests some directions
for future research. Part II collects the research papers in the thesis.

14

CHAPTER 2
Theoretical Background

In this chapter we discuss some basic concepts of object-oriented and
concurrent object-oriented modeling languages and then position the
Creol/ABS modeling languages [48, 51] in this context. For this purpose,
Sections 2.1 and 2.2 introduce object-oriented languages, and concurrent
object-oriented languages, respectively. The presentation in Sections
2.1 and 2.2 is inspired by [6, 60]. Section 2.3 introduces specifically
the Creol/ABS languages, which supports the active object modeling
paradigm.

To build a reliable software system, it is important to develop
techniques which facilitate verification about the behavior of the program
code. For this purpose, we organize the discussion in Section 2.4 by
first considering formal logical systems and programming logic, then
discussing formal verification approaches including Hoare logic and static
program analysis.

2.1 Object-Oriented Systems

Object orientation is claimed to be the most used programming techniques,
in particular, for distributed systems [18]. The concept of objects was
first introduced by Ole-Johan Dahl and Kristen Nygaard in Simula 67 [26,
28]. The ideas of the language which was system description as well as
simulation programming originated by Kristen Nygaard at the Norwegian
Computing Center in 1961 [66]. Along with Nygaard, Ole-Johan Dahl
produced the initial ideas of object-oriented programming, which still is
a leading approach for commercial and industrial applications today.

In the object-oriented programming style, a system is described as
a collection of objects. An object is an integrated unit of data and
procedures (called methods) that act on these data. We can think of object
as a box that stores some data and is able to act on these data. The data in
objects is stored in variables. A variable’s content changes by executing
an assignment statement. Variables in an object may be hidden from
the environment, so called private variables. One may declare interfaces

15

2. Theoretical Background

to specify what methods can be called from the outside. By seeing an
object solely through interfaces, object’s variables will be strictly private
and are not accessible to other objects. In class-based object-oriented
languages, objects are described by classes, defining the common features
for each kind of objects. Elements (instances) of a class have the same
names and types for their variables and execute the same code for their
methods. A class serves as a blueprint for building its instances. In the
object-oriented model, objects exchange information with each other
under the general label of message passing — a sender object sends a
request to a receiver object to execute a certain method. The sender of
the message may provide some parameters to the method and the method
can return a result, which is passed to the receiver. Interaction between
objects only happens based on the precisely determined message interface.
Each object is responsible and is able to maintain its own local data in a
consistent state.

At any time during the execution of a program, a new object can
be generated, so there can be a large number of objects at some point.
Objects are not destroyed explicitly. Although, if they certainly do not
influence the correct execution of the program they can be removed
through garbage collection.

The features listed below are common among languages considered
to be strongly class- and object-oriented [60]:

* Classes: object-oriented languages are diverse, but the most popular
ones are class-based, that means objects are instances of classes. A
class is a description of a set of objects that are defined using a list
of behavior (operations), properties (attributes), relationships, and
semantics.

* Encapsulation: is a mechanism upon which certain features of
a class will be unaccessible for user’s calls. Information hiding
sometimes used as a synonym for encapsulation. When writing a
class, there are features that are part of the implementation of a
class, but not of its interface. Other features of the class possibly
available to users, may call the features if they need, but it is
not possible for a user to call them directly. The encapsulation
mechanism should be flexible in such a way that allows designers
of a class to specify a feature available to all users, to no user,

16

Concurrent Object-Oriented Systems

or to some specific users; and an attribute that may need to be
available for access only, access and restricted modification, or full
modification.

e Inheritance: the basic idea is that when we want to define a new
class it is often easier to start with variables and methods of existing
class(s), then add more features to them in order to reach to the
desired new class. In this case, we say that the new class inherits
the variables and methods of the superclass(s). In other words, a
class can be defined as an extension or restriction of another.

* Polymorphism and dynamic late binding: the ability of a program
entity to be attached to objects of various possible types, and the
guarantee that every feature on an entity will trigger the correct
feature, corresponding to the attached runtime object’s type.

* Dynamic object creation instantiation: at any point of the execution
of a program a new object can be generated, so there might be a
large number of objects.

Additional features of object-oriented languages are given as follows:

* Multiple and repeated inheritance: a class can have more than one
parent and can inherit from another class in more than one way.

* Abstraction: is a mechanism that aims to representing a simplified
model of the program without showing irrelevant details in order
to handle complexity and enhance understanding [40, 56, 93].
Abstraction is provided by interfaces.

2.2 Concurrent Object-Oriented Systems

The concept of concurrent programming goes back to 1960s within the
concept of operating systems. The idea was to build hardware units called
channels or device controllers that operate independent of a controlling
processor. They allow an I/O operation to work concurrently with
continued execution of the central processor’s program instructions. The
program is called concurrent when it contains two or more processes that
work together in order to do a task. Each of these processes is a sequential

17

2. Theoretical Background

program execution a sequence of statements one after another. In contrast
to sequential programs that have a single thread of control, concurrent
programs have multiple threads of control. The term multithreaded means
a program has more processes or threads than processors to execute
the threads. Concurrent programs are in general more complex than
sequential programs. Execution in a concurrent program begins in some
initial state and as processes execute independently, they examine and
modify the program state.

2.2.1 Fundamental Concepts

Here, we look at five fundamental concepts of concurrent programs:
program state, atomic actions, the concept of history, safety properties,
and liveness properties [6]. The values of all program variables at a point
in time are called the state of the program.

A sequence of statements executed in a process. A sequence of
one or more atomic actions implement a statement. Atomic actions
indivisibly examine or alter the program state. Therefore, the execution
of a concurrent program results in an interleaving of the sequences of
atomic actions that are executed by every process.

A history (also called a trace of the sequence of states) can be seen as a
particular execution of a concurrent program: sy — s; — ... — S,, where
s 1s the initial state, s; ... s,, are subsequent states, and atomic actions
make the transitions that change the state. In a concurrent program, every
execution generates a history. In all but the most trivial programs, there
is an enormous number of possible histories, since the next atomic action
in each one of the processes could be the next one in a history, so there
will be many paths that actions can be interleaved no matter a program
always begins in the same initial state.

Synchronization aims to constrain the possible histories of a concur-
rent program to the desirable ones. There are two kinds of synchroniza-
tion: mutual exclusion that ensures at most one process is executing its
critical section at the same time, and condition synchronization that de-
lays an action until the state holds a Boolean condition. Critical sections
cannot be interleaved with actions in other processes when they reference
the same variables.

In a program a property is an attribute that is true of every possible
history of that program, so of all executions of the program. There are

18

Concurrent Object-Oriented Systems

two types of properties: safety and liveness. A safety property [6] is
when the program never enters a bad state for instance a state that some
variables have an undesirable value. A liveness property [6] is when the
program eventually enters a good state for instance a state that variables
have desirable values.

Fartial correctness [6] is an example of a safety property. A program
is called partially correct if it requires that if an answer is returned it
will be correct. Termination is an example of a liveness property. If
every loop and procedure call of a program terminates, then the program
terminates, in this case, the length of every history of the program is finite.
A total correctness property of a program combines partial correctness
and termination. If a program always terminates with a correct answer,
the program is called totally correct.

2.2.2 Communication in Concurrent Programming

In a concurrent program, the only non-trivial way that processes can
work together in order to solve a problem is to communicate with each
other in some way [6]. And this communication can only be done if
one process writes into something that the other process can read. This
something might be a shared variable or a shared communication channel
that it depends on the hardware in which the program will execute on.
Therefore, communication can be done either by writing and reading
shared variables or by sending and receiving messages.

Shared variable communication is when one process writes into a
variable that will be read by another process. Shared variables are
mostly used in concurrent programs that execute on hardware where
its processors share memory. In distributed-memory machines, if they are
supported by a software implementation of so called distributed shared
memory, the shared-variable programming model can also be used.

In a distributed-memory architecture where the processors have
their own private memory, the communication is mostly through a
communication network instead of shared memory. In this case, processes
are not able to communicate through sharing variables, instead they
communicate by exchanging messages with each other or by invoking
remote operations. Concurrent programs that use message passing
are named distributed programs, since processes can be distributed all
over the distributed-memory architecture’s processors. A distributed

19

2. Theoretical Background

program can also be executed on a shared memory multiprocessor, like
any concurrent program that can be executed on a single, multiplexed
processor. In this case, channels are implemented through shared memory
rather than a communication network.

There are several mechanisms for distributed programming including
asynchronous message passing, synchronous message passing, remote
procedure call (RPC), and rendezvous. They are different in the
way channels are named and used and the way communication is
synchronized.

Message passing is when one process sends a message to a channel,
another process can acquire the message through receiving it from the
channel. Sending a message can be asynchronous (non-blocking) or
synchronous(blocking). In asynchronous message passing, a channel is
an unlimited queue of messages that have been sent but not received any
answer yet. Send is a non-blocking primitive and never causes delay, but
receive is a blocking primitive and it might cause delay until a message
arrives to be received. In contrast, synchronous message passing causes
the sender to block until the message is received, that means a process
can send only one message on any channel at the same time and until that
message receives and the receiver sends back a reply to the sender, the
sending process cannot continue its execution and send another message.
Synchronous message passing has one advantage that there is a limitation
on the size of communication channels, therefore on buffer space.
However, it has two disadvantages. First, concurrency is reduced because
when two processes communicate, at least one of them will have to block.
Another disadvantage of synchronous message passing is that this form of
message passing is more prone to deadlock — when two or more processes
are waiting for conditions that will never happen, therefore none of them
could proceed. Therefore the difference between asynchronous and
synchronous message passing is having more concurrency, less waiting
time and having bounded communication buffer, respectively. Since
memory is plentiful and compare with synchronous send, asynchronous
message passing is less prone to deadlock, most programmers prefer it. In
particular, for distributed environments considering that communication
in a network takes time, asynchronous send is more suitable.

Remote procedure call (RPC) and rendezvous are ideally suitable
for programming of client/server interactions. In RPC and rendezvous,
an operation is a two-way communication channel from the caller to

20

Concurrent Object-Oriented Systems

the process that services the call and then back to the caller instead
of sending information through one-way communication channels in
message passing. One-way communication channels need a large number
of channels for the two-way information flow between clients and servers
that they need two explicit message interactions through two different
message channels. In addition, every client needs a different reply channel.
Also, in both RPC and rendezvous, the execution of call delays the caller
until the called operation is executed and any result is returned as in
synchronous message passing.

The difference between RPC and rendezvous is in the way of servicing
the invocations of operations. RPC declares a procedure for every
operation and provides a new process to handle every call, the caller
and procedure body may be on different machines that’s why it is called
remote procedure call. In contrast, rendezvous uses an existing process
to handle calls (rendezvous is sometimes called extended rendezvous).

2.2.3 Actor Model

The term actor was defined by Carl Hewitt at MIT [43] in 1973. The idea
was to describe the concept of reasoning agents. However, over the years
it has been refined into a model of concurrency.

An actor is a fundamental unit of computation that embodies all three
essential elements of computation: processing, storage, communication.
When an actor receives a message it can create some more actors, it can
send messages to actors that it has addresses before and it can designates
how to handle the next message that it receives. Actors are isolated from
each other and they do not share memory, they have state and the only
way to change the state is by receiving a message. Each actor has a
unique mail address that is determined at the time of its creation. This
address is used to specify the recipient of a message. Every actor has its
own mailbox which is similar to message queue. Messages are stored in
actors mailboxes until they are processed. Actors after they are created
wait for the messages to arrive, actors can communicate with each other
only through messages. Messages are sent to actor’s mailboxes and
processed in First In First Out (FIFO) order. Messages have immutable
data structures that can be sent over the network. Conceptually an actor
can only process one message at the time. Actors work asynchronously
and they do not need to wait for a response from another actor. Actors

21

2. Theoretical Background

have addresses, it is possible for an actor to send a message to another
actor by knowing its address, an actor can only communicate with actors
whose addresses it has. An actor has addresses of the actors that it has
created itself and also it can obtain other addresses from a message it
receives. One actor can have many addresses.

The actor model supports maximum concurrency, however it includes
excessive process creation overhead. With the actor model, developers
do not have to worry about locking and race conditions. Properties of
communication in the actor model are as follows: actors do not use a
channel or intermediaries so there is nothing like type and semantics
issues which exist in case of having a channel or things like buffer or
guarantee delivery. Actors use best effort delivery. Actors have at-most-
once-delivery. Messages can take arbitrarily long to be delivered. There
is no message ordering guarantees. The running state of an actor is
monitored and managed by another actor (called a supervision). The
supervision can perform actions based on the state of the actor.

2.2.4 Active Object Model

The active object model was first proposed by Yonezawa et al. [92] in an
object-oriented concurrent programming language called ABCL/1. Their
computation model evolved from the actor model [9, 42], and it differs
from actor computation model in many respects. Here, we explain the
important differences between the two models.

Every object in the active object model of Yonezawa et al. has its
own thread of control and it may have its local persistent memory. An
object always has one of the three modes: dormant, active, or waiting.
An object is initially in dormant mode. If an object receives a message
that satisfies one of the specified patterns and constraints, it changes to
the active mode. When the sequence of actions that are performed in
response to an accepted message have been completed by an active object
and there is no more subsequent messages have arrived, an active object
changes to the dormant mode again. An active object sometimes needs to
stop its current activity and wait for a message with a specified patterns
to arrive. In this situation, the active object changes to the waiting mode
and when it receives a required message it changes to the active mode
again.

22

Concurrent Object-Oriented Systems

In the active object model, two distinct modes of message passing
have been considered: ordinary and express. For each object T', there
are two message queues: one for messages sent to 7' in the ordinary
mode and the other for messages sent in the express mode. Messages are
enqueued in arrival order.

Ordinary mode message passing [92]:

Suppose a message M sen tin the ordinary mode arrives at an object
T when the message queue associated with 7" is empty. If 7"is in the
dormant mode, M is checked as to whether or not it is acceptable
according to T"s script (a description which satisfies its behavior:
what messages it accepts and what actions it performs when it
receives such messages). When M is acceptable, 7’ becomes active
and starts performing the actions specified for it. When M is not
acceptable, it is discarded. If 7" is in the active mode, M is put at
the end of the ordinary message queue associated with 7. If 7" is
in the waiting mode, M is checked to see if it satisfies one of the
pattern-and-constraint pairs that 7" accepts in this waiting mode.
When M is acceptable, 71" is reactivated and starts performing the
specified actions. When M is not acceptable, it is put at the end of
the message queue.

Express mode message passing [92]:

Suppose a message M sent in the express mode arrives at an object
T'. If T has been previously activated by a message which was also
sent to 1" in the express mode, M is put at the end of the express
message queue associated with 7". Otherwise, M is checked to see
if it satisfies one of the pattern-and-constraint pairs that 7" accepts.
If M is acceptable, 1" starts performing the actions specified for M
even if T has been previously activated by a message sent to 7" in
the ordinary mode. The actions specified for the previous message
are suspended until the actions specified for M are completed. If
so specified, the suspended actions are aborted. But, in default,
they are resumed.

In the active object model, there are three types of message passing: past,
now, and future.

23

2. Theoretical Background

Past type message passing:
An active object O sends a message M to an object 7' and
it proceeds its own task without waiting for a response to the
requested task from the object 7.

This type of message passing significantly increases the concurrency of
activities in a system and corresponds to the standard way of message
passing in the actor model.

Now type message passing:
An active object O sends a message M to an object 7" and it waits
for a response to the requested task from the object 7.

This convention is useful in assigning a returned value to a variable in an
assignment.

Future type message passing:

An active object O sends a message M to an object 7" but it does not
need the expected requested result immediately. Therefore, object
O does not wait for object 7" to return the result and proceeds
its tasks and computations. Meanwhile or later when object O
needs the result, it checks its special private object called future
object that was specified at the time of sending M. If the result is
available in the future object, it can use it otherwise it continues its
computations again until a result is available.

The future object behaves like a queue and the contents of the queue can
be checked or removed by the object O. The concurrency of a system
increases by future message passing.

One of the important difference between the active object model and
actor model is that in the active object model, an object in the waiting
mode can accept a message which is not necessarily at the head of the
message queue, however an actor in the actor model can only accepts a
message that is at the head of the message queue. Moreover, now type and
future type message passing are not supported in the actor model. Hence,
when an actor A sends a message to a target actor 7" and expects a result
from 7" must terminate its current activity before being able to receive the
response from actor 7', like any other incoming messages arriving to A.
In addition, this necessity of the termination of actor A’s current activity

24

Creol/ABS Language

in order to receive actor 7”s response leads to an unnatural decomposition
of A’s task and requires additional procedures to identify a message that
responds to the reply value of now type message passing.

2.3 Creol/ABS Language

The Creol language proposes programming constructs for distributed con-
current objects depending on asynchronous method calls and processor
release points [48], building on the OUN language [70] and the language
idea of [78]. Concurrent objects are active, meaning that an object en-
capsulates an execution thread. Method calls are represented by pairs
of asynchronous messages. The language is class-based and supports
inheritance. Objects have identity meaning that an object’s “name” is
unique. Communication is between named objects and object names may
be exchanged between objects. In Creol object variables (references)
are typed by interfaces. The language is extended with mechanisms for
static type control in dynamically reconfigurable systems. The language
is strongly typed, depending on a nominal type-system that makes sure
invoked methods are supported by the callee (if not nil) and formal and
actual parameters match [49]. Creol has a modular and compositional
semantics meaning that each execution step in the semantic involves only
one object. Its operational semantics is defined in rewriting logic [59]
and is executable in the tool Maude [23].

ABS is an abstract behavioral specification language building on
Creol, addressing executable formal model specifications for distributed
object-oriented systems and has code generators for Java [37], Scala [67],
Maude [24], and Erlang [7]. Both Creol and ABS allow a high level
specification of a system including its concurrency and synchronization
mechanisms, and also local state updates. Therefore, the concurrent
control flow of object-oriented systems are captured by Creol/ABS
models, while implementation details that are not desirable at the
modeling level are abstracted away, like the concrete representation of
internal data structures, which are captured by an applicative data type
language, the scheduling of method activations, which is simply non-
deterministic, and the properties of the communication environment. Like
Creol, ABS uses interfaces as types for object variables, while the classes
that implement the functionality of these objects are abstracted away

25

2. Theoretical Background

in the type system. ABS has a notion of object groups (cogs), which is
similar to the one in JCoBox [80], it generalizes the concurrency model of
Creol from single concurrent objects to concurrent object groups sharing
the same processor.

In ABS, the communication mechanism of Creol [48] for remote
communication has been used, it is based on asynchronous method
calls using first-class futures [14]. Another feature of the ABS and
Creol communication mechanism is their use of cooperative scheduling
between asynchronous called methods. However, in ABS this is lifted
from the level of objects to the level of concurrent object groups.
Cooperative scheduling is a mechanism, allowing passive waiting which
means there will be a process queue holding all suspended processes of a
given object, the executing process of an object can be suspended so that
a required result from another process of the queue of the object can be
provided. The type system in ABS is similar to the one in Featherweight
Java [46], a core calculus for Java. Featherweight Java is class-based with
single inheritance, with subtyping as a reflexive and transitive closure of
the subclass relation. Both Creol and ABS distinguishes between classes
and types. In Creol asynchronous calls and interfaces are combined with
multiple class inheritance, choice operators, and a notion of cointerface
at the interface level in order to accommodate type-safe calls backs to
callers [49]. The cointerface is the interface of the caller, through which
the callee can make calls back to the caller. In this case the cointerface
will ensure type correctness of these call-backs. Creol introduces a
suspension mechanisms, which is also used in ABS. A process (or a
method execution) may suspend while waiting for a result to arrive or
condition to be satisfied. Suspension releases the processor of the object
using a process queue to store suspended processes, allowing the object
to continue with other (enabled) processes. Process release (suspension)
points allow non-blocking waiting.

The language version that we consider in this thesis is inspired by
both Creol and ABS and we refer to it by Creol/ABS. It ignores some
of the features in ABS (like cogs) and supports some features that ABS
does not support (inheritance, cointerfaces). Our work is mainly using
local futures, rather than shared futures.

For the setting of IoT and distributed systems, local futures (in
particular method-local ones) are suitable since they can be deleted by
each object as soon as they are no longer needed so there is no future to

26

Formal Verification and Specification

be garbage collected. However, if the active object paradigm supports
first-class futures (also called shared futures) — 1.e., futures that can be
shared with other objects if they need them, it is not clear when none of
the objects need the shared future(s) and when they can be deleted. In
this case, garbage collection of futures will in general be needed. This
is of special importance for the setting of IoT systems where garbage
collection, in particular distributed garbage collection, is undesired due to
resource limitations. For distributed systems, first-class futures may pose
security and privacy issues, since they can be seen as shared variables
with read-only access. Local futures are not shared between objects and
security and privacy control is easier.

2.4 Formal Verification and Specification

Correctness proofs in programs are important in order to establish
program properties. Results of the execution of processes when they
are executed in parallel, can depend on the unpredictable order in which
the actions from different processes are executed. This will result in a
complexity that is very massive to handle informally. Also, program
testing is not able to detect all mistakes since the particular interactions
in which errors are visible may not happen. Therefore, it is important to
have a proof system in order to remove some of this complexity, structure
concurrent programs in a simple way, and to verify their correctness.

Below we will first look at verification methods (in Section 2.4.3)
including semi-automatic ones, and methods that are fully automatic.

2.4.1 Formal Logical Systems

A formal logical system [27, 36] is used for inferring theorems from
axioms based on a set of rules. These rules are defined in the form of: a
set of symbols, a set of formulas built from the symbols, a set of axioms,
and a set of inference rules. Formulas are a sequence of symbols. Axioms
are formulas that are assumed to be true and are used as a starting point
for further reasoning and arguments. Inference rules determine a way
to derive additional true formulas from axioms and other true formulas.

27

2. Theoretical Background

Inference rules are in the form bellow:

HiHy...Hy
C

where H; is a hypothesis, and C' is a conclusion. This means: if all
the hypotheses are true, then conclusion is also true. Hypotheses and
conclusion are formulas or schematic representations of formulas.

A proof in a formal logical system is a finite sequence of line, each
line (any line in a formal proof is called theorem) can be an axiom or can
be derived from previous lines by applying an inference rule.

A formal logical system is a mathematical abstraction (i.e., a
collection of symbols and relations between them). In order to be able
to know if the statements that the formulas represent are true or not, we
need to provide an interpretation of the formulas.

An interpretation of a classical logic maps formulas to either true or
false. In a logic, if all its axioms and inference rules are sound, the logic
is called sound. Soundness of axioms and inference rules means all the
axioms map to true, and all the inference rules conclusions map to true
by the assumption that the hypotheses map to true.

The dual of soundness is completeness. In a logic, if each semantically
true formula is provable, the logic is called complete.

2.4.2 Programming Logic

A programming logic is a formal logical system that allows us to state
and prove properties of programs. A programming logic aims in facili-
tating proving properties of program execution. Like any formal logical
system, programming logic also contains symbols, formulas, axioms,
and inference rules. The symbols of programming logic are predicates,
braces, and programming language statements.

One way to formally proof correctness of systems is Hoare logic.
Hoare logic is a formal system with a set of logical rules for correctness
proofs of programs including concurrent programs. Hoare [45] was the
first to develop a formal logic for proving partial correctness properties
of sequential programs, this work was inspired by the first proposed
technique for proving correctness of programs by Floyd [34]. Later Susan
Owicki in her dissertation supervised by David Gries, developed the first

28

Formal Verification and Specification

complete logic for proving partial correctness properties of concurrent
programs [71, 72, 73] based on Hoare logic for parallel programs [44].

Hoare introduced the concept of a triple, interpretation for triples,
axioms, and inference rules for sequential statements. Since then logical
systems that follow this style are called Hoare logic. Programming logic
is an example of a Hoare logic. Formulas in programming logic and
Hoare logic are triples of the following form:

{P}S{Q}

where the predicates P and () (often called assertions) describe relations
between the values of program variables, and S is a statement or statement
list. The interpretation of a triple has the following meaning:

Whenever execution of a program S’ starts in a state where assertion
P holds, then the assertion () will hold in a resulting state, assuming
the execution of the program terminates.

This interpretation is named partial correctness. Predicates P and () are
called the precondition and postcondition of S, since they characterize
conditions that must hold before and after the execution of .S.

2.4.3 Formal Verification

The act of proving or disproving the correctness of the algorithms
and programs in a system corresponding to certain specifications and
properties of the system, by applying formal methods of mathematics,
is called formal verification. Formal specification precisely describes
system properties using mathematic-based languages.

There are many approaches to formally verify programs. The spec-
ification formalism that represent a specification, provides a good dis-
crimination criterion between different approaches. Different formalisms
are classifies to three groups [38]: logic, automata and language theory,
and hybrid formalisms. In the first one, specifications are expressed as
statements in a specific kind of logic. In the second one, a specification is
represented in the form of a language (or an automaton). And, the last one
uses a hybrid approach meaning that a specification first expressed using
a logic statement then it is converted to an equivalent language/automaton

29

2. Theoretical Background

representation. Below we give a hint of approaches that use each of these
formalisms. Due to extensive literature available in each area of formal
verification, we cannot possibly do justice to the fine details of every
approach and we ask the reader to refer to the references for more details.

2.4.3.1 Logic

Logic in general is the study of principles of reasoning and a subject of
study in multiple disciplines like philosophy, mathematics, and computer
science. We only consider formal logic, in which a formal language and
a formal system represent logical truths and logical methods of reasoning.
A formal language is a set of well-formed-formulas specified syntactically
by a set of symbols and a set of rules for the formation of formulas. A
formal system as explained earlier in this section consists of a formal
language and a deductive apparatus. A deductive apparatus, also called a
deductive system consists of a set of axioms and a set of inference rules
that can be used to derive theorems of the system.

First-order predicate logic. An example of deductive system is
first order predicate logic also known as first-order logic consists of
a countable sets of symbols for constants, functions, and predicates,
variables, and a set of standard Boolean connectives (A, V,=>, =) and
quantifiers (3, V). This distinguishes first-order logic from propositional
logic, in which quantifiers or relations are not used. In Floyd-Hoare [34,
45] assertional methods also typically first-order predicate assertions are
used. Most of the approaches that have used first-order logic actually
draw upon the Hoare-style verification techniques for software.

Boyer-Moore computational logic. This logic is a restricted form
of first-order logic. Boyer-Moore [16] introduced a quantifier-free first-
order logic with equality. In this logic, terms composed of variables and
function applications. Constants are demonstrated as functions without
arguments. Logical connectives, like not, and, or are defined in terms of
primitive logical constants true, false, and the primitive connective 7 f.
Equality is in the form of a function equal and axioms that characterize it.
Through the Shell Principle, a user can introduce inductively constructed
object type (characterized by a set of axioms). According to the shell
principle, all type definitions should be accompanied by specification of
a recognizer function, a constructor function, and an accessor function

30

Formal Verification and Specification

for that object type. A user can also introduce axioms defining new
functions. These axioms have to satisfy the Principle of Definition, to
avoid inconsistencies causing by their addition. Using this principle, one
can make sure that all new functions are defined either non-recursively
in case of pre-defined functions, or there exists a well-founded ordering
on some measure of the arguments that reduces with every recursive call
in case of recursive definitions. In this logic, standard rules of inference
used for propositional logic and the principle of induction, which is based
on the same well-founded ordering used by the definition axioms, have
been used for reasoning.

The Boyer-Moore theorem prover equips an automated facility for
generating proofs in the described logic above. The process of proof
generation though, is not totally automatic, and the user might need to
assist the theorem prover for setting up intermediate lemmas and helpful
definitions. The basic theory used in the system (logic plus theorem
prover) is including: axiomatize natural numbers, negative integers, lists
and character strings, also commands are provided for adding shells,
defining new functions and proving theorems. This system is an effective
tool that has a number of applications in different areas [17], due to the
strong mathematical foundation and heuristics built into the system.

Higher-order logic. This logic is a form of predicate logic that has
additional quantifiers and sometimes stronger semantics. Higher-order
logic is more expressive than first-order logic because of the ability to
quantify over predicate symbols, however its model-theoretic properties
are less well-behaved than in the first-order logic.

Modal logic. This is the logic of necessities and possibilities. Modal
logic is considered the development of logic of increasing ability to
express change [58]. Propositional logic is the logic of absolute truths,
that means in a domain, propositions are either true or false. In predicate
logic, the notion of truth has been extended by making it relative, that
means the truth of a predicate may depend on the related actual arguments
(variables), as well as the domain (since the arguments can change over
the elements in the domain of discourse). Modal logic extends this notion
further by providing additional variability, that means the meaning of a
predicate (or a function) symbol may also vary depending on what point
it is in (this point is often called a “world”). Therefore, modal formulas

31

2. Theoretical Background

are interpreted according to a state in a universe (the universe consists
of a set of states), a domain of discourse that appropriate logic symbols
are interpreted by every state, as well as an accessibility relation between
states. There are two basic modal operators: the necessity operator that
is represented by [P and the possibility operator that is represented by
¢ P. The meaning of modality operators is as follows:

e [JP: a property is true in state s if the property P is true in all
states accessible from s

* QP: aproperty is true in state s if the property P is true in at least
one state accessible from s

Temporal logic. This logic is a specialized form of modal logic that
places additional restrictions on the accessibility relation to represent
passage of time. In temporal logic, one can talk about the past, present,
and future. In addition to basic modalities LJP and { P, there are two
other operators in temporal logic: () and U. In the temporal framework,
these four operators are referred to as Always (Henceforth,), Sometimes
(Eventually, F'), Next-time (X), and Until (U), respectively. The meaning
of these operators is as follows:

e [JP: is true in state s, if P is true in all future states accessible
from s

e OP: is true in state s, if P is true in some future state accessible
from s

e (OP: is true in state s, if P is true in the next state accessible from
S

e P U Q: is true in state s, if either () is true in s, or it is true in some
future state of s, and until then P is true at every intermediate state

There are different kinds of temporal logic. If the truth of a formula is
determined with respect to an interval between states, it is called Interval
Temporal Logic [5]. If the truth of a formula is determined with respect
to a state, depending on the difference in viewing the notion of time,
there are other categorization. If time is categorized as a single linear
sequence of events, it is called Linear Time (Temporal) Logic (LTL) [58],
but if a branching view of time is considered, that means in any instant of

32

Formal Verification and Specification

time there are a branching set of possibilities into the future, it is called
Branching Time (Temporal) Logic (BTTL) [31].

Extended temporal logic (ETL). The original work on ETL was first
suggested by Wolper [87]. He showed that in propositional version of
LTL (called PTL), a property like even(p) is not expressible. Therefore,
he proposed to add new operators corresponding to right-linear grammars
to temporal logic. To interpret grammars as operators, he established a
correspondence between words generated by a grammar and sequences.
The basic idea is that if there is a word w (finite or infinite) over a finite
alphabet o and an assignment of formulas to every letter of o, a sequence
satisfies the word w for the given assignment if for all ¢, the formula
associated with the letter appearing in the ¢th position of the word w is
true in the sth state of the sequence. Later, the original work on ETL was
generalized by Wolper, Vardi, and Sistla [88].

Mu-Calculus. This is another extension framework of the temporal
logic context for extending expressiveness that in addition to the usual
predicate logic operators, provides operators for denoting fixed points of
predicate transformers (functions from relations to relations) [20].

2.4.3.2 Automata and Language Theory

Machine equivalence. An approach that both the implementation and
the specification are represented as finite-state machines. An equivalence
between the corresponding machines should be approved in order to show
that each behavior of the implementation satisfies the specification.

Language containment. In language containment approach a
containment between the languages representing the implementation
(I(Imp)) and the specification (/(Spec)) has been considered instead of
an equivalence in the previous approach.

Trace conformation. In trace theory a system’s behavior is modeled
as a set of traces that each of them is a sequence of events.

2.4.3.3 Hybrid Formalisms

LTL and finite-state automata. This verification techniques were
used by Fujita, Tanaka, and Moto-oka [35]. In this technique, a finite-

33

2. Theoretical Background

state automata (FSA) description of an implementation is given, then
using traditional automata techniques can verify that it satisfies a LTL
specification.

Temporal logics and Biichi automata. This techniques presented
by Vardi and Wolper [85]. The basic idea of their technique is as follows:
a PTL formula is interpreted according to a computation comprising of
an infinite sequence of states. Every state can be entirely described by a
finite set of propositions, therefore a computation can be expressed as an
infinite word over the alphabet comprising of truth assignments to these
propositions. A constraint on the computations can be directly translated
to a constraint in the form of these infinite words. In this way, by given
any PTL formula, a finite-state automaton on infinite words can be built
that accepts the exact set of sequences that satisty the formula. Temporal
logic formulas here can be seen as finite-state acceptors of infinite words,
which is in the form of a Biichi automaton (this is named after Biichi who
first studied them [19]).

Approaches like automated theorem proving, model checking, and
static analysis are automatic techniques. In automated theorem proving,
the relationship between a specification of a system and an implemen-
tation is considered as a theorem in logic, that should be proved within
the context of a proof calculus. By giving a description of the system, a
set of logical axioms, and a set of inference rules, a system produces a
formal proof from the scratch. By its very nature, theorem proving is a
deductive process — reasoning from one or more statements to reach a
logical conclusion. This raises theoretical and practical concerns regard-
ing managing its complexity. The theorem proving approach is automatic
to some degree like the form of rewriting rules, specialized tautology-
checkers, etc. But most of the automated theorem provers available today
are actually semi-automated and in order to guide the proof searching
process they need some kind of human interaction. Theorem proving sys-
tems are very general in their applications. Logic allows representation
of virtually all mathematical knowledge in the form of domain-specific
theories. The ability of theorem proving that can define appropriate theo-
ries, and reason about them by a common set of inference rules, makes a
unifying framework that can perform all kinds of verification tasks. This
very generality makes theorem proving very complex.

Model checking [8] is an algorithmic method that determines whether

34

Formal Verification and Specification

a finite-state model of a system satisfies a correctness specification (the
specification or property of a system is in the form of a logical formula).
This is done by means of an exhaustive search of all possible states that a
system could enter during its execution. Attention in model checking is
focused on a single model, and it does not require to encode incidental
knowledge of the whole world, therefore the complexity of this task
1s more manageable compare with theorem proving. Mostly, model
checking provides a clear algorithm that can be completely automatic.
Typically, these algorithms also have counter-example mechanism that is
useful for debugging purposes, and is important from a practical point of
view. However, since these systems are not general like theorem provers,
they can only work for the kind of logic and model that it is designed for.
Static analysis technique will be explained later in this chapter.

Other approaches. Deductive verification, type and effect systems,
confluent rewriting systems (such as SOS-style rules for defining
operation semantics), relational calculus, refinement calculus that is
a formal system (inspired from Hoare logic) that promoting program
refinement (program refinement is the verifiable transformation of an
abstract (high level) formal specification into a concrete (low level)
executable program).

In this thesis, we have benefited from formal verification using a
Hoare-style logic for partial correctness, and static analysis technique in
order to prove our approaches.

2.4.4 Static Program Analysis

The availability of powerful tools is crucial for the design, implementation,
and maintenance of large programs. Advanced programming environ-
ments provide many such tools like syntax-directed editors, optimizing
compilers, and debuggers as well we tools for transforming programs and
estimating their performance. Program analysis has a significant role in
many of these tools. Although program analysis techniques are exten-
sively used in compiler optimization, we focus on their use in program
verification.

Program analyses [64, 65] are static compile-time techniques that give
useful information for predicting safe and computable approximations
about the dynamic behaviour of programs that will arise at runtime when

35

2. Theoretical Background

executing a program on a computer. The analyses are static, it means
that to find the results of the analysis, the programs are not run at all.
The analyses are safe, it means that the result of the analysis defines all
possible runs of the program. A static analysis is said to be syntactic if
it is only concerned with the grammatical structure of a program, and
semantic if it involves the meaning of grammatically correct programs.
Thus semantic analysis is, in general, more effective in recognizing
potential problems in a program.

Traditionally, program analyses have been developed for optimizing
compilers. They are used at different levels in the compiler including
optimizations apply to the source program, optimizations apply to
the various intermediate representations used inside the compiler, and
optimizations that exploit the architecture of the target machine and
directly improve the target code. The improvements and the associated
transformations caused using these analyses can have dramatic reductions
on the running time. A main application is allowing compilers to generate
codes to avoid redundant computations for instance by reusing available
results or by moving loop invariant computations out of loops, etc. One
of the more recent applications is the validation of software in order to
decrease the probability of malicious or unintended behaviour. Usually
in these applications, information from different parts of the program
should be combined.

Approaches to program analysis have many features in common.
One common feature among the approaches is that to be able to remain
computable they can only provide approximate answers. In general,
program behaviour is undecidable. All non-trivial, and semantical
properties of programs are undecidable. Thus, program analysis efficiently
compute approximate but sound guarantees — guarantees that are true.
Therefore, what is expected in the program analysis is producing a
possibly larger set of possibilities than what will ever happen during
the program execution. The challenge here is to not produce the safe
approximation too often, otherwise the analysis might be useless. Even
though program analysis does not give precise information, it gives useful
information for example we can know that a value will be positive, or a
variable will fit within 1 byte of storage, a variable will always hold a
value of its declared type, etc.

Another common feature is that program analyses should be semantic
based, meaning that the information that we get from the analysis can be

36

Formal Verification and Specification

proved to be correct based on semantics of the programming language —
1.e., mathematical definitions of how a program behaves.

Some of the main approaches to program analysis are: data flow
analysis, constraint based analysis, abstract interpretation, and type and
effect systems. In data flow analysis which is a traditional form of
program analysis, it is common to think of a program as a graph in which
nodes are elementary blocks and edges show how control might pass
from one elementary block to another.

There are two kinds of analysis intraprocedural analysis and
interprocedural analysis. Intraprocedural analysis only deals with
simple languages without functions and procedures. In contrast in
interprocedural analysis functions and procedures are also taken into
account. Interprocedural analysis becomes complicated for instance
when we want to ensure that calls and returns match one another.

