

# **Components and Integration**



ARTEMIS JOINT UNDERTAKING The public private partnership for R&D in the field of Arternis

# Stockholm, 12-13 June 2013 Nikos Pappas (HAI)



#### ARTEMIS Call 2010 – ASP6, No: 269317





### **WP6 - Overview**



#### **Deliverables**

- D6.1, Lifecycle and SPD Support Plan (Internal, M18, finalized)
- D6.2, Prototype Validation and Verification (Internal, M20, in progress)
- D6.3, Prototype Integration Report (Internal, M22, initialized)
- D6.4, Lifecycle and SPD Support Report (Public, M30)
- D6.5, Platform Integration Report (Public, M34)
- D6.6, Platform Validation and Verification (Public, M36)

| Partner  | ММ | T6.1      | T6.2      | T6.3      |
|----------|----|-----------|-----------|-----------|
| SG       | 10 | 10        |           |           |
| ASTS     | 6  | 3         | 3         |           |
| AT       | 19 | 13        | 6         |           |
| ATHENA   | 21 | 9         | 9         | 3         |
| SE       | 26 | 10        | <u>16</u> |           |
| TECNALIA | 15 |           |           | <u>15</u> |
| ETH      | 3  | 3         |           |           |
| HAI      | 32 | <u>18</u> | 8         | 6         |
| ISL      | 24 | 24        |           |           |
| ISD      | 6  | 2         | 2         | 2         |
| MAS      | 7  | 5         | 2         |           |
| MGEP     | 3  | 3         |           |           |
| ATAFROLL | 5  | 5         |           |           |
| S-LAB    | 29 | 5         | 12        | 12        |
| THYIA    | 12 | 8         | 4         |           |
| UNIUD    | 6  |           | 6         |           |
| UNIROMA1 | 4  | 4         |           |           |



## WP6 - Tasks



### T6.1 – Multi-Technology System Integration (HAI)

- Integration of components and prototypes
- Vertical testbed of nSHIELD layered architecture
- Demonstration of the interoperability of the various nSHIELD SPD modules

### T6.2 – Multi-Technology Validation & Verification (SE)

- Specification of test procedure assessing interface compatibility
- Validation of integrated testbed
- Validation of nSHIELD SPD fundamentals
- **T6.3 Lifecycle SPD Support (TECNALIA)** 
  - Support the lifecycle of proposed solution
  - Conform with international standards (ISO/IEC 12207)
  - Analyzing the security implications of upgrades

## WP6 & WP7 – Work Plan (flow/interactions)

- System Requirements
- SPD Metrics
- nSHIELD Architecture
- /Components, Functionalities, Interfaces
- Scenarios, Test-bed
- Integration
- Testing Functionality (Connectivity, Data flow)
- Testing Platform Survivability, Security and Reliability
- Prove SPD concepts, Demonstrate SPD levels
- Demonstrate Platform Applicability

WP6 & WP7: integrating things, composing applications

## **Components/Node (1)**



### > <u>SDR</u>

- Hypervisor (separates OS from Security modules, Beagleboard xM)
- ✓ Secure Firmware (SHA1, RSA) encryption
- ✓ Smart power unit
- ✓ Smart card (embedded in Nano/Micro)
- Micro/Personal Node
  - ✓ Face recognition (PCA based on Eigenface)



#### Zolertia Z1

- Power Node
  - ✓ GPU hash lookup mechanism



## **Components/Node (2)**



### ➢ <u>Self-X</u>

- ✓ OMBRA (Montgomery algorithm demo on elliptic curves), FPGA processors
- ✓ Anonymity
- ✓ Automatic access control (asymmetric cryptography, hash functions, CRC)
- ✓ DDoS attack mitigation (anti-IP spoofing, could be part of IDS)
- Cryptography
  - ✓ Library of elliptic curve cryptography
  - ✓ Library of lightweight ciphers
  - ✓ Key exchange protocols



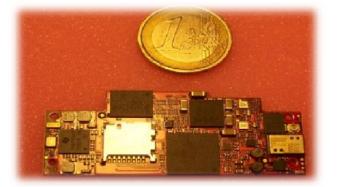
## **Components/Network (1)**



Smart SPD transmission (SDR, Security in CR)

- ✓ Smart transmission layer prototype (OMBRA-HH device, T7.3)
- ✓ Countering smart jamming attack algorithms (C++ simulator/demontrator?)
- Distributed self-x models
  - ✓ Recognizing DoS (OMNET++)
  - ✓ Cellular automata (OSGi, T7.2)
- Reputation-based technologies
  - ✓ Trusted routing (DT+IT)
  - ✓ IDS (Beta distribution)