The purpose of control flow analysis that is often expressed as
constraint based analysis is to specify information concerning what
“elementary blocks” may lead to what other “elementary blocks”.
Control flow analysis is usually expressed as a constraint based analysis.
Constraint based analysis is in fact one way to specify the control
flow analysis using a collection of constraints. Constraints are used
to determine the control flow between functions. In this analysis, the
labeling scheme has been used. All subexpressions will be labeled. The
control flow analysis is specified using a pair of functions (5’ ,p), where
C (¢) contains the values that the subexpression labeled ¢ may evaluate to
and p(z) contains the values that the variable may be bound to.

Abstract Interpretation is a framework for computing over-
approximations of a behavioural property of the program based on
a fixpoint computation over a lattice representing it. Abstract Inter-
pretation cannot reason about the exact program behavior because of
undecidability, rather a conservative over-approximation will be obtained;
however, this can be enough to prove program correctness.

A simple type and effect systems can be described as fol-
lows: a statement S maps a state to a state (if it terminates),
therefore can be considered to have type > — Y where X
denotes the type of states; this is written as the judgement:

S: X=X
A type and effect system can often be viewed as a combination of an
Effect System and an Annotated Type System. In an Effect System,

37

2. Theoretical Background

judgements are usually in the form: S : ¥ % ¥ where ¢ is the effect
and tell us something about what will happen when § is executed, for
example this can be which error might happen, or which file might be
changed. In an Annotated Type System, judgements are usually in the
form: S : ¥; — 3 where the ¥; describes certain properties of states,
for instance it can tell that a variable is positive or certain invariant is
maintained.
In this thesis we use control flow analysis.

38

CHAPTER 3

Summary of Research Papers and
Contributions

This chapter presents research contributions of the thesis, summarizing
four research papers. The chapter then returns to the research questions
formulated in Section 1.2 and discusses them in connection with the
contributions of this thesis. The full content of the papers appears in Part
II, as in their original publications, but reformatted to fit the structure of
this thesis.

We first recall the research questions documented in Section 1.2:

RQ1: What are the security and privacy functionalities for [oT systems
relevant at the early design phase?

RQ?2: How can we build a security and privacy functionality framework
for IoT systems relevant to the early design phase?

RQ3: How can the functionality framework help to improve security and
privacy of IoT systems at the early design phase?

RQ4: How can we model distributed systems at a high level of
abstraction?

RQ5: How can we analyze modeling frameworks of distributed systems
to identify and detect possible vulnerabilities in the models in order to
improve the security and trust level at the late design phase in these
systems?

RQ6: How can we improve the security, privacy and trust levels of
distributed systems using a methodology at the late design phase?

RQ7: How can we use formal verification and specification for the
behavior of models of distributed systems?

The following sections give a summary of each paper and explain how
the paper answers above research question(s).

39

3. Summary of Research Papers and Contributions

3.1 Paperl

Title: Security and Privacy Functionalities in IoT

Authors: Elahe Fazeldehkordi, Olaf Owe, and Josef Noll

Publication: Presented at 17th International Conference on Privacy,
Security and Trust (PST), 26-28 August 2019 (pp. 1-
12). Published in IEEE.
DOI: https://doi.org/10.1109/PST47121.2019.8949054

Summary and contributions: This paper presents a new taxonomy
framework that organizes all aspects of security and privacy baselines,
guidelines, and recommendations by summarizing the most current
standards and documents related to security and privacy functionalities
in the setting of IoT. The paper then explores how the framework
can facilitate the process of improving IoT security and privacy, in
combination with a security classification method and demonstrates the
application of the framework on a case study.

For the framework, this paper investigates the most important loT-
related security baselines and guidelines developed by ENISA [32, 33],
OWASP [68], the Industrial Internet Consortium [81], the Cloud Security
Alliance [25], and the Broadband Internet Technical Advisory Group [11],
etc., as well as security and privacy guidelines from ISO [1, 2] and
NIST [79], which could be relevant for securing IoT systems. The
paper extracted the parts of these documents that deal with IoT and
security/privacy, and unified them using a common vocabulary, and then
categorized and integrated the resulting guidelines and requirements in a
uniform style, and embedded them in a graphical representation by means
of a tool based on diagrams called xmind.

By presenting the security and privacy functionality framework and
explaining how we have developed it, we address RQ1 and RQ2. Also,
this paper addresses RQ3 by combining the framework with a security
classification method and demonstrating how the framework can help to
improve the security and privacy of a system using a case study.

40

Paper 2

3.2 Paper?2
Title: Security and Privacy in IoT Systems: A Case Study of
Healthcare Products
Authors: Elahe Fazeldehkordi, Olaf Owe, and Josef Noll
Publication: Presented at 13th International Symposium on Medi-

cal Information and Communication Technology (IS-
MICT), 8-10 May, 2019 (pp. 1-8). Published in IEEE.
DOI: https://doi.org/10.1109/ISMICT.2019.8743971

Summary and contributions: This paper delves deeper and demon-
strates the application of the framework presented in Paper 1 by a case
study of healthcare products, in combination with a recent security clas-
sification method. To give an understanding of how the framework can
help to improve security and privacy in practice, this paper gives a com-
prehensive discussion on the details of two scenarios in the case study,
compares security and privacy challenges of the two scenarios, and then
shows how to soften these challenges using security classifications and
functionalities of the framework in Paper 1. This paper addresses RQ3.

3.3 Paper3
Title: A Language-Based Approach to Prevent DDoS Attacks
in Distributed Financial Agent Systems
Authors: Elahe Fazeldehkordi, Olaf Owe, and Toktam Ramezan-
ifarkhani
Publication: Presented at Security for Financial Critical Infrastruc-

tures and Services (FINSEC), part of the 24th Euro-
pean Symposium on Research in Computer Security
(ESORICS) Conference, 23-27 September 2019. Pub-
lished in Lecture Notes in Computer Science, vol 11981
(pp. 258-277). Springer.

DOI: https://doi.org/10.1007/978-3-030-42051-2_18

Summary and contributions: This paper presents an approach as an
additional layer of defense in distributed agent systems to combat Denial

41

3. Summary of Research Papers and Contributions

of Service(DoS) and Distributed DoS(DDoS) attacks. A high level
concurrent object-oriented modeling framework for distributed systems,
based on actor model with support of asynchronous and synchronous
method interaction and futures has been considered. The language
supports efficient interaction by features such as asynchronous and non-
blocking method calls and first-class futures.

The approach in this paper uses static analysis to identify and prevent
potential vulnerabilities caused by asynchronous communication that can
directly or indirectly cause call-based flooding of agents. More precisely,
a general algorithm has been adapted for detecting call flooding [69] to
the setting of security analysis and for detection of distributed denial
of service attacks by adding support for one-to-many and many-to-
one attacks. The algorithm detects call cycles that might overflow the
incoming queues of one or more communicating agents. Each cycle may
involve any number of agents, possible involving the attacked agent(s).

The paper also illustrates the approach on examples of distributed
systems in the financial sector, including versions of a one-to-many attack
and a many-to-one attack and shows how static detection can solve the
situation in each case.

By showing examples modeling distributed systems in the financial
sector using object-oriented modeling frameworks based on the active
object paradigm, this paper addresses RQ4. Also, by applying static
analysis on these examples in order to detect and prevent potential
vulnerabilities caused by asynchronous communication that can directly
or indirectly cause call-based flooding of agents resulting DoS and DDoS
attacks, this paper achieves aspects of RQ5.

3.4 Paper 4

Title: A Language-Based Approach to Smart Contracts
Supporting Safety and Security
Authors: Elahe Fazeldehkordi and Olaf Owe

Publication: Submitted to the Journal of Logic and Algebraic
Programming (JLAMP), April 2020, 51 pages. (under
revision)

42

Paper 4

Summary and contributions: This paper presents a new approach
to define lightweight smart contracts with associated history objects,
supporting similar trust, immutability, and transparency of smart contracts
based on blockchain but at the software level, without use of blockchain.
The approach can apply to a wide range of contracts, not only financial
ones, and opens up for lightweight smart contracts without the resource
and energy costs of blockchain. However, it can also be combined with
the blockchain technology in order to improve the overall trust level
on insecure platforms. Furthermore, this approach offers better privacy
control and comes with a theory for formal specification and verification.

The framework integrates trust at the language level through the
notion of history objects. A history object can be used to provide safety,
security, and privacy, as well as runtime checking. For each contract, a
history object will record all related transactions and generated future
values. Because of these recorded transactions, a history object can
be seen as a ledger, but local to a given contract. Contract partners
may interact with the history objects through predefined interfaces. The
history objects are specially protected objects by predefined interfaces
and provide read-only access from the programmer side, and increment-
only access by the underlying system. They are separated from the
contract provider, and can be used by contract users to check the validity
of the transactions made, in a way similar to blockchain. The approach
protects against tampering and fraud, each history object is immutable
and corruption-proof, and each user can observe the contract behavior
through the history object to ensure validity.

Moreover, the paper gives a theory for formal specification and
verification of smart contracts. In particular, the approach supports class-
wise verification, which is essential in open distributed systems where the
contracts interact in an unknown environment. The verification is based
on sequential reasoning augmented with effects on the transaction history.
These advantages have been achieved by defining a version of a high level
language based on the active object paradigm and interface abstraction.
The language supports multiple inheritance and allows subclasses and
redefinitions without behavioral restrictions from the superclasses.

Furthermore, the paper shows how formal specifications can be
checked automatically by the history objects at runtime, thereby protect-
ing users of a faulty contract provider, as well as protecting the contract
provider from illegal users. In addition, it shows how to achieve security

43

3. Summary of Research Papers and Contributions

and privacy. The paper illustrates the approach on a typical smart contract
example, namely an auction system. The contract implementation has
been verified and various improvements with respect to added safety,
security, and privacy have been shown.

The approach may be combined with the notion of dynamic and
concurrent object groups [25]. This allows a contract provider to appear
as a single object to the outside while internally consisting of a number
of cooperating concurrent objects.

A history objects can provide runtime checking of specified behavioral
properties of the contracts. The framework allows runtime roll-backs,
since the transaction history gives sufficient information to rerun a
contract provider and stop at the last state before the execution of method
that results in error. Reasoning about simple error recovery has been
considered here.

This paper addresses RQ4 by showing examples of modeling smart
contracts using a high level language based on active object paradigm.
Also, this paper achieves aspects of RQ6 by demonstrating that how this
modeling framework of smart contracts can support the main advantages
of smart contracts based on blockchain, including trust, immutability, and
transparency at the programming level and without use of blockchain.
Besides, this modeling framework offers better privacy control using the
notion of history objects. So it would be less expensive to implement
compared with smart contracts built on blockchain that are costly with
respect to time, resources, and power consumption. Furthermore, the
paper explains that the approach can be combined with the blockchain
technology in order to improve the overall trust level on insecure
platforms. Moreover, RQ7 has been achieved in this paper by developing
an imperative language for contracts, an executable functional language
for writing smart contract specifications, and a theory for class-wise
verification, with support of privacy, security, and model checking of
contract specifications.

3.5 Additional Publications

This section lists other publications to which this thesis has contributed
during her PhD research, but which are indirectly included as part of this

44

Additional Publications

thesis. These papers are related to the goal of this thesis or correspond to
shorter and/or preliminary versions of the work reported in this thesis.

¢ Title: Static Detection of Distributed Denial of Service Attacks in
Active Object Systems

Authors: Elahe Fazeldehkordi, Olaf Owe, and Toktam Ramezani-
farkhani

Publication: Technical Report of the Western Norway University
(pp- 1-3). (presented at the PhD Symposium at the 15th
International Conference on integrated Formal Methods (iFM),
December 2-6, 2019)

¢ Title: Futures, Histories, and Smart Contracts
Authors: Elahe Fazeldehkordi and Olaf Owe

Publication: Proceedings of 31st Nordic Workshop on Program-
ming Theory NWPT 2019 (p. 25-28),

DOIL: https://digikogu.taltech.ee/et/Download/536ca083-81{0-4f6c-
9e59-c6b90b35125a.

(presented at the 31st Nordic Workshop on Programming Theory
— NWPT’ 19, November 13-15, 2019) (Invited paper for JLAMP
journal)

* Title: A Framework for Flexible Program Evolution and Verifica-
tion of Distributed Systems

Authors: Olaf Owe, Elahe Fazeldehkordi, and Jia-Chun Lin

Publication: In International Conference on Model-Driven En-
gineering and Software Development (pp. 320-349), February
20-22, 2019, Springer.

* Title: A Flexible Framework for Program Evolution and Verifica-
tion

Authors: Olaf Owe, Jia-Chun Lin, and Elahe Fazeldehkordi

Publication: In MODELSWARD (pp. 177-189), February 20-22,
2019.

45

3.

Summary of Research Papers and Contributions

46

* Title: A Language-Based Approach to Prevent DDoS Attacks in

Distributed Object Systems

Authors: Toktam Ramezanifarkhani, Elahe Fazeldehkordi, and
Olaf Owe

Publication: Proceedings of the 29th Nordic Workshop on Pro-
gramming Theory (p. 19-21),

DOI: https://research.it.abo.fi/nwptl7/proceedings/NWPT2017
proceedings.pdf

(presented at the 29th Nordic Workshop on Programming Theory -
NWPT’ 17, November 1-3, 2017)

Title: Hoare-Style Reasoning from Multiple Contracts

Authors: Olaf Owe, Toktam Ramezanifarkhani, and Elahe
Fazeldehkordi

Publication: In the International Conference on integrated Formal
Methods (pp. 263-278), Septemeber 18-22, 2017, Springer.

Title: Security Functionality of IoT Devices

Authors: Elahe Fazeldehkordi, Olaf Owe, and Toktam Ramezani-
farkhani

Publication: Proceedings of the PhD Symposium at iFM’17 of
Formal Methods: Algorithms, Tools, and Applications (pp. 44—47),
DOI: https://www.duo.uio.no/handle/10852/57814

(presented at PhD Symposium at the 13th International Conference
on integrated Formal Methods (iIFM), September 18-22, 2017)

CHAPTER 4

Conclusions and Future Work

4.1 Conclusions

The main goal of this thesis is to improve security and privacy of loT
and distributed systems during the design phase. From this goal, two
subgoals are identified that resulted in seven research questions presented
in Section 1.2. This thesis has contributed to presenting four research
papers which address the research questions and the related subgoals.

The focus of this thesis is on two aspects of the design phase. First,
the early design phase, where the architecture of a system is being
developed, considering the setting of IoT systems. Second, the late design
phase, where models, in particular executable models and prototypes are
designed, considering IoT systems and also the more general setting of
distributed systems. Having sufficient information at the architectural
design phase and using graphical notations make it easier to understand
the system components and their specifications for the modeling phase.

The methodology proposed in this thesis meets the requirements
stated in Section 1.3. We now revisit these requirements and their
rationale:

Model-based approach. The methodology proposed in this thesis uses
a modeling language which is executable in order to allow
prototyping and verification of specification requirements of the
system, so that it defines a program structure that can be a guideline
for the implementation phase.

Formality. The methodology proposed in this thesis uses a language
formalized by means of a formal syntax and an operational
semantics given in the structural operational semantics (SOS) style
that supports rigorous, abstractions, and formal analysis.

The paradigm of concurrent and distributed active objects. The
methodology proposed in this thesis builds on the Creol/ABS
language, this methodology uses a concurrent and distributed

47

4. Conclusions and Future Work

object-oriented framework. Object orientation is the leading
paradigm used in the software industry today and is suitable for
open distributed systems [78]. The active object paradigm provides
a natural way of modeling distributed systems in general, and [oT
systems in particular, because it covers fundamental aspects of [oT
systems, such as distribution of concurrent units communicating
by message passing, where each unit can run on a device with
limited processing power and limited storage [48]. In order to
make reasoning as simple and powerful as possible, we focus
on languages at a high level of abstraction rather than low level
languages. We consider executable and imperative languages
supporting object-oriented principles, and have designed the lan-
guages to reduce the complexity of further translation to low level
languages for [oT and distributed systems.

In the following, we outline how the methodologies presented in this
thesis address security and privacy solutions during the design phase by
answering the research questions.

RQI1: What are the security and privacy functionalities for IoT
systems relevant at the early design phase?

Paper 1 collects security and privacy functionalities in the setting of IoT
by summarizing the most current related documents.

RQ2: How can we build a security and privacy functionality frame-
work for IoT systems relevant to the early design phase?

Paper 1 presents a new taxonomy framework that organizes all aspects of
security and privacy baselines, guidelines, and recommendations. The
functionalities are separated into two major parts, the life cycle aspects
of a system and the management aspects of security and privacy. The
life cycle in this paper relates to the different phases in the life of a
system, while the management of security and privacy is the ability to
put supporting functionality elements in the system.

RQ3: How can the functionality framework help to improve security
and privacy of IoT systems at the early design phase?

48

Conclusions

To give an understanding of how the framework can help to improve
the security and privacy of IoT products and to facilitate developing
and designing secure and privacy-aware [oT systems, Paper 1 combines
the taxonomy framework with a security classification method and
demonstrates the usefulness by a case study. Paper 2 delves deeper
and demonstrates the application of the framework described in Paper 1
using a case study of healthcare products, in combination with a recent
security classification method. Paper 2 gives a comprehensive discussion
on the details of two scenarios in the case study, compares security and
privacy challenges of the two scenarios, and then shows how to soften
these challenges using the security classifications and functionalities of
the framework. The analysis results in Paper 1 and 2 demonstrate that
using the security and privacy functionality framework, the security of
the overall system has improved.

RQ4: How can we model distributed systems at a high level of
abstraction?

Paper 3 considers a high level object-oriented modeling framework for
distributed systems based on active objects. This setting is appealing
in that it naturally supports the distribution of autonomous concurrent
units, and efficient interaction, avoiding active waiting and low level
synchronization primitives such as explicit signaling and lock operations.
It is therefore useful as a framework for modeling and analysis of
distributed systems. The language in this paper supports efficient
interaction by features such as asynchronous and non-blocking method
calls and first-class futures, which are popular features applied in many
distributed systems today. However, the DDoS detection method works
better for local futures, since then the association between call statements
and get statements can be done with less over-approximation, and the
analysis of this is modular, in contrast to the setting of first-class futures
where get statements may associate to call statements in other objects,
including objects not known or not part of the considered subsystem. The
DDoS detection method is therefore well suited for IoT systems with
local futures.

Paper 4 considers a high level object-oriented modeling language that
allows reasoning support. The language gives fewer runtime errors and
less need for roll-backs, which simplifies reasoning. In particular, the

49

4. Conclusions and Future Work

approach in paper 4 supports class-wise verification. This is essential
for scalability and open-ended program development, which are highly
relevant factors for contracts. The language is based on the active object
paradigm. This paradigm offers modular semantics, which is essential
when we turn to specification and verification issues. Clients, contract,
and history objects in this paper are then described by concurrent and
distributed objects. The language builds on the principle of interface
abstraction, i.e., remote field access is illegal, and an object can only be
accessed through an interface. Each object has one or more interfaces, and
the only possible way of object interaction is through the methods defined
in the corresponding interfaces. The language combines first-class futures,
which is often used in active object languages, and a restricted version of
cooperative scheduling. This novel combination gives flexible method
interaction, scheduling control, simplified reproducibility of executions,
as well as simplified verification. In particular, the restricted cooperative
scheduling implies that each object is deterministic, relative to its inputs
(i.e., invocation messages), something which is essential for enabling roll-
backs. Furthermore, the futures (related to a contract) are now collected in
the history objects, for which we have suggested mechanisms for security
and privacy control. These futures will not be garbage collected since
they are used in the calculations of roll-backs and in the functionality of
the history object interfaces.

RQ5: How can we analyze modeling frameworks of distributed
systems to identify and detect possible vulnerabilities in the models
in order to improve the security and trust level at the late design
phase in these systems?

Paper 3 proposes an approach consisting of static analysis to identify and
prevent potential vulnerabilities caused by asynchronous communication
including call-based DoS or DDoS attacks, possibly involving a large
number of distributed actors. The paper illustrates the approach on
examples of distributed systems in the financial sector, including versions
of a one-to-many attack and a many-to-one attack.

RQ6: How can we improve the security, privacy and trust levels of
distributed systems using a methodology at the late design phase?

50

Conclusions

Paper 4 proposes a new approach to define smart contracts, offering trust
at the software level. This approach can apply to a wide range of contracts,
not only financial ones, and opens up for lightweight smart contracts
without the resource and energy costs of blockchain. The framework
in paper 4 integrates trust at the language level through the notion of
history objects. For each contract, a history object will record all related
transactions. The history objects are specially protected objects, with
read-only access at the programming language level. Contract partners
may interact with the history objects through predefined interfaces. The
paper shows that a history object can be used to provide safety, security,
and privacy, as well as runtime checking. A history object can provide
runtime checking of specified behavioral properties of the contracts. The
paper demonstrates the approach on a smart contract example, namely an
auction system.

RQ7: How can we use formal verification and specification for the
behavior of models of distributed systems?

Paper 4 presents a framework integrating the notion of history objects
giving rise to lightweight smart contracts, by developing an imperative
language for contracts, an executable functional language for writing
smart contract specifications by means of invariants referring to the
transaction history of a contract, and a theory for class-wise verification,
with support of privacy, security, and model checking of contract
specifications.

4.1.1 Limitations

Our focus has been on the design phase of the system development life
cycle, which means that planning, requirement analysis, implementation,
and testing phases have not been considered. We have only considered
two parts of the design phase, namely the early design phase, where
the architecture of a system is being developed, and the late design
phase — by means of executable modeling of systems using the active
object concurrency model. However, the modeling paradigm considered
allows high level implementation, prototyping, testing, as well as program
analysis, at the abstraction level of the model.

We have considered only some approaches and some security
problems. In the early design phase, we have only considered simple

51

4. Conclusions and Future Work

forms of graphical architecture models in the setting of IoT systems. And
at the late design phase we have only looked at the active object setting
and have only considered DDoS attack and smart contracts. Security
and privacy issues specifically for IoT models have not been considered.
However, our analysis framework for DDoS attacks is specifically useful
for IoT model where first-class future are avoided.

In the next section, we will look at the shortcomings of each research
paper one by one and give some suggestions for possible extensions and
future research directions.

4.2 Future Work

We organize the discussion in this section according to the research papers
of the thesis and the shortcomings of each paper, this makes it easier
to identify possible research directions, also makes it more clear to the
reader how the suggested work relates to the papers in this thesis.
Security and Privacy Functionalities in IoT: The framework in this
paper is a preliminary classification of privacy and security functionalities
based on the available recommendations and standards for [oT systems.
This should imply that all aspects are covered, but there is no guarantee
for that. This can be seen as a limitation of the work. Secondly, the appli-
cation of the methodology is ultimately depending on the judgements of
software engineers or security experts, and is therefore not 100% precise.
If their judgement is wrong, for instance if they choose the wrong con-
nectivity or protection level, it will in general give a wrong estimate. One
possible extension would be to allow the framework to be complemented
with even more elements and look in more detail at GDPR for privacy
functionalities.
Security and Privacy in IoT Systems: A Case Study of Healthcare
Products: This paper only shows the application of our framework on
one case study of healthcare products. The applications of our framework
can be extended to other [oT domains and case studies with several kinds
of IoT devices and sensors involved can be considered. This would be a
valuable step toward validating the framework presented in this thesis.
A Language-Based Approach to Prevent DDoS Attacks in Dis-
tributed Financial Agent Systems: In this paper we used static analysis.
Our static detection will overapproximate the set of (potentially) un-

52

Future Work

completed calls. In future work, we suggest to complement the static
checking with dynamic runtime checking since static detection methods
give a degree of over-estimation. This could give a more precise com-
bined detection strategy.

An Approach to Smart Contracts Supporting Safety and Security:
In the current state, our framework can be used for modeling, prototyping,
analysis, verification, and model checking of smart contracts. In future
work, further mechanisms for error and exception handling can be added
and efficient implementation of history objects and roll-backs can be
considered.

53

Bibliography

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

27000, L. Information technology — Security techniques — Infor-
mation security management systems — Overview and vocabu-

lary (fourth edition). ISO/IEC 2016. 2016.

27001, I. INTERNATIONAL STANDARD ISO/IEC 27001 Infor-
mation technology—Security techniques —Information security
management systems —Requirements. ISO/IEC 2013. 2013.

Agha, G. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. Cambridge, MA, USA: MIT Press, 1986.

Ahrendt, W., Pace, G. J., and Schneider, G. “Smart contracts:
a killer application for deductive source code verification”. In:
Principled Software Development. Springer, 2018, pp. 1-18.

Allen, J. F. and Ferguson, G. “Actions and events in interval
temporal logic”. In: Journal of Logic and Computation vol. 4,
no. 5 (1994), pp. 531-579.

Andrews, G. R. Foundations of multithreaded, parallel, and
distributed programming. Vol. 11. Addison-Wesley Reading, 2000.

Armstrong, J. et al. “Concurrent programming in ERLANG”. In:
(1993).

Baier, C. and Katoen, J.-P. Principles of model checking. MIT
press, 2008.

Baker, H. and Hewitt, C. “Laws for communicating parallel
processes”. In: MIT Artificial Intelligence Laboratory (1977).

Beydeda, S., Book, M., Gruhn, V., et al. Model-driven software
development. Vol. 15. Heidelberg: Springer, 2005.

BITAG. Internet of Things (loT) Security and Privacy Recom-
mendations. https : // www . bitag . org / documents / BITAG _
Report_-_Internet_of _Things_ (IoT)_Security _and_ Privacy _
Recommendations.pdf. 2016.

55

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

56

Bjork, J. et al. “A type-safe model of adaptive object groups”. In:
arXiv preprint arXiv:1208.4630 (2012).

Boer, F. D. et al. “A Survey of Active Object Languages”. In: ACM
Comput. Surv. vol. 50, no. 5 (Oct. 2017), pp. 1-39.

Boer, F. S. de, Clarke, D., and Johnsen, E. B. “A Complete Guide to
the Future”. In: Programming Languages and Systems. Ed. by De
Nicola, R. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp- 316-330.

Bowman, H. and Derrick, J. “Issues in Formal Methods (chapter
3)”. In: Formal Methods for Distributed Processing, A Survey of
Object-oriented Approaches. Ed. by Bowman, H. and Derrick, J.
Cambridge, UK: Cambridge University Press, Sept. 2001, pp. 18-
35.

Boyer, R. S. and Moore, J. S. “A Computational Logic Handbook,
volume 23 of”. In: Perspectives in computing (1988).

Boyer, R. S. and Moore, J. S. Proof-Checking, Theorem Proving,
and Program Verification. Tech. rep. Texas Univ at Austin Inst for
Computing Science and Computer Applications, 1983.

Broy, M. “Distributed Concurrent Object-Oriented Software”. In:
From Object-Orientation to Formal Methods: Essays in Memory
of Ole-Johan Dahl. Ed. by Owe, O., Krogdahl, S., and Lyche, T.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 83-95.

Biichi, J. R. “On a Decision Method in Restricted Second Order
Arithmetic”. In: The Collected Works of J. Richard Biichi. Ed. by
Mac Lane, S. and Siefkes, D. New York, NY: Springer New York,
1990, pp. 425-435.

Burch, J. et al. “Symbolic model checking: 1020 States and
beyond”. In: Information and Computation vol. 98, no. 2 (1992),
pp. 142-170.

Byres, E. and Lowe, J. “The myths and facts behind cyber security
risks for industrial control systems”. In: Proceedings of the VDE
Kongress. Vol. 116. 2004, pp. 213-218.

Bibliography

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

Clarke, D., Johnsen, E. B., and Owe, O. “Concurrent Objects a
la Carte”. In: Concurrency, Compositionality, and Correctness:
Essays in Honor of Willem-Paul de Roever. Ed. by Dams, D.,
Hannemann, U., and Steffen, M. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 185-206.

Clavel, M. et al. “Maude: specification and programming in
rewriting logic”. In: Theoretical Computer Science vol. 285, no. 2
(2002). Rewriting Logic and its Applications, pp. 187-243.

Clavel, M. et al. All About Maude — A High-Performance Logical
Framework: How to Specify, Program, and Verify Systems in
Rewriting Logic. Vol. 4350. Springer, 2007.

Future-proofing the Connected World: 13 Steps to Developing
Secure IoT Products. https://downloads.cloudsecurityalliance.org/
assets/research/internet-of-things/future-proofing-the-connected-
world.pdf. 2016.

Dahl, O.-]J. “The Roots of Object Orientation: The Simula
Language”. In: Software Pioneers: Contributions to Software
Engineering. Ed. by Broy, M. and Denert, E. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 78-90.

Dahl, O.-J. Verifiable programming. Prentice Hall PTR, 1992.

Dahl, O.-J., Myhrhaug, B., and Nygaard, K. Common base
language. Norsk Regnesentral, 1970.

Deogirikar, J. and Vidhate, A. “Security attacks in [oT: A survey”.
In: 2017 International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud)(I-SMAC). IEEE. 2017, pp. 32-37.

Dershowitz, N. Software horror stories. URL: https://www.cs.tau.
ac.il/~nachumd/horror.html.

b

Emerson, E. A. and Halpern, J. Y. ““Sometimes” and “not never’
revisited: on branching versus linear time temporal logic”. In:
Journal of the ACM (JACM) vol. 33, no. 1 (1986), pp. 151-178.

ENISA. Baseline Security Recommendations for loT in the context
of Critical Information Infrastructures. European Union Agency
for Network and Inf. Sec. 2017.

57

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

58

ENISA. Guidelines for SMEs on the security of personal data
processing. https://www.enisa.europa.eu/publications/guidelines-
for-smes-on-the-security-of-personal-data-processing. 2017.

Floyd67, R. and Floyd, R. “Assigning meaning to programs”. In:
Mathematical Aspects of Computer Science vol. 19 (), pp. 19-31.

Fujita, M., Tanaka, H., and Moto-Oka, T. “Logic design assistance
with temporal logic”. PhD thesis. University of Tokyo, 1984.

Gallier, J. H. Logic for computer science: foundations of automatic
theorem proving. Courier Dover Publications, 2015.

Gosling, J. et al. The Java language specification. Addison-Wesley
Professional, 2000.

Gupta, A. “Formal hardware verification methods: A survey”. In:
Formal Methods in System Design vol. 1, no. 2-3 (1992), pp. 151-
238.

Hajdu, A. and Jovanovié, D. “SMT-Friendly Formalization of the
Solidity Memory Model”. In: arXiv preprint arXiv:2001.03256
(2020).

Henderson-Sellers, B. A book of object-oriented knowledge: an
introduction to object-oriented software engineering. Prentice-
Hall, Inc., 1996.

Hernandez, G. et al. “Smart nest thermostat: A smart spy in your
home”. In: Black Hat USA, no. 2015 (2014).

Hewitt, C. “Viewing control structures as patterns of passing
messages”. In: Artificial intelligence vol. 8, no. 3 (1977), pp. 323—
364.

Hewitt, C., Bishop, P., and Steiger, R. “Session 8 formalisms
for artificial intelligence a universal modular actor formalism
for artificial intelligence”. In: Advance Papers of the Conference.
Vol. 3. Stanford Research Institute. 1973, p. 235.

Hoare, C. A. R. “Towards a Theory of Parallel Programming”.
In: The Origin of Concurrent Programming: From Semaphores
to Remote Procedure Calls. Ed. by Hansen, P. B. New York, NY:
Springer New York, 2002, pp. 231-244.

Bibliography

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Hoare, C. A. R. “An axiomatic basis for computer programming’.
In: Communications of the ACM vol. 12, no. 10 (1969), pp. 576—
580.

Igarashi, A., Pierce, B. C., and Wadler, P. “Featherweight Java: a
minimal core calculus for Java and GJ”. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) vol. 23, no. 3
(2001), pp. 396-450.

Illera, A. G. and Vidal, J. V. “Lights off! The darkness of the smart
meters”. In: BlackHat Europe (2014).

Johnsen, E. B. and Owe, O. “An asynchronous communication
model for distributed concurrent objects”. In: Software & Systems
Modeling vol. 6, no. 1 (2007), pp. 39-58.

Johnsen, E. B., Owe, O., and Yu, I. C. “Creol: A type-safe object-
oriented model for distributed concurrent systems”. In: Theoretical
Computer Science vol. 365, no. 1 (2006). Formal Methods for
Components and Objects, pp. 23—66.

Johnsen, E. B. et al. “A formal model of service-oriented dynamic
object groups”. In: Science of Computer Programming vol. 115-
116 (2016). Special Section on Foundations of Coordination
Languages and Software (FOCLASA 2012) Special Section on
Foundations of Coordination Languages and Software (FOCLASA
2013), pp. 3-22.

Johnsen, E. B. et al. “ABS: A Core Language for Abstract
Behavioral Specification”. In: Formal Methods for Components
and Objects. Ed. by Aichernig, B. K., Boer, F. S. de, and
Bonsangue, M. M. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 142-164.

Johnsen, E. B. et al. “An Object-Oriented Component Model for
Heterogeneous Nets”. In: Formal Methods for Components and
Objects. Ed. by Boer, F. S. de et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 257-279.

Johnsen, E. B. et al. “Specification of distributed systems with a
combination of graphical and formal languages”. In: Proceedings
Eighth Asia-Pacific Software Engineering Conference. IEEE. 2001,
pp- 105-108.

59

Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

60

Kabay, M. “Attacks on Power Systems: Hackers, Malware”. In:
Norwich University (2010).

Koscher, K. et al. “Experimental security analysis of a modern
automobile”. In: 2010 IEEE Symposium on Security and Privacy.
IEEE. 2010, pp. 447-462.

Ledgard, H. F. The little book of object-oriented programming.
Prentice-Hall, Inc., 1995.

Levy, E. “Crossover: online pests plaguing the off line world”. In:
IEEE Security & Privacy vol. 1, no. 6 (2003), pp. 71-73.

Manna, Z. and Pnueli, A. Verification of Concurrent Programs:
The Temporal Framework; by Zohar Manna and Amir Pnueli.
Department of Computer Science, Stanford University, 1981.

Meseguer, J. “Conditional rewriting logic as a unified model of
concurrency”. In: Theoretical computer science vol. 96, no. 1
(1992), pp. 73—-155.

Meyer, B. Object-oriented software construction. Vol. 2. Prentice
hall Englewood Cliffs, 1997.

Miller, B. and Rowe, D. “A Survey SCADA of and Critical
Infrastructure Incidents”. In: Proceedings of the Ist Annual
Conference on Research in Information Technology. RIIT 12.

Calgary, Alberta, Canada: Association for Computing Machinery,
2012, pp. 51-56.

Miller, C. and Valasek, C. “A survey of remote automotive attack
surfaces”. In: black hat USA vol. 2014 (2014), p. 94.

Nawir, M. et al. “Internet of Things (IoT): Taxonomy of security
attacks”. In: 2016 3rd International Conference on Electronic
Design (ICED). IEEE. 2016, pp. 321-326.

Nielson, F., Nielson, H. R., and Hankin, C. Principles of program
analysis. Springer, 2015.

Nielson, H. R. and Nielson, F. Semantics with applications: an
appetizer. Springer Science & Business Media, 2007.

Nygaard, K. and Dahl, O.-]J. “The development of the SIMULA
languages”. In: History of programming languages. 1978, pp. 439-
480.

Bibliography

[67]

[68]
[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Odersky, M., Spoon, L., and Venners, B. Programming in scala.
Artima Inc, 2008.

OWASP. IoT Security Guidance.

Owe, O. and McDowell, C. “On detecting over-eager concurrency
in asynchronously communicating concurrent object systems”. In:
Journal of Logical and Algebraic Methods in Programming vol. 90
(2017), pp. 158-175.

Owe, O. and Ryl, I. “On combining object orientation, openness
and reliability”. In: Norwegian Informatics Conference. 1999.

Owicki, S. “Axiomatic proof techniques for parallel programs.
Dept. of Computer Science, Cornell University”. PhD thesis. 1975.

Owicki, S. and Gries, D. “An axiomatic proof technique for parallel
programs I”. In: Acta Informatica vol. 6, no. 4 (1976), pp. 319—
340.

Owicki, S. and Gries, D. “Verifying properties of parallel programs:
An axiomatic approach”. In: Communications of the ACM vol. 19,
no. 5 (1976), pp. 279-285.

Pal, D. and Vain, J. “Model Based Test Framework for
Communications-Critical Internet of Things Systems”. In:
Databases and Information Systems X: Selected Papers from
the Thirteenth International Baltic Conference, DB&IS 2018.
Vol. 315. IOS Press. 2019, p. 79.

Pfleeger, C. P. Security in computing. Pearson Education India,
2009.

Pollet, J. and Cummins, J. “Electricity for free? the dirty underbelly
of scada and smart meters”. In: Proceedings of Black Hat USA
vol. 2010 (2010).

Poulsen, K. “Slammer worm crashed Ohio nuke plant network”™.
In: http://www. securityfocus. com/news/6767 (2003).

Raymond, K. “Reference Model of Open Distributed Processing
(RM-ODP): Introduction”. In: Open Distributed Processing:
Experiences with distributed environments. Proceedings of the
third IFIP TC 6/WG 6.1 international conference on open
distributed processing, 1994. Ed. by Raymond, K. and Armstrong,
L. Boston, MA: Springer US, 1995, pp. 3-14.

61

Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

62

Ross, R. S. et al. Protecting Controlled Unclassified Information in
Nonfederal Information Systems and Organizations [including
updates as of 02-20-2018]. Tech. rep. National Institute of
Standards and Technology, 2018.

Schifer, J. and Poetzsch-Heffter, A. “JCoBox: Generalizing Active
Objects to Concurrent Components”. In: ECOOP 2010 — Object-
Oriented Programming. Ed. by D’Hondt, T. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 275-299.

Schrecker, S. and al., et. Industrial Internet of Things Volume
G4: Security Framework. Industrial Internet Consortium. https:
/Iwww.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB.pdf. 2016.

Sommerville, I. “Software engineering 9th Edition”. In: ISBN-10
vol. 137035152 (2011), p. 18.

Stallings, W. et al. Computer security: principles and practice.
Pearson Education Upper Saddle River, NJ, USA, 2012.

Union, E. The General Data Protection Regulation (GDPR). URL:

https://ec.europa.eu/info/law/law-topic/data-protection_en (visited
on 05/24/2016).

Vardi, M. Y. and Wolper, P. “An automata-theoretic approach
to automatic program verification”. In: Proceedings of the First

Symposium on Logic in Computer Science. IEEE Computer
Society. 1986, pp. 322-331.

Vijayan, J. “Stuxnet renews power grid security concerns”. In:
Computerworld vol. 26 (2010).

Wolper, P. “Temporal logic can be more expressive”. In: Informa-
tion and Control vol. 56, no. 1 (1983), pp. 72-99.

Wolper, P., Vardi, M. Y., and Sistla, A. P. “Reasoning about infinite
computation paths”. In: 24th Annual Symposium on Foundations
of Computer Science (sfcs 1983). IEEE. 1983, pp. 185-194.

Woodcock, J. et al. “Formal methods: Practice and experience”. In:
ACM computing surveys (CSUR) vol. 41, no. 4 (2009), pp. 1-36.

Yadav, N. Know More About the System Development Life Cycle.
URL: https://darkbears.com/blog/know-more-about-the-system-
development-life-cycle/ (visited on 03/29/2019).

Bibliography

[91]

[92]

[93]

[94]

Yonezawa, A. ABCL: An Object-Oriented Concurrent System.
Cambridge, MA, USA: MIT Press, 1990.

Yonezawa, A., Briot, J.-P., and Shibayama, E. “Object-oriented
concurrent programming in ABCL/1”. In: ACM SIGPLAN Notices
vol. 21, no. 11 (1986), pp. 258-268.

Yourdon, E. et al. Mainstream objects: an analysis and design
approach for business. Yourdon Press, 1995.

Zakrzewski, J. “Towards Verification of Ethereum Smart Contracts:
A Formalization of Core of Solidity”. In: Verified Software.
Theories, Tools, and Experiments. Ed. by Piskac, R. and Riimmer,
P. Cham: Springer International Publishing, 2018, pp. 229-247.

63

Part 11
Scientific Contributions

65

CHAPTER 5

Paper 1: Security and Privacy
Functionalities in IoT

Authors: Elahe Fazeldehkordi, Olaf Owe, Josef Noll

Publication: Presented at 17th International Conference on Privacy,
Security and Trust (PST), 26-28 August 2019 (pp. 1-12). Published in
IEEE. DOI: https://doi.org/10.1109/PST47121.2019.8949054

Abstract

Internet of Things (IoT) offers a variety of technologies for
connecting different kinds of heterogeneous devices. Security
and privacy are becoming the main issue for IoT systems and their
developers. Nevertheless, most works on IoT security and privacy
requirements look at these requirements from a high-level view.
Hence, the essential aspects of security and privacy functionalities
will be disregarded, causing wrong design decisions. To combat
this problem, this paper summarizes the most current documents
related to security and privacy functionalities in the setting of IoT
and provides a new taxonomy framework that organizes all aspects
of security and privacy baselines, guidelines, and recommendations.
To give an understanding of how the framework can help to
improve security and privacy of IoT products, we combine it with
a security classification method and demonstrate the usefulness
by a case study of health products. Our framework can serve as
a cornerstone towards the development of appropriate security
solutions.

5.1 Introduction

Internet of Things (IoT) represents the concept of information flow
among different kinds of embedded computing devices interconnected
through the internet. The aim of IoT is to provide an advanced mode

67

5. Paper 1: Security and Privacy Functionalities in IoT

of communication among the various systems and devices, and also to
facilitate the interaction between humans and the virtual world. With this
aim, [oT plays a significant role in the modern society and has applications
in almost all fields including healthcare systems, automobile, industrial
appliances, sports, homes, entertainments, environmental monitoring
etc. 10T devices have already outnumbered the number of people at a
computerized workplaces, and by 2020, connected “things" based on IoT
will be around 212 billion [18, 22]. Those “things" will be daily used
appliances like smart-phones, smart-watches, smart television, smart
refrigerators, and others. As a result of this expansion, and as most
things are connecting to the internet for exchanging information, IoT is
vulnerable to various security issues and attacks (e.g., man in the middle
attack, eavesdropping attack, denial of service attack, access attack, as
well as major privacy concerns for the end users). Despite the advance
abilities provided by IoT in the data communication area, its vulnerability
implications from a security and privacy standpoint are still of great
concern. Therefore appropriate steps in the initial phase of design and
development of IoT systems should be taken.

In this paper, we focus on the comprehensive view of the state-of-the-
art concerning security and privacy functionalities and requirements for
IoT systems. Consequently, we suggest a complementary methodology
for analyzing the functionalities in a comprehensive framework that
can help both providers and consumers of IoT devices to have a better
understanding of the security and privacy aspects. By functionality we
mean: “The security and privacy-related features, functions, mechanisms,
services, procedures, and architectures implemented within organizational
information systems or the environments in which those systems
operate” [24]. We explore how the framework can facilitate the process
of improving IoT security and privacy, in combination with the security
classification method suggested in [4, 26]. Security classification of a
system will lead to a better understanding of the value of security and
promote the extra cost of securing a system. An IoT system includes
different devices, and protecting all of these devices at the same level
is costly. It is economically impractical to employ all the security
protection mechanisms for all the devices in a system. Dividing security
into different classifications is necessary, to secure loT systems to an
appropriate level.

One attractive application area of IoT is health care [16, 21], where

68

Introduction

IoT devices are becoming common. Medical applications like remote
health monitoring, fitness programs, chronic diseases, elderly care,
compliance with treatment and medication at home and by health-care
providers are some of the important potential applications that can be
facilitated by 10T. IoT-based health-care services can help to reduce costs,
increase the quality of life, and enrich the users’ experience. Therefore,
we choose to demonstrate the framework on a case study concerning
health products. Through the development of this framework together
with security classification, extensive attention has been given to the
requirements and limitations for securing [oT systems.

For this framework, we have investigated the most important IoT-
related security baselines and guidelines developed by ENISA [10,
11], OWASP [19], Industrial Internet Consortium [25], Cloud Security
Alliance[8], and Broadband Internet Technical Advisory Group [6],
etc., as well as security and privacy guidelines from ISO [1, 2] and
NIST [24], which could be relevant for securing IoT systems. With
respect to privacy, the European Union (EU) has passed the general
data protection regulation (GDPR), which regulates who can access
private data, how and for what purpose, based on the consent of the
data subject [11]. We have extracted the parts of these documents that
deal with IoT and security/privacy, and then we have unified them using
a common vocabulary, and have then categorized and integrated the
resulting guidelines and requirements in a uniform style, and embedded
them in a graphical representation by means of a tool based on diagrams.

Having a comprehensive view and taxonomy of security and privacy
requirements and functionalities in IoT is a prerequisite for architecting
optimal security solutions, designing, and developing secure and privacy-
aware [oT systems. To give an understanding of how the framework
can help to improve security and privacy in practice, we combine
the framework with the security classification method of [4, 26], and
demonstrate how the combined methodology can be used on a case study
of health products.

The contribution of this paper is to present a new functionality
framework for security and privacy of 1oT systems, as outlined above,
and show how it can be combined with the security classification method
to analyse and evaluate the security and privacy weaknesses of [oT
systems, and to reduce these weaknesses, as demonstrated in the case
study. Systems are often made without the help of security and privacy

69

5. Paper 1: Security and Privacy Functionalities in IoT

experts. Our framework is easy to follow, even for non-experts. The case
study shows that by following our guidelines, one can detect security
problems and get help in avoiding them.

The remainder of this paper is structured as follows: Section II
explains loT-related standards and guidelines. Section III provides related
work. Section IV introduces the 10T security and privacy functionality
framework. Section V explains the security classification method. Section
VI describes the pacemaker case study, and Section VII concludes the

paper.

5.2 IoT-Related Standards and Guidelines

Cloud Security Alliance [8] has provided considerations and guidance
for designing and developing secure 10T devices. It aims to reduce
some of the more common issues that can be found in the development
of IoT devices. A number of activities that will enable a development
organization to begin enhancing the security state of IoT devices have
been outlined. This document has provided a graphical view of the
steps needed in order to develop more secure [oT devices. Although [oT
systems are complex, including devices, gateways, mobile applications,
appliances, web services, datastores, analytics systems and more, the
focus of this guidance is mainly on the “devices". In contrast, our work
summarizes security and privacy functionalities considerations in the
whole range of IoT system.

A security framework has been presented in Industrial Internet
Consortium [25] which comprises of six interacting building blocks.
These building blocks are organised into three layers. The top layer
includes four core security functions, which are supported by a data
protection layer and a system-wide security model and policy layer. The
four core security functions are: endpoint protection, communication and
connectivity protection, security monitoring and analysis, and security
configuration management. And then they break down each layer into
related key functions and explain the responsibility for each function. This
document explains and positions security or related architectures, designs,
and technologies. It also identifies procedures relevant to trustworthy
Industrial Internet of Things (IloT) systems. Security characteristics,
technologies, and techniques that should be applied, and methods for

70

Related Work

®
d ®
o loT Security and
N— e—— Privacy Functionality
®
®

Figure 5.1: IoT security and privacy functionality framework

addressing security, have been described. However, it lacks some of the
security functionalities, and in particular, it does not focus on privacy
issues. The layer structure is a bit complicated, and we believe our
framework has a more relaxed structure to use.

The ISO [1, 2] and NIST [24] standards are general requirements for
establishing, implementing, maintaining and continually improving an
information security management system, and protecting the confidential-
ity of Controlled Unclassified Information (CUI), respectively. We have
extracted the IoT-related requirements from these standards and included
these parts in our framework, while combining them with baselines and
guidelines from other lIoT-related documents, including OWASP and
ENISA discussed below.

OWASP [19] presents guidance at a basic level, giving builders of [oT
products a basic set of guidelines to consider from their perspective.
The idea is that ensuring that these fundamentals are covered, will
significantly improve the security of any IoT product. ENISA [10]
elaborates baseline cybersecurity recommendations for IoT with a focus
on Critical Information Infrastructures, which encompass facilities,
networks, services, and physical and information technology equipment.
Both of these guidelines, OWASP and ENISA, are addressing IoT, but
both are presented in textual form, without defining a framework.

5.3 Related Work

In a work presented by Sicari et al. [27], the most relevant available
solutions regarding security, privacy, and trust in [oT have been analyzed.
Proposals related to security middleware, secure solutions for mobile
devices, and ongoing international projects on this subject, have been

71

5. Paper 1: Security and Privacy Functionalities in IoT

Transport Encryption]G)

Secure, Protected and Trusted Communications and Connectivity ®

Securing Software/Firmware]@

Hardware-based Security Controls]@

Securing Network Services }@

Cryptography Techniques]@

Protecting Interfaces/APIs]@

Access Control

Strong Default Security]

System Safety and Reliability]@

Figure 5.2: Security mechanisms

discussed in their work; however, the focus is more general, addressing
authentication, confidentiality and access control, while we break down
security and privacy requirements in more detail, using a framework of
functionalities for all the baselines.

Main challenges and security threats in smart home networks have
been analyzed by Lee et al. [17], and the fundamental requirements in
order to provide secure and confidential operations in smart homes are
explained from the results of their analysis. Although these requirements
have been listed, they still lack practical solutions or recommendations in
this matter. In [28], Suo et al. have deeply analyzed security architecture
and features, and divided IoT systems into four key levels of architecture.
According to this analysis, the security requirements for each level have
been summarized. Furthermore, the research status of key technologies
including encryption mechanism, communication security, protection of
sensor data, and cryptography algorithms, have been discussed.

Roman et al. [23] have discussed threats faced by IoT, as well
as security and privacy foundations based on objectives in a scenario
involving a smart meter. However, they did not give any details
about practical baselines and guidelines showing how to achieve these
foundations.

Babar et al. [5] have presented a threat taxonomy and high-level
security requirements for IoT, which like most of the other works only
highlight these requirements without any practical recommendations
for each category. And at the end, they introduced a security model

72

Framework Explanation

based on high-level requirements of security, privacy and trust. Related
security requirements of IoT systems are discussed by Algassem and
Svetinovic [3], proposing a taxonomy of quality attributes, and some of
the existing security mechanisms and policies in this matter have been
reviewed, to reduce the identified security attacks and mitigate future
vulnerabilities in these systems. They also have applied this taxonomy
in a smart grid AMI as an IoT scenario. In contrast, our framework
considers both security and privacy requirements and decomposes the
related mechanisms, policies, and requirements with more details. In
summary, our work provides a comprehensive view and a framework
that covers all of the [oT security and privacy baselines, guidelines, and
recommendations for every requirement.

5.4 Framework Explanation

In Figure. 5.1, we present an overview of the security and privacy
functionality framework, including the top-level security and privacy
concepts. The functionalities are separated into two major parts, the
life cycle aspects of a system and the management aspects of security
and privacy. The life cycle relates to the different phases in the life of
a system, while the management of security and privacy is the ability
to put supporting functionality elements in the system. We believe that
awareness about where we are in the life cycle is essential, and makes
it easier to apply the right functionalities and how to do the appropriate
security and privacy management. We use blue color to distinguish
subtopics related to the life cycle of a system from those associated with
the management of security and privacy, colored in green. The coloring
makes the division clear, and gives a better structure of the framework,
separating the two primary concerns.

In the following, we describe each part of the framework and the
related subtopics. For brevity, we do not expand the whole framework
and just mention some of the aspects. For more details and complete
expansion of the framework refer to the long version [12].

Security mechanisms - Different security mechanisms are illustrated
in Figure. 5.2. Security mechanisms are processes designed to detect,
prevent or recover from a security attack in IoT devices, including:

73

5. Paper 1: Security and Privacy Functionalities in IoT

Train People about Importance of Security and Privacy and in Good Privacy
and Security Practices to ensure security is managed at an appropriate level.

Document and monitor the privacy and security training activities. }
Ensure that cybersecurity roles and responsibilities for all people and
workforce are established.

Introduce people and personnel assignments in accordance with the
specifics of the systems and security engineering needs.

Robust user interface so that accidental mistakes are avoided.]

Simplicity of use interface to avoid misunderstandings.]

Figure 5.3: Human resource security

[Producing the Device and Applications with a Minimal Number of Physical External Ports]G)

Not Accessibility of the Firmware of Operating System via Unintended Methods J

Physical Security of Connections]

Disabling of Unused Physical Ports]@

Tamper Resistance of Product]

Ensure that the device cannot be easily disassembled and that the data storage
medium is encrypted at rest and cannot be easily removed.

Ability to Disable External Ports |®

Ability to Limit Administrative Capabilities in some Fashion, Possibly by only Local
Interfaces for Admin Functions and Applications

System Safety and Reliability |®

Securing Test/Debug Modes

Lock Down Physical Ports to Only Trusted Connections]

Figure 5.4: Physical and environmental security

J Implement Technical Privacy Protections ‘

Design Opt-in Requirements for IoT Devices, Service and System Features

Data Minimization |®

Properly Protecting all Collected Personal Data Using Encryption at Rest and in Transit

Collecting Less Sensitive Data]
—. /| De-identified or Anonymized Data |
L - \[Placing Data Retention Policy]

Privacy-enhanced Discovery Features/Rotating Certificates]

Analyze device use cases to support compliance mandates as necessary]

Accessing only authorized individuals to collected personal information]

Given a Choice for Data Collected beyond What is Needed for Proper Operation of the Device to End-users

\ Strong Default Privacy

Figure 5.5: Privacy protection

» Secure, protected and trusted communications and connectivity:
This includes information flow protection, standardising security
protocols (i.e., Transport Layer Security (TLS) for encryption)
guaranteeing data authenticity, signing data, disabling specific ports
and/or network connections for selective connectivity, etc.

* Hardware-based security controls: product developers should eval-
uate and implement hardware protection mechanisms, including
the use of Memory Protection Units (MPUs), considering a Trusted

74

Framework Explanation

Platform Module (TPM) into IoT Devices, securing physical inter-
faces, tamper protections, etc.

* Protecting interfaces/application programming interface (APIs):
Interface security is one of the critical tasks when it comes to
developing 10T devices. 10T products interact with so many cloud
services, custom-developed smartphone apps and also peer [oT
products. If APIs do not protect adequately, service providers
might be exposed. APIs must protect adequately against misuse,
by techniques like rate-limiting to protect against compromised
IoT devices that attempts to flood the service, error handling,
embedding time-stamps or counters into messaging to protect
against replay attacks, certificate pinning to protect against sensitive
data transmission into GET requests, etc.

* Access control: only authorized users should have access, applica-
tions and services and unauthorized accesses should be prevented,
user accountability should be enabled to safeguard their authentica-
tion information.

Human resource security - People and contractors should understand
the cybersecurity responsibilities suitable for their roles, and be trained
about the importance of security and privacy. Further, to avoid
misunderstanding, the user interfaces should be simple yet robust enough
to avoid accidental mistakes. See Figure. 5.3.

Physical and environmental security - The objectives of this section
include prevention of unauthorized physical access, damage, and
interference with IoT’s information and premises, as well as prevention
of loss, damage, theft or compromise of assets and interruption to the
activities and operations of IoT devices and systems. All the equipment
and processing facilities should be placed in secure areas and protected
from physical and environmental threats. The functional requirements of
this matter are listed in Figure. 5.4.

Privacy protection - Personally identifiable information (PII) needs to be
protected, according to the European General Data Protection Regulation
(GDPR) regulations [30]. Privacy protection is also advisable to increase
trust in the internet (see Figure. 5.5 for practical requirements).

Operations security - Information processing facilities should ensure
correct and secure operation, including protection against attacks. Further,
accountability auditing must be enabled for all events to ensure the

75

5. Paper 1: Security and Privacy Functionalities in IoT

(9[Logging and Monitoring

@[Security Configuration and Management

@[Trust and Integrity Management

®| Management of Security Vulnerabilities and/or Incidents

Figure 5.6: Operations security

@[Secure Development Methodology

®| Implement a Secure Development and Integration Environment

@[Information Security Policies

@[Perform Security Reviews

| Secure Associated Applications and Services ”

@[Identify Framework and Platform Security Features }’

Figure 5.7: Development, maintenance, and audit

Zeroization Service

[Certificate Revocation List (CRL) Support

[Extensive Calculus of Construction (CoC) Capability

[Having Anti Tampering Features

Monitor the performance and patch known vulnerabilities for as long as possible
during a product’s lifecycle.

Disclose the duration and end-of-life security and patch support (beyond product
warranty).

Figure 5.8: 10T security and privacy functionality framework —
decommissioning

integrity of operational systems, and prevent against exploitation of
technical vulnerabilities. See Figure. 5.6.

* Logging and monitoring: 10T products should have sufficient
observations of occurrences happening on the device. For instance,
connection requests, authentications (successful or failed), physical
tamper, account updates, etc. It is essential to be able to monitor
users’ interaction with the system or a device, and in particular
when they fail to login. Therefore, to detect possible security and
integrity errors or potential threats, data should be captured on the
entire state of the system from the endpoints, connectivity traffic
and verifying the device behavior, in addition to analysing it.

76

Framework Explanation

» Security configuration and management: Includes the control of
modifications to the operational functionality of the system (which
covers reliability and safety behaviors) along with the security
controls ensuring its protection,

* Trust and integrity management: Some of the practices in this
matter include the following.

1. Establishing trust in the boot environment before anything else
since both the main hardware components and the operating system
have been initialized by the boot process,

2. Signing code cryptographically to prevent tampering,

3. Controlling the installation of software on operating systems to
prevent loading unauthorized software and files onto it, etc.

* Management of security vulnerabilities and/or incidents: To ensure
a quick, effective and orderly response to information security
incidents, management procedures should be established. To
address identified vulnerabilities, disclosure of vulnerabilities
should be coordinated. Participate in information sharing platforms,
in order to report vulnerabilities and receive timely and critical
information about current cyber threats and vulnerabilities from
public and private partners, is recommended.

Development, maintenance, and audit - To ensure that security controls
are efficient, audits and reviews for security controls should be organized
periodically. Penetration tests also should be done regularly. Good
practices in this area are shown in Figure. 5.7.

» Secure development methodology: Documentation, peer reviews,
and incorporating security requirements into the product life
cycle should be included, in addition to the technological checks.
Additionally, essential feedback loops should be included in the
engineering process to create more secure loT products.

* Update: Ensuring a secured system update is probably one
of the biggest challenges in an 10T life cycle. While initial
systems are subject to secure testing on both the producers and the
customers, a similar awareness is often missing for system updates.
In the absence of sufficiently secured update, an intruder may
change legitimate software and firmware, and put new malicious
software and firmware into the device. Malicious software and
firmware can disable security controls, apply new features or build

77

5. Paper 1: Security and Privacy Functionalities in IoT

data exfiltration mechanisms. End-to-end protection of software
and firmware is essential to the whole life cycle. And so are
permissions regarding the update process, the integrity of updates,
and authentication of update transactions of software and firmware.

* Information security policies: Regulatory, organizational and
machine levels of security are covered here. The purpose of security
in a system come as a security policy, and the security model
represents security policies which should formally apply to the
system. A security model and policy should state how to protect
endpoints, communications and data, and specify what should be
monitored, and analyzed, etc.

* Perform security reviews: Continuous feedback loops (i.e., the link
connecting design, development, and test) and optimization during
the life cycle of an IoT product are essential in this practice area.
Identified faults/vulnerabilities have to go back to the design and
threat modeling process, hardware and software baselines must be
updated accordingly, and then be tested again to make sure that the
patches do not identify new vulnerabilities. These vulnerabilities
might be detected using IoT device security testing processes.
Tests like Static Application Security Testing (SAST), Dynamic
Application Security Testing (DAST), Interactive Application
Security Testing (IAST) are a recommendation.

» Secure associated applications and services: Applications (Apps)
and services connected to 10T devices must be developed securely.
Configuring IoT devices, or interacting with IoT devices are
usually being done using smartphone apps. These apps also create
gateway functionality to transfer data from IoT devices to the
cloud. So developers must use security credentials in order to
provide authenticated and integrity protected communications to
IoT devices.

* Implement a secure development and integration environment: A
framework, addressing both physical and IT-security, is required
to ensure a controlled environment for software and hardware
development.

Decommissioning - To prevent exposing critical information to any
possible attacker, the product must be disposed in a secure way at the

end of life time. Therefore, secure devices should not be placed into the

78

Security Classification

Security Class

Impact Exposure

Protection

Comesiiviy Mechanism

Figure 5.9: Basic inputs for defining a security class [26]

supply chain again. A low-cost and high-guaranty way to decommission
can be provided by an automated decommissioning procedure. We show
the practical considerations of decommissioning in Figure. 5.8.

5.5 Security Classification

Concepts of security classes have been suggested and defined in [4, 26].
In this section, we briefly touch on these concepts to give an overview.
There are six classes of security, from A to F, with A representing the best
security and F representing the least security. Further, we based these
security classes on the exposure and the impact factors of the possible
attacks on the system (see Figure. 5.9 and Table 6.2). A lower exposure
level means a lower attack surface. Therefore, attacks that have low
exposure are relatively safe and vice-versa. The high impact of attacks on
a system affects the security class of the system, and necessary precaution
should be considered to protect the system. Consequently the security
class of the system will increase. A system with low exposure and low
impact is relatively safe.

Impact is a consequence of the possible attacks on a system. When a
system is compromised, it can have an impact on several sectors beyond
the system itself, including business, government, or society. We divided
this impact into five levels, namely, Insignificant, Minor, Moderate, Major,
and Catastrophic. Defining each of these levels depends on the system
under evaluation, the type of impacts it can have (e.g. financial, social),
or the application area. Therefore, we base the security classification
level assigned to the system on the security/risk analyst responsible for
that particular application or system discretion.

Exposure (see Table 6.1) is a consequence of connectivity and the

79

5. Paper 1: Security and Privacy Functionalities in IoT

protection level of a system. According to the connectivity of the system,
an appropriate set of security and privacy functionalities is identified to
protect the system, while the strength of the identified security and privacy
functionalities determines the protection levels (i.e., for authentication
we can use passwords or PINs or two/multi-factor authentication). The
definition of the protection levels (P1 to P5) is according to the ISA99
standard. However, the protection level evaluation depends on the expert
and the particular scenario considered. The connectivity is divided into
five levels, C1 to C5, according to ANSSI [4]:

* (C1): aclosed and isolated Information & Communication System
CS)

* (C2): an ICS connected to a corporate Management Information
System (MIS) for which operations from outside the network are
not allowed

* (C3): an ICS connected to wireless technology.

* (C4): an ICS with private infrastructure permitting operations from
outside (VPN, APN, etc.)

* (C5): a distributed ICS with public infrastructure.

Increasing the protection level or reducing the connectivity level can
reduce the exposure (see Table 6.1). From Tables 6.2 and 6.1 we observe
that by keeping the protection level in the highest level (P1 is the lowest

Table 5.1: Security classes (from [26])

Catastrophic
Major
Moderate

Impact

Insignificant

E2
Exposure

Table 5.2: Exposure (from [26])

Protection

C2 C4
Connectivity

80

Pacemaker Case Study

and P5 the highest protection level), exposure will be in the lowest level
(E1), therefore resulting in the highest security class. And the way
we can provide the highest protection level is by applying an effective
and appropriate set of security and privacy functionality criteria in a
particular device, for instance, use of multi-factor authentication instead
of just passwords or PINs for authentication. Adequate and proper sets
of security and privacy functionality criteria used in the case study have
been taken from our framework.

5.6 Pacemaker Case Study

We have built a methodology for looking at the functionalities from both
security and privacy points of view. In order to understand how we can
use the functionality framework to improve security and privacy of [oT
systems in practice, we here use a case study of health products involving
a pacemaker and related control units such as a mobile phone and a heart
rate sensor. In the domain of health services, the highest security class
is recommended for devices like pacemakers that directly control life
functions of a patient.

A pacemaker is a medical device that is implanted under the skin
to help with abnormal behaviors of heartbeats [7, 15]. It consists of a
battery, a computerized generator, and wires with sensors at their tips [14].
The generator is powered by the battery, and both are surrounded by a
thin metal box. The generator is connected to the heart by the wires.
The pacemaker helps to monitor and control the heartbeat. The sensors
detect the heart’s electrical activity and send data through the wires to
the computer in the generator. If the heart rhythm is abnormal, the
generator will be directed by the computer to send electrical pulses to
the heart, and the pulses travel through the wires to reach the heart.
Embedded microprocessors in modern pacemakers have enabled them
to do additional tasks like monitoring heart activity and providing a
record for the patients and their healthcare providers, as well as collecting
data on heart functions to help doctors to identify and diagnose patient
conditions, and send required shock signals when needed. Doctors can
monitor the patient’s heart activities and control the pacemaker using a
mobile phone or a computer device, or send required shock signals in
case of observation of abnormal behavior.

81

5. Paper 1: Security and Privacy Functionalities in IoT

Beside threatening patients’ lives, malicious attackers can get access
to patients’ medical records through a pacemaker [9, 29], or track
a patient’s location. In addition, malicious software can be run on
pacemakers and cause security and privacy breaks. Therefore, any
security or functional weakness can result in a security failure. Like
any device that uses remote technology, pacemakers are also vulnerable
against cyber attacks, and hackers can break into the pacemaker itself,
the back-end systems or the communication between the pacemaker and
its surrounding. By breaking into a pacemaker, an attacker can send
strong shock signals, disturb the pacemaker setting or heart functions, or
disturb them from working properly. One simple example of hacking into
a pacemaker is to change the setting from battery-saving “sleep" mode to
“standby" mode, and this can quickly drain the battery, which is normally
supposed to last for years. Furthermore, an attacker can steal private and
personal information of a patient from the device that for instance can
later track the patient’s location. Hence, security in this kind of device is
crucial and should have the highest (best) security class, meaning security
class A.

We will below discuss the security and privacy challenges for each of

the three devices. In each case we discuss connectivity, protection level
and relevant functionality criteria. We use the general criteria given in
the functionality framework, select and discuss the parts relevant for each
device.
Pacemaker security controller. We consider Connectivity 2 (explained
in Section 6.3) for the pacemaker security controller, since it is only
connected to the pacemaker. We define below the protection levels which
are relevant for the pacemaker security controller:

* Protection level 1 (P1): includes secure authentication, securing
software/firmware, secure communication, and human interface
security. For authentication we consider: requiring passwords,
option to change the default username and password. For
communication we consider: data authenticity to enable reliable
exchanges from data emission to data reception. For securing
software/firmware we consider: update capability for some of
the system devices and applications, transmitting the files using
encryption.

e Protection level 2 (P2): includes P1 and in addition, for authenti-

82

Pacemaker Case Study

cation: requiring strong passwords, securing password recovery
mechanisms, making sure that default passwords and even default
usernames are changed during the initial setup, and that weak, null
or blank passwords are not allowed. For communication: verifying
any interconnections, discover, identify and verify/authenticate the
devices connected to the network before trust can be established,
and preserve their integrity for reliable solutions and services, pre-
vent unauthorised connections to it or other devices the product
is connected to, at all protocol levels, providing communication
security using state-of-the-art mechanisms, standardising security
protocols, such as TLS for encryption. For securing software/-
firmware: encrypting update files for some of the applications.

Protection level 3 (P3): includes P2 and in addition, for authentica-
tion: having options to force password expiration after a specific
period, and to change the default username and password, making
sure that the password recovery or reset mechanism are robust
and do not supply an attacker with information indicating a valid
account. The same should apply to key update and recovery mech-
anisms. For communication: data authenticity to enable reliable
exchanges from data emission to data reception.

Protection level 4 (P4): includes P3 and in addition, for authentica-
tion: implementing two-Factor Authentication (2FA), making sure
that default passwords and even default usernames are changed
during the initial setup. For communication: signing the data when-
ever and wherever it is captured and stored, making intentional
connections, disabling specific ports and/or network connections
for selective connectivity. For securing software/firmware: capabil-
ity of quick updates when vulnerabilities are discovered for some
of the system devices and applications, and offering an automatic
firmware update.

Protection level 5 (P5): includes P4. In addition, for authentication:
using Multi-Factor Authentication (MFA) (considering biomet-
rics for authentication), considering Certificate-Less Authenticated
Encryption (CLAE), and User Managed Access (UMA). For com-
munication: rate limiting — controlling the traffic sent or received
by a network to reduce the risk of automated attacks. For securing

83

5. Paper 1: Security and Privacy Functionalities in IoT

software/firmware: update capability for all system devices and
applications, capability of quick updates when vulnerabilities are
discovered for all system devices and applications, encrypting up-
date files for all applications, signing update files and validating by
the device before installing, securing update servers, having ability
to implement scheduled updates, having backward compatibility of
firmware updates.

According to Tables 6.2 and 6.1, we might have protection levels 2, 3, 4,
or 5 to obtain security class A; however we choose to use protection level
3 since it is a realistic level in this case. A higher level would be costly,
and P2 would give poor protection. We therefore consider how to obtain
that protection level, and select the following set of relevant functionality
criteria from the functionality framework, adapted to the challenges of
pacemakers. In this selection we have used the guidelines for securing
pacemakers from [13]. This gives a certain guarantee that we cover all
relevant aspects.

84

* Secure authentication/authorization: Access to the pacemaker

security controller and mobile phone connected to the doctor,
should be limited using the authentication of users (for example
user ID and password, Personal Identification Numbers (PINs),
biometric authentications). Authorization refers to checking
necessary permissions of an identified individual to do an action.
Authentication and authorization are completely related to each
other. Authorization checks should immediately be followed by
authentication of a request. In order to have secure authorization,
the roles and permissions of the authenticated user should only be
verified through information in backend systems, not through roles
or permission information coming from the device. Any incoming
identifiers with a request alongside should be verified by backend
code independently. Failure in a secure authentication/authorization
would give access to unauthorized people and could lead to
reputational damages, fraud, unauthorized access to information,
information theft, and modification of data.

Securing software/firmware: Before any software or firmware
update, user authentication or other suitable controls should be
required. Software/firmware updates should be restricted to
authorised code. Manufacturers may consider code signature

Pacemaker Case Study

verification as an authentication method.

» Secure communication: Data transmission between the pacemaker
security controller and the mobile phone connected to the doctor
must be secure enough so that a third party cannot listen to their
communication. The communication should not be vulnerable to
eavesdropping or interception. Failure in having a secure commu-
nication can cause identity theft, fraud, data modification, privacy
information leakage. One should consider strong handshaking, cor-
rect SSL versions, no clear-text communication of sensitive assets,
etc.

* Human interface security: Patients should be trained about the
importance of security and privacy and how to use the pacemaker
properly to ensure security is managed at an appropriate level. For
instance, if we consider all the security protections in the highest
level in the security controller, but the patient does not know how to
deal with error notifications (restart, turn off or low battery errors)
in the security controller, all the security considerations in the
controller will be useless.

* Data privacy: Measures to avoid risk of breaches in connection
with long term storage of private information, handling of en-
cryption of private information, and GDPR compliance including
consent, purpose, and access rights.

The final discussion of the security class of the pacemaker system depends
on the scenario chosen and the other components involved. We next
consider the mobile phone.
Mobile phone. In our case study, a mobile phone is used in the com-
munication between the pacemaker and the healthcare provider/doctor.
Security in this mobile phone is then important in order to send correct
data to/from the pacemaker controller. Hacking or tampering into this
mobile phone can result in sending wrong data from the pacemaker to the
doctor, something that could result in wrong decisions from the doctor,
or possibly sending inappropriate shocks to the patient’s heart.
Therefore, it is important to secure the mobile phone properly.
However, the security class of the mobile phone is only considered class
B, since mobile phones are inherently not of the highest security class

85

5. Paper 1: Security and Privacy Functionalities in IoT

and have a number of possibilities for attacks due to high exposure. For
instance, because of all the applications and browsers on the device, as
well as software developed by third parties. Therefore, both the impact
of attack as well as the connectivity are in a higher level for the mobile
phone compared to the pacemaker. Hence the security class of the mobile
phone is lower than the security class of the pacemaker security controller.

We consider C4 in the mobile phone connected to the doctor.
According to Tables 6.2 and 6.1, we might have protection levels 2, 3, or
4 to obtain security class B, however since mobile phones naturally have
moderate impact of attacks as discussed above, we should use protection
level 4 in order to reach security class B. So based on that the following
set of relevant security and privacy functionality criteria are selected
to ensure that the mobile phone has a sufficiently high protection level,
following the functionality framework and the OWASP guidelines for
securing mobile phones [20]:

e Secure authentication/authorization and secure communication:
are the same as what we discussed for the pacemaker security
controller.

* Sufficient cryptography techniques: Appropriate cryptography
techniques should be considered for instance using AES instead of
DES.

* Code tampering: When an application is on the device, the code
and data resources are also available there. An attacker modify the
code through either malicious apps in third party app stores or trick
the user via phishing attacks and install the app on the device. Code
tampering could result in revenue loss due to piracy, reputational
damage, unauthorized new features, identity theft or fraud.

 Secure data storage: Failure in having secure data storage can result
in data loss, extraction of sensitive data using malware, modified
apps or forensic tools, identity theft, fraud, reputation damage,
material loss or external policy violations.

* Proper platform usage: Misuse of a platform feature or failure to
use platform security controls fall under this category. Android
intents, platform permissions, misuse of TouchID, Keychains, or
other security controls which are part of the operating system could

86

Pacemaker Case Study

Secure Device A
Pacemaker along with |
Security Controller T

Secure Device C

Doctor

Secure Device B

Figure 5.10: Scenario 1: pacemaker along with security controller

Security Controller
for Pacemaker

[]

Semsor [

Secure Device C

Doctor

Secure Device A Secure Device B

Figure 5.11: Scenario 2: pacemaker with separate security controller

be included. To prevent the attacks in this category, secure coding
and configuration practices must be applied on the server side of
the application.

* Data privacy: are as discussed above for the pacemaker security
controller.

We next consider the protection levels of ISA99, and select the relevant
criteria from the functionality framework, and adjust them for the case of
the mobile phone connected to the doctor. These are defined below:

e Protection level 1 (P1): includes secure authentication, secure au-
thorization, securing software/firmware, sufficient cryptography
techniques, code tampering, secure data storage, secure communi-
cation, and proper platform usage. Secure authentication, securing
software/firmware, and secure communication are the same as the
considerations for protection level 1 for the pacemaker security
controller.

e Protection level 2 (P2): includes P1. Secure authentication,
securing software/firmware, and secure communication are the
same as the considerations for protection level 2 for the pacemaker
security controller. In addition, for cryptography techniques we
should consider: ensuring proper selection of standard encryption
algorithms and keys.

e Protection level 3 (P3): includes P2. Secure authentication,

87

5. Paper 1: Security and Privacy Functionalities in IoT

securing software/firmware, and secure communication are the
same as the considerations for protection level 3 for the pacemaker
security controller. In addition, for cryptography techniques we
should consider: strong encryption algorithms, strong keys.

* Protection level 4 (P4): includes P3. Secure authentication, secur-
ing software/firmware, and secure communication are the same as
the considerations for protection level 4 for the pacemaker security
controller. In addition, for cryptography techniques we should con-
sider: verifying the robustness of the implementation, establishing
secure and scalable key management. And cryptographic keys must
be securely managed.

e Protection level 5 (P5): includes P4. Secure authentication,
securing software/firmware, and secure communication are the
same as the considerations for protection level 4 for the pacemaker
security controller. In addition, for cryptography techniques we
should consider: disabling insecure protocols.

Finally, the security class of the heart rate sensor in our case study is
considered below.