## **Components/Network (2)**

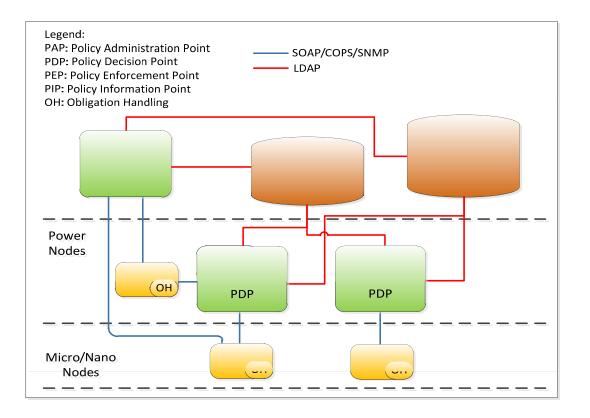


- Trusted and dependable connectivity
  - Link layer security (802.15.4, TinySec, EAP authentication (Linux), Constrained: Zolertia (Contiki, TinyOS), Unconstrained: Beagle-OMBRA)
  - ✓ Network layer security (6LOWPAN adaptation layer to produce compressed IPSec ESP with AES CCM )
  - ✓ Access control in smart grids (DLSM, C++ libraries)





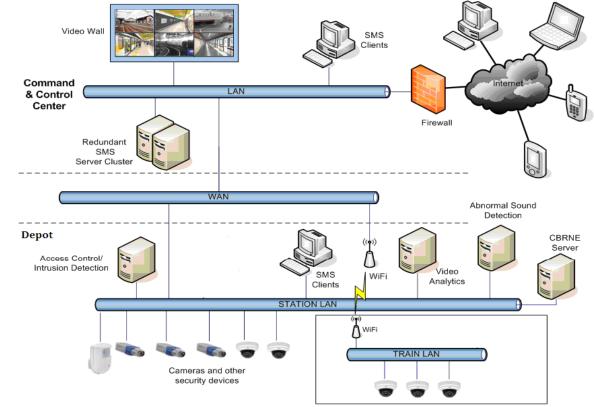





## **Components/Middleware (1)**



### Policy based management

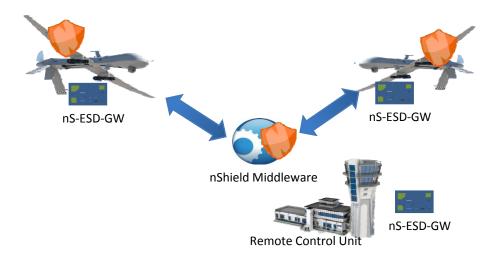

✓ Modules: PIP, PDP, PAP (Power) and PEP (Micro/Nano), OSGi between Power, DPWS (XACML) between Micro/Nano





## **Application 1 – Railways Security**

- Scenarios
  - 1. Cameras-Server LAN (train station)
  - 2. Cameras-Control room WAN (shelter)
  - 3. Vehicle-Control room






**NSHIELD** 

### **Application 3 – Railways Security**

- Scenarios
  - 1. HW fault recovery (1 UAV)
  - 2. Error recovery using 2<sup>nd</sup> UAV



- Components
  - ✓ OMNIA (Middleware), OMBRA (SDR), nS-ESD-GW

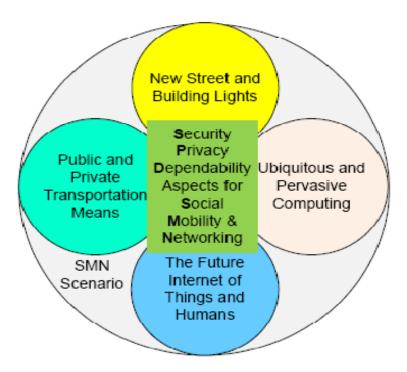


**MSHIELD** 

## **Application 2 – Voice/Facial Recognition**



- 1. Composability
- 2. Security level
  - ✓ how:






**MSHIELD** 

## **Application 4 – Social Mobility Network**

- Demonstration of SPD concept:
  - 1. Composability
  - 2. Security level
    - ✓ how:



**Mahield** 

## **Components/Nodes/Integration (1)**



- Integration exploration starting from Nodes
- Nano
  - ✓ OS: Contiki
  - ✓ Network: 802.15.4/6LoWPAN
  - ✓ Platform: Zolertia Z1, Crossbow IRIS
- > Micro
  - ✓ OS: lightweight Linux
  - ✓ Network: 802.15.4/6LoWPAN
  - ✓ Platform: Beaglebone
- > Power
  - ✓ OS: lightweight Linux
  - ✓ Network: 802.15.4/6LoWPAN, IPv4/IPv6
  - ✓ Platform: Beagleboard xM, Beagleboard