Heart rate sensor. The heart rate sensor does not have any external
connectivity; it has only connections to the heart and computerized
generator inside the pacemaker in order to transfer the captured heart
rate from the heart to the pacemaker generator. So the connectivity in
the sensor is C1. Furthermore it has only a chip set from the company
provider. Hence, the sensor has the least chance of attack. However, there
is still a possible vulnerability if the wired connection is not sufficiently
shielded and allows eavesdropping by inductive sensors or senders. But
this requires very short physical distance. Therefore we may assume only
minor impact, and do not need a high protection level for this device, and
may use P1. Exposure is then E4 (see Table 6.4). This gives security
class C.

Pacemaker scenarios. The challenge in the case study is how to
implement the security controls like decryption, authentication, etc.
For instance, whether to do data decryption in the mobile phone, and
then send the decrypted data to the pacemaker. If the mobile phone is
compromised, wrong data and signals could then go to the doctor and
pacemaker, since mobile phones can get compromised, as we discussed
before. Whereas, if we consider security controls in the pacemaker itself,
we only have software provided by one company. Thus it would be much

88

Pacemaker Case Study

Table 5.3: Security and privacy challenge comparison of scenario 1 and 2

Security and Privacy Challenges Scenario 1 | Scenario 2
In Sensor Draining battery by changing battery saving controls
Interrupting into heartbeat capturing
Data and private information breaches
In Sending/Receiving wrong data to/from mobile phone
Pacemaker connected to the doctor
Changing pacemaker shock settings
Draining battery by changing battery saving controls
Higher battery usage
Data and private information breaches
Transparency of GDPR compliance
Risk of long-term storage of private information
In Mobile Sending/Receiving wrong data to/from pacemaker

Phone Sending wrong unnecessary/necessary shocks
Cotnntehcted Changing pacemaker shock settings
0 the

Draining pacemaker battery by changing battery
saving controls
Data and private information breaches
Transparency of GDPR compliance
Risk of long-term storage of private information

Severity of Challenge: | Insigniﬁcant:- Minor:lzl Moderate:- Major:- Catastrophic:-

Doctor

more secure to do the security controls directly in the pacemaker, and use
the mobile phone just as a gateway to transfer the information. However,
this will require additional computational power and battery capacity.
Another issue is whether we can do all the security controls inside
the computerized generator of the pacemaker - or consider a security
controller as a separate unit out of the body with a close and secure
connection to the pacemaker.

We therefore define two scenarios: In scenario 1 (see Figure. 6.1),
the security controls for the pacemaker are done inside the computerized
generator of the pacemaker, and in scenario 2 (see Figure. 6.2), a separate
security controller unit makes the security controls of the pacemaker,
such that this unit is outside the body with a close and secure connection
to the pacemaker. In scenario 1, we would need computational power
inside the body, needing more storage, stronger CPU, much more battery
capacity and so on. This is not desirable since it might increase the
potential necessary surgeries in order to change the battery, maintain, or
update the pacemaker. Moreover, we might not be able to consider some
of the security and privacy functionalities in order to avoid increasing
CPU usage, which results in even more battery usage.

Therefore, we might want to have a pacemaker with a simple sensor

89

5. Paper 1: Security and Privacy Functionalities in IoT

inside the body and a security controller out of the body, say in the pocket
or at home very close to the pacemaker. Here, it is essential that the
security controller be close to the pacemaker, since the pacemaker must
have very weak signals, limited interactions and computations, to avoid
using too much battery power and resulting battery changes. So, all the
security and battery-intensive controls would be done in the external
security controller, which can have a stronger and easily rechargeable
battery. The controller can maintain the device in case of any problem,
update or troubleshoot its computer system, or even increase the level
of protection by adding more security and privacy functionalities or
appropriate software at any time because of easy access.

According to all the security considerations in scenario 2, we can
then have a better security class in the pacemaker security controller:
In Table 6.3 we summarize all the security and privacy challenges in
the sensor, pacemaker, and mobile phone connected to the doctor, and
compare the severity of these security and privacy challenges in scenarios
1 and 2. This table determines the impact. The challenges considered in
the table are found by following the functionality framework, for each
device, in a top-down manner and in each case determining the problems
that may occur. The further we break down the problems according to
the functionality framework, the easier it is to find the specific challenges
for the given device.

In the following, we see that the severity of the security and privacy

challenges in the sensor and pacemaker has been reduced from very high
in the worst case to low. Hence, the impact of attacks is reduced from
catastrophic to minor.
Discussion. The pacemaker in scenario 1 is a complex device because
all security controls are done inside the computerized generator of the
pacemaker. The security controller is very close to the sensor, the signals
received by the sensor from the pacemaker are very frequent. Interference
is possible and that can have negative effect on correct heartbeat capturing.
However, by transferring the security controller outside of the body this
effect would be low (still there are some frequencies from devices close
by such as mobile phones that can affect the sensor) resulting in more
precise heartbeat capturing. As mentioned earlier in the heart rate sensor,
there are low possibilities of data and private information breaches in
both scenarios.

In the pacemaker in scenario 1, because of the complexity of the sys-

90

Pacemaker Case Study

tem and having all the security controls inside the computerized generator
of the pacemaker, we need higher CPU and memory consumption and
then battery usage would be very high, while in scenario 2 this prob-
lem would decrease to very low. In scenario 1, because of difficulties
in accessing the pacemaker and its security controller on time (in case
of maintenance, update, troubleshooting or installing new software/e-
quipment, also not being able to apply all the necessary criteria with
high protection level in order to avoid high battery usage), the level of
the security and privacy functionality criteria as well as the level of the
protection is low.

Therefore the vulnerability of the pacemaker and sensor against
attacks compromising the device (that can cause changing battery saving
controls so draining the battery more quickly, changing pacemaker shock
settings, tampering of transferred information from/to the pacemaker, data
and private information breaches, transparency of GDPR compliance,
risk of long-term storage of private information) is high; however, this
problems decrease to very low when we change to scenario 2, due to
easier access to the security controller out of the body.

By compromising the mobile phone connected to the doctor, the
problems listed in the last part of Table 6.3 may occur. In both scenarios,
we have considered high level of protection for the mobile phone by

Table 5.4: Security class of the sensor

_____ In Scenano 1
Catastro hic
Moderate)
. I\
E4

Connectivity Exposure

Protection
Impact

Table 5.5: Security class of the pacemaker security controller

----- :

-E § Major Class B
§ E' Moderate Class B
E = Minor Class B
Insignificant | Iy
£
Connectivity Exposure

91

5. Paper 1: Security and Privacy Functionalities in IoT

Table 5.6: Security class of the mobile phone

g 8 Major Class B
g 5 Moderate Class B
£ Minor Class B I\
Insignificant In Scenarios
E2 1&2
Connectivity Exposure

using appropriate set of security and privacy functionality criteria with
high protection level, therefore we have reduced the vulnerability of
the device to low, but as discussed earlier, these devices still have a
number of vulnerabilities for attacks, and therefore the vulnerability is
not in a very low level.Furthermore, softening the problems in scenario
1 results in obtaining higher protection level and security class. For
instance, we can easily recharge the battery of the security controller,
maintain the device in case of any problem to avoid shutting down all the
security considerations, and increase the level of protection by updating
or troubleshooting its computer system..

In the sensor, as explained above, we have connectivity C1, and
protection level P1, therefore exposure is E4 (see Table 6.4), and because
of very high problem severity, the impact of attacks is Catastrophic,
resulting in security class F in this device. By changing from scenario
1 to 2, the severity of the security and privacy challenges has reduced
from very high to low, therefore the impact of attacks is reduced from
Catastrophic to Minor, and consequently, the security class has improved
from class F to class C.

In the pacemaker, we have connectivity C2, and protection level P5,
however in scenario 1, the severity of security and privacy challenges have
affect on the protection level, which falls to level 3, therefore exposure
is E2 (see Table 6.5), and because of very high security and privacy
challenge severity, the impact of attacks is Catastrophic, then we have
security class D in this device. By changing from scenario 1 to 2, the
severity of the security and privacy challenges has reduced from very high
to very low, therefore the impact of attacks has reduced from Catastrophic
to Insignificant, and consequently, the security class has improved from
class D to A.

And, in the mobile phone connected to the doctor, we have
connectivity C4, and protection level P4, therefore the exposure is E2 (see

92

Conclusion

Table 6.6), and the security is class B in both scenarios. By considering
security and privacy challenges, as well as the effect of these challenges
on the protection level of each device and the whole system, and also their
affect on the impact of attacks, we have changed scenario 1 to 2, and were
able to improve the security class in the sensor and pacemaker security
controller from class F to C, and class D to A, respectively. Hence the
security of the overall system has improved significantly.

In this case study, we started out with security and privacy design
requirements to each device: class A for the pacemaker security controller,
class B for the mobile phone, and class C for the sensor. We have seen
that this is not realistically possible to achieve for the design of scenario
1, while it was possible to satisfy these requirements for scenario 2. The
framework was most useful in these design evaluations. Indeed, the case
study shows that by following the guidelines given by our framework,
one can achieve security easily and decrease the impact of a possible
attack.

5.7 Conclusion

The expansion of 10T in the last decade has resulted in several security and
privacy issues and attacks against things and people. Unfortunately, the
security and privacy functionalities to combat these attacks are not well-
recognized in the domain of 10T. This paper summarizes and categorizes
IoT security and privacy functionalities, and as the main contribution,
the paper presents a new taxonomy framework that organizes the related
standards in this area. The proposed framework is oriented towards
practical application. We have demonstrated the application of this
framework in combination with the security classification method using a
case study about pacemakers. Our case study is quite generic and reveals
general issues that can be found in other case studies.

The security class of a system is based on two factors: exposure
and impact of possible attacks. The exposure is a consequence of the
protection level of the system and its connectivity. A lower exposure level
means a lower attack surface. Therefore, by reducing the exposure level
of a system we can have a more secure system. A higher protection level
in a system or lower connectivity can result in lower exposure. At the
same time, lower impact of attacks on a system raises the security class

93

5. Paper 1: Security and Privacy Functionalities in IoT

of the system. By applying the appropriate set of security and privacy
functionality criteria from our framework, the protection level of a system
can increase, while exposure can decrease, as demonstrated by the case
study and discussed at the end of Section 6.4.

The main objective of this paper is to give security developers,
designers, and end-users an opportunity to understand and explore
what the IoT security and privacy functionalities are, and how these
functionalities can help to improve the security and privacy of IoT
systems. Our approach combines detailed information about security
and privacy functionalities with a security classification method. The
approach is systematic and structured; it is easy to use and is oriented
towards practical engineering. The framework is based on the available
recommendations and standards for IoT systems. This should imply
that all aspects are covered, but there is no guarantee for that. This
can be seen as a limitation of the work. Secondly, the application of
the methodology is ultimately depending on the judgements of software
engineers or security experts, and is therefore not 100% precise. If their
judgement is wrong, for instance if they choose the wrong connectivity
or protection level, it will in general give a wrong estimate.

Future work will consider case studies with several kinds of IoT
devices and sensors involved. This will be a valuable step toward
validating our framework, and possibly allowing the framework to be
complemented with even more elements.

94

Bibliography

(1]

(2]

(3]

(4]
[5]

[6]

[7]

[8]

[9]
[10]

27000, L. Information technology — Security techniques — Infor-
mation security management systems — Overview and vocabu-

lary (fourth edition). ISO/IEC 2016. 2016.

27001, I. INTERNATIONAL STANDARD ISO/IEC 27001 Infor-
mation technology—Security techniques —Information security
management systems —Requirements. ISO/IEC 2013. 2013.

Algassem, 1. and Svetinovic, D. “A taxonomy of security and
privacy requirements for the Internet of Things (IoT)”. In: 2014
IEEE Intern. Conf. on Industrial Engineering and Engineering
Management (IEEM). IEEE. 2014, pp. 1244-1248.

ANSSI. Classification Method and Key Measures. 2014.

Babar, S. et al. “Proposed security model and threat taxonomy for
the Internet of Things (IoT)”. In: Intern. Conf. on Network Security
and Applications. Springer. 2010, pp. 420—429.

BITAG. Internet of Things (loT) Security and Privacy Recom-
mendations. https : / / www . bitag . org / documents / BITAG _
Report_- _Internet_of_Things_ (IoT)_Security _and_ Privacy _
Recommendations.pdf. 2016.

Boulos, P. et al. “Pacemakers: a survey on development history,
cyber-security threats and countermeasures”. In: Int. J. Innov. Stud.
Sci. Eng. Technol vol. 2, no. 8 (2016).

Future-proofing the Connected World: 13 Steps to Developing
Secure IoT Products. https://downloads.cloudsecurityalliance.org/
assets/research/internet-of-things/future-proofing-the-connected-
world.pdf. 2016.

Dadourian, M. Heart alert: Pacemakers can be hacked. 2018.

ENISA. Baseline Security Recommendations for loT in the context
of Critical Information Infrastructures. European Union Agency
for Network and Inf. Sec. 2017.

95

Bibliography

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

96

ENISA. Guidelines for SMEs on the security of personal data
processing. https://www.enisa.europa.eu/publications/guidelines-
for-smes-on-the-security-of-personal-data-processing. 2017.

Fazeldehkordi, E., Owe, O., and Noll, J. Security and Privacy
Functionalities in the Internet of Things (long version). Tech. rep.
University of Oslo, 2019.

FDA. Content of Premarket Submissions for Management of
Cybersecurity in Medical Devices Guidance for Industry and Food
and Drug Administration Staff. U.S. Food and Drug Administration
(FDA). 2014.

Health & Human Services, U. D. of. Pacemaker. 2019.
Healthline. Heart Pacemaker. 2019.

Islam, S. R. et al. “The Internet of Things for health care: a
comprehensive survey”. In: IEEE Access vol. 3 (2015), pp. 678—
708.

Lee, C. et al. “Securing smart home: Technologies, security
challenges, and security requirements”. In: 2014 IEEE Conference
on Communications and Network Security. IEEE. 2014, pp. 67-72.

MacGillivray, C., Turner, V., and Lund, D. Worldwide Internet of
Things (IoT) 2013-2020 Forecast: Billions of Things, Trillions of

Dollars. International Data Corporation. http://www.idc.com/
getdoc.jsp?containerld=243661f. 2014.

OWASP. IoT Security Guidance.
OWASP. OWASP Mobile Security Project.

Pang, Z. “Technologies and Architectures of the Internet-of-Things
(IoT) for Health and Well-being”. PhD thesis. KTH Royal Institute
of Technology, 2013.

Pishva, D. “Internet of Things: Security and privacy issues and
possible solution”. In: Advanced Communication Technology
(ICACT), 2017 19th Intern. Conf. on. IEEE. 2017, pp. 797-808.

Roman, R., Najera, P., and Lopez, J. “Securing the Internet of
Things”. In: Computer vol. 44, no. 9 (2011), pp. 5S1-58.

Bibliography

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Ross, R. et al. “Protecting controlled unclassified information
in nonfederal information systems and organizations”. In: NIST
Special Publication vol. 800 (2015), p. 171.

Schrecker, S. and al., et. Industrial Internet of Things Volume
G4: Security Framework. Industrial Internet Consortium. https:
/Iwww.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB.pdf. 2016.

Shrestha, M., Johansen, C., and Noll, J. “Security Classification
for Smart Grid Infra structures (long version)”. In: (2017).

Sicari, S. et al. “Security, privacy and trust in Internet of Things:
The road ahead”. In: Computer networks vol. 76 (2015), pp. 146—
164.

Suo, H. et al. “Security in the internet of things: a review”. In:
2012 international conference on computer science and electronics
engineering. Vol. 3. IEEE. 2012, pp. 648—651.

Thehackernews.com. Over 8,600 Vulnerabilities Found in Pace-
makers. https : // thehackernews . com /2017 / 06 / pacemaker -
vulnerability.html.

Union, E. REGULATION (EU) 2016/679 OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL. https://eur-lex.europa.
eu/eli/reg/2016/679/0j.

97

CHAPTER 6

Paper 2: Security and Privacy in IoT
Systems: A Case Study of Healthcare
Products

Authors: Elahe Fazeldehkordi, Olaf Owe, Josef Noll

Publication: Presented at 13th International Symposium on Medical
Information and Communication Technology (ISMICT), 8-10 May, 2019
(pp- 1-8). Published in IEEE. DOI: https://doi.org/10.1109/ISMICT.2019.
8743971

Abstract

Internet of Things (IoT) is facilitated by heterogeneous technolo-
gies, which contribute to the providing of innovative services in a
large number of application domains. The satisfaction of security
and privacy requirements in this scenario are becoming a main
challenge for IoT systems and their developers. Nevertheless, most
works on IoT security and privacy requirements look at these re-
quirements from a high level view. Hence, important aspects of
security and privacy functionalities will be disregarded, causing
wrong design decisions. To combat this problem, in our previous
work, we summarized the most current documents related to secu-
rity and privacy functionalities in the setting of IoT and provided a
new taxonomy framework that organizes all aspects of security and
privacy baselines, guidelines and recommendations. To give an
understanding of how the framework can help to improve security
and privacy of IoT products, and help to facilitate developing and
designing secure and privacy-aware loT systems, in this paper we
delve deeper and demonstrate the usefulness of the framework by
a case study of healthcare products, in combination with a recent
security classification method.

99

6. Paper 2: A Case Study of Healthcare Products

6.1 Introduction

Internet of Things (IoT) involves information flow between different kinds
of embedded computing devices interconnected through a network. The
aim of [oT is to enable an advanced mode of communication among the
various systems and devices, and also to facilitate the interaction between
humans and the virtual world. With this aim, [oT plays a significant
role in the modern society and has applications in almost all fields of
the modern society including healthcare systems, automobile, industrial
appliances, sports, homes, entertainments, environmental monitoring
etc. IoT devices have already outnumbered the number of people at
computerized workplaces, and by 2020, connected "things" based on IoT
will be around 212 billion [18, 22]. Those "things" include daily used
appliances like smart-phones, smart-watches, smart television, smart
refrigerators and others. As a result of this expansion, and as most
things are connecting to the internet for exchanging information, IoT
is vulnerable to various security issues and attacks, e.g., man in the
middle attack, eavesdropping attack, denial of service attack, access
attack, as well as major privacy concerns for the end users. Even though
IoT provides advanced abilities in the data communication area, it is
vulnerable from the security and privacy points of view. Therefore
appropriate steps in the initial phase of design and development of IoT
systems should be taken.

In our previous work [12], we gave a comprehensive view of the state
of the art with respect to security and privacy functionalities and require-
ments for [oT systems, and suggested a complementary methodology for
analyzing the functionalities in a comprehensive framework that can help
both providers and consumers of 10T devices to have a better understand-
ing of the security and privacy aspects [12]. By functionality we mean:
"The security and privacy-related features, functions, mechanisms, ser-
vices, procedures, and architectures implemented within organizational
information systems or the environments in which those systems operate"
[24]. For this framework we investigated loT-related security baselines
and guidelines developed by ENISA [10], OWASP [19], Industrial Inter-
net Consortium [25], Cloud Security Alliance [8], and Broadband Internet
Technical Advisory Group [6], as well as IoT related security guidelines
from ISO [1, 2] and NIST [24]. With respect to privacy, EU has passed

100

Introduction

the general data protection regulation (GDPR), which regulates who can
access private data, how and for what purpose, based on consent of the
data subject [11]. We then categorized and integrated these guidelines
and requirements in a uniform style, and embedded them in a graphical
representation by means of diagrams. Having a comprehensive view and
taxonomy of security and privacy requirements and functionalities in [oT
is a prerequisite for architecting optimal security solutions, designing,
and developing secure and privacy-aware 10T systems.

In this paper, we explore how the framework can facilitate the process
of improving IoT security and privacy, in combination with the security
classification method suggested in [4, 26]. Through the development of
this framework, together with the security classes, extensive attention has
been given to the requirements and limitations for securing [oT systems.
The security classification of a system will lead to better understanding
of the value of security and promote the extra cost of securing a system.
An IoT system includes different kinds of devices, and protecting all of
these devices at a same level is costly. It is economically impossible to
employ all the security protection mechanisms for all the devices in a
system. Dividing security into different classifications is necessary in
order to secure IoT systems to an appropriate level.

To give an understanding of how the framework can help to improve
security and privacy in practice, we give a comprehensive discussion
on the details of two scenarios in a case study of healthcare products,
compare security and privacy challenges of the two scenarios, and then
show how to soften these challenges using security classifications and
functionalities of our previous framework. One of the most attractive
application areas of IoT is health care [16, 21]. Medical applications like
remote health monitoring, fitness programs, chronic diseases, elderly care,
compliance with treatment and medication at home and by healthcare
providers, are some of the important potential applications that IoT can
bring. IoT-based healthcare services can help to reduce costs, increase the
quality of life, and enrich the user’s experience. Therefore, in this paper
we demonstrate the framework on a case study concerning healthcare
products.

The remainder of this paper is structured as follows: Section 2
provides related work. Section 3 gives a background about the security
classification method. Section 4 describes the pacemaker case study, and
Section 5 concludes the paper.

101

6. Paper 2: A Case Study of Healthcare Products

6.2 Related Work

In a work presented by Sicari et al. [27], the most relevant available
solutions regarding security, privacy, and trust in [oT have been analyzed.
Proposals related to security middleware, secure solutions for mobile
devices and ongoing international projects on this subject have also been
discussed in their work; however, the focus is more general, addressing
authentication, confidentiality and access control, while we break down
security and privacy requirements in more detail, using the framework of
functionalities for all the baselines.

Major challenges and security threats in smart home networks have
been analyzed by Lee et al. [17], and fundamental requirements in
order to provide secure and confidential operations in smart homes are
explained from the results of their analysis. However, these requirements
are just listed up and there is no practical solutions or recommendations in
this matter. In [28], Suo et al. have deeply analyzed security architectures
and features, and divided IoT systems into four key levels of architecture.
According to this analysis, the security requirements for each level have
been summarized. Furthermore, the research status of key technologies
including encryption mechanism, communication security, protection of
sensor data, and cryptography algorithms, have been discussed in this
paper.

Roman et al. [23] have discussed threats faced by IoT, as well
as security and privacy foundations based on objectives in a scenario
involving a smart meter. However, they did not give any details
about practical baselines and guidelines showing how to achieve these
foundations.

Babar et al. [5] have presented a threat taxonomy and high level
security requirements for IoT, which like most of the other works
just number these requirements without any practical recommendations
for each category. And at the end, they introduced a security model
based on high-level requirements of security, privacy and trust. Related
security requirements of IoT systems are discussed by Alqassem and
Svetinovic [3], proposing a taxonomy of quality attributes, and some
of the existing security mechanisms and policies in this matter have
been reviewed, in order to reduce the identified security attacks and
mitigate future vulnerabilities in these systems. They also have applied

102

Security Classification

this taxonomy in a smart grid AMI as an [oT scenario. In contrast, the
framework [12] considers both security and privacy requirements and
decomposes the related mechanisms, policies, and requirements with
more details.

6.3 Security Classification

Concepts of security classes have been suggested and defined in [4, 26].
Here, we briefly touch on these concepts to give an overview. There
are six classes of security, from A to F, with A representing the best
security and F representing the least security. Security classes are based
on two factors: exposure and impact of the possible attacks on the system
(see Table 6.2). A lower exposure level means a lower attack surface,
therefore, attacks that have low exposure are relatively safe. And vice
versa, high impact of attacks on a system affects the security class of
the system and necessary precaution should be considered to protect the
system. Consequently the security class of the system will be raised. A
system with low exposure and low impact is relatively safe.

Table 6.1: Exposure (from [26])

o P1
£ P2
3 P3
o P4
o P5
Cl C2 C3 C4 C5
Connectivity
Table 6.2: Security classes (from [26])
Catastrophic
2 [Major
E‘ Moderate
. Minor
Insignificant
El E2 E3 E4 E5
Exposure

103

6. Paper 2: A Case Study of Healthcare Products

Impact is a consequence of the possible attacks on a system. When
a system is compromised, it can have impact on several sectors beyond
the system itself, including business, government, or society. The impact
is divided into 5 levels: Insignificant, Minor, Moderate, Major, and
Catastrophic. Defining each of these levels depends on the system under
evaluation, the type of impacts it can have (e.g. financial, social), or
the application area. So, it is based on the judgment of the security/risk
analysts in that special application or system.

Exposure (see Table 6.1) is a consequence of the connectivity and
the protection level of a system. According to the connectivity of the
system, an appropriate set of security functionalities is identified to protect
the system, and the strength of the identified security functionalities
determines the protection levels (for instance for authentication we can
use passwords or PINs or two/multi-factor authentication). The definition
of the protection levels (P1 to P5) is according to the ISA99 standard.
However, the protection level evaluation is depending on the expert and
the particular scenario considered.

The connectivity is divided into five levels, C1 to CS5, according to
ANSSI [4]:

* (C1): aclosed and isolated Information & Communication System

cs)

* (C2): an ICS connected to a corporate Management Information
System (MIS) for which operations from outside the network are
not allowed

* (C3): an ICS connected to wireless technology.

e (C4): an ICS with private infrastructure permitting operations from
outside

* (C5): adistributed ICS with public infrastructure.

Increasing the protection level or reducing the connectivity level can
reduce the exposure (see Table 6.1). As we can observe from Tables 6.1
and 6.2, by keeping the protection level in the highest level (P1 is
the lowest and P5 the highest protection level), exposure will be in
the lowest level (E1), therefore resulting in the highest security class.
And the way we can provide the highest protection level is by applying
an effective and appropriate set of security functionality criteria in a
particular device, for instance, use of multi-factor authentication instead
of just passwords or PINs in authentication. Effective and appropriate
sets of security functionality criteria used in the case study have been

104

Pacemaker Case Study

taken from our framework in [12], which is based on the most relevant
standards: ENISA [10], OWASP [19], Industrial Internet Consortium [25],
Cloud Security Alliance[8], and Broadband Internet Technical Advisory
Group [6], as well as security and privacy guidelines from ISO [1, 2],
ENISA [11], and NIST [24].

6.4 Pacemaker Case Study

In previous work [12], we have built a methodology for looking at the
functionalities from both security and privacy points of view. In order
to understand how we can use the functionality framework to improve
security and privacy of IoT systems in practice, we here use a case study
of health products involving a pacemaker and related control units such as
a mobile phone and a heart rate sensor. In the domain of health services,
the highest security class is recommended for devices like pacemakers
that directly control life functions of a patient.

A pacemaker is a medical device that is implanted under the skin
to help with abnormal behaviors of heartbeats [7, 15]. It consists of a
battery, a computerized generator, and wires with sensors at their tips [14].
The generator is powered by the battery, and both are surrounded by a
thin metal box. The generator is connected to the heart by the wires.
The pacemaker helps to monitor and control the heartbeat. The sensors
detect the heart’s electrical activity and send data through the wires to
the computer in the generator. If the heart rhythm is abnormal, the
generator will be directed by the computer to send electrical pulses to
the heart, and the pulses travel through the wires to reach the heart.
Embedded microprocessors in modern pacemakers have enabled them
to do additional tasks like monitoring heart activity and providing a
record for the patients and their healthcare providers, as well as collecting
data on heart functions to help doctors to identify and diagnose patient
conditions, and send required shock signals when needed. Doctors can
monitor the patient’s heart activities and control the pacemaker using a
mobile phone or a computer device, or send required shock signals in
case of observation of abnormal behavior.

For each device we will below discuss the security and privacy
challenges for each of the three devices. In each case we discuss
connectivity, protection level and relevant functionality criteria. We

105

6. Paper 2: A Case Study of Healthcare Products

use the general criteria given in the functionality framework, select and
discuss the parts relevant for each device.

Pacemaker security controller. Beside threatening patients’ lives,
malicious attackers can get access to patients’ medical records through a
pacemakers [9, 29], or track a patient’s location. In addition, malicious
software can be run on pacemakers and cause security and privacy breaks.
Therefore, any security or functional weakness can result in a security
failure. Like any device that uses remote technology, pacemakers are
also vulnerable against cyber attacks, and hackers can break into the
pacemaker itself, the back-end systems or the communication between
the pacemaker and its surrounding. By breaking into a pacemaker, an
attacker can send strong shock signals, disturb the pacemaker setting
or heart functions, or disturb them from working properly. One simple
example of hacking into a pacemaker is to change the setting from battery-
saving "sleep" mode to "standby" mode, and this can quickly drain the
battery, which is normally supposed to last for years. Hence, security in
this kind of device is crucial and should have the highest (best) security
class, meaning security class A.

We consider Connectivity 2 (explained in Section. 6.3) in the
pacemaker security controller, since it is only connected to the pacemaker.
We define below the protection levels which are relevant <for the
pacemaker security controller:

* Protection level 1 (P1): includes Secure authentication, Securing
Software/Firmware, Secure Communication, and Human Interface
Security. For authentication we consider: requiring passwords,
option to change the default username and password. For
communication we consider: data authenticity to enable reliable
exchanges from data emission to data reception. For securing
software/firmware we consider: update capability for some of
the system devices and applications, transmitting the files using
encryption.

e Protection level 2 (P2): includes P1 and in addition, for authenti-
cation: requiring strong passwords, securing password recovery
mechanisms, making sure that default passwords and even default
usernames are changed during the initial setup, and that weak, null
or blank passwords are not allowed. For communication: verifying
any interconnections, discover, identify and verify/authenticate the
devices connected to the network before trust can be established,

106

Pacemaker Case Study

and preserve their integrity for reliable solutions and services, pre-
vent unauthorised connections to it or other devices the product
is connected to, at all protocol levels, providing communication
security using state-of-the-art mechanisms, standardising security
protocols, such as TLS for encryption. For securing software/-
firmware: encrypting update files for some of the applications.

¢ Protection level 3 (P3): includes P2 and in addition, for authentica-
tion: having options to force password expiration after a specific
period, and to change the default username and password, making
sure that the password recovery or reset mechanism are robust
and do not supply an attacker with information indicating a valid
account. The same should apply to key update and recovery mech-
anisms. For communication: data authenticity to enable reliable
exchanges from data emission to data reception.

* Protection level 4 (P4): includes P3 and in addition, for authentica-
tion: implementing two-Factor Authentication (2FA), making sure
that default passwords and even default usernames are changed
during the initial setup. For communication: signing the data when-
ever and wherever it is captured and stored, making intentional
connections, disabling specific ports and/or network connections
for selective connectivity. For securing software/firmware: capabil-
ity of quick updates when vulnerabilities are discovered for some
of the system devices and applications, and offering an automatic
firmware update.

e Protection level 5 (P5): includes P4. In addition, for authentication:
using Multi-Factor Authentication (MFA) (considering biomet-
rics for authentication), considering Certificate-Less Authenticated
Encryption (CLAE) and User Managed Access (UMA). For com-
munication: rate limiting — controlling the traffic sent or received
by a network to reduce the risk of automated attacks. For securing
software/firmware: update capability for all system devices and
applications, capability of quick updates when vulnerabilities are
discovered for all system devices and applications, encrypting up-
date files for all applications, signing update files and validating by
the device before installing, securing update servers, having ability
to implement scheduled updates, having backward compatibility of
firmware updates.

According to Tables 6.1 and 6.2, protection level 4 or 5 are needed

107

6. Paper 2: A Case Study of Healthcare Products

to obtain security class A. We therefore consider how to obtain that
protection level, and select the following set of relevant functionality
criteria from the functionality framework given in [12], adapted to the
challenges of pacemakers. In this selection we have used the guidelines
for securing pacemakers from [13]. This gives a certain guarantee that
we cover all relevant aspects.

108

* Secure authentication/authorization: Access to the pacemaker secu-

rity controller and mobile phone connected to the doctor, should be
limited using authentication of users (for example user ID and pass-
word, Personal Identification Numbers (PINs), biometric authenti-
cations). Authorization refers to checking necessary permissions of
an identified individual to do an action. Authentication and autho-
rization are completely related to each other. Authorization checks
should immediately be followed by authentication of a request. In
order to have secure authorization, the roles and permissions of
the authenticated user should only be verified through information
in back-end systems, not through roles or permission information
coming from the device. Any incoming identifiers with a request
alongside should be verified by the back-end code independently.
Failure in a secure authentication/authorization would give access
to unauthorized people and could lead to reputational damages,
fraud, unauthorized access to information, information theft, and
modification of data.

Securing software/firmware: Before any software or firmware
update, user authentication or other suitable controls should be
required. Software/firmware updates should be restricted to
authorised code. Manufacturers may consider code signature
verification as an authentication method.

Secure communication: Data transmission between the pacemaker
security controller and the mobile phone connected to the doctor
must be secure enough so that a third party cannot listen to their
communication. The communication should not be vulnerable
to eavesdropping or interception. Failure in having a secure
communication can cause identity theft, fraud, data modification,
or privacy information leakage. One should consider strong
handshaking, correct SSL versions, no clear-text communication
of sensitive assets, etc.

Pacemaker Case Study

* Human interface security: Patients should be trained about the
importance of security and privacy and how to use the pacemaker
properly to ensure security is managed at an appropriate level. For
instance, if we consider all the security protections in the highest
level in the security controller, but the patient does not know how to
deal with error notifications (restart, turn off or low battery errors)
in the security controller, all the security considerations in the
controller will be useless.

* Data privacy: Measures to avoid risk of breaches in connection
with long term storage of private information, handling of en-
cryption of private information, and GDPR compliance including
consent, purpose, and access rights.

The final discussion of the security class of the pacemaker system depends
on the scenario chosen and the other components involved. We next
consider the mobile phone.

Mobile phone. In our case study, a mobile phone is used in the com-
munication between the pacemaker and the healthcare provider/doctor.
Security in this mobile phone is then important in order to send correct
data to/from the pacemaker controller. Hacking or tampering into this
mobile phone can result in sending wrong data from the pacemaker to the
doctor, something that could result in wrong decisions from the doctor,
or possibly sending inappropriate shocks to the patient’s heart.

Therefore, it is important to secure the mobile phone properly.
However, the security class of the mobile phone/computer device is only
considered class B, since mobile phones are inherently not of the highest
security class and have a number of possibilities for attacks due to high
exposure. For instance, because of all the applications and browsers on
the device, as well as software developed by third parties. Therefore, both
the impact of attack as well as the connectivity are in a higher level for the
mobile phone compared to the pacemaker. Hence the security class of the
mobile phone is lower than the security class of the pacemaker security
controller. We consider C4 in the mobile phone connected to the doctor,
and based on that the following set of relevant security functionality
criteria are selected to ensure that the mobile phone has a high protection
level, following the functionality framework of [12] and the OWASP
guidelines for securing mobile phones [20]:

109

6. Paper 2: A Case Study of Healthcare Products

Secure Device A

Pacemaker along with
Security Controller

Sensor

S Doctor
<

Secure Device C .
Secure Device B

Security Controller
for Pacemaker

Sensor

Doctor

Secure Device C Secure Device A Secure Device B

Figure 6.2: Scenario 2: pacemaker with separate security controller

Table 6.3: Security and privacy challenge comparison of scenarios 1 and 2

Security and Privacy Challenges Scenario 1 | Scenario 2
In Sensor Draining battery by changing battery saving controls
Interrupting into heartbeat capturing
Data and private information breaches
In Sending/Receiving wrong data to/from mobile phone
Pacemaker connected to the doctor
Changing pacemaker shock settings
Draining battery by changing battery saving controls
Higher battery usage
Data and private information breaches
Transparency of GDPR compliance
Risk of long-term storage of private information

In Mobile Sending/Receiving wrong data to/from pacemaker
Phone Sending wrong unnecessary/necessary shocks
Cotnnt(;lcted Changing pacemaker shock settings
o the

Draining pacemaker battery by changing battery
saving controls
Data and private information breaches
Transparency of GDPR compliance
Risk of long-term storage of private information

Severity of Challenge: | Insigniﬁcam:- Miuor:lzl Moderate:- Major:- Catastrophic:-

Doctor

» Secure authentication/authorization and secure communication are
the same as what we discussed for the pacemaker.

* Sufficient cryptography techniques: Appropriate cryptography
techniques should be considered for instance using AES instead of

110

Pacemaker Case Study

DES.

* Code tampering: When an application is on the device, the code
and data resources are also available there. An attacker can modify
the code through either malicious apps in third party app stores
or trick the user via phishing attacks and install the app on the
device. Code tampering could result in revenue loss due to piracy,
reputational damage, unauthorized new features, identity theft or
fraud.

* Secure data storage: Failure in having secure data storage can result
in data loss, extraction of sensitive data using malware, modified
apps or forensic tools, identity theft, fraud, reputation damage,
material loss or external policy violations.

* Proper platform usage: Misuse of a platform feature or failure to
use platform security controls fall under this category. Android
intents, platform permissions, misuse of TouchlD, Keychains, or
other security controls which are part of the operating system could
be included. To prevent the attacks in this category, secure coding
and configuration practices must be applied on the server side of
the application.

* Data privacy: are as discussed above for the pacemaker.

We next consider the protection levels of ISA99, and select the relevant
criteria from the functionality framework, and adjust them for the case of
the mobile phone connected to the doctor. These are defined below:

* Protection level 1 (P1): includes Secure Authentication, Secure Au-
thorization, Securing software/firmware, Sufficient Cryptography
Techniques, Code Tampering, Secure Data Storage, Secure Com-
munication, and Proper Platform Usage. Secure authentication,
Securing software/firmware, and Secure Communication are the
same as the considerations for protection level 1 for the pacemaker
security controller.

e Protection level 2 (P2): includes P1. Secure authentication,
Securing software/firmware, and Secure Communication are the
same as the considerations for protection level 2 for the pacemaker
security controller. In addition, for cryptography techniques we
should consider: ensuring proper selection of standard encryption
algorithms and keys.

111

6. Paper 2: A Case Study of Healthcare Products

* Protection level 3 (P3): includes P2. Secure authentication,
Securing software/firmware, and Secure Communication are the
same as the considerations for protection level 3 for the pacemaker
security controller. In addition, for cryptography techniques we
should consider: strong encryption algorithms, strong keys.

* Protection level 4 (P4): includes P3. Secure authentication,
Securing software/firmware, and Secure Communication are
the same as the considerations for protection level 4 for the
pacemaker security controller. In addition, for cryptography
techniques we should consider: verifying the robustness of the
implementation, establishing secure and scalable key management.
And cryptographic keys must be securely managed.

e Protection level 5 (P5): includes P4. Secure authentication,
Securing software/firmware, and Secure Communication are same
as the considerations for protection level 4 for the pacemaker
security controller. In addition, for cryptography techniques we
should consider: disabling insecure protocols.

Finally, the security class of the heart rate sensor in our case study is
considered below.

Heart rate sensor. The heart rate sensor does not have any external
connectivity; it has only connections to the heart and computerized
generator inside the pacemaker in order to transfer the captured heart rate
from the heart to the pacemaker generator. So the connectivity in the
sensor is C1. Furthermore it has a chip set from the company provider.
Hence, the sensor has the least chance of attack. However, there is
still a possible vulnerability if the wired connection is not sufficiently
shielded and allows eavesdropping by inductive sensors or senders. But
this requires very short physical distance. Therefore we may assume only
minor impact, and do not need a high protection level for this device, and
may use P1. Exposure is then E4 (see Table 6.4). This gives security
class C.

Pacemaker scenarios. The challenge in the case study is how to
implement the security controls like decryption, authentication, etc.
For instance, whether to do data decryption in the mobile phone, and
then send the decrypted data to the pacemaker. If the mobile phone is
compromised, wrong data and signals could then go to the doctor and
pacemaker, since mobile phones can get compromised, as we discussed
before. Whereas, if we consider security controls in the pacemaker itself,

112

Pacemaker Case Study

we only have software provided by one company. Thus it would be
much more secure to do the security controls directly in the pacemaker,
and use the mobile phone just as a gateway to transfer the information.
However, this will require additional computational power and battery
capacity. Another issue is whether we can do all the security controls
inside the computerized generator of the pacemaker — or consider a
security controller as a separate unit out of the body with a close and
secure connection to the pacemaker.

We therefore define two scenarios: In scenario 1 (see Figure. 6.1),
the security controls for the pacemaker are done inside the computerized
generator of the pacemaker, and in scenario 2 (see Figure. 6.2), a separate
security controller unit makes the security controls of the pacemaker,
such that this unit is outside the body with a close and secure connection
to the pacemaker.

In scenario 1, we would need computational power inside the body,
needing more storage, stronger CPU, much more battery capacity and so
on. This is not desirable since it might increase the potential necessary
surgeries in order to change the battery, maintain, or update the pacemaker.
Moreover, we might not be able to consider some of the security
functionalities in order to avoid increasing CPU usage, which results in
even more battery usage. Therefore, we might want to have a pacemaker
with a simple sensor inside the body and a security controller out of
the body, say in the pocket or at home very close to the pacemaker.
Here, it is essential that the security controller is close to the pacemaker,
since the pacemaker must have very weak signals, limited interactions
and computations, to avoid using too much battery power and resulting
battery changes. So, all the security and battery-intensive controls would
be done in the external security controller, which can have a stronger
and easily rechargeable battery. The controller can maintain the device
in case of any problem, update or troubleshoot its computer system,
or even increase the level of protection by adding more security and
privacy functionalities or appropriate software at any time because of
easy access. According to all the security considerations in scenario 2, we
can then have a better security class in the pacemaker security controller:
In Table 6.3 we summarize all the security and privacy challenges in
the sensor, pacemaker, and mobile phone connected to the doctor, and
compare the severity of these security and privacy challenges in scenarios
1 and 2. In the next section we see that the severity of the security and

113

6. Paper 2: A Case Study of Healthcare Products

privacy challenges in the sensor and pacemaker has been reduced from
very high in the worst case to low. Hence, the impact of attacks is reduced
from catastrophic to minor.

6.5 Discussion

The pacemaker in scenario 1 is a complex device because all security
controls are done inside the computerized generator of the pacemaker.
The security controller is very close to the sensor, the signals received
by the sensor from the pacemaker are very frequent. Interference is
possible and that can have negative effect on correct heartbeat capturing.
However, by transferring the security controller outside of the body this
effect would be low (still there are some frequencies from devices close
by such as mobile phones that can affect the sensor) resulting in more
precise heartbeat capturing. As mentioned earlier in the heart rate sensor,
there are low possibilities of data and private information breaches in
both scenarios.

In the pacemaker in scenario 1, because of the complexity of the sys-
tem and having all the security controls inside the computerized generator

Table 6.4: Security class of the sensor

_____ - In Scenario 1

= « |_Catastrophic -
= Q :
g g,
g g Moderate

L]
& Mur .

Insignificant | Class B In Scenario 2
Cl E4
Connectivity Exposure

Table 6.5: Security class of the pacemaker

= | Pl - Catastroﬁhic I-I l
[P2 s Major Class B
2 & | Moderate Class B
E P4 = Minor Class B
P5 Insignificant | I
Connectivity Exposure

114

Discussion

Table 6.6: Security class of the mobile phone
Catastrophic

= -
-% § Major Class B
g £ | Moderate Class B
] .
= .M1r.10r Class B I\
Insignificant In Scenarios
1&2

Connectivity Exposure

of the pacemaker, we need higher CPU and memory consumption and
then battery usage would be very high, while in scenario 2 this problem
would decrease to very low. In scenario 1, because of difficulties in
accessing the pacemaker and its security controller on time (in case of
maintenance, update, troubleshooting or installing new software/equip-
ment, also not being able to apply all the necessary criteria with high
protection level in order to avoid high battery usage), the level of the secu-
rity and privacy functionality criteria as well as the level of the protection
is low. Therefore the vulnerability of the pacemaker and sensor against
attacks compromising the device (that can cause tampering of transferred
information from/to the pacemaker, changing pacemaker shock settings,
changing battery saving controls, data and private information breaches,
transparency of GDPR compliance, risk of long-term storage of private
information) is high; however, this problems decreases to very low when
we change to scenario 2, due to easier access to the security controller
out of the body.

By compromising the mobile phone connected to the doctor, the
problems listed in the last part of Table 6.3 may occur. In both scenarios,
we have considered high level of protection for the mobile phone by
using appropriate set of security and privacy functionality criteria with
high protection level, therefore we have reduced the vulnerability of the
device to low, but as discussed earlier, these devices still have a number
of vulnerabilities for attacks, and therefore the vulnerability is not in a
very low level.

Furthermore, softening the problems in scenario 1 results in obtaining
higher protection level and security class. For instance, we can easily
recharge the battery of the security controller, maintain the device in case
of any problem to avoid shutting down all the security considerations,
and increase the level of protection by updating or troubleshooting its

115

6. Paper 2: A Case Study of Healthcare Products

computer system.

In the sensor, as explained above, we have connectivity C1, and
protection level P1, therefore exposure is E4 (see Table 6.4), and because
of very high problem severity, the impact of attacks is Catastrophic,
resulting in security Class F in this device.By changing from scenario
1 to 2, the severity of the security and privacy challenges has reduced
from very high to low, therefore the impact of attacks is reduced from
Catastrophic to Minor, and consequently, the security class has improved
from Class F to Class C.

In the pacemaker, we have connectivity C2, and protection level P5,
however in scenario 1, the severity of security and privacy challenges have
affect on the protection level, which falls to level 3, therefore exposure
is E2 (see Table 6.5), and because of very high security and privacy
challenge severity, the impact of attacks is Catastrophic, then we have
security Class D in this device. By changing from scenario 1 to 2, the
severity of the security and privacy challenges has reduced from very high
to very low, therefore the impact of attacks has reduced from Catastrophic
to Insignificant, and consequently, the security class has improved from
Class D to A.

And, in the mobile phone connected to the doctor, we have
connectivity C4, and protection level P4, therefore the exposure is E2
(see Table 6.6), and the security is Class B in both scenarios.

By considering security and privacy challenges, as well as the effect
of these challenges on the protection level of each device and the whole
system, and also their affect on the impact of attacks, we have changed
scenario 1 to 2, and were able to improve the security class in the sensor
and pacemaker security controller from class F to C, and class D to
A, respectively. Hence the security of the overall system has improved
significantly.

6.6 Conclusion

The expansion of IoT in the last decade has resulted in several security
and privacy vulnerabilities and attacks against IoT devices and people.
Unfortunately, the security and privacy functionalities to combat these
attacks are not well-recognized in the domain of IoT. We previously
presented a new taxonomy framework that addresses all of the IoT

116

Conclusion

security and privacy functionalities. In this paper, we demonstrate
the application of this framework in combination with the security
classification method, using a case study of pacemaker as medical device
communicating with the surrounding, and discuss the various security
and privacy challenges associated with two scenarios.

Our analysis results demonstrate that using our security functionality
framework, the security class in the sensor and pacemaker has been
improved from class F to C, and class D to A, respectively. Therefore,
the security of the overall system has improved. The main objective
of this paper is to give security developers, designers, and end-users an
opportunity to explore what the IoT security and privacy functionalities
are, and how these functionalities can help to improve security and privacy
of IoT systems. In future work, we will investigate the applications of
our framework to other IoT domains.

Acknowledgment

This work has been supported by the research project IoTSec, Security in
[oT for Smart Grids, with number 248113/0O70 part of the IKTPLUSS
program funded by the Research Council of Norway. It is also supported
by the SCOTT project (www.scott-project.eu), funded by the Electronic
Component Systems of the European Leadership Joint Undertaking under
grant agreement No 737422, with support from the EU H2020 research
and innovation programme.

117

Bibliography

(1]

(2]

(3]

(4]
[5]

[6]

[7]

[8]

[9]
[10]

27000, L. Information technology — Security techniques — Infor-
mation security management systems — Overview and vocabu-

lary (fourth edition). ISO/IEC 2016. 2016.

27001, I. INTERNATIONAL STANDARD ISO/IEC 27001 Infor-
mation technology—Security techniques —Information security
management systems —Requirements. ISO/IEC 2013. 2013.

Algassem, 1. and Svetinovic, D. “A taxonomy of security and
privacy requirements for the Internet of Things (IoT)”. In: 2014
IEEE Intern. Conf. on Industrial Engineering and Engineering
Management (IEEM). IEEE. 2014, pp. 1244-1248.

ANSSI. Classification Method and Key Measures. 2014.

Babar, S. et al. “Proposed security model and threat taxonomy for
the Internet of Things (IoT)”. In: Intern. Conf. on Network Security
and Applications. Springer. 2010, pp. 420—429.

BITAG. Internet of Things (loT) Security and Privacy Recom-
mendations. https : / / www . bitag . org / documents / BITAG _
Report_- _Internet_of_Things_ (IoT)_Security _and_ Privacy _
Recommendations.pdf. 2016.

Boulos, P. et al. “Pacemakers: a survey on development history,
cyber-security threats and countermeasures”. In: Int. J. Innov. Stud.
Sci. Eng. Technol vol. 2, no. 8 (2016).

Future-proofing the Connected World: 13 Steps to Developing
Secure IoT Products. https://downloads.cloudsecurityalliance.org/
assets/research/internet-of-things/future-proofing-the-connected-
world.pdf. 2016.

Dadourian, M. Heart alert: Pacemakers can be hacked. 2018.

ENISA. Baseline Security Recommendations for loT in the context
of Critical Information Infrastructures. European Union Agency
for Network and Inf. Sec. 2017.

119

Bibliography

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

120

ENISA. Guidelines for SMEs on the security of personal data
processing. https://www.enisa.europa.eu/publications/guidelines-
for-smes-on-the-security-of-personal-data-processing. 2017.

Fazeldehkordi, E., Owe, O., and Noll, J. Security and Privacy
Functionalities in the Internet of Things (long version). Tech. rep.
University of Oslo, 2019.

FDA. Content of Premarket Submissions for Management of
Cybersecurity in Medical Devices Guidance for Industry and Food
and Drug Administration Staff. U.S. Food and Drug Administration
(FDA). 2014.

Health & Human Services, U. D. of. Pacemaker. 2019.
Healthline. Heart Pacemaker. 2019.

Islam, S. R. et al. “The Internet of Things for health care: a
comprehensive survey”. In: IEEE Access vol. 3 (2015), pp. 678—
708.

Lee, C. et al. “Securing smart home: Technologies, security
challenges, and security requirements”. In: Communications and
Network Security (CNS), 2014 IEEE Conf. on. IEEE. 2014, pp. 67—
72.

MacGillivray, C., Turner, V., and Lund, D. Worldwide Internet of
Things (IoT) 2013-2020 Forecast: Billions of Things, Trillions of
Dollars. International Data Corporation. http://www.idc.com/
getdoc.jsp?containerld=243661f. 2014.

OWASP. IoT Security Guidance.
OWASP. OWASP Mobile Security Project.

Pang, Z. “Technologies and Architectures of the Internet-of-Things
(IoT) for Health and Well-being”. PhD thesis. KTH Royal Institute
of Technology, 2013.

Pishva, D. “Internet of Things: Security and privacy issues and
possible solution”. In: Advanced Communication Technology
(ICACT), 2017 19th Intern. Conf. on. IEEE. 2017, pp. 797-808.

Roman, R., Najera, P., and Lopez, J. “Securing the Internet of
Things”. In: Computer vol. 44, no. 9 (2011), pp. 51-58.

Bibliography

[24]

[25]

[26]

[27]

(28]

[29]

Ross, R. et al. “Protecting controlled unclassified information
in nonfederal information systems and organizations”. In: NIST
Special Publication vol. 800 (2015), p. 171.

Schrecker, S. and al., et. Industrial Internet of Things Volume
G4: Security Framework. Industrial Internet Consortium. https:
/Iwww.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB.pdf. 2016.

Shrestha, M., Johansen, C., and Noll, J. “Security Classification
for Smart Grid Infra structures (long version)”. In: (2017).

Sicari, S. et al. “Security, privacy and trust in Internet of Things:
The road ahead”. In: Computer networks vol. 76 (2015), pp. 146—
164.

Suo, H. et al. “Security in the Internet of Things: a review”. In:
Computer Science and Electronics Engineering (ICCSEE), 2012
Intern. Conf. on. Vol. 3. IEEE. 2012, pp. 648—-651.

Thehackernews.com. Over 8,600 Vulnerabilities Found in Pace-
makers. https : // thehackernews . com /2017 / 06 / pacemaker -
vulnerability.html.

121

CHAPTER 7

Paper 3: A Language-Based Approach to
Prevent DDoS Attacks in Distributed
Financial Agent Systems

Authors: Elahe Fazeldehkordi, Olaf Owe, Toktam Ramezanifarkhani

Publication: Presented at Security for Financial Critical Infrastructures
and Services (FINSEC), part of the 24th European Symposium on Re-
search in Computer Security (ESORICS) Conference, 23-27 September
2019. Published in Lecture Notes in Computer Science, vol 11981 (pp.
258-277). Springer. DOI: https://doi.org/10.1007/978-3-030-42051-2_18

Abstract

Denial of Service (DoS) and Distributed DoS (DDoS) attacks,
with even higher severity, are among the major security threats for
distributed systems, and in particular in the financial sector where
trust is essential.

In this paper, our aim is to develop an additional layer of
defense in distributed agent systems to combat such threats. We
consider a high-level object-oriented modeling framework for
distributed systems, based on the actor model with support of
asynchronous and synchronous method interaction and futures,
which are sophisticated and popular communication mechanisms
applied in many systems today. Our approach uses static
detection to identify and prevent potential vulnerabilities caused by
asynchronous communication including call-based DoS or DDoS
attacks, possibly involving a large number of distributed actors.

7.1 Introduction

Today distributed and service-oriented systems form critical parts of

123

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

infrastructures of the modern society, including financial services. In
the financial sector security and trust are essential for users of financial
services [19]. Security breaches may lead to significant loss of assets,
such as physical or virtual money, including cryptocurrencies and bitcoins.
In addition, successful attacks on services of a financial institution
may damage the trust of customers, which indirectly may hurt the
institution [18]. According to [1, 12, 17], a main threat on financial
institutions is Distributed Denial of Service (DDoS) attacks. Protection
against DoS/DDoS attacks is therefore crucial for financial institutions.
Slow website responses caused by targeted attacks, can imply that
customers cannot access their online banking and trading websites during
such attacks. Both network layer and application layer DDoS attacks
continue to be more and more persistent according to a report from
the Global DDoS Threat Landscape Q4 2017. Based on this report, it
becomes easier and easier to launch DDoS attacks, and one may even
purchase botnet-for-hire services that provide the basis for starting a
hazardous DDoS attack. Financial institutions are recommended to
monitor the internet traffic to their websites in order to detect and react
to possible threats. However, this kind of run-time protection may slow
down or temporarily shut down the websites.

Unintended attacks on customers from a financial institution may
easily destroy the customer’s trust and confidence and result in reputation
damage. If customers cannot trust an institution, they may quickly shift
to a different institution, due to competition between the many different
financial institutions and service providers. Even a single unfortunate
incident of a financial service provider could be enough to influence
customers. One should make sure that the software is not harmful for
the customers before running it, and this makes static (compile-time)
detection more important than in other areas. Thus, in the financial sector
static detection is a valuable complement to run-time detection methods,
and seems underrepresented.

Call-based flooding is commonly seen in the form of application-
based DDoS attacks [6]. To prevent DoS/DDoS flooding attacks in a
manner complementary to existing approaches, we propose an additional
layer of defense, based on language-based security analysis. We focus
on DDoS attacks that try to force a (sub)system out of order by flooding
applications running on the target system, or by using such applications
to drain the resources of their victim.

124

Introduction

Service

=] conaumer

Service Request

Service Response

| Compilation Process ‘
1 Class l
Method
Request & Response Parameter
S-Obj wrapper C-Obj

Figure 7.1: Distributed communication (s-obj stands for server object and c-obj
for consumer object)

In this paper, we consider a high-level imperative and object-oriented
language for distributed systems, based on the actor model with support
of asynchronous and synchronous method interaction. This setting is
appealing in that it naturally supports the distribution of autonomous
concurrent units, and efficient interaction, avoiding active waiting and
low-level synchronization primitives such as explicit signaling and lock
operations. It is therefore useful as a framework for modeling and analysis
of distributed service-oriented systems. Our language supports efficient
interaction by features such as asynchronous and non-blocking method
calls and first-class futures, which are popular features applied in many
distributed systems today. However, these mechanisms make it even
easier for an attacker to launch a DDoS attack, because undesirable
waiting by the attacker can be avoided with these mechanisms.

We propose an approach consisting of static analysis. We identify
and prevent potential vulnerabilities in asynchronous communication
that directly or indirectly can cause call-based flooding of agents. More
precisely, we adapt a general algorithm for detecting call flooding [14] to
the setting of security analysis and for detection of distributed denial of
service attacks adding support for many-to-one attacks. The algorithm
detects call cycles that might overflow the incoming queues of one or
more communicating agents. Each cycle may involve any number of
agents, possible involving the attacked agent(s).

The high-level framework considered here is relevant for a large class
of programming languages and service-oriented systems.

Outline. Section. 7.2 describes the background of the problem. Related
work is discussed in Section. 7.3. The active object framework is

125

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

explained in Section. 7.4. Our static analysis to prevent attacks is
described in Section. 7.5. Examples of possible DoS/DDoS attacks
are given in Section. 7.6. The final section concludes and suggests future
work.

7.2 Overview

In distributed system communication there is an underlying distributed
object system as shown in Figure. 7.1. In such a distributed system,
classes such as server or client classes would be instantiated by objects,
and communication is established in the form of method calls, usually
wrapped in XML or other forms. Therefore, communication in a
distributed system is implemented by method calls between objects. If
there is a possibility of flood of requests to the service provider (S-
Obj) from the consumer object(s) (C-Obj) in this figure, a DoS attack is
probable.

Call-based flooding attacks. To launch a DoS attack, the attacker may
try to submerge the target server under many requests to saturate its
computing resources. To do so, flooding attacks [6, 20] by method calls
are effective, especially when the server allocates a lot of resources in
response to a single request. Therefore, we detect:

* call-flooding: flooding from one object to another.

* parametric-call-flooding: flooding from one object to another when
the target object allocates resources or consumes resources for each
call.

In the case of call-flooding, communications are just simple requests
like a simple call without parameters or parameters that do not lead to
resource consumption. Parametric-call-flooding is when requests usually
include parameters in a non-trivial manner. Such requests usually trigger
relatively complex processing on the server such as access to a database.
Parametric-call-flooding is more effective than call-flooding because it
takes fewer requests to drown the target system. However, call-flooding
are more common and easier for attackers to exploit.

126

Overview

s Code distribution
+—— Object communication

signal-
floodReq,

s attacker

L
—
—

Figure 7.2: Distributed object communication in DDoS

Categories of call-based flooding attacks: DoS or DDoS possibilities.

One-to-one (OTO): If thousands of requests every single second come
from one source object to a target object, then it is a one-to-one
(OTO) DoS attack. The intent of the flooding might be malicious,
or even undeliberate call cycles. Communication between Client A
and the victim server in Figure. 7.2 is an example of this attack.

Many-to-one (MTO): If the incoming flooding traffic originates from
many distinguishable different sources, then it is a many-to-one
(MTO) DDoS attack. Figure. 7.2 shows a distribution of code
between clients and a server, and proxies.

One-to-many (OTM): A one-to-many attack appears if a system makes
an unlimited number of requests to many objects simultaneously.
Such an attack can be serious since many target objects are attacked
at the same time.

Static attack detection and prevention. For any set of methods that
call the same target method, a call cycle could be harmful. The methods
might belong to the same or different objects with the same or different
interfaces. In the case of normal blocking calls, where the caller is
blocking while waiting for the response, making a flood of requests also
means receiving a flood of responses. And thus in the case of OTO, it may
cause a self DoS for the attacker. With the possibility of non-blocking
calls in a distributed setting, it is more cost-beneficial for an OTO attacker
to launch a DoS, because then undesirable blocking by the attacker is

127

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

avoided. By means of futures and asynchronous calls, a caller process
can make non-blocking method calls.

The possibility of unbounded object creation, referred to as instantia-
tion flooding [8], could cause resource consumption and DoS that could
be detected statically, especially if those objects and their communication
can cause flooding requests from the bots, such as the customers in our
example. It is even worse if there is instantiation flooding on the target
side of the distributed code. This can be detected by static analysis of
the target. (See the example in Figure. 7.10.) Our static analysis detects
explicit or implicit call-flooding. Static detection is accomplished by
static analysis at compile time and informs the programmer about the
possibility of program exploitation at runtime.

7.3 Related Work

A DoS attack, or its distributed version, happens when access to a
computer or network resource is intentionally blocked. Considering
the exploited vulnerabilities, these attacks might be classified by resource
consumption attacks or flooding attacks, of which the latter category
is the most common [6]. In this paper, we aim to prevent distributed
code to be exploited by attackers to launch a DoS attack by detection of
possible call-based flooding in both of the target and zombie sides. To do
so, we analyze the distributed code to make an additional layer of defense
against DoS or DDoS attacks.

In the following, we discuss related works for preventing application-
based DDOS attacks using static detection. In the paper presented by
Chang et al. [3], a novel static analysis approach was introduced in order
to detect semantic vulnerabilities in networked software that might cause
denial of service attacks because of resource exhaustion. Their approach
is implemented in a tool named SAFER: Static Analysis Framework for
Exhaustion of Resources. SAFER integrates taint analysis (in order to
compute the group of program values that are data-dependent on network
inputs) and control dependency analysis (for computing the group of
program statements whose execution can affect the execution of a given
statement) toward detecting high complexity control structures that can
be caused by untrusted network inputs. The tool applies the CIL static
analysis framework and combines different heuristics for recognizing

128

Related Work

loops and recursive calls. Compared to our work the SAFER approach
is oriented toward detecting server attacks from within the server code,
whereas our approach is mainly targeting server attacks from an external
attacker, or a combination of external agents. An attacker needs to
understand the code of the server in order to find weaknesses that can be
triggered by specific inputs. In contrast, our approach is detecting attacks
caused by coordination of several agents and/or servers in a distributed
setting.

Another work that detects resource attacks from within the server
code is presented by Qie et al. [15]. In their toolkit, they check for
possible “rule” violations at runtime. This work is complementary to
ours, since our work is oriented toward static detection. Gulavani and
Gulwani [7] describe a precise numerical abstract domain. This domain
can be used to prove the termination of a large class of programs and
also to estimate valuable information such as timing bounds. In order to
make linear numerical abstract domains more precise, they make use of
two domain lifting operations: One operation depends on the principle of
expression abstraction. This describes a set of expressions and determines
their semantics by use of a selection of directed inference rules. It works
by picking up an abstract domain and a group of expressions, such that
their semantics are described by a group of rewrite rules, in order to
construct a more precise abstract domain. The second domain constructor
operation picks up a linear arithmetic abstract domain and constructs a
new arithmetic domain that is able to represent linear relations through
introduction of max expressions. Another approach to estimate worst-case
complexity is presented by Colon and Sipma [4]. These approaches [4, 7],
in which the complexity of loops and recursive calls has been estimated
using structural analysis, are widely complementary to our work.

Zheng and Myers [21] propose a framework for using static informa-
tion flow analysis in order to specify and enforce end-to-end availability
policies in programs. They extend the decentralized label model to
include security policies for availability. This work presents a simple
language with fine-grained information security policies described by
type annotations. In addition, this language has a security type system
to reason about end-to-end availability policies. Various examples have
been discussed, in which abuse of an availability policy can represent
denial of service attacks.

In a work by Meadows [13], a formal analysis has been developed in

129

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

order to apply the maximum benefit of tools and approaches that have
already been used to strengthen protocols against denial of service attack.
This analysis has been done at the protocol specification level. Also,
different ways in which existing cryptographic protocol analysis tools
can be modified for the purpose of operating in this formal framework,
have been demonstrated. In contrast, we do a detailed static analysis
of source code both inside and outside a server. The class of software
vulnerabilities that we can detect is more complicated than what appears
just at the network-protocol specifications level. Moreover, vulnerable
sections of the source code have been identified in our work.

The current work shows how the static analysis method for detection
of flooding can be used for detection of DoS and DDoS attacks. This
general idea was also outlined by the same authors in an extended
workshop abstract [16]. Moreover we here discuss why this is particularly
harmful in the financial sector, where both economic assets and customer
trust are at risk. Furthermore we simplify and adapt the static analysis
method of [14] to the setting of financial service systems, extending it
to detect many-to-one attacks involving unbounded creation of objects
(as demonstrated in example 7.10), as well as hidden attacks, neither of
which were detected by the original method of [14].

7.4 Our Framework for Active Object
Systems

The setting of concurrent objects communicating by asynchronous
method calls combines the Actor model and object-orientation, and is
referred to as active objects. Active object languages are suitable for
modeling and implementing distributed applications, letting a distributed
system be modeled by a number of active objects that interact via
asynchronous method calls. The active object model provides natural
description of autonomous agents in a distributed system, and the
Jfuture mechanism provides an efficient communication primitives [2,
11], allowing results computed in a distributed setting to be referred
to and shared. Moreover, the addition of cooperative scheduling, as
suggested in the Creol language [9], allows further communication
efficiency, by adding process scheduling control in the programming

130

Our Framework for Active Object Systems

language, and passive waiting. This is achieved by including statements
for suspension control, and letting each object have a process queue for
holding suspended processes. We consider a core language for active
objects with future-based communication primitives, inspired by Creol
and ABS [10]. The objects are concurrent units distributed over a network,
and their identity is globally unique. An object has a process queue, as
well as a queue for incoming method call requests, and can perform
at most one process (i.e., remaining part of method call) at a time. A
process can be suspended by an await statement, allowing other (enabled)
processes to continue. When a process is ended or suspended, the object
may continue with an incoming call request or other enabled process
from the process queue (if any). The await statement allows a process
to wait for a Boolean condition to be satisfied, or for a future value to be
available. The statement is enabled when the waiting condition/future
is satisfied/available. The await statement enables high-level process
control, instead of low-level process synchronization statements such as
signaling and lock operations.

Our core language is a typed, imperative language. An assignment
has the form = := e where the expression e is without side-effects.
All object variables (i.e., object references) are typed by an interface,
and an interface specifies the set of methods that are visible through
that interface. The interfaces of a class protect and limit the object
communication, and in particular shared variable interaction is forbidden.
Local data structure is made by data type declarations, indicated by data,
and a functional data type sublanguage is used to create and manipulate
data values. Data values are passed by value, while object variables are
passed by reference. The language supports first-class futures. The basic
interaction mechanisms (by method calls/futures) are as follows:

* f := olm(e) — the current object calls method m on object o with
actual parameters e. A globally unique identity v identifying the
call is assigned to the future variable f. A message is then sent
over the network from the current object to object o. When object
o eventually performs the method and the method gives a result
defined by a return statement, that result is placed in a (globally
accessible) future with identity u, and the future w is then said to
be resolved. Any process of any object that knows u may access
the future value or wait for it to be available.

131

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

* r := get [— this statement blocks until the value of the future f is
available, and then that value is assigned to the variable z. (Here f
may be an expression resulting in a future identity.)

* await c — this statement suspends if the Boolean condition c is not
satisfied, and is enabled when c is satisfied,

* await = := get [— this statement suspends if the value of f is not
yet available, and is enabled when the future is available. Then the
future value is assigned to z.

The statement sequence f:= olm(e); x:=get f corresponds to a tradi-
tional blocking call, and is abbreviated x := o.m(e) using the conven-
tional dot-notation. The statement sequence f:= o!m(e); await f;z:=
get f is abbreviated await = := o.m(€) and corresponds to a non-
blocking call, since the await-statement ensures that the future is avail-
able before the get-statement is performed. If the result value is not
needed, we may simplify the syntax to o.m(e) for blocking calls and
await 0.m(e) for non-blocking calls. And if the future is not needed,
f = olm(€) may be abbreviated to o!m(€), in which case the future
cannot be accessed (since it is not stored in a future variable).

Object creation has the syntax x := new C'(€) at o, where the class
parameters behave like fields (initialized to the values of €) except that
they are read-only, and the new object is created locally at the site of
object 0. With the syntax = := new (C'(€) the new object is located
anywhere in the distributed system.

One may refer to the current object by this and to the caller object
by (the implicit method parameter) caller. Self calls are possible by
making calls to this, and recursion is allowed. Active behavior is possible
by making a recursive self call in the constructor method (given as a
nameless method). By means of suspension, the active self behavior
may be interleaved with execution of incoming calls from other objects,
thereby combining active behavior and passive behavior. If- and while-
statements are as usual.

We assume all class parameters and method parameters (including
this and caller) are read-only. This helps the static analysis by reducing
the set of false positives. For methods that return no information we use a
predefined type Void with only one value, void. For simplicity we omit
return void at the end of Void methods in the examples.

132

Static Analysis to Prevent Attacks

7.5 Static Analysis to Prevent Attacks

We base our approach on the static analysis of flooding presented in [14]
for detection of flooding of requests, formalized for the Creol/ABS setting
with futures. We adapt this notion of flooding to deal with detection of
DDoS attacks, which have a similar nature. The static analysis will
search for flooding cycles in the code, possibly involving several classes.
According to [14] (unbounded) flooding is defined as follows:

Definition 7.5.1 (Flooding). An execution is flooding with respect to a
method m if there is an execution cycle C containing a call statement to
a method m at a given program location, such that this statement may
produce an unbounded number of uncompleted calls to method m, in
which case we say that the call is flooding with respect to C' in the given
execution.

Like in [14], we distinguish between weak flooding and strong
flooding. Strong flooding is flooding under the assumption of so-called
favorable process scheduling, i.e., enabled processes are executed in a
fair manner.

Definition 7.5.2 (Strong and weak flooding). A call is weakly flooding
with respect to a cycle C' if there is an execution where the call is flooding
with respect to C'. And a call is strongly flooding with respect to a cycle
C'if there is an execution with fair scheduling of enabled processes where
the call is flooding with respect to C'.

Strong flooding reflects the more serious flooding situations that
persist regardless of the underlying scheduling policy. In the detection
of strong flooding, a statically enabled node is considered strongly
reachable if each of its predecessor flow nodes are strongly reachable.
All statements are statically enabled, apart from get/await statements.
A get statement or an await on a future/call is statically enabled if
the corresponding future/result is available, detected statically if the
corresponding return statement is strongly reachable or another get/await
statement on the same future is strongly reachable. We rely on a static
under-detection of the correspondence between return statements and
futures. In the examples this detection is straight forward. With respect
to DDoS, weak flooding of a server is in general harmless unless the
flooding is caused by a large enough number of objects. Strong flooding

133

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

1. Make separate control flow graphs (CFGs) for each method. Include
a node for each call, get, await, new (for object creation), if and while
statement, as well as an initial starting and a final refurn node.

2. Add call edges from call nodes to the start node of a copy of the
called method. In case the call is recursive, simply add a call edge to
the existing start node.

3. Identify any cycles in the resulting graph (including all copies of the
CFEGs).

4. Assign a unique label to each call node, and assign this label to the
start and return node of the corresponding copy of the method CFG.

5. Make put edges from the return nodes to the corresponding get/await
nodes. This requires static flow analysis, possibly with over-
approximation of put edges.

Figure 7.3: Control flow graph

is dangerous even from a single attacker.

Following [14], flooding is detected by building the control flow
graph (CFG) of the program, locating control flow cycles as outlined
in Figure. 7.3, and then analyzing the sets of weakly reachable calls,
denoted calls, and the set of strongly reachable call completions, denoted
comps, in each cycle. Flooding is reported for each cycle with a nonempty
difference between calls and comps, as explained in Figure. 7.4. Note
that the abbreviated notations for synchronous calls and suspending calls
are expanded to the more basic call primitives, as explained above. We
assume that assignments (other than calls) will terminate efficiently and
therefore ignore them in the CFG. For each method the CFG begins with
a start node and ends with a return node (even for void methods) — the
latter helps in the analysis of method completion. We next define weakly
and strongly reachable nodes. The detection of strongly reachable nodes
uses a combination of forward and backward analysis, and is simplified
compared to [14]:

Definition 7.5.3 (Weakly and strongly reachable nodes). Consider a

134

Static Analysis to Prevent Attacks

Consider a cycle C in the control flow graph G resulting from Figure. 7.3:

1. Mark all nodes in C' asstrongly-reachable (SR), and the rest as
(initially) not reachable.

2. From the entry point to the cycle, follow all flow and call edges in
a depth-first traversal of G and mark the nodes as weakly-reachable
(WR), strongly-reachable (SR), or neither, as defined in Def. 7.5.3.

3. If the previous step results in any changes to the SR or WR node sets,
go to step 2.

4. Report flooding of call n if n € (calls —comps) where calls =
{n | call, € WR} and comps={n | return,, € SRV get,, € SR}.

Figure 7.4: Algorithm for detecting flooding by means of calls and comps sets
in a given cycle

given cycle C'.
Weakly reachable (WR) nodes are those that are on the cycle or reachable
from the cycle by following a flow edge or a call edge.

A node is strongly reachable (SR) if it is in the given cycle or is
reachable from an SR node without entering an if/while node nor passing
a wait node (get/await) outside the cycle, unless the return node of the
corresponding call is strongly reachable. A return node is SR if there
is a SR get/await node on the same future. And a node is SR if all its
predecessor nodes are SR.

We consider two versions of SR, the optimistic, where we follow call
edges (as indicated above), and the pessimistic, where we follow a call
edge n only when the call is known to complete, i.e., when n € SR
before following the call edge. (As above we follow flow and put edges
without restrictions.)

The optimistic version is used to find unbounded flooding under the
assumption of favorable scheduling, i.e., strong flooding. The pessimistic
version is used to detect unbounded flooding without this assumption, i.e.,
weak flooding. Detection of strong flooding implies detection of weak
flooding, but with less precise details about which calls that possibly may
cause flooding. If there is a call causing weak flooding wrt. a given cycle,

135

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

pessimistic detection will report this call or a call leading to this call.
If there is a call causing strong flooding for a given cycle C', optimistic
detection will report this call. Our notions of optimistic and pessimistic
reachability cover a wider class of nodes than in [14]. The soundness
of [14] can be generalized to our setting.

7.6 Examples of Possible DoS/DDoS Attacks

An example of flooding cycles. We consider here an example of a
possible DoS attack on customers caused by a financial institution. The
attack may be unintended by the institution, but may result from an
update supposed to give better efficiency, by use of the future mechanism
to reduce the amount of data communicated over the network.

We imagine that the financial institution has a subscription service
for customers, such that customers can register and receive the latest
information about shares and funds, through data of type “newsletter”,
here simply defined as a product type consisting of a content and a date.
The financial institution uses a method signat to notify the customers
about new information about shares. In the first version, each call to
signal has the newsletter as a parameter. This may result in heavy network
traffic and many of the newsletters may not be read by the customers.
In the “improved” solution, each call to signal contains a reference (by
means of a future) to the newsletter rather than the newsletter itself.
However, this allows the subscription service system to send signat calls
even before the newsletter is available, and as we will see, this can cause
a DoS attack on the subscribing customers.

In order to handle many customers, a (dynamic) number of proxies
are used by the service object, and an underlying newsletter producer is
used for the sake of getting newsletters, using suspension when waiting
for news. The proxies are organized in a list (myCustomers), growing
upon need. In both solutions, futures are used by the service object to
avoid delays while waiting for a newsletter to be available. In this way the
service object can continuously respond to customers. The interfaces are
shown in Figure. 7.5. We abbreviate “Newsletter” to “News”. Figure. 7.6
represents a high-level implementation of the publish/subscribe model,
adapted from [5]. A multi-cast to each object in the myCustomers list
is made by the statement myCustomers!signal(ns) in line 13. If we shift

136

Examples of Possible DoS/DDoS Attacks

data News == (String content, Int date) // «a product data type
interface Servicel{
Void subscribe(Customerl cl) // called by Clients
Void produce() // called by Proxies
}
interface Proxyl{
Proxyl add(Customerl cl) // called by Service
Void publish(Fut[News]fut) // called by Service
}
interface Producerl{
News detectNews() // called by Service
}
interface NewsProducerl{
Void add(News ns) // called when news arrives
News getNews() // called by Producers
}
interface Customerl{
Void signal(News ns) // called by Proxies

}

Figure 7.5: The interfaces of the units in the subscription example

requiring the actual newsletter to have arrived, from the Proxy (as shown
by the statements ns:=get fut; myCustomers!signal(ns) in the original
publish method) to the Customer (i.e., news:=get fut in the modified
Customer.signal method). This change in the program causes flooding of
customers.