## **Components/Nodes/Integration (2)**

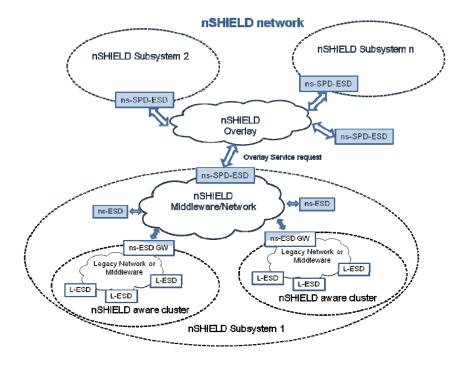


#### Integration issues/steps (i)

- ✓ Node definition
- ✓ OS definition (e.g. some OS include stacks)
- ✓ Network definition (2 types: GW based, IoT standards for interoperability for different nodes (e.g. Zolertia/IRIS))
- ✓ Application needs for interoperability must be examined
- ✓ Network stack (PHY/MAC/NET), should be the same to communicate
- Middleware and Overlay (which components, doing what, which MW part is implemented where)
- ✓ Security

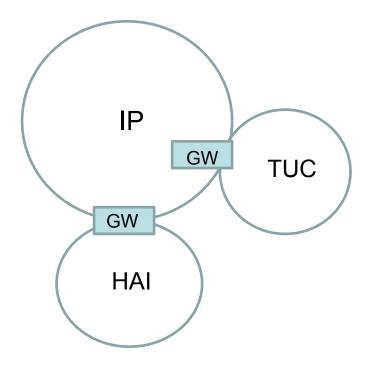


## **Components/Nodes/Integration (3)**




### Integration issues/steps (ii)

- Functionalities/Capabilities (what is supported, resources needed, compatibility between functionalities)
- ✓ Applied where ? (Applications Vs Functionalities)
- ✓ First integrations: intra-layer, per application
- ✓ First interfaces: intra-layer
- ✓ Prototype implementation status: from simulation to real HW
- ✓ Are there already synergies recognized?

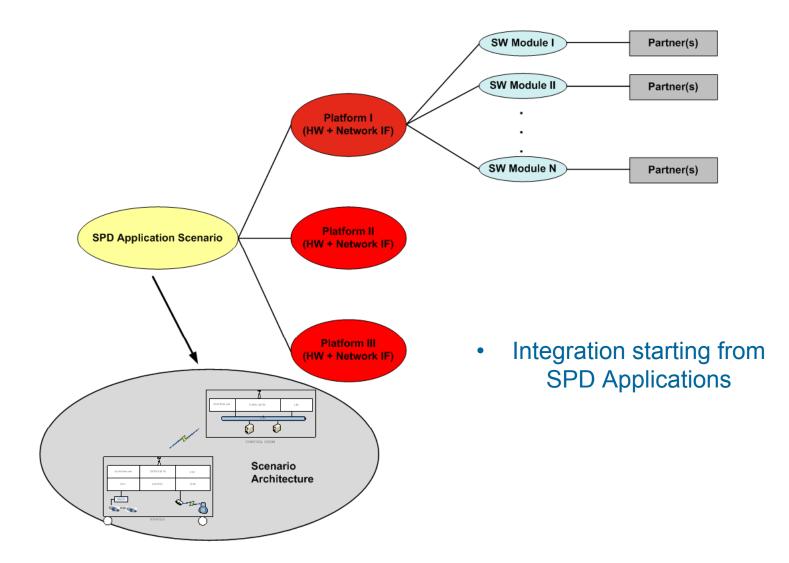



### **Components/Nodes/Integration (4)**



### **nSHIELD** Architecture

#### Gateway based example






**NSHIELD** 

## **Components/Nodes/Integration (5)**







### **Components/Nodes/Integration (6)**

| Component        | Nano | Micro | Power |
|------------------|------|-------|-------|
| Hypervisor       | NA   | Ν     | Y     |
| Secure Firmware  | Y    | NA    | Y     |
| Smart Power Unit | Ν    | Y     | NA    |
| SDR              | Ν    | NA    | Y     |
| Trusted Routing  | NA   | N     | Y     |
| IDS              |      |       |       |
| Policies         |      |       |       |
| T7.1             |      |       |       |
| Т7.2             |      |       |       |
| Т7.3             |      |       |       |
| T7.4             |      |       |       |

Integration starting from Nodes

•

**MSHIELD** 

**Components and Integration** 



# Thank you