Service.produce asynchronously calls Producer.detectNews (Pd), line 5 of Fig-
ure. 7.6

Service.produce asynchronously calls Proxy.publish (Xb), line 5 of Fig-
ure. 7.6

Proxy.publish asynchronously calls Customer.signal (Cs), line 6 of Fig-
ure. 7.7

Proxy.publish asynchronously calls Service.produce (Sp) line 6 of Figure. 7.7
Each iteration of this cycle generates an asynchronous call to
Proxy.publish, which again produces an asynchronous call to Pro-
ducer.detectNews, which is not processed as part of this cycle, nor is its
processing synchronized call with the cycle. An unbounded number of
suspended calls to Producer.detectNews can be produced by this cycle.

137

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

class Service(Int limit, NewsProducerl np) implements Servicel {
Producerl prod; Proxyl proxy; Proxyl lastProxy; // declaration of fields
{ // constructor
prod := new Producer(np); proxy:= new Proxy(limit,this);
lastProxy:=proxy; this!produce() }
Void subscribe(Customerl cl) { lastProxy:=IlastProxy.add(cl) }
Void produce() { Fut[News] fut :=prod!detectNews();
proxy!publish(fut) } // sends future
}
class Proxy(Int limit,Servicel s) implements Proxyl {
Proxyl nextProxy;
List[Customerl] myCustomers:=empty; // fields
Proxyl add(Customerl cl) { Proxyl lastProxy:=this;
if length(myCustomers)<limit
then myCustomers:=append(myCustomers,cl)
else if nextProxy=null
then nextProxy:= new Proxy(limit,s) fi;
lastProxy:=nextProxy.add(cl) fi;
return lastProxy }
Void publish(Fut[Newslfut){ News ns := get fut; // wait for the future
myCustomers!signal(ns); // multi-cast the result
if nextProxy=null then s!produce() else
nextProxy!publish(fut) fi }
}
class Producer(NewsProducerl np) implements Producerl {
/7 Wrapper for NewsProducer
News detectNews(){ News news; news:=np.getNews(); return news }
}
class NewsProducer()implements NewsProducerl{ List[News] nl;
Void add(News ns){nl:=append(nl,ns)}
News getNews(){News n;
await nl /= empty; n:=first(nl); nl:=rest(nl); returnn }
}
class Customer implements Customerl{ // Consumer of news items:
News news; // the latest news
Void signal(News ns){ news:=ns }

}

Figure 7.6: Classes providing an implementation of the subscription example

138

Examples of Possible DoS/DDoS Attacks

class Proxy(Int limit,Servicel s) implements Proxyl{
Proxyl nextProxy; List[Customerl] myCustomers:=empty;
Proxyl add(Customerl cl){ ... }
Void publish(Fut[News]fut){
myCustomers!signal(fut); // send future, no waiting
if nextProxy=null then s!produce() else nextProxy!publish(fut) fi}

}

class Customer implements Customerl{ News news; ...
Void signal(Fut[News] fut) { news:= get fut } // blocking wait
}

Figure 7.7: DoS attack by a variation of the subscription example

We then say that the cycle is flooding. The flooding cycle identified
above is harmless provided the customers are able to process their signal
calls as fast as the cycle iterations. The programmer will be warned
by our algorithm about each possible flooding, and should determine
whether it is a real problem.

In contrast, the modified program version (Figure. 7.7) does not wait
in Proxy.publish (doing ns:=get fut) until the newsletter is produced.
Instead the future is directly passed to another asynchronous call
(myCustomers!signal(fut))in line 6 of Figure. 7.7 through the method
Proxy.publish, this removes any progress dependency between the cycle
producing the Producer.detectNews and Customer.signal calls and the
processing of those calls. The completion of the Producer.detectNews and
customer.signal calls does not only depend on the speed of code execution,
but depend on the rate of newsletter items arrivals. Practically, this
flooding cycle generates a number of unprocessed calls that quickly
grows to system limits.

Applying the algorithm to the example. Following [14], the call and
comps sets for the two publish/subscribe versions are shown in Figures
7.8 and 7.9. Method names are abbreviated with two letters as indicated
above, letting Ng abbreviate method getNews of interface NewsProducerl.
There are two cycles in Figure. 7.8, i.e., cycle A and B. We have a
flooding on the call to Customer.signal (Cs) in both cycles. However, this
flooding does not reflect an actual flooding since the Customer objects

139

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

cycle A
calls = {1,2,3,4,5}
comps ={1,2,3,5}

cycle B
calls = {4,6}
comps = {1,6}

Il ed
caleces
flow edge
—_

ted
put edge

start
calliget/
await

Figure 7.8: The graph and call/comp sets for the original version of the
program (Figure. 7.6)

cycle A:
calls = {1,2,4,5}
comps = {2,5}

cycle B:
calls = {4,6}
comps = {6}

Il ed
caleces

flow edge
E—

ted
put edge

Figure 7.9: The graph and call/comp sets for the modified version of the
program (Figure. 7.7)

easily keep up with the calls since the amount of work required by
the Customer to complete a signal call is trivial. The execution rate
is restricted with respect to the actual arrival of new items from the
NewsProducer (by the blocking call in the proxies), and therefore, the
rate of produced asynchronous calls to Customer.signal by this cycle
is limited. Thus this is an example of weak flooding that is harmless.

140

Examples of Possible DoS/DDoS Attacks

class Attacker(Serverl s) {
{this'run(); } // initialization
Void run() { Clientl c := new Client(); c!connect(s);
this'run() } // terminate and make recursive call
}
class Client() implements Clientl{
Nat connect(Serverl s){
Nat n := s.register();
// blocking call, so a single client will not cause flooding
returnn }
}
class Server(DataBase db) implements Serverl{ {...} // [nitialization
Nat register(){Nat n :=0;
if okcheck(caller) then Bool ok := db.open();
if ok then n:=db.add(caller);
db.query(...); db.close() fi fi; returnn }
// register requires time and resources

.}

Figure 7.10: Flooding by unbounded creation of innocent clients targeting the
same server

Furthermore, cycle B is not infinite since it goes through the chain of
Proxies. The modified version of the program is shown in Figure. 7.9.
This version is displaying strong flooding. The flooding-cycle of Pd
(Producer.detectNews) through both cycles is dangerous and will cause
flooding of the system instantly. In version 1, there is a get in cycle A
that regulates the speed of this cycle, whereas in the modified version
there is no get in cycle A.

An example of instantiation flooding. The example in Figure. 7.10
shows how a ClientDistribution object can cause an attack by using
an unbounded number of clients to flood the same server s, due to
an unbounded recursion of the run method. The initialization of the
attacker object of class ClientDistribution connects to a client, and the
client do the registration of the server object. The attacker may start
such a communication with lots of clients to register at the same server.
(For simplicity, interfaces are omitted here.) Each client is innocent in
the sense that it does not cause any attack by itself. By finding such a

141

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

register
2
(@b call)
> 3
2

et future)
Cetum)

<+— Flow edge «--- Call edge

Figure 7.11: Static detection of flooding using unbounded creation

vulnerability in the ClientDistribution, an attacker can cause the flooding
attack by calling run(). In addition, the non-blocking call in this method
helps the attacker because the method does not wait for the connect calls
to complete, therefore it is able to create more and more workload for
the server s in almost no time. The execution of f:=c!connect(s) causes
an asynchronous call and assigns a future to the call. Thus no waiting
is involved. The run method recursively creates more and more objects,
located somewhere in the distributed network. Therefore, the attacker
creates flooding by rapidly creating clients that each performs a resource-
demanding operation on the same server. Static analysis detects such
attacks by finding a call loop (in this case inside run) which is also
targeting the same server.

In this example, if the object creation in run had happened locally,
an explicit instantiation flooding that consumes all the resources in an
object will happen, which is a self DoS attack. However, since the object
creation is distributed, the example in Figure. 7.10 shows an implicit
attack because of targeting the same server by different clients.

Static analysis of the instantiation example. Consider the example in
Figure. 7.10. For the run method of class ClientDistribution, the following
cycle is detected:

the initialization of the attacker calls run

run creates a client object ¢
run calls c!connect(s)

142

Examples of Possible DoS/DDoS Attacks

run terminates and calls itself recursively in an asynchronous
call.

The run call has a call edge to the flow graph of connect (call 1), and
connect has a call edge to the flow graph of register (call 2). The call to
register waits for completion of register since it is a blocking call, and the
database calls (call 3) made by register wait for the completion of these
database calls. The code for the database is not given, and therefore the
analysis will be worst-case by considering the termination of such calls
non-reachable (unless indirectly found strongly reachable). The control
flow graph is given in Figure. 7.11. The set of weakly reachable call
nodes of the cycle, i.e., calls, are {1,2,3} with optimistic detection, and
{1} with pessimistic detection. And the set of strongly reachable calls,
i.e., comps, is empty in both cases. This gives that the set of potentially
flooding calls, given by calls — comps, is {1} (c.connect) with pessimistic
detection and {1, 2, 3} with optimistic detection. However, in this case,
call 1 does not reflect a real flooding since each call is on a separate
object, but call 2 (s.register) and call 3 (the db calls) do. We detect strong
flooding. The example may be improved by using suspending calls (using
await) on the database operations.

7.6.1 Modification of the Static Detection to DDoS

As seen in Figure. 7.2, a DDoS attack on a server is often made through
many innocent clients. This is hard to detect from the server side at
runtime since each client may behave in an acceptable manner, and since
the real attacker is hidden behind the clients. The original detection
method [14] is not oriented towards such attacks, since it is not aware
of the number of generated objects of a class. Moreover, the approach
is using as an assumption that an execution has a bounded number of
objects. Nevertheless, if applied to the example in Figure. 7.10, it will
report a possible attack on the clients (treating all customers as one
object), but not an attack on the Service server, which is the real attack.
A draw-back is that there could be reported more false positives due to
over-approximation.

A weakness with pessimistic detection is that the connect call, but
not the register call, would be reported. Although the former call leads
to the second, the detection result is not appropriate since a harmless

143

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

call is reported an not the harmful one. Another weakness is that the
attack would not be discovered when removing the connect call from the
attacker class and instead letting the register call be caused by the init
method of class Client. (In this case the method parameter s should be
transferred as a class parameter.) The reason for this is that indirect calls
due to object generation are ignored (since by assumption there cannot
be unboundedly many such calls). To compensate these weaknesses, we
make two modifications wrt. [14], described below:

First, we modify the static analysis by viewing a new C' statement
as a special kind of a call statement with its own associated call number
and a call edge to a copy of the init code of class C, which again may
have further calls, treated as usual. More precisely, we treat new C' as a
simple call statement (like new!C/(classparameters) except that the new
object is not known before the call) since the new statement does not wait
for the init to complete. This allows us to see the generation of objects
and to follow all implicit calls from the initialization code. Thus we can
detect instantiation flooding attacks depending on call indirectly caused
by object initialization. We may assume that an initialization cannot
generate flooding in itself since each initialization is on a new object.
Thus the call numbers associated with object creation can be included
in comps. Furthermore, one more call on a new object cannot generate
flooding on this object (unless in a cycle after the object creation). The
same goes for a finite number of calls on a new object, if it can be detected
statically that all these calls have the same new object as callee. These
calls can also be included in comps. In the example of Figure. 7.10, we
detect that the call c!connect is to the new Client object, and this call will
then not be reported with the improved static detection.

Secondly, since implicit calls are important in DDoS attacks, we
follow all call edges in the calculation of WR nodes, even in the
pessimistic version. The resulting improved static detection method
can then also detect the hidden attacker in all versions of the instantiation
example, as shown below. Since the improved static detection method
depends on static detection of same callee, we briefly discuss how to
incorporate this: Two calls in the same method activation have the same
callee if the callee is the same variable, and it is either

* aread-only variable (such as a parameter),

144

Conclusion

* alocal variable and there are no updates on this variable between
the calls, or

* a field variable and there are no updates on it nor suspension
between the calls.

The first of these calls may be an object creation = := new C(...),
and the second a call with x as callee (provided one of the conditions
above are satisfied for x). This suffices for the example with the two
calls ¢c:=new Client() and f:=c.connect(s). This detection could be
improved in several ways. In particular, we may detect that the actual
parameter s in the latter call refers to the same object for all activations
of run since s is a read-only class parameter and the recursive run call
is on the same object (since this is read-only). This could be used in the
detection algorithm to see that all s.register calls refer to the same server
s, which gives a clear indication of a DDoS attack.

Instantiation example revisited. We reconsider the example in Fig-
ure. 7.10, using the improved static detection algorithm. Now the create
¢ node of Figure. 7.11 is represented as a call, say call 0. For the original
version of the example, the initialization is empty so call O is considered
terminating (0 € comps). We get calls = {0,1,2,3} where O corre-
sponds to the creation of the new C object. But call O (c:= new Client)
and call 1 (c!connect) do not generate flooding since they are on a new
object. Thus comps = {0, 1}. This shows that there is a possibility of
call flooding through call 2 (s.register) and call 3 (the db calls); and these
correspond to actual attacks. For the modified version of Figure. 7.10,
where the register call is caused by the Client initialization, we get a
similar analysis except that there is no call 1 (c!connect) since this is in-
corporated in the Client initialization. Thus we get that calls = {0, 2, 3}
and comps = {0}. Here the presence of call 0 enables us to detect call
2 in the (modified) initialization code and thereby also call 3 (and both
correspond to possible flooding).

7.7 Conclusion

In this paper we have considered denial of service attacks, formulated in a
high-level imperative language based on concurrent objects communicat-

145

7. Paper 3: A Language-Based Approach to Prevent DDoS Attacks

ing by asynchronous calls and futures, thereby supporting asynchronous
as well as synchronous communication. The language includes mecha-
nisms for process control allowing non-trivial process synchronization by
means of cooperative scheduling. We adapt a static detection algorithm
developed for analysis of flooding to this setting, in order to detect pos-
sible denial of service attacks. This kind of static analysis is useful in
the financial sector, because the aspect of trust between customers and
service providers is essential, perhaps more so than in other application
areas, and therefore static detection is valuable.

We have illustrated the approach on examples of distributed systems
in the financial sector, including versions of a one-to-many attack and a
many-to-one attack. In the first example a financial institution notifies
a number of subscribing customers. We have seen that a revision of the
basic notification software used by the financial institution, intended to be
more efficient, actually implies a one-to-many attack on the subscribing
customers. In this example, the financial institution was responsible for
the attack, which could lead to loss of reputation and of customers. Static
detection solved the situation here since the detection is made before
the program is run. The underlying detection algorithm is sound for
call-based coordinated attacks, provided the source code of the objects
involved in the coordinated attack is available. In the many-to-one
example, an attacker object causes an attack by using an unbounded
number of clients, each innocent, to flood the same server s, letting a new
client be created in each cycle.

In this paper we have adapted a general algorithm for detecting
flooding [14] to the setting of DDoS and improved it to deal with
unbounded object generation and to better reveal hidden attacks. Our
framework can deal with advanced programming mechanisms including
suspension and first-class futures considering distributed systems at a
high-level of abstraction. It is therefore relevant for high-level modeling
and prototyping of distributed software solutions. In future work,
we suggest to complement the static checking with dynamic runtime
checking since static detection methods give a degree of over-estimation.
This could give a more precise combined detection strategy.

Acknowledgments. We thank the reviewers for significant feedback.
This work is supported by the IoTSec project, the Norwegian Research

146

Conclusion

Council (No.248113/070), and by the SCOTT project, the European
Leadership Joint Undertaking under EU H2020 (No. 737422).

147

Bibliography

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

Ashford, W. DDoS is most common cyber attack on financial
institutions. https://www.computerweekly.com/news/4500272230/
DDoS-is-most-common-cyber-attack-on-financial-institutions/.
2016.

Boer, F. D. et al. “A Survey of Active Object Languages”. In: ACM
Comput. Surv. vol. 50, no. 5 (Oct. 2017), pp. 1-39.

Chang, R. et al. “Inputs of coma: Static detection of denial-of-
service vulnerabilities”. In: 2009 22nd IEEE Computer Security
Foundations Symposium. IEEE. 2009, pp. 186—199.

Col6n, M. and Sipma, H. “Synthesis of Linear Ranking Functions”.
In: Proceedings of the 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. TACAS
2001. London, UK, UK: Springer-Verlag, 2001, pp. 67-81.

Din, C. C. and Owe, O. “A sound and complete reasoning
system for asynchronous communication with shared futures”.
In: J. Logical and Alg. Methods in Prog. vol. 83, no. 5 (2014),
pp- 360-383.

Douligeris, C. and Mitrokotsa, A. “DDoS Attacks and Defense
Mechanisms: Classification and State-Of-The-Art”. In: Computer
Networks vol. 44, no. 5 (2004), pp. 643—-666.

Gulavani, B. S. and Gulwani, S. “A numerical abstract domain
based on expression abstraction and max operator with application
in timing analysis”. In: International Conference on Computer
Aided Verification. Springer. 2008, pp. 370-384.

Jensen, M., Gruschka, N., and Herkenhoner, R. “A survey of
attacks on web services”. In: Computer Science-Research and
Development vol. 24, no. 4 (2009), p. 185.

Johnsen, E. B. and Owe, O. “An asynchronous communication
model for distributed concurrent objects”. In: Software & Systems
Modeling vol. 6, no. 1 (2007), pp. 39-58.

149

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

150

Johnsen, E. B. et al. “ABS: A Core Language for Abstract
Behavioral Specification”. In: Formal Methods for Components
and Objects. Ed. by Aichernig, B. K., Boer, F. S. de, and
Bonsangue, M. M. Springer, 2012, pp. 142-164.

Karami, F., Owe, O., and Ramezanifarkhani, T. “An evaluation of
interaction paradigms for active objects”. In: J. Logical and Alg.
Methods in Prog. vol. 103 (2019), pp. 154-183.

Lambert, K. Protecting Financial Institutions from DDoS Attacks.
https://www.imperva.com/blog/protecting-financial-institutions-
from-ddos-attacks. 2018.

Meadows, C. “A formal framework and evaluation method for
network denial of service”. In: Computer Security Foundations
Workshop. Proceedings of the 12th IEEE (1999), pp. 4-13.

Owe, O. and McDowell, C. “On detecting over-eager concurrency
in asynchronously communicating concurrent object systems”. In:
Journal of Logical and Algebraic Methods in Programming vol. 90
(2017), pp. 158-175.

Qie, X. and Larry Peterson, R. P. and. “Defensive programming:
Using an annotation toolkit to build DoS-resistant software”. In:
CM SIGOPS Operating Systems Review, 36(SI) (2002), pp. 45-60.

Ramezanifarkhani, T., Fazeldehkordi, E., and Owe, O. “A
Language-Based Approach to Prevent DDoS Attacks in Distributed
Object Systems”. In: 29th Nordic Workshop on Programming The-
ory. (extended abstract, 3 pages). Turku Centre for Computer Sci-
ence, Nov. 2017.

Urrico, R. Denial of Service Attacks Overwhelmingly Target
Financial Services: Verisign. https://www.cutimes.com/2018/
07/03/denial - of - service - attacks - overwhelmingly - target- fi/
?slreturn=20190713065814/. 2018.

Wilczek, M. Why Banks Shouldn’t Be in Denial About DDoS
Attacks. https://www.globalbankingandfinance.com/why-banks-
shouldnt-be-in-denial-about-ddos-attacks/. 2018.

Bibliography

[19] Zahoor, Z., Ud-din, M., and Sunami, K. “Challenges in Privacy
and Security in Banking Sector and Related Countermeasures”. In:
International Journal of Computer Applications vol. 144, no. 3
(2016), pp. 24-35.

[20] Zargar, S. T., Joshi, J., and Tipper, D. “A survey of defense
mechanisms against distributed denial of service (DDoS) flooding
attacks”. In: IEEE Comm. Surveys Tutorials vol. 15, no. 4 (2013),
pp- 2046-2069.

[21] Zheng, L. and Myers, A. C. “End-to-end availability policies
and noninterference”. In: Computer Security Foundations, 2005.
CSFW-18 2005. 18th IEEE Workshop (2005), pp. 272-286.

151

CHAPTER 8

Paper 4¢: A Language-Based Approach to
Smart Contracts Supporting Safety
and Security

Authors: Elahe Fazeldehkordi, Olaf Owe

Publication: Submitted to the Journal of Logic and Algebraic Program-
ming (JLAMP), April 2020, 51 pages. (under revision)

Abstract

The concept of smart contract represents one of the most attractive
uses of blockchain technology and has the advantage of being
transparent, immutable, and corruption-free. We propose a new
approach to define smart contracts, offering a similar trust at the
software level, even without use of blockchain. This approach
can apply to a wide range of contracts, not only financial ones,
and opens up for lightweight smart contracts without the resource
and energy costs of blockchain. Our framework integrates trust
at the language level through the notion of history objects. For
each contract, a history object will record all related transactions.
The history objects are specially protected objects, with read-
only access at the programming level. Contract partners may
interact with the history objects through predefined interfaces. We
show that a history object can be used to provide safety, security,
and privacy, as well as runtime checking. A history objects can
provide runtime checking of specified behavioral properties of the
contracts.

We present a framework for lightweight smart contracts
with associated history objects. Our framework consists of an
executable and imperative language for writing smart contracts and
specifications by means of invariants referring to the transaction
history of a contract, as well as a verification system. The
framework is oriented towards simple verification, and we are

153

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

able to do sequential style reasoning in a class-wise manner. We
demonstrate the approach on an auction system.

8.1 Introduction

Blockchain technology started initially with a new currency called Bitcoin
that was based on automated consensus between networked users, not
required to trust each other. Financial industries related to cryptocurrency
have been seen as primary users of this technology and have resulted in
the most widespread applications of blockchain, but its applications go
far beyond financial ones. The concept of smart contracts represents one
of the most attractive uses of blockchain technology that has appeared
recently.

A smart contract is a program that executes the terms and conditions
of an agreement that are predefined by mutually distrusting participants of
the agreement. These programs are stored on blockchain, and their correct
execution is enforced by the consensus mechanism of the blockchain
without depending on a trusted authority. Compared to traditional
contracts, smart contracts provide trust with low legal and traditional
costs, no risk of tampering and fraud, no interference or trust issues of a
third party. Apart from these advantages, smart contracts are automatic,
fast, and transparent. The number of applications of smart contracts
in industry and everyday life is countless. Most applications include
digital identity, banking, tax records, insurance, real estate and land title
recording, supply chains, [oT, gaming and gambling, auctions, authorship
and intellectual property rights, life science, and health care.

Despite many advantages, there are also some drawbacks in smart
contract technology. The concept of smart contracts is built on blockchain;
therefore, it is expensive with respect to time, resources, and power
consumption. Besides that, since it has the consensus mechanism of the
blockchain at the bottom, privacy is discarded. Our ambition is to suggest
an approach that avoids these disadvantages.

In this work, we propose a new construct at the programming language
level that supports the main advantages of smart contracts based on
blockchain, including trust, immutability, and transparency, but is less
expensive to implement since it does not need to use blockchain. It gives
trust at the application layer without use of blockchain. However, it can

154

Introduction

also be combined with the blockchain technology in order to improve the
overall trust level on insecure platforms. Furthermore, our approach offers
better privacy control and comes with a theory for formal specification
and verification.

More specifically, we propose a “container box” for recording all
calls and futures (see Section 8.4.4), related to the interactions involving a
given contract service provider. This “container box” will then hold
all transactions such as calls to/from the contract and future values
generated by the contract, including present and past communications.
For this reason, we will call it a history object. It can also be seen as
a “ledger” since it records all the transactions involving communication
with the service provider. The transaction history is generated by the
underlying system, and programmers have only read access to history
objects. We associate one history object to each contract. We predefine
classes and interfaces for these history objects, restricting write access.
These interfaces and classes may be extended through inheritance in
the same way as in object-oriented languages, something which allows
addition of safety, security, and privacy aspects. The redefined history
classes must adhere to the restriction of no write access.

The need for formal verification of smart contracts is pointed out
in several papers [2, 17]. Solidity is the most dominant language used
for writing smart contracts; however, a main drawback with Solidity is
that it is not well suited for specification and reasoning since it lacks a
formal semantics and is not oriented towards program reasoning [40].
For instance, class-wise verification is not supported, and even soundness
can be a problem. In case of errors, Solidity uses roll-backs to return to a
previous state, reverting all the modifications made until the last safe state.
Reasoning about roll-backs is challenging since the cause of a roll-back
can be implicit.

We therefore consider a high-level language that allows better
reasoning support than Solidity. Our approach avoids the mentioned
problems with Solidity. Furthermore, our language gives fewer runtime
errors and less need for roll-backs, which simplifies reasoning. In
particular, our approach supports class-wise verification, i.e., we can
verify a class invariant by looking at the class itself (and inherited code
from superclasses), without looking at other classes nor prior knowledge
of the environment. This is essential for scalability and open-ended
program development, which are highly relevant factors for contracts.

155

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

In order to define history objects and contracts as autonomous dis-
tributed objects, our language is based on the active object paradigm [39].
This paradigm offers a natural and high-level understanding of service-
oriented systems, and with a modular semantics, which is essential when
we turn to specification and verification issues. Clients, contract, and
history objects are then described by concurrent and distributed objects.
The language builds on the principle of interface abstraction, i.e., remote
field access is illegal, and an object can only be accessed through an inter-
face. Each object has one or more interfaces, and the only possible way
of object interaction is through the methods defined in the corresponding
interfaces. Our language combines first-class futures [5], which is often
used in active object languages, and a restricted version of cooperative
scheduling [10]. This novel combination gives flexible method interac-
tion, scheduling control, simplified reproducability of executions, as well
as simplified verification. Furthermore, we show that the history objects
provide the functionality of the future mechanism, and may play the role
of futures. Our solution avoids the need for garbage collection of futures
and improves the privacy control of future values.

We demonstrate our approach on a smart contract example, namely
the auction example used by Ahrendt, Pace, and Schneider in [2]. We
exemplify an active object defining an auction and an associated history
object, and demonstrate how our approach can be used to provide security,
privacy, safety, as well as high-level functional specifications that can
be checked at runtime. We show how the verification of the auction
contract specification can be done in a simple manner, by means of
sequential-style, class-wise reasoning.

The main contributions of this paper are the notion of history objects
giving rise to lightweight smart contracts and a framework integrating this
notion, by developing an imperative language for contracts, an executable
functional language for writing smart contract specifications, and a theory
for class-wise verification, with support of privacy, security and model
checking of contract specifications.

Outline. Section 8.2 describes relevant background on smart contracts
and blockchain, and Section 8.3 introduces an underlying programming
and specification language. Section 8.4 presents our suggested framework
based on this language, and Section 8.5 presents our formalization on an
auction system. Section 8.6 discusses how to verify contracts, including
an application to the example. Section 8.7 gives a comparison with

156

Smart Contracts and Blockchain

Solidity and blockchain. The two last sections (8.8 and 8.9) present
related work and a conclusion, respectively.

8.2 Smart Contracts and Blockchain

In systems operating with a centralised model, parties who wish to trade
with each other have to do this via the central system, which the parties
should trust. Therefore, all the trust should be placed on the central
system, and all the business transactions depend on this third party. This
dependency could be costly for both parties of a transaction. Smart
contracts came to solve these problems. The term smart contract was
introduced by Szabo in 1997 [36]. It refers to simple programs that
store rules for negotiation and terms of a contract. These terms will then
be checked by smart contract. Using smart contracts, untrusted parties
can trade directly with each other. Smart contracts are stored on the
blockchain, and each party has a copy of it.

A blockchain is a distributed /edger that is open to anyone; it stores
the information across a network of computers. In general, a ledger is a
list of records that can be in any form, like a notebook, or an excel file.
In blockchain, a ledger is given by the complete information about all
transactions of some kind, typically transactions with financial aspects. A
distributed ledger is distributed across many locations instead of placing
it in a fixed location. Blockchain is a chain of blocks. Each block holds
some data together with the hash of the block, which is unique just
like a fingerprint, and also the previous block’s hash. The stored data
inside the block depends on the type of blockchain; for instance, the
Bitcoin blockchain stores details about the transactions, like the sender,
the receiver, and the number of coins. Immediately upon creating a block,
its hash is calculated. Any tampering inside a block will cause its hash to
change, and therefore it makes the next block and all the following blocks
invalid since they no longer store a valid hash of the previous block.

The use of hashes is not enough to prevent tampering, since computers
nowadays can calculate hundreds of thousands of hashes per second,
which means that someone can tamper with a block and calculate all the
hashes of the other blocks again to make the blockchain valid. In order
to mitigate the risk of tampering, a blockchain also uses a mechanism
that is called proof-of-work, a mathematical computation that slows down

157

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

the creation of the new blocks. This mechanism makes it harder to
tamper with the blocks because if someone tampers with one block,
he/she must calculate the proof-of-work for all the following blocks
again. Therefore hashing and the proof-of-work mechanism provide trust
in blockchain. Nevertheless, there is one more way that blockchains
can secure themselves, namely by being distributed. Blockchain uses a
peer-to-peer network, and everyone can join. When someone joins the
network, he/she receives a full copy of the blockchain. The node uses this
to verify that everything is in order. When someone creates a new block,
that block will be sent to everyone on the network, each node can verify
the block to make sure that it has not been tampered with, and if validity
is accepted by the majority of the nodes, each node adds this block to
their blockchain. All the nodes in the network create consensus, agreeing
about which blocks are valid and which are not. This consensus promotes
transparency and makes blockchains corruption-proof. Other nodes in the
network reject those blocks that are tampered with. Therefore, without
the consent of the majority of the nodes, no one is allowed to add a
transaction block to the ledger. Besides, once a transaction block is added
to the ledger, nobody can change it. So, no single user in the network
can modify, delete, or update the blocks. This characteristic promotes
immutability (i.e., something that cannot be changed) and makes sure
that the blocks remain unchanged. All the fundamental characteristics
of the blockchain technology are also shared with smart contracts since
smart contracts are based on the blockchain technology.

Blockchain, coupled with smart contracts technologies, removes the
dependence on central trusted systems between trading parties. If any
party tries to change a transaction on the blockchain, it can be detected and
prevented by all the other parties on the network. Since smart contracts
run on the blockchain, they behave like a single massive secure self-
operating computer program that executes automatically under certain
conditions, but without the risks of tampering or fraud, extra costs, distrust
or interference issues of a third party.

Smart contracts can be applied to many different areas. Smart
contracts allow not only exchange of money, but also property, stock,
or anything else without having to go through a lawyer, a notary or
other centralised service providers. They entirely cut out the need for a
middle man. Banks, for instance, can use smart contract to issue their
loans or to offer automatic payments, insurance companies can use it to

158

Smart Contracts and Blockchain

process specific claims, or postal companies can use it for payment on
delivery. Other examples of smart contracts deal with escrow agreements,
employment agreements, auctions, and voting systems.

Ethereum, the most prominent smart contract platform today, was
first proposed in late 2013 by Vitalik Buterin [9]. Ethereum is an open
software platform and is based on blockchain technology that enables
developers to build and deploy decentralised applications. It focuses on
running code for decentralised applications that deploy on its network.
When we write such decentralised applications, we write them in the form
of smart contracts. Ethereum’s blockchain not only allows currencies to
reside on it but also software code. Parties or smart contracts in Ethereum
can communicate with each other via transactions, in order to distribute
assets between each other.

In Ethereum, a smart contract is like an object in object-oriented
languages such as C++ or Java. Objects in Ethereum are parties. Each
party can have its own state and logic, similar to objects having variables
and methods in object-oriented languages, especially in the active object
paradigm where the objects are distributed and autonomous and can have
active behavior.

Several programming languages have been used for writing smart
contracts on Ethereum like Solidity, Serpent, and Lisp Like Language
(LLL). LLL is similar to the Lisp language and was used mostly in the
very early history of Ethereum and is probably the hardest to write in.
Serpent is similar to the Python language and was popular in the early
days of Ethereum, but the most popular and functional one currently is
Solidity that is very similar to JavaScript.

Solidity is a contract-oriented, high-level programming language
(high-level programming languages refer to highly abstracted languages
that are far easier to use for humans). It is statically typed; it supports
inheritance, libraries, and complex user-defined types, among other
features. Solidity builds on Ethereum Virtual Machine (EVM), which
executes an associated low-level bytecode language. This is similar
to bytecode as used in the Java JVM or C# CLR. There are several
compilers (e.g., SolC, a browser-based compiler) that compile smart
contracts written in Solidity into EVM bytecode, which can then be
deployed into the Ethereum blockchain and will be ready to receive
transactions. So the entire lifecycle of a smart contract in Ethereum is as

159

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

follows:
Solidity — EVM bytecode — Deployment

In the EVM machine code, there are several operations. In Ethereum,
each operation has a cost, in order to execute the smart contract, all the
operations need to be paid. Ethereum has its own currency, which is
named ether. Every transaction and execution of bytecode costs ether.

Gas, on the other hand, is a unit that translates into the ether; for
instance, if there are several instructions, the first instruction might cost
two gas, and two gas get translated into some number of ethers. The
reason for separating gas and ether is to decouple the price of an operation
with the market price of an ether. The gas price for an operation is
constant, and it cannot easily be changed; however, we can change how
much each gas costs in terms of ether. In this way, we decouple the market
price of an ether with how much we actually pay for each operation. A
list of operation codes and how much each operation costs in terms of gas
can be found in the Ethereum yellow paper (with the formal definition
of the Ethereum protocol) [38]. In order to distribute assets between
different parties in Ethereum smart contracts, each party sends ether via
the transactions.

8.3 A High-Level Language for Active
Object systems

Before defining history objects, we need an underlying language for
defining transactions, histories, and behaviour. We present a high-level
language supporting active objects, based on the Creol/ABS language
family [21, 25].

In particular, we define a functional language for defining interfaces
(Section 8.3.1), data types and functions (Section 8.3.2), and then an
imperative language for defining classes supporting concurrent active
objects (Section 8.3.3). Our language is strongly typed, and object
variables are typed by an interface (not a class). In order to enable
verification and specification of behavior, we build on language constructs
for specification and reasoning, supporting class-wise reasoning [29,
30]. This means that the clients of a contract can rely on the abstract

160

A High-Level Language for Active Object systems

specification of the interface of the associated history object rather
than program code. Furthermore, they may interact with the history
objects if they do not trust the contract objects. The interfaces define
visible methods and their specifications. A class may have several
interfaces. Methods of a class that are not exported through an interface
are considered private.

8.3.1 Interface Definitions

An interface defines a view of a class object, in terms of methods, together
with an invariant describing behavior and related data types and functions.
We define the syntax of interfaces with an augmented Backus-Naur Form
(BNF) regular expression:

interface | [[17]] [extends I]{
[[with!]1[Tm((Tx*) 1" 1"
[type and function definitions 1*
[invar AJ*

}

The superscripts * and * are used to denote repeated parts (* for zero
or more and * for one or more repetitions), and the meta-symbols |]
(without a superscript) are used to indicate optional parts. In order to
allow generalized interface definitions, an interface may by parameterized
by a number of types or interfaces using the syntax [I*] (where the
brackets are part of the syntax). For example, interface History|l] is
generalized over /.

We let I denote an interface name, 7" a type name, m a method name,
x a formal parameter, and A an invariant assertion, which may refer to the
local transaction history h, and user-defined functions on the history. An
invariant is an assertion that must be true before and after each method
execution. Data types and function definitions are explained in the next
subsection.

The BNF interface definition shows how to define an interface / by
extending a number of already defined interfaces (™), defining a number
of methods, types, and functions. A (directly or indirectly) extended
interface is said to be a superinterface of /, and interface [is said to
be a subinterface of its superinterfaces. Note that a method may have a

161

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

interface Bidder {
Void newBid(Nat x) // inform a bidder that x now is the highest bid
Void youwon(Nat x) // inform the bidder that he/she won with bid x
Void winner(Bidder o) // method to inform a bidder/owner that o won

}

interface Auction {
Nat highest() // gives the highest bid in the current auction
with Bidder // only bidders may call the methods below
Void open() // fo open a new auction
Bool close() // to close the current auction
Bool makeBid(Nat x) // to place a bid in the current auction

Figure 8.1: Interfaces for the auction example

cointerface, given by a with clause, which defines the (minimal) interface
of the caller object. An object calling the method must be typed by a
subinterface of the cointerface.

Examples of interfaces for an auction system are given in Figure 8.1,
and a cointerface is used. Interface Bidder defines the methods of bidder
objects, and interface Auction defines the methods of the auction service
provider. The cointerface used in interface Auction restricts clients
calling open, close, and makeBid to Bidder objects (i.e., objects of classes
implementing the Bidder interface).

A cointerface is needed when a method body is making calls back
to the caller. In order to make these call-backs type-correct, we need
to declare an interface for the caller (by a with clause). For instance,
a method defined after the clause with Bidder, knows that the caller
supports interface Bidder and is therefore allowed to make (type-correct)
calls to methods of that interface. In the example below, Bidder is such a
cointerface.

Our language uses interfaces to describe distributed objects, which
may have active behavior when desirable, and uses data types to define
data structure local to an object. Since an interface declares no state
variables, an interface can only talk about the transaction history h.
Moreover, by means of functions defined over the history, one may
express essential aspects of objects of the interface and define an abstract

162

A High-Level Language for Active Object systems

state. In a distributed, open-ended, and unpredictable environment,
reasoning by means of history invariants is more suitable than reasoning
based on pre- and post-conditions, since pre/post-conditions on the callee
side will in general need to refer to variables not found on the caller side
(when these conditions need to talk about more than just the input/output).
We will restrict ourselves to executable history invariants, and include
runtime checking of invariants by means of history objects.

In the next section, we define a functional language for defining data
types and functions, and then use this to define transactions, histories,
and contract specifications.

8.3.2 Data Type and Function Definitions

For the definition of data types and functions, we use a syntax typical for
strongly typed functional programming languages with pattern matching.
We consider an executable functional language for data types and
functions. As this language also is used for specifications, we obtain an
executable specification language. A user-defined data type is defined
by (named) disjoint unions (... | ...) and products (... x ...), allowing
recursive definitions. A disjoint union may look like ¢; : Fy | o @ Ea] ...
where F; is a type expression, often a product and c¢; is implicitly
defining a constructor function used to name an alternative in a disjoint
union. Thus, a data type 7' is defined by a number of constructor
functions for constructing 7" values. Each constructor function may
have a number of input parameters. For instance, the list type could
be defined by type List[T] = nil: | append: List[T] * T where nil and append
are constructor functions. As nil has no input parameters, it is called a
constant constructor. For convenience, we let the append constructor
function be denoted by the infix symbol “;” and we omit writing an empty
product. Generalized data type definitions are parameterized by one or
more types or interfaces using the syntax [I"] as before. The list type can
then be declared by the syntax:

type List[T] = nil: | _;_: List[T]xT

where the underline indicates argument positions of functions with infix
notation (and if needed, more generally for mixfix notations). The
transaction history a, b, c can then be expressed as nil;a;b;c. The
constructor functions define the set of possible values (as variable-free

163

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

constructor terms) and are implicitly defined. Standard types such as
Void, Bool, Nat, String are predefined with standard functions. The type
Void is used to represent no information (i.e., a unit type), and void is the
only value of this type.

User-defined functions (other than constructors) are defined by a
func declaration stating the input and output types of each function
and by a number of equations where the left- and right-hand sides are
expressions consisting of functions, constructor functions, and variables.
The types of these variables are declared in a var clause. We restrict
ourselves to executable functions (using mulitset-path ordering to avoid
non-termination recursion). We use the BNF syntax:

[funcf: T" — T1* // function declaration
[var [T xI*]1 // variable declaration
[Ihs =rhs[if cond 11" // function definition

Here f is a function name, [hs (left-hand side) and rhs (right-hand side)
are expressions, and cond is a boolean condition. A left-hand side defines
a pattern and may contain the special symbols _and others representing
an arbitrary pattern and cases not covered, respectively. Any variable in a
right-hand side must occur in the left-hand side.

Examples are given in Figure 8.2. The last [ength equation can also
be written as length(q ; _) = length(q) + 1. We define the ends-with operator
(ew), with infix notation using _ to indicate the argument positions as
before, expressing that a list ¢ ends with a given element x. A left-hand
side may use others to match any other case not covered by the equations
above. For instance, the last equation for ew could be replaced by the
two equations (¢; x) ew x = true and (¢; others) ew x = false.

In order to deal with partial functions, we allow error in the right-hand
side, for instance as in the definition of the above last function over lists.
By static checking, one can ensure that a function definition properly
covers all cases of possible inputs (without conflicting overlap). For
instance, if the equation last(nil) = error is omitted, the static checking
would detect that last(nil) is not defined.

8.3.3 Imperative Class Language for Active Objects

We now show a way of defining classes. For the purpose of defining
classes, we introduce a high-level language combining the active object

164

A High-Level Language for Active Object systems

func length : List[T] — Nat // list length
func _ew :List[T]*T — Bool // ends-with test
func last : List[T] — T // finds the last element, if any

var List[T]q, T x
length(nil) =0
length(qg;x) = length(q) + 1

nil ew x = false
(g;x) ewy = if x=y then true else false

last(nil) = error
last(q;x) = x

Figure 8.2: Examples of function definitions

paradigm, first-class futures, i.e., allowing futures to be passed like
parameters to other objects, and guarded methods, i.e., identifying the
conditions under which the methods are accepted [10]. We define classes
with the BNF syntax below:

class C[[IT11[([T x]7)] [implements 7] [extends C] {
[TwI* // fields
[body] // class constructor
[[with 1] T m(Tx1*) {body} 1" 1* /7 method definitions
[type and function definitionsl* // as defined above
[invar A]® // invariant specification

}

In order to allow generalized class definitions, a class may by parame-
terized by a number of types, interfaces, and classes using the syntax
[I*] as before. A class C' may implement a number of interfaces and
extend a number of superclasses (A derived class is called a subclass, and
the classes from which it is derived are superclasses). Thus we support
multiple inheritance, but single inheritance suffices for our example. The
body of the class definition consists of a number of field declarations
and method definitions, possibly a class constructor method as well as
additional function, type, and invariant definitions. Any type or function

165

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

defined in an interface of a class is available in the class. Class parameters,
fields, methods, as well as type and function definitions, are inherited
in a leftmost, depth-first traversal of the inheritance tree. A class must
implement the methods of its interfaces and respect their invariant(s). For
each method in an interface, the type of the parameters and cointerface
(if any) must be a subtype of the types in the corresponding method
definition in the class, and the result type in the class must be a subtype
of that in the interface. A class invariant A may refer to class parameters
and fields as well as the transaction history.

We allow an inherited name to be qualified by the superclass name
in order to deal with inheritance of multiple definitions of the same
name. For instance, if a class extends A, B, and both superclasses have
a method m, then the subclass may refer to these as m@A (or just m)
and m@B. Invariants and implements clauses are not inherited, which
allows a subclass to freely redefine methods and invariants without the
semantic constraints of the superclass. When desired, an invariant O K of
a superclass C' can be inherited by stating invar O KQC'. Similarly, we
may reuse an invariant from an interface / by saying OK@QJ. We refer
to [30] for more details.

We consider a syntax similar to that of the Creol/ABS language family.
Let v denote a variable, o an object variable (an object reference), or f a
future variable (a reference to a future object), e an expression (assumed
to be pure), and m a method. A variable is either a field w, a local variable
y, or a formal parameter x (assumed to be read-only). We let this denote
the current object, and a method has fid and caller as implicit parameters,
giving the future identity of the call and the caller object, respectively.
We use capitalized words for types and interfaces, while variable and
method names start with a lower-case character. Class names are written
in upper-case characters.

A method body has the form:

when guard; T y; statements; return e

The body may have an (optional) initial guard, written when guard,
in order to make sure the starting state is appropriate, otherwise the
execution is delayed. The rest of the body consists of a number of typed
local variables (T y), a statement list, and a final return e statement,
where the value of the expression e is the resulting value, which must

166

A High-Level Language for Active Object systems

be of the method result type (the return statement return void may be
omitted).

The guard is either a boolean condition, which must be satisfied when
the method starts, or the special construct f7, which checks that the future
f is resolved. A when clause can be compared to the notion of method
modifiers in Solidity, but rather than resulting in a runtime error as in the
case of method modifiers, a when clause will delay the method execution
to a state where the guard is satisfied.

Methods with initial guards are expressive enough to avoid blocking
calls and blocking get statements. The resulting value of a future
generated by one method execution can be picked up in a guard by
another method execution, either on the same object or on another object
(which knows the future). Methods with an initial guard are semantically
simpler than methods with internal guards, as suggested in [10]. The
combination of first-class futures and initial guards has not been used
before.

We use the syntax if cond then s [else s] fi for if-statements (with op-
tional then-part) and while cond do s end for while-statements. Assign-
ments have the syntax v := e where v is a variable and e a (pure) expres-
sion. We may abbreviate 7' v;v :=etoT v :=e.

The statement syntax v : ++ e is permitted when v is a list, to express
that an element e is appended at the tail of the list v (this can be seen as
an abbreviation of the assignment v := (v; €)). This statement adheres
to the write-once discipline since it cannot change previously written
elements. This discipline gives a protection comparable to blockchain.
We, therefore, allow the : ++ statement (and only by the underlying
system), but not assignment on transaction lists.

We consider five kinds of method calls. In order to avoid or control
blocking calls, we combine one-way asynchronous calls, guards, and the
future mechanism, which is popular in active object languages.

* A synchronous (or blocking) call has the syntax v := o0.m(€), where
o is the callee, m the called method, and e the list of parameters.
The caller is blocked until the result is available. The method result
will be assigned to v (when the callee is the same object as the
caller, the call reduces to an ordinary stack-based local call).

* A simple asynchronous call has the syntax olm(e). The caller is

167

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

not blocked and cannot access the result value. It is used when the
caller does not need the result value.

* A broadcast has the syntax list!m(e) where list is a list of
objects. The caller is not blocked, and the result values are not
communicated to the caller.

* An asynchronous call has the syntax f := olm(e) where f is a
future variable declared with type Fut[T] where T is the return
type of m. The future variable f is assigned a new call identity (a
reference to the future object) uniquely identifying the call. This
identity may be communicated to other objects. The caller is not
blocked. In order to obtain the value returned from the call, the
caller object (or another object that knows the future identity) may
perform v := get f where v is a program variable of type 7". This
statement will block if the future is not resolved, otherwise the
result value is copied into v.

* An error handler can be appended to an assignment-like statement,
including assignments, incremental assignments, synchronous calls,
and get statements, using the syntax < s > where s is the list of
statements to be performed when the execution of the statement
results in an error. And if there is no handler, the current method
returns an error. For instance list : + + last(l) < skip > will
have no effect when the [ast function returns an error (when [is
empty). Without the handler, the method would result in an error.
More advanced forms of exception handling would be beyond the
scope of this paper.

The combination of futures and guards allows a programming
style without blocking calls. For instance, the blocking call to
m in the code fragment = := o0.m(..);s where s is the rest of the
body, can be replaced by the non-blocking call to m in the fragment
f=om(..);this!n(f) where n is defined as the guarded method
Void n(Fut[T] z){when f7;T = := get f;s}. The guard ensures that
the get command will success immediately. We here assume s is without
local variables and return (local variables can be transmitted as parameters,
and returns can be handled by delegation, using the mechanism of [29]).
For simplicity, we will not allow local synchronous calls of guarded

168

The Proposed Framework

methods. This ensures that the history will determine the execution order
since it determines all external inputs, and there is no other internal source
of non-determinism.

The implementation of guarded methods involves cooperative schedul-
ing, letting each object have a process queue. When the guard is not
satisfied, the executing process (the method invocation) is placed on the
object’s process queue, and the object becomes idle. When idle, an object
may continue with an enabled process from its queue or start an incom-
ing call (say, taking the oldest enabled option). A suspended process is
enabled when the guard is satisfied. An operational semantics for our
language can be defined from the set of operational semantics outlined
in [26] by selecting the rules for our set of language features, including
first-class futures and suspension (the restriction to initial guards is en-
sured by the syntax and need not be reflected in the operational rules).
Rules for exception handling and the recording of transactions (by put
calls) must be added.

An example of a class defined in this language is given in Figure 8.3,
showing a class implementing the Auction interface given in Figure 8.1.
It defines class AUCTION with a number of fields and invariants. The
invariants restrict the values of the fields of Auction objects when idle.
The example illustrates the use of the implicit parameter caller, and the
methods open, close, and makeBid use a cointerface Bidder to restrict the
callers to Bidder objects. This is needed for type correctness since the
caller of open is assigned to owner, which is typed by Bidder, and method
close sends a message to the owner object through the Bidder interface.
A similar discussion applies to makeBid as well, whereas method highest
must not have a cointerface since none is given in the interface. An
implementation of a method must have the same (or wider) cointerface
as in the interface.

8.4 The Proposed Framework

We consider the setting of distributed concurrent objects. A smart contract
in this setting is reflected by an object providing a certain service to the
environment. Such an object is called a contract object. We assume a
smart contract supports a predefined interface Contract (i.e., the class of
the object implements interface Contract). Consider a contract to be used

169

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

class AUCTION implements Auction {

Bool isopen:=false; // tells if the auction is open or closed
Nat highBid:=0; // the current high bid

Bidder highBidder; // the current high bidder

Bidder owner; // the auction owner

List[Bidders] bidders:=nil;

invar isopen=(owner7énu11)
invar owner=null = highBidder=null
invar highBidder=null = highBid=0

Nat highest() {return highBid }

with Bidder
Void open() {if not isopen then owner:=caller; isopen:=true fi }

Bool close() { Bool ok:=(caller=owner);
if ok then // only owner may close the auction
if highBid > 0 then // isopen follows by the invariant
owner!winner(highBidder); // or: bidders!winner(highBidder);
highBidder!youwon(highBid); // to notify the winner
highBid:=0 fi;
owner:=null;
highBidder:= null; bidders:= nil;
isopen:=false fi; return ok }

Bool makeBid(Nat x){ bidders :++ caller;
if open and x>highBid then
highBid:=x; bidders!newBid(x);
highBidder:= caller; return true
else return false fi }

Figure 8.3: The auction class

by a number of clients. We suggest to add an additional object, called
the history object, associated with the contract, storing the history of
transactions related to the contract. This object is provided automatically

170

The Proposed Framework

interface Future[l] { // generalized interface definition, with I as parameter
type Trans = Transaction[l]

// Void put(Trans t) // used by the runtime system
T get(Fut[T1f) // foreach T appearing as a method result in |
// note: it may give error if the value is error

// and suspend when the future is not resolved

interface History[l] extends Future[l] {
type Hist = List[Trans] // type Trans is inherited
Trans lastTrans() // return last transaction
Hist getTrans() // return all transactions
Hist transOf(Any o) // return all transactions involving o

. other functions

Figure 8.4: The interfaces of futures and history objects

for each contract object and there is no write access to it from the code,
1.e., neither from the clients nor the contract object. Contracts as well
as history objects are defined by object-oriented classes. By default,
everybody has read access to a history object; however, this may be
restricted by use of inheritance as discussed in more detail in Section 8.4.5.
This gives a way to enforce privacy restrictions.

A history object can be seen through the History interface or through
the more limited Future interface, providing the functionality of the
future mechanism. These interfaces are given in Figure 8.4, using a
type parameter [reflecting the interface of the associated contract. The
Future interface has standard put and get methods (to store and retrieve
information), but such that the put method is not visible to programmers.
Thus when seeing a history object through the Future interface one may
use it as a future. By seeing it through the History interface one may
access the whole transaction history or use some predefined/user-defined
functions to extract parts of it.

Specifications of interfaces may be given by means of invariants
over the transaction history h, involving the history and user-defined
functions. The behavior of a contract is specified by a number of
executable invariants, defining a boolean condition over the transaction

171

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

Call message

Contract Object

Transactions

Transactions

| Transactions [#

Figure 8.5: History objects

history h. This invariant will be checked at runtime. This is further
explained in Section 8.5 and an example is given in Figure 8.12.

8.4.1 History Objects

For each contract object o we associate a history object, history(o). The
history object will keep track of all transactions involving the contract
object. A contract participant may use a history object to check and verify
that the interaction with the corresponding contract object is appropriate.
Furthermore, a history object is write-protected. Therefore no object may
manipulate the state of the history objects. From the outside, a history
object is treated like a normal object, which means that any external object
may communicate with a history object when desired, using simple or
blocking calls. This is following the spirit of [34]. Moreover, the behavior
of the history objects is given by predefined classes and interfaces, and
these may be extended upon need. In particular, there is a get method to
retrieve information, something which enables a history object to take
the role as a future (see Figure 8.5). By means of inheritance, these
class declarations can be extended and modified in the same way as
other classes (but not by ordinary programmers). In particular, one may

172

The Proposed Framework

add functionality by implementing new interfaces and methods, and one
may add protection mechanisms in redefined get methods to implement
security and privacy restrictions, for instance, by requiring that the caller
satisfies some restrictions. This means that calls to the history objects
may distinguish their behavior depending on the caller (using the implicit
parameter caller and its interface).

Notice that the history objects are provided by the underlying
software/network platform. As long as this underlying software platform
is protected from manipulation by attackers, the history objects can
be trusted since they are not accessible through the source code and
therefore cannot be modified neither by attackers nor through intentional
or unintentional programming “mistakes” in the contract object. Thus
history objects are protected against application-level attacks. To improve
trust, one can place the history object on a different physical location than
the corresponding contract object, and one may use a trusted platform if
possible. In case the underlying platform cannot be trusted, one can use
blockchain technology to ensure trust at the underlying platform level.

8.4.2 The Transaction Type Corresponding to an
Interface

In order to define the transaction history, we consider the relevant kinds of
transactions/events including invocations and completions, representing
method call messages and return from a method, respectively, as well as
get events reflecting the transfer of a future value in connection with a get
statement or blocking call. These transactions are recorded in the history
object. In addition, we may consider object generation events. In our
framework, we do not need to consider reception of invocation messages
(on the callee side) since these can be derived from the history. For our
language, we only need to consider invocation, and completion, and get
transactions.

An invocation transaction corresponds to a call to a method m with
actual parameter list € and is represented by a four-tuple of form:

call(fid, caller, callee, m(e€))

where fid is a unique identity generated for the call, a so-called future
identity, caller is the caller object identity, and callee is the callee object.

173

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

Note that the second and third arguments indicate the direction of the
message (from-to). This transaction is generated when the corresponding
invocation message is sent over the network. When the call has completed
normally or abnormally (i.e., resulted in an error), the completion of the
method by the callee generates the transaction:

comp(fid, result)

where result is the value resulting from the call, possibly error.
As discussed in Section 8.4.4, this is a generalization of the future
mechanism, in that all future values generated by the same object are
stored in the same object.

A get event reflects the transmission of a future value and has the
form:

get(fid, o)

where o is the object requesting the future value (through a synchronous
call or get statement). In order to keep the transaction history small, the
future value is not part of the event since it is given by the history (by the
completion event for fid).

For any interface or class I with methods m; (fori € {1,2,,...}), we
define the corresponding type C'all[I] by one constructor function m;
for each method m;, and with input types as given by the parameters of
method m;, and result type as given by the return type of method m;, see
Figure 8.6. In case a method of the interface has a cointerface, we also
add constructor functions for each method of the cointerface. For a class
C, then Call[C] includes constructor functions for all local methods,
exported methods and cointerface methods. The type T'ransaction|I|
is the union of such calls and completions, adding implicit parameters.
For calls the implicit parameters are the future identity, the caller and the
callee. For completions the call identity suffices. Here 7} is the type of
the kth parameter of method m;, and the different constructor functions
are separated by a bar | (disjoint union).

For interface Auction we have that the type C'all[Auction| consists
of:

open: | close: | makeBid: Nat, for methods of Auction, plus
newBid: Nat | youwon: Nat | winner: Bidder | pay: Nat,
Bidder methods

174

The Proposed Framework

type Call[ll = ... | m;: .. xTpx .. | ... // encoding calls to methods of I/cointerf
type Complll = ... | m; | ... // encoding the corresponding call completions
type Transaction[l] = call: FidxAny*AnyxCall[l]

| comp: FidxCompll]

| get: FidxAny

Figure 8.6: Predefined types for transactions

(since Bidder is a cointerface). The transactions defined for Auction
objects, defined by type T'ransaction|Auction], consist of the following
call events made by bidder objects (left column) or by the auction object
(right column):

call(fid, bidder, auction, open()), call(fid, auction, bidder, new Bid(n))
call(fid, bidder, auction, close()), call(fid, auction, bidder, youwon(n))
call(fid, bidder, auction, make Bid(n)), call(fid, auction, bidder, winner(b))

The completion events have the form comp(fid, void) and comp(fid, bool)
in this case, and the get events have the form get(fid, o).

Notation on transactions We use dot-notation to extract the different
components of a transaction. For instance, the caller of a transaction ¢ is
given by t.caller. Similarly, we write t.callee, t. fid, and t.result. This
syntax is lifted to transaction lists. For instance, the set of callers in a
transaction list trans is given by trans.caller.

The projection operator “/” is defined for lists such that a list projected
by a set gives the sublist containing all elements in the set. In particular,
trans/{.fid = f} is the sublist of transactions where the future identity is
f, and trans/{.caller = o} is the sublist of transactions where o is the
caller.

Furthermore, trans/Call and trans/Comp give the sublists of
invocation and completion transactions, respectively. The sublist
of completion transactions without error is trans/Comp/{.result #
error}. The notation last(trans/Comp/ .fid = f).result means that we
take the sublist of completions in trans that have a fid equal to f, and
then take the value of the last transaction in the sublist. For an interface /
we let the projection ¢trans/I denote the subsequence of ¢trans restricted
to call and completion transactions of methods in the interface /. For
instance, we can state that a subclass satisfies the invariant O K Q/ of

175

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

an interface I by requiring OK @] (trans/I), thereby considering the
relevant part of the transaction history.

8.4.3 The Implementation of History Objects

Finally, we can describe how history objects are implemented. The
history object of a contract of class C' contains a (private) transaction list
called trans:

List[Transaction[C]] trans := nil // restricted by read-only access

which is updated by the underlying runtime system by appending each
new message from or to the contract object, see Figure 8.7.

This list variable is read-only in the class and is only visible through
the defined methods. It is updated by the runtime system through a
predefined put method:

Void put(Transaction[C] t) { trans :++ t } // appending t to trans

When a return statement is executed at runtime by a contract object, a
completion message is generated. The runtime system will then add this
transaction to the history object by doing history(this).put(comp(fid, r))
where r is the result value. The put method is not available to the
programmer. Abnormal termination results in a put call with result
error.

Similarly, a history object includes a public get method for each
method result of type 7":

T get(Fut[T] f){when <f is resolved>; return <the future value>}

In order to check that f is resolved, we project the transaction history
taking the completions events such that fid is f, and then checking if this
sublist is empty. If not, it will have exactly one element since all future
values are unique, and we can extract the future value by .result.

A get statement is therefore possible in our setting as a blocking call
to get on the appropriate history object, or as a non-blocking call to get
using a guard on the corresponding future. Class HisTORY adds definitions

176

The Proposed Framework

class FUTURE[Contract,ContractClass](Contract contract)

implements Future[Contract] {

// contract is a class parameter providing a reference to the contract object
// Contract is the interface of the contract object

// ContractClass is the class of the contract object

type Trans = Transaction[Contract] // transactions of interface Contract
type AllTrans = Transaction[ContractClass] // frans. of the Contract class
type Hist = List[Trans] // the history seen through the Contract interface
type FullHist = List[AllTrans] // the full history, including local events

FullHist trans := nil // the history field, restricted by read-only access
// Void put(AllTrans t){trans :++ t} // used by the runtime system

T get(Fut[T1f) { // 1o get a future value when resolved
when (trans/Comp/{.fid=f})#nil; // suspending when unresolved
return last(trans/Comp/{.fid=f}).result }

class HISTORY[Contract,ContractClass] implements History[Contract]
extends FUTURE[Contract,ContractClass] {
// inherits the class parameter "Contract contract”
Trans lastTrans() {return last(trans/Trans)} // error when no last Trans
Hist getTrans() {return trans/Trans} // returns all visible transactions
FullHist getAllTrans() {return trans} // returns all transactions
Hist transOf(Any o) {return trans/{.caller=0} } // all transactions of o

Figure 8.7: A class implementation of futures and history objects

of methods for extracting the whole or parts of the history, again by means
of projection, see explanations in Figure 8.7.

As mentioned, a history object is generated when a contract object
is generated. For instance, a new contract created by v := new C(...)
gives (implicitly) a new history object of the largest class supporting
the interface of v, with v as a parameter, which ensures that the history

177

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

object is aware of the associated contract object and class. The new
class is instantiated with C, which ensures that the type of the trans
variable includes the relevant transactions. For instance, if v is of
interface Future[l| the object will be of class FUTURE(L C], if v is
of interface History[I] (with I < Contact) the object will be of class
HISTORYL, C], and if v is of interface AuctionHist the object will be
of class AUCTIONHIST. This ensures that the chosen history class is
required to respect the invariant of the interface of v (one could consider
syntax for more fine-grained selection of classes for implicit the history
objects).

We observe that the transaction history of an active object, as given
by its history object, is sufficient to define the state of the object at the
end of a method execution. The state of an active object at its last method
completion can be reconstructed from the transaction history, and also
the pre-state of method execution resulting in error. Note that suspension
in the middle of a method would require more events to be recorded
in the trans variables. We also observe that the history objects define
the transaction history in a faithful way due to the language restriction
on the trans variables by means of read-only access for programmers
and increment-only write access for the underlying operating system.
This restriction is also imposed on subclasses of the history classes.
Thus one may rely on the transaction histories with write-once/multiple-
read access guaranteed at the software level, in a way similar to smart
contracts. This is checked statically, i.e., it is checked statically that the
trans variable cannot be changed from the program. If the runtime system
also offers protection of unauthorized write access to these variables by
means of a trusted execution environment, one does not need blockchain
technology to guarantee write-once/multiple-read access. If not, one may
use blockchains to obtain full trust.

Our approach can be related to the future concept, which has become
popular in the setting of active object languages and is supported by
several languages [7]. Remote method calls are handled by message
passing and the result of a method invocation is placed in a future object,
at which time the future is said to resolved. The caller generates a
reference to the future object and this reference may be passed to other
objects in the case of first-class futures. Any object with a reference to the
future object may ask for the value, typically via a get statement, which
will block when the future is not yet resolved. Some languages allow

178

The Proposed Framework

Call message

Future

Figure 8.8: Illustration of the future mechanism

polling (i.e., testing repeatedly until a condition becomes true) to check if
a future is resolved, to avoid blocking. Figure 8.8 illustrates this use of
futures.

8.4.4 Histories as a Generalization of Futures

With the standard future mechanism, it is not trivial to detect when a
future can be discarded; and as many futures may be generated, garbage
collection is in general needed. In the active object paradigm, this is a
clear disadvantage since the active objects themselves have a long life
time. When local data inside objects is defined by data types, using a
functional programming language to express and manipulate values of the
data type (such as in the Creol and ABS languages), there is no need for
general garbage collection of these values, assuming storage for values of
the data types can be retrieved efficiently. In our proposed solution, the
same history object will contain all future values generated by a given
callee object, including those of the past as well as future ones. This
history object is therefore long-lived and need not be garbage-collected.
However, as the storage need is growing dynamically, the history objects
could be placed in a cloud, possibly split over several storage media
letting the latest part be most accessible.

179

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

Another disadvantage of the future mechanism is that the future value
is unprotected, and an object getting the value may not know where the
future came from and what it represents. In particular, privacy aspects
are unknown and the information can easily be misused [26]. In our
approach, we can add protection mechanisms in redefined get methods to
implement security and privacy restrictions (see Section 8.4.5).

/7 Subclass with build-in security
class SECHISTORY[Contract,ContractClass]implements History[Contract]
extends HISTORY[Contract,ContractClass]{

Bool isOk() {return not caller in blacklist(trans)

// this requires a definition of blacklist, for example

return not caller in (trans/{.result != error}).caller

// blacklisting callers that make illegal calls

}

T get(Fut[T] f) {return if this.isOk()
then (last(trans/Comp/{.fid=f})).result else error()}

// similar for the other retrieval methods ...

}

Figure 8.9: An implementation of history objects where blacklisted bidders are
blocked

8.4.5 Adding Security and Privacy Aspects

Security additions can be defined by means of redefinitions and inher-
itance. For instance, one may add a function (or a data structure) in a
history object to include a blacklist (bL) of objects whose behavior have
violated some property. This is shown in Figure 8.9 for the Auction ex-
ample in Section 8.5. The get function is redefined such that blacklisted
callers cannot get any information. For instance, we could blacklist callers
that have made calls resulting in error (as indicated in Figure 8.9). The
definition of who is blacklisted can be further redefined to accommodate
more sophisticated checking.

Similarly, we can handle privacy by restricting access to information
in the smart contracts to specific groups or persons. Restrictions may be

180

The Proposed Framework

class AUCTIONHIST2 implements AuctionHist
extends AUCTIONHIST{

Nat get(Fut[Nat] f){
if calleris Bidder // restricting callers by interface
then return super.get(f)
else return error() fi}

Nat highbid(){
if calleris Bidder // restricting callers by interface
then return bid(red(trans))
else return error() fi}

Bidder highbidder(){
if caller in bidders(trans) // restricting callers by condition
then return bid(red(trans))
else return error() fi}

Figure 8.10: The privacy-extended history class for auction

given by means of interfaces or semantical constraints. This is shown in
the auction example in Figure 8.10 where we use an interface to restrict
the callers of method get and highbid, and restrict the callers of method
highbidder to caller objects that have had the highest bid at some point
in the ongoing auction. We could restrict access further by requiring that
the caller is a bidder that has made successful bids. Alternatively, we
could require that the caller of highbid and highbidder is a registered
bidder, i.e., checking that caller € bidders(trans).

In Figure 8.10, the notation “o ¢s I”” checks if (the class of) an object
o has I as an interface. This subclass allows a Bidder object to check the
current highest bid and who has placed it, to reflect that this information
is considered private to Bidder objects. Thus the subclass has the built-in
protection that non-bidder objects will not get any information. Rather
than defining these redefined methods by means of subclasses, one may
consider dynamic class upgrades [22], allowing a class to be replaced
by a new version of the class, which means that the class in question is
replaced at runtime, updating both existing and future history objects of

181

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

class SAFEHISTORY[Contract,ContractClass]
implements History[Contract]
extends HISTORY[Contract,ContractClass] {
Void put(Trans t) { // redefined to check contract violations
trans:++ t;
if not OK(trans;t) then
if t in Call then contract!reportviolation(t.caller)
else trans:++ comp(t.fid,error) fi fi }

func OK: Hist — Bool
// definition of OK
invar OK(trans)

}

Figure 8.11: A history class implementation with safety check

the class.

8.4.6 Adding Safety Aspects

Our specification language gives rise to executable invariants. This may
be exploited in dynamic checking to ensure that there is no contract
violation. This gives an extra level of safety and trust between the contract
object and its users. This is, of course, valuable if the contract class has
not been formally verified against the contract specification, and even if
the contract has been successfully verified, a user may not know if the
code was changed after verification time.

An implementation of a safety check is shown in Figure 8.11, by
defining a new version of class HISTORY. Class SAFEHISTORY checks
the contract invariant (O K (trans)) for each new transaction being recorded, by
redefining the put method so that it checks output from the contract as well as
input to the contract against the contract specification. If the contract does not
behave according to the specification, an additional error message is recorded
in the transaction history to make the violation observable. Contract users will
then observe that the output from the contract is not safe when they use the get
operation.

In order to handle safety violations caused by contract users, we may let the
Contract interface provide a method reportviolation that can be used to inform
a contract about problems with a contract user, namely that the user does not

182

The Proposed Framework

respect the contract specification. This means that if certain user requirements
are not checked by the contract itself, it is possible to detect it in the history
object and report the problem to the contract. However, when contracts are
programmed to be used in any environment, calls to reportviolation could be
used to reflect serious problems such as security violations.

Thus the added safety check are made by redefining the pur method. Since
the put method is not available to the programmer, we require that such
redefinitions of put are done at a properly authorized level.

8.4.7 Simplified Specifications

As the comp and get events contain little information in themselves, specification
of functions and invariants over the history is easier when redundant information
is included in these events. For instance, to relate a return value to the input
parameters of the corresponding call-event, it is convenient to have the input
parameters easily available. For this reason, we define a type for extended
completion events, CallComp, which is like type Call but with the final value-
added as a fifth parameter, i.e., resulting in five-tuples of the form:

cc(fid, caller, callee, method(parameters), result)

and we define extended get events, called read events, which are like get events
but with the future value-added, read(fid, o,r) where r is the result of the
corresponding completion event (the one with the same fid). For this reason, we
define a general function:

red : List[Transaction[I]] — List[ExtendedTransaction|I]]

where ExtendedTransaction[/] is defined by the disjoint union of call events (Call),
extended completion events (CallComp), and extended get events (read). The
red function shows the redundant arguments of comp and get transactions. It
converts a history (g) in terms of call-, comp- and get-transactions to a history
of calls and extended completion- and get-transactions, defined as follows:

red(nil) = nil
red(q; call(f,0,0',m(€))) = red(q);call(f,o0,0,m(€))
red(q; call(f,0,0';m(e));
q;comp(f,r)) = red(g;call(f,0,0,m(€));q');ce(f, 0,0 ,m(e),r)
red(q; comp(f,r));
q; get(fid,o) = red(q;comp(f,r);q);read(fid,o,r)

In the verification of a class, we will deal with histories over local events, i.e.,
those generated by this object, which amounts to call events with this as caller,

183

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

cc events generated by this, and read events received by this. These histories
must refer to extended transactions, since neither the call event corresponding
to a local completion event, nor the get event corresponding to a local read
event, are local, and these cannot be detected from the code in the class. Each
asynchronous event is local to exactly one object.

For instance, a call event is local to the caller and not to the callee. This way,
verification of a class can be done locally without considering events generated
by other objects (apart from synchronous ones). This is why the verification of
a contract refers to its local history. With extended transactions we are able to
express invariants where inputs from other objects are visible in the extended
completion and extended get events (i.e., cc and read events). The local history
h of a contract object o is given by red(trans)/o where trans is the transaction
history of the contract, and the projection “/o” gives the local events of o. The
verification system is presented in Section 8.6.

8.5 Specification of the Auction Example and
Improvements

We reconsider the auction example, using the interface ActionHist and class
AUCTIONHIST given in Figure 8.12. Note that the functions defined in an
interface are available in any class supporting the interface, and may occur
in executable code. In this example, we use simplified specifications, which
make specification and verification easier. The functions and invariant can be
expressed in terms of the history of extended comp-transactions (red(trans)), as
defined above. In fact, we only need to consider extended method completions.

The contract specification check(red(trans)) expressing the main property
of the Auction, says that o = bidder(red(trans)) A n = bid(red(trans)) holds
when youwon is called. This ensures that the youwon call is sent to the right
actor, i.e., the one winning the auction according to the transaction history, and
that the winning amount is the correct highest bid according to the (reduced)
transaction history.

This property can be verified for a class implementation of AuctionHist as
given in Figure 8.12, and can be checked independently by a Bidder agent since
he/she may communicate with the history object, and get the information based
on the transaction history. The verification is shown in Section 8.6. Note that:

¢ bid and bidder are calculated from successful makeBid transactions,
1.e., with return value true.

184

Specification of the Auction Example and Improvements

interface AuctionHist extends History[Auction]{

type Trans = Transaction[Auction] // abbreviated data type definition
//type Hist = List[Trans]; Hist trans -- inherited

type EHist = List[ETrans]; // history with extended comp transactions
// Functions defined (inductively) over the transaction history

func bid: EHist — Nat // calculates the highest bid from trans

func bidder: EHist — Bidder // calculates the highest bidder

func check: EHist — Bool // checks that the winner is the real winner
var EHist g, Nat n, Bidder b

bid(nil) = 0

bid(q; cc(_, _, contract, makeBid(n), true)) = max(n,bid(q))

bid(q; cc(_, _, contract, close(), true)) = 0

// auction closed, high bid reset

bid(qg; others) = bid(q)

bidder(nil) = null
bidder(q; cc(_, b, contract, makeBid(n), true)) =
if n>bid(q) then b else bidder(q)
bidder(q; cc(_, _, contract, close(), true)) = null
// auction closed, highbidder reset
bidder(q; others) = bidder(q)

check(nil) = true

check(q; call(_,contract,b, youwon(n))) = (b=bidder(q)) and (n=bid(q))
check(q; others) = check(q)

// Finally, the contract specification:

invar check(h)

class AUCTIONHIST(Auction a)

implements AuctionHist extends HISTORY[Auction, AUCTION] {

// inherits trans

invar check(red(trans)) // Note that the local history h=red(trans)
and highBid=bid(red(trans)) and highBidder=bidder(red(trans))

Figure 8.12: The auction history interface and class

185

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

* The contract specification expressing the main property of the Auction
says that o = bidder(red(trans)) A n = bid(red(trans)) holds when
youwon is called.

Below we consider improvements on the example concerning security,
privacy, functionality, and trust.

8.5.1 Adding security by means of a blacklist

Let us now consider the restriction that an auction owner may not make a bid to
his/her own auction (instead, we could give the owner a chance to set a minimal
value as a parameter to open). An auction owner is then blacklisted if he/she
makes a bid on his/her own auction. This could be specified by:

func owner: EHist — List[Bidders]
func bL: EHist — List[Bidders]

(nil) = null
owner(q; cc(_, b, _,open(),_) =b
owner(q; cc(_, b, _, close(),_) = null
(

owner(q; others) = owner(q)

bL(nil) = nil
bL(q; cc(_, b, _,bid(n),_)) = if b=owner(q) then bL(q);b else bL(q)
bL(q; others) = bL(q)

Another restriction could be related to correct payment. We introduce a method
for payment from the winner of an auction to the auction owner. In this case, the
winner needs to be informed about who is the owner, so we use the following
Bidder interface:

interface BidderPay {
with Auction
Void youwon(Bidder owner, Nat bid) // inform the winner about owner and bid

with Bidder
Void pay(Nat x) // the winner pays to the auction owner

}

We may then add a specification of a blacklist (bL):

186

Specification of the Auction Example and Improvements

func bL: EHist — List[Bidders]

bL(nil) = nil
bL(q; t) = if q/b ew cc(_,_b,youwon(o,n),_) and t in cc(_, b, 0, pay(n),)
then bL(qg) else (bL(q);b)

A bidder is blacklisted after completing a youwon(owner, amount) call, if he
makes another Auction call than a pay call to the owner with the given amount.
The different definitions of blacklist could well be combined.

8.5.2 Functionality improvements: Method open

A weakness with the simple version of the Auction example showed is that
a Bidder agent calling open does not know if he/she succeeds in opening an
auction. To solve this, one may use a require-clause as in the Solidity language
to ensure that a condition holds at the start of the method body. In this case we
want to ensure that:

* isopen = false at the beginning of method open.
* caller = owner at the beginning of method close.

However this may lead to transaction failure, and the issue of recreating an
appropriate state becomes essential.

Another solution is to let the open return a Boolean method result (as the
close method) expressing whether the open was successful. The methods are
then modified as follows:

* A variable Bool result := (isopen = false) is created at the beginning
of the open method.

¢ The method ends with return result.

This solution has the advantage over the approach with require that no runtime
error is created and the method has no effect when they are not successful. Thus
no roll-back of the state is needed.

8.5.3 Adding trust

It may be useful to inform bidders about the correctness of the information
from the contract provider, directly from the associated history object, thereby
providing reliable information from a third party. In the Auction example, we

187

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

class AUCTIONTRUST extends AUCTIONHIST {
{this!inform()} // the class constructor starts a call to inform

Void inform() { // a local method called recursively
when trans ew call(_, contract,o,youwon(n));
bidder(red(trans))!youwon(bid(red(trans))); // irue information to winner
this!inform() }
// the information sent to winner is calculated by the history object.

}

Figure 8.13: A trust-extended history class for auction

could let a winner know about the correct high value when he/she wins and also
that he/she is the correct winner. To achieve this, we use inheritance and let the
subclass objects have an active behavior providing this information flow to the
winner by means of a background activity using an initial guard. We show a
subclass providing this background activity in Figure 8.13.

Note that here the youwon call by the history object is added to the transac-
tion list and therefore the guard is not satisfied in the next execution of inform
since trans will end with call(_,this,0,youwon(n)); thus the inform message is not
repeated. We could also add a test:

if bid(red(trans))=n and bidder(red(trans))=0 then <send ok message>
else bidder(red(trans))!youwon(bid(red(trans))) fi

and let the bidder know the correct values only in the else branch where the
information from the Auction provider is incorrect. This means that as long as a
bidder is not informed from the history object he/she can trust the information
from the Auction provider. A similar treatment can be done for all other output
to Bidders from the Auction provider.

8.6 Verification

In this section we discuss how to verify contract specifications by a Hoare-style
logic for partial correctness. We show how to verify a class invariant in a class-
wise manner and demonstrate the verification technique on the auction example.
A class invariant R may talk about fields, class parameters, and its local history
h, i.e., the history of extended events (call, cc, and read events) generated by
that object. We have that the local history of o is the same as the extended history

188

Verification

of the contract restricted to the events generated by o, i.e., h = red(trans)/o.
In general, one may need to consider creation events (of new objects), which
we omit here for simplicity. We need not consider events reflecting start of
execution of a method in the class since these can be derived from the history.
The reasoning system here is simpler than in [11, 29, 30], since we may consider
a smaller event set for method interaction due to our notion of initial guards.
Due to the presence of futures, we have a more expressive language than in [10].
Reasoning about an object taking part in a smart contract can only verify the
role of that object. To verify the whole contract, as stated in the history object,
we need in general to combine the invariants of the objects taking part in the
contract, using a rule for composition.

In order to verify a subsystem of several concurrent objects such as a smart
contract, we use the composition rule of [29, 30]. Adapted to our case, the
composition rule generates an invariant [nov(trans) of the contract (where trans
is the history of all events seen by the history object) by forming the conjunction
of all the local invariants R ﬁé;?;ms) Jo, 0 of each object o in the subsystem
together with a wellformedness predicate stating that each call transaction has a
unique future identity, and that a call comes before the corresponding completion
transaction (the one with the same future identity), and that a result read (in a
read event) is the same as the generated result (in the preceding cc event with
the same future identity). The notation RY denotes the substitution of (free)
occurrences of v in () by e, and RY simultaneous substitutions. The replacement
of this by o is needed to formalize the fact that what is called this in the class
invariant is the object o in the contract.

To verify that R is an invariant of a given class C, we must prove that the
invariant is satisfied initially, i.e., that R holds for an empty history and initial
field values, and that each method of the class maintains 1. The verification of a
method inside a class is done by sequential Hoare-style reasoning. The Hoare
triple [P] s [Q] expresses that if P holds in the pre-state of s then () holds in the
post-state, provided s terminates normally. If P implies @, then () is said to be
an invariant of s.

For a method m with parameters and body when guard; s; return e, we
need to verify:

[R A guard] s; h:++ cc(fid, caller, this, m(T),e) [R]
For simplicity we assume that method parameters are read-only. This reduces to:
h
[R A guard] S {R h;cc(ﬁd,caller,this,m(f),c)]

This triple can be verified locally in the class by ordinary sequential Hoare logic,
and the special syntax h : ++ ¢ is semantically the same as the assignment

189

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

h := (h;t), and the axiom for assignment is given by [QY] v:=e [Q]. This
axiom holds since there is no remote field access (and therefore no semantical
aliasing problems) and since expressions are pure.

Furthermore, an asynchronous call o!m(€) in the body is treated as the
two assignments f := new Fut; h : + + call(f,this,o,m(€)), where the
first assignment represents a non-deterministic assignment to f resulting in a
fresh future identity (like an object creation statement). The Hoare rule for
this assignment is [Vf.f ¢ h = @] f:=new Fut [Q] where the universal
quantifier corresponds to non-determinism, and the condition ensures freshness
of f,i.e., that f has not already occurred in a transaction in h. Thus we derive
the following rule for asynchronous calls:

Wf féEh= Q?h;call(f,thz's,o,m(é)))} olm(e) [Q]

The rule for the get statement is given by:

[VU ’ Q Z;Tea,d(f,th,is,'z))} vi=get f [Q]

where the universal quantifier on v’ corresponds to a non-deterministic
assignment to v, which reflects that the read value is locally unknown. In the
compositional rule, this value is resolved through wellformedness of the contract
history (using the corresponding completion event and the wellformedness
predicate).

Combining these two rules, we obtain a similar rule for synchronous calls:

v, h o _
[vf’ v’ f gh =Q v’,(h;call(f,this,o,m(é));cc(f,this,o,m(é),v’))] v:=0.m(e) [Q]

since a synchronous call v := o.m/(€) is semantically the same as the statement
sequence f := new F'ut; h : ++ call(f,this,o,m(€));v := getf. The prime
on v’ is needed in case v occurs in € (which is the old v and should not be
quantified).

In the setting of partial correctness, [P] s [()] assumes normal termination
of s (and no errors). Thus it does not ensure error-free execution. However,
reasoning about errors is needed in the presence of error handlers, because a
handler may turn an error into a normal value and then the assumption of normal
termination is satisfied. Reasoning about error handlers can be done as indicated
below for handlers on assignments and calls.

One may treat an assignment with a handler, v := e < s >, as the
assignment v := e if e does not result in an error, otherwise < s >.
To distinguish the two cases, one may use a a predicate WD expressing
welldefinedness, letting WD(e) be true if the evaluation of e results in a normal

190

Verification

value and false if it results in an error. For instance WD(last(q)) is (¢ = nil),
which can be obtained from the definition of last in Figure 8.2. The rule is then:

[P s[Q]
[if WD(e) then Q0 else Plv:=e < s> [(]

Reasoning about a synchronous call with a handler, v := o.m(e) < s >,
can be done by the rule:

[P]s Q]
Vo . fé€h=Q VPJ]v:=0me)<s> Q]

where " is Q with the substitutions given in the rule for synchronous calls, and
P'is P Z;Ca”(ﬁthis,o,m(a);cc(ﬁthi&mm@,ermr). The two extensions of the history
in the precondition are disjoint since quantified variables range over defined
values. A key point here is that the handler can be connected to a particular
transaction in the history.

One could consider other forms of error handlers (for instance at the end of
a method body) in a similar manner, and reasoning about raising exceptions can
be done as usual. We do not discuss reasoning about roll-backs, which can be
non-trivial, especially if it is not clear at verification time how far the roll-back
should go.

8.6.1 Verification of the Example

We show how to verify that the implementation of the auction system given in
Figure 8.12 satisfies the invariant (check) given by interface AuctionHist. For
our example, it suffices to consider extended completion events since only these
are used in the contract specification in AuctionHist.

We prove that class AUCTIONHIST satisfies its invariant R, namely:

check(h) N highBid = bid(h) A highBidder = bidder(h)

where check is defined in interface AuctionHist. The invariant must hold initially
and be maintained by each method visible to the environment. Initially the
history is empty, highBid is 0, and highBidder is null (the initial value of
object references). Thus we need to prove check(nil) A 0 = bidder(nil) A
null = bidder(nil), which is trivial.

Method highest() does not change any fields and the completion of highest
has no effect on the invariant, so verification is also trivial (since R implies R).

191

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

For method open we need to verify:
[R] if not isopen then owner:=caller; isopen:=true fi [R}.,]

where t is cc(fid, caller, this, open(), void). This gives the following two
verification conditions:
R Nisopen = RZ;t

h,owner,isopen

RN notisopen = R (hst),caller,true

with ¢ as above. Both are verified without problems.
For method makeBid we need to verify the following two triples:
[R A not(open A\ x > highBid)| bidders :++ caller [R Z;t]
where t is cc(fid, caller, this, make Bid(x), false), and:

[R A open A x>highBid) highBid:=x; bidders!newBid(x); highBidder:=caller[R }".,]

where t is cc(fid, caller, this, makeBid(z), true). We here ignore the assignment
bidders:++caller since the variable bidders does not occur in the invariant. The
first triple is trivial since R Z;t reduces to R in this case. The second verification
condition reduces to:

h,highBidder,highBid

R A open A x>highBid = R (hstit!) caller,

by sequential Hoare analysis, replacing the asynchronous call by h:++ t' where t’
is the call event reflecting the newBid call, which does not influence the invariant.
This gives the verification condition:

check(h) Nz = bid(h;t) A caller = bidder(h;t)

provided check(h) A highBid = bid(h) A highBidder = bidder(h) A open A
x>highBid, which reduces to true by the function definitions of bid, bidder,
and check.

Finally, we consider method close: ignoring assignments and calls not
affecting the verification, the most challenging branch reduces to the triple:

[R A caller=owner A highBid>0]
highBidder!youwon(highBid); highBidder:=null [R Z.t,}

which gives the verification condition:

R A caller=owner A highBid>0 = (Vf . f & h = Vf . R{; /90

192

Evaluation

where t is call(f,this, highBidder,youwon(highBid)) reflecting the
youwon call transaction, and t' is cc(fid, caller,this, close(), true). This
verification condition follows from the definitions of the invariant and the check,
bid, and bidder functions. This completes the invariance of the invariant.

By the rule for composition we may conclude check(red(trans)), which
ensures the contract specification of the history object. The fact that the contract
class invariant alone ensures the contract specification reflects that the contract
specification does not put any restrictions on the contract users. For the version
of the contract with payment form the highest bidder to the auction owner, a
specification of the history object would involve requirements to the highest
bidder as well as the contract object. In this case, one would need to use
compositional reasoning of the contract object and the bidders.

8.7 Evaluation

8.7.1 Difference between our language and Solidity

In general, our language is more high-level and abstract than Solidity [35]. Our
language is oriented towards a compositional semantics and class-wise reasoning.
In contrast to our approach, Solidity does not support reasoning about contract
specifications by a logic or verification system. Thus the focus of the languages
is different, nevertheless we may try to compare the expressiveness.

The communication mechanisms are similar, but are following more closely
the object-oriented style in our case. We allow one-way and two-way message
passing, as well as broadcasting and first-class futures. The Solidity notion of
msg.sender corresponds to caller in our language.

Every contract in Solidity can include declarations of State Variables that
contain persistent data, similar to class fields in our language, Functions that can
modify variables, like methods in our language, Function Modifiers, comparable
to guards in our language, Events, similar to transactions in our setting, Struct
Types (record type) and Enum Types, which can be seen as special cases or
implementations of user-defined data types in our language. Besides, contracts
support encapsulation (visibility attributes) and may inherit from other contracts
—in our setting this follows from our use of interface abstraction and inheritance.

Through fallback functions, custom handling of messages that do not specify
a concrete function to call is supported in Solidity. Values are returned from
functions by use of return statements/variables. In our setting, there are no
fallback functions since all call messages will be understood due to static typing
as explained below. The queue order in our language is defined by taking the

193

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

oldest enabled call first (priority calls could be added). The use of guards allows
calls to be delayed and thereby control the scheduling of calls.

Strong typing. Like Solidity, our language supports strong typing of
variables and expressions. Calls are strongly typed, and for a call o.m(e) it
is checked that the type of o is an interface that supports a method m such that
the actual parameters respect the parameter types of that method, and one can
guarantee that the caller o cannot be nulll by static over-approximation. Due
to the cointerface mechanism, the caller has a type, and thus even call-backs
of form caller.m(€) can be strongly typed [23], in contrast to Solidity. The
primitives call and delegated in Solidity give rise to untyped calls.

Visibility of attributes. Solidity uses a number of primitives, including
private, public, internal, and external to declare visibility of methods/functions
from the outside, and even state variables marked private can be visible. Our
language is based on interface abstractions, i.e., we use interfaces to define
visible parts of a class. No field is visible, and only methods declared in
an interface are visible. It is statically checked that a class defines (either
explicitly or implicitly through inheritance) each method declared in an interface
implemented by the class. Thus “method not understood” errors are not possible,
as explained above, which explains why fallback functions are not needed in our
setting.

Reentrance. Reentrancy happens when an object is interrupted during
execution, and can be called again before its previous invocations complete
execution. Reetrance is a well-known source of undesired behaviour in Solidity
programs. Reetrance is also possible in our setting, but only in invariant states
and when the guard is satisfied. The guard makes it possible to delay calls that
would break the invariant, and thereby ensure desired ordering restrictions on
the transactions. This mechanism is valuable in avoiding undesired behaviour.

Inheritance. Multiple inheritance and polymorphism are supported in
Solidity. This is controlled by means of the keywords virtual and override.
Using the syntax ContractName.functionName(), and super.functionName(), one
can call functions further higher up in the hierarchy, and one level up in the
flattened inheritance hierarchy, respectively. Our language supports multiple
inheritance as well and has a similar way of selecting methods from particular
superclasses. For simplicity, we do not discuss overloading here, but in our
setting of strong typing, overloading with respect to both method parameters
and method result could be done as in [22].

Function modifiers. By using modifiers in Solidity, the behaviour of
functions can be modified in a declarative way. For instance, modifiers can
automatically check a condition prior to executing the function. Function
modifiers execute before entering the actual function body and cause abnormal

194

Evaluation

termination and roll-back of the state. In our approach, the guards are also
checked at the start of a method execution, but do not cause abnormal termination,
instead, they may cause the execution of the current method to be delayed until
the guard is satisfied. For instance, if the guard is a future check f7, this gives
a non-blocking way of waiting for a future value. Reasoning about guards is
straight forward, as discussed in section 8.6, whereas reasoning about roll-backs
is non-trivial since it depends on dynamic information about which calls have
been made. Our setting still supports runtime roll-backs since the state of a
contract at the point of a specific call in the past can be calculated from the
transaction history in the history object. For simplicity, the price/cost aspect
of transactions are not considered in our approach, since we consider a wider
concept of contracts.

Predefined data types and struct definitions. Solidity has a large number
of predefined numeric types. We have a small number of predefined types and
can mimic other types by inductive data type definitions. Struct definitions are
composed of a list of pairs of type names and field names. These can be defined
in our setting by data type definitions using disjoint union.

Expressions. Function calls in Solidity can be of several types: internal,
external, delegate, and calls to certain builtin functions. Internal function calls
are simply jumps in the code of the current account. External calls cause a
message to be sent over the Ethereum network, executing code on another
account. Delegate calls exist to provide a functionality akin to shared libraries,
by allowing code from another account to directly operate on the storage of
the calling account. The semantics of external and delegate calls are notorious
sources of bugs in contracts [3], notably the DAO [8] and Parity multi-sig
contract [31] incidents. In our setting, local method and function calls execute
on the local object and its store, while all external (and delegated calls if handled
as in [29]) calls execute on other objects. Our language supports a modular
semantics, and the mentioned bugs do not apply. As mentioned, we may add a
reasoning-friendly delegation mechanism [29].

Error types in Solidity. The main categories of errors in Solidity are
runtime errors and logic errors, apart from syntax errors, which are detected
at compile time. Runtime errors are more difficult to troubleshot than syntax
errors (like in many other languages including our language) because we do not
have the help of the Solidity compiler to tell us when this happens and usually
they are more serious because at this stage we have already deployed the smart
contract to the blockchain and we cannot just change the code or update it to fix
the problem.

A runtime error happens once the smart contract is deployed to the Ethereum
blockchain and the Solidity code has been compiled to a bytecode that can be

195

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

understood by the Ethereum virtual machine. A runtime error happens when the
Ethereum virtual machine detects something wrong with the smart contract or
is making transactions against the logic of the code. All the state changes that
are caused by a transaction resulting in error are cancelled, and the transaction
is reverted, and depending on the kind of error, all the gas of the transaction is
consumed or some of it is refunded. Common runtime errors are: out-of-gas
error, revert error, invalid opcode error, invalid jump error, stack overflow, and
stack underflow. An out-of-gas error happens when there is insufficient gas to
complete a transaction. If we try to execute a transaction that is not according to
the logic of the smart contract, then EVM returns an error called revert error and
the transaction will be reverted. Invalid opcode happens when we try to execute
a code that does not exist. Invalid jump occurs when we try to execute a function
that does not exist, for instance, if we try to call a function in another smart
contract at an address that does not exist. It can also happen if we use assembly
in Solidity and we point to a wrong location in the code. Stack overflow happens
when there is a function that calls itself recursively and there is no stopping
condition that is triggered early enough. In Solidity, the stack can be at most
1024 frame deep, which means a function can only call itself 1024 times. This
is an error that is not specific to Solidity and may also happen in many other
programming languages. Stack underflow happens when we try to read an item
on an empty stack.

The mentioned runtime errors do not occur in our language, but errors may
result from execution of partial functions and methods raising errors. This
is due to a stronger type system and a simpler and more abstract semantics.
For instance, the runtime stack is considered unbounded. But there may be
calls made to object expressions that are null, which again may result in non-
terminating get statements. This issue can be avoided by static type checking,
over-approximating the type of non-null variables and requiring that any callee
and actual object parameters are of non-null types. Object generation, this, and
caller can be assumed to be of non-null types.

And the last kind of error is logic errors. A logic error happens once the
smart contract is deployed to the blockchain, reflecting a problem in the logic
of the smart contract. It is important to note that it is not like a runtime error in
that the Ethereum virtual machine does not consider it to be an error from its
perspective; from its perspective, everything is working fine and the code can
be run easily. Logic errors happen when the developer has made a mistake, or
there are open loopholes in a smart contract that can be exploited by attackers.
Basically, this kind of error makes the smart contract either dangerous or makes
it produce false result. These kinds of bugs are the most serious and also the
hardest to fix because there are no tools that can automatically run through the

196

Evaluation

smart contract and tell us whether or not there are some logic errors. Contrary to
syntax or runtime errors where we can use respectively the Solidity compiler
and the Ethereum virtual machine. Formal verifications can be useful in analysis
of logic errors in smart contracts. An example of a logic error is the famous
2016 reentrancy attack of the Distributed Autonomous Organizations (DAO)
smart contract, where a code that connects a set of smart contracts together and
functions as a governance mechanism, was a result of a logic error. A reentrancy
attack can happen when we make an external call to another untrusted contract
before it resolves an error. If the untrusted contract is malicious, it can take
over the control flow of the original smart contract’s code; for instance it may
repeatedly withdraw Ether from the smart contract. In contrast, our approach
has a modular semantics, which makes it harder to attack a contract provider,
and it gives support of behavioral specification by means of contract invariants
that can be checked at runtime. Furthermore, our approach supports class-wise
verification method, which can guarantee absence of certain logical errors at the
cost of interactive theorem proving.

8.7.2 Difference between our framework and
blockchain

Blockchains have the advantage of being transparent, immutable, and corruption-
free. Our history objects offer similar advantages through the programming
language level:

* There is read access to the history objects, possibly limited by privacy
restriction.

* The history objects are immutable from the programmer’s perspective
and only incremental updates are allowed at the operating system level.

* The history object specifications guarantee corruption-freedom, as these
can be available to the involved partners, and may, therefore, be rechecked
when desired.

These advantages are obtained without use of blockchains. But as mentioned,
blockchain implementations may be used when underlying middleware or
hardware is not reliable, or when the application is financially critical.

The consensus mechanism provided by blockchain is handled differently in
our setting. For each contract, the history object is immutable and defines the
transactions in an object manner since it is outside the contract provider control.

In contrast to the blockchain framework, our framework gives support of
security, privacy, and safety:

197

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

* Security measures such as a blacklist can be added by specifying how to
blacklist objects in the history objects. Several specifications of blacklists
have been shown in Sections 8.4 and 8.5.

* Privacy can be added by restricting the access to information in the
transaction history.

» Contract specifications can be specified for history objects and checked
at runtime by these history objects.

This support of security, privacy, and safety is built into the history objects and
is therefore useful in a setting where the contract objects and/or its users could
be malicious.

8.8 Related Work

There are two different approaches for verifying smart contracts: dynamic
analysis/runtime verification, and static analysis/compile-time techniques.
Runtime verification deals with various techniques, including those in [12, 14,
15, 20, 33, 37] for checking whether a running system satisfies or violates certain
correctness properties, whereas compile-time techniques analyse programs
before runtime, either by a full automatic technique (such as a type and effect
system) or by a semi-automatic technique (such as a verification system).
In general, compile-time techniques have the advantage that they provide a
guarantee since they check or deduce program properties before runtime. The
disadvantage is that fully automatic techniques often involve over-approximation,
and formal verification may require non-trivial human assistance. In general,
runtime verification introduces additional runtime overhead. In smart contract
platforms like Ethereum, these overheads not only cost time, but also money
since they cause additional gas consumption, therefore the cost of smart contract
execution increases. As mentioned, our approach with runtime checking of
contract invariants by the added history objects, will not slow down the contract
providers (unless they run on the same platform).

A static analysis is said to be syntactic if it is only concerned with the
grammatical structure of a program, and semantic if it involves the meaning
of grammatically correct programs. Thus semantic analysis is, in general,
more effective in recognizing potential problems in a program. There are
many syntactic analysis tools for smart contracts as well as smart contracts

198

Related Work

written in Solidity (e.g., Solcheck !, Solhint 2, Solint 3, Solium #). Different
approaches have been presented that try to identify and fix different types of
security vulnerabilities and design patterns [28] in Ethereum smart contracts
using semantic analysis techniques. These are summarized below.

Luu et al. [27] provided a symbolic execution static analysis tool called
OYENTE that analyses Ethereum smart contracts in order to detect bugs. Their
tool works directly with Ethereum virtual machine (EVM) bytecode without
access to the high-level representation (like Solidity). Also, in [13], a heuristic
indicator of control flow immutability has been defined by Frowis and Bohme
for the sake of qualifying loophole risks resulting from modified control flow.
They applied this to a number of smart contracts on Ethereum, and found that
two out of five smart contracts are not trustworthy.

Mavridou and Laszka [28] introduced a formal semantic model called
FSolidM for creating secure smart contracts, that is based on Finite State
Machines (FSM). They provided a graphical editor to help simplifying the
design of smart contracts in FSolidM. They translate FSMs into Solidity code to
support Ethereum smart contracts. They also provided extensions and design
patterns to improve the security and functionality of contracts. These extensions
and patterns are implemented as plugins that developers can add to a contract
automatically.

Many of these semantic approaches are at the bytecode level; therefore they
allow the verification of compiled contracts. Grishchenko et al. [16], for instance,
developed a translation from Solidity to the functional language F*, for which
verification tools exist. They have also presented a formalization of a small-step
semantics for EVM bytecode in F*. Thus they can compare the F* code resulting
directly from Solidity with that resulting via EVM. KEVM has been presented
by Hildenbrandt et al. [18]. KEVM is an executable formal specification
of the EVM’s bytecode and stack-based language within K Framework. K
Framework is a framework based on rewriting logic to define executable semantic
specifications of programming languages. Hirai [19] defined a formalization
of EVM and used it to prove safety properties of some smart contracts in
the interactive theorem prover Isabelle/HOL. Bhargavan et al. [6] presented a
framework to analyze and formally verify Ethereum smart contracts using F*.
Their smart contract verification combines two approaches: They start from
the translation of Solidity source code into F*, and then using decompilation
techniques, they go from EVM bytecode into F* code. An automatic verifier

! See https://github.com/federicobond/solcheck
2 See https://github.com/protofire/solhint

3 See https://github.com/SilentCicero/solint

4 See https://github.com/duaraghav8/Ethlint

199

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

to prove temporal safety properties of Ethereum smart contracts called VERX
has been presented by Permenev et al. [32]. VERX is based on reduction of
temporal property verification to reachability checking, a symbolic execution
engine for a fragment of EVM, and a form of predicate abstraction.

Bai et al. [4] propose formal modeling and verification of smart contracts
using the SPIN model checking tool. Abdellatif et al. [1] use the BIP (Behavior
Interaction Priorities) framework to model smart contracts implementation and
verify the correctness. This framework uses timed automata to implement the
contract functions. In order to deal with external attacks, they have also modeled
the blockchain execution environment. They use the Statistical Model Checking
(SMO).

Zakrzewski looks at a formalization of the Solidity language [40]. He
points out the Solidity language has no formal semantics and questions the
appropriateness of several of the language constructs, from a verification
perspective. In particular, he claims that the modifiers are not complicating
verification. The paper ends with a proposal for a big-step operation semantics
for parts of Solidity, proposing a clarification/revision of unclear semantical
issues.

Our work does not follow the approach of translating from Solidity or EVM
to a language or formalism with verification support. Instead, we provide a
more abstract language for smart contracts with support of simple verification,
as encouraged in [2, 40]. The programming and specification language, its
semantics, and verification system are oriented towards simple verification, and
we are able to formulate a system for sequential style reasoning in a class-wise
manner. We consider safety rather than temporal properties and do not consider
time nor probabilistic methods. Our framework integrates trust at the language
level through the notion of history objects. Moreover, the history objects can be
used to provide security and privacy, as well as runtime checking of specified
safety properties.

Compared to earlier work on Creol/ABS [11, 21, 25], our language is novel
in the combination of initial guards for methods and first-class futures. This
combination gives an expressiveness that allows ordering control with respect to
method scheduling, thereby extending the expressiveness of [29]. With respect
to reasoning, it gives a simpler event structure than in [11], and as a result, the
reasoning system is simpler than the Creol/ABS reasoning systems for programs
allowing suspension in the middle of a method.

200

Conclusion

8.9 Conclusion

We have presented a new approach to lightweight smart contracts where
transparency, imuatbility, and protection against corruption are guaranteed at
the source code level, by adding a special kind of protected objects called
history objects that record all the calls and future values generated for each
contract. Because of these recorded transactions, a history object can be seen
as a ledger, but local to a given contract. The history objects are protected by
predefined interfaces and provide read-only access from the programmer side,
and increment-only access by the underlying system. They are separated from
the contract provider, and can be used by contract users to check the validity
of the transactions made, in a way similar to blockchain. Therefore, trust is
provided at the software level even without blockchain technology, and our
approach supports the main advantages of smart contracts in that it gives trust
and transparency without centralized control. The approach protects against
tampering and fraud, each history object is immutable and corruption-proof, and
each user can observe the contract behavior through the history object to ensure
validity.

Moreover, we give a theory for formal specification and verification of smart
contracts, something which Solidity lacks. In particular, our approach supports
class-wise verification, which is essential in open distributed systems where
the contracts interact in an unknown environment. The verification is based on
sequential reasoning augmented with effects on the transaction history. These
advantages have been achieved by defining a version of a high-level language
based on the active object paradigm and interface abstraction. We support
multiple inheritance and allow subclasses and redefinitions without behavioral
restrictions from the superclasses. The language has an expressiveness that
can be compared to Solidity, but is more high-level, with more abstract
communications mechanisms and a more abstract data type language. Method
guards can be compared to the require mechanism in Solidity, but give control
over the ordering of operations rather than forcing errors. Guards are useful for
avoiding undesired contract behavior and avoiding attacks by an adversary. A
major difference is that our language has a modular semantics and comes with a
verification theory. A contract class can be verified with respect to an external
invariant specified in the history object.

Furthermore, we have shown how formal specifications can be checked
automatically by the history objects at runtime, thereby protecting users of
a faulty contract provider, as well as protecting the contract provider from
illegal users. In addition, we have shown how to achieve security and privacy,
something which has been seen as a weakness of traditional smart contracts

201

8. Paper 4: An Approach to Smart Contracts Supporting Safety and Security

based on blockchain. We have illustrated the approach on a typical smart
contract example, namely an auction system. We have verified the contract
implementation and shown various improvements with respect to added safety,
security, and privacy.

The approach may be combined with the notion of dynamic and concurrent
object groups [24]. This allows a contract provider to appear as a single object
to the outside while internally consisting of a number of cooperating concurrent
objects. From the environment, an object group is treated like a normal object,
with the benefit that it can serve many contract users in parallel.

Our framework allows runtime roll-backs, since the transaction history gives
sufficient information to rerun a contract provider and stop at the last state before
the execution of method that results in error. We have not considered assets
like gas and ether. At compile time, one cannot in general ensure sufficient
assets, but one can consider the possibility of errors due to insufficient assets.
We have considered reasoning about simple error recovery. In future work, we
may add further mechanisms for error and exception handling and consider
efficient implementation of history objects and roll-backs. In the current state,
our framework can be used for modeling, prototyping, analysis, verification, and
model checking of smart contracts.

Acknowledgment

This work was supported by the project loTSec - Security in [oT for Smart
Grids, with number 248113/070 part of the IKTPLUSS program funded by the
Norwegian Research Council, and by the project SCOTT (www.scottproject.eu)
funded by the Electronic Component Systems for European Leadership Joint
Undertaking under grant agreement No 737422.

202

Bibliography

(1]

(2]

(3]

(4]

[5]

(6]

[7]

(8]

[9]

Abdellatif, T. and Brousmiche, K.-L. “Formal verification of smart
contracts based on users and blockchain behaviors models™. In:
2018 9th IFIP International Conference on New Technologies,
Mobility and Security (NTMS). IEEE. 2018, pp. 1-5.

Ahrendt, W., Pace, G. J., and Schneider, G. “Smart contracts:
A killer application for deductive source code verification”. In:
Principled Software Development. Springer, 2018, pp. 1-18.

Atzei, N., Bartoletti, M., and Cimoli, T. “A survey of attacks on
ethereum smart contracts (sok)”. In: International conference on
principles of security and trust. Springer. 2017, pp. 164—186.

Bai, X. et al. “Formal modeling and verification of smart contracts”.
In: Proceedings of the 2018 7th International Conference on
Software and Computer Applications. ACM. 2018, pp. 322-326.

Baker, H. C. and Hewitt, C. “The Incremental Garbage Collection
of Processes”. In: Proceedings of the 1977 Symposium on Artificial
Intelligence and Programming Languages. New York, NY, USA:
Association for Computing Machinery, 1977, 55759.

Bhargavan, K. et al. “Formal verification of smart contracts:
Short paper”. In: Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security. ACM. 2016,
pp. 91-96.

Boer, F. D. et al. “A Survey of Active Object Languages”. In: ACM
Comput. Surv. vol. 50, no. 5 (Oct. 2017), pp. 1-39.

Buterin, V. “Critical update re: DAO vulnerability”. In: Ethereum
Blog, June (2016).

Buterin, V. et al. “Ethereum white paper”. In: GitHub repository
(2013), pp. 22-23.

203

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

204

Dahl, O.-J. and Owe, O. “Formal Methods and the RM-ODP”.
In: NWPT’98: Nordic Workshop on Programming Theory, Turku,
Finland 1998. Available as Research Report 261, Dept. of
Informatics, Univ. of Oslo (18 pages). 1998.

Din, C. and Owe, O. “Compositional reasoning about active objects
with shared futures”. In: Formal Aspects of Computing vol. 27
(2015), pp. 551-572.

Ellul, J. and Pace, G. J. “Runtime Verification of Ethereum
Smart Contracts”. In: 2018 14th European Dependable Computing
Conference (EDCC). Sept. 2018, pp. 158-163.

Frowis, M. and Bohme, R. “In code we trust?” In: Data Pri-

vacy Management, Cryptocurrencies and Blockchain Technology.
Springer, 2017, pp. 357-372.

Garcia-Baiiuelos, L. et al. “Optimized Execution of Business
Processes on Blockchain™. In: Business Process Management.
Ed. by Carmona, J., Engels, G., and Kumar, A. Cham: Springer
International Publishing, 2017, pp. 130-146.

Governatori, G. et al. “On legal contracts, imperative and declara-
tive smart contracts, and blockchain systems”. In: Artificial Intelli-
gence and Law vol. 26, no. 4 (Dec. 2018), pp. 377-409.

Grishchenko, 1., Maffei, M., and Schneidewind, C. “A semantic
framework for the security analysis of Ethereum smart contracts”.

In: International Conference on Principles of Security and Trust.
Springer. 2018, pp. 243-269.

Hajdu, A. and Jovanovié, D. “SMT-Friendly Formalization of the
Solidity Memory Model”. In: arXiv preprint arXiv:2001.03256
(2020).

Hildenbrandt, E. et al. “KEVM: A complete formal semantics
of the Ethereum virtual machine”. In: 2018 IEEE 31st Computer
Security Foundations Symposium (CSF). IEEE. 2018, pp. 204-217.

Hirai, Y. “Defining the Ethereum virtual machine for interactive
theorem provers”. In: International Conference on Financial
Cryptography and Data Security. Springer. 2017, pp. 520-535.

Bibliography

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Idelberger, F. et al. “Evaluation of Logic-Based Smart Contracts
for Blockchain Systems”. In: Rule Technologies. Research, Tools,
and Applications. Ed. by Alferes, J. J. et al. Cham: Springer
International Publishing, 2016, pp. 167-183.

Johnsen, E. B. and Owe, O. “An asynchronous communication
model for distributed concurrent objects”. In: Software & Systems
Modeling vol. 6, no. 1 (2007), pp. 39-58.

Johnsen, E. B., Owe, O., and Simplot-Ryl, I. “A Dynamic Class
Construct for Asynchronous Concurrent Objects”. In: Formal
Methods for Open Object-Based Distributed Systems, 7th IFIP
WG 6.1 International Conference, FMOODS 2005, Athens, Greece,
June 15-17, 2005, Proceedings. Ed. by Steffen, M. and Zavattaro,
G. Vol. 3535. Lecture Notes in Computer Science. Springer, 2005,
pp. 15-30.

Johnsen, E. B., Owe, O., and Yu, I. C. “Creol: A type-safe object-
oriented model for distributed concurrent systems”. In: Theoretical
Computer Science vol. 365, no. 1 (2006). Formal Methods for
Components and Objects, pp. 23-66.

Johnsen, E. B. et al. “A formal model of service-oriented dynamic
object groups”. In: Sci. Comput. Program. vol. 115-116 (2016),
pp. 3-22.

Johnsen, E. B. et al. “ABS: A Core Language for Abstract
Behavioral Specification”. In: Formal Methods for Components
and Objects. Ed. by Aichernig, B. K., Boer, F. S. de, and
Bonsangue, M. M. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 142-164.

Karami, F., Owe, O., and Ramezanifarkhani, T. “An evaluation of
interaction paradigms for active objects”. In: J. Log. Algebr. Meth.
Program. vol. 103 (2019), pp. 154-183.

Luu, L. et al. “Making smart contracts smarter”. In: Proceedings
of the 2016 ACM SIGSAC conference on computer and communi-
cations security. ACM. 2016, pp. 254-269.

205

Bibliography

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

206

Mavridou, A. and Laszka, A. “Designing secure Ethereum smart
contracts: A finite state machine based approach”. In: Interna-
tional Conference on Financial Cryptography and Data Security.
Springer. 2018, pp. 523-540.

Owe, O. Verifiable Programming of Object-Oriented and Dis-
tributed Systems. Ed. by Petre, L. and Sekerinski, E. 2016.

Owe, O., Fazeldehkordi, E., and Lin, J.-C. “A Framework for
Flexible Program Evolution and Verification of Distributed Sys-
tems”. In: Model-Driven Engineering and Software Development.
Ed. by Hammoudi, S., Pires, L. F.,, and Seli¢, B. Cham: Springer
International Publishing, 2020, pp. 320-349.

Parity Technologies. A Postmortem on the Parity Multi-Sig Library
Self-Destruct. https://www. parity.io/a- postmortem - on - the -
parity-multi-sig-library-self-destruct/ . 2018.

Permenev, A. et al. “Verx: Safety verification of smart contracts”.
In: 2020 IEEE Symposium on Security and Privacy, SP. 2020,
pp. 18-20.

Prybila, C. et al. “Runtime verification for business processes
utilizing the Bitcoin blockchain”. In: Future Generation Computer
Systems (2017).

Sergey, 1. and Hobor, A. “A Concurrent Perspective on Smart
Contracts™. In: CoRR vol. abs/1702.05511 (2017). arXiv: 1702.
05511.

Solidity documentation. https://solidity.readthedocs.io/ . 2019.

Szabo, N. “Formalizing and securing relationships on public
networks”. In: First Monday vol. 2, no. 9 (1997).

Weber, 1. et al. “Untrusted Business Process Monitoring and
Execution Using Blockchain”. In: Business Process Management.
Ed. by La Rosa, M., Loos, P., and Pastor, O. Cham: Springer
International Publishing, 2016, pp. 329-347.

Wood, G. “Ethereum: A secure decentralised generalised trans-
action ledger”. In: Ethereum project yellow paper (2019), pp. 1-
39.

Yonezawa, A. ABCL: An Object-Oriented Concurrent System.
Cambridge, MA, USA: MIT Press, 1990.

Bibliography

[40] Zakrzewski, J. “Towards Verification of Ethereum Smart Contracts:
A Formalization of Core of Solidity”. In: Verified Software.
Theories, Tools, and Experiments. Ed. by Piskac, R. and Riimmer,
P. Cham: Springer International Publishing, 2018, pp. 229-247.

207

