

Project no: 269317

nSHIELD

new embedded Systems arcHItecturE for multi-Layer Dependable solutions

Instrument type: Collaborative Project, JTI-CP-ARTEMIS

Priority name: Embedded Systems

D6.2 Prototype validation and verification

Due date of deliverable: M20 –2013.04.30

Actual submission date: M20-2013.04.30

Start date of project: 01/09/2011 Duration: 36 months

Organisation name of lead contractor for this deliverable:

Selex ES, SES

 Revision Final

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2012)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services) X

CO Confidential, only for members of the consortium (including the Commission Services)

Page ii Final

Document Authors and Approvals

Authors
Date Signature

Name Company

Andrea Morgagni SELEX ES

Andrea Fiaschetti UNIROMA1

UNIROMA1 Team UNIROMA1

Kiriakos Georgouleas HAI

Nikolaos Pappas HAI

George Dramitinos ISD

Balazs Berkes S-LAB

Gergely Eberhardt S-LAB

Lorena de Celis AT

Jacobo Domínguez AT

Carlo Pompili TELC

Kostas Fysarakis TUC

George Hatzivasilis TUC

Kostas Rantos TUC

Alex Papanikolaou TUC

Harry Manifavas TUC

Kresimir Dabcevic UNIGE

Christian Gehrmann SICS

Viktor Do SICS

Hans Thorsen T2DATA

Antonio Di Marzo SESM

Antonio Bruscino SESM

Ester Artieda INDRA

Kyriakos Stefanidis ATHENA

Andreas Papalambrou ATHENA

Panagiotis Soufrilas ATHENA

Paolo Azzoni ETH

Stefano Gosetti ETH

Reviewed by

Name Company

Andrea Fiaschetti UNIROMA1

Nikolaos Pappas HAI

Approved by

Name Company

Final Page iii

Applicable Documents

Issue Date Description

[01] TA nSHIELD Technical Annex

[02] D3.1 SPD Nodes Technologies Assessment

[03] D4.1 SPD Network Technologies Assessment

[04] D5.1 SPD Middleware and Overlay Technologies Assessment

[05] D3.2 Preliminary SPD Nodes Technologies Prototype

[06] D4.2 Preliminary SPD Network Technologies Prototype

[07] D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype

[08] D2.2 Preliminary Systems Requirements and Specifications

[09] D4.3 Preliminary SPD network technologies prototype report

Modification History

Issue Date Description

Draft 0 21/01/13 First version of ToC

Draft 1 16/02/13 Definition of purpose and contents of deliverable

Draft 2 17/02/13 Node Prototypes Validation and Verification – Audio surveillance system

Draft 3 27/02/13 Node and middleware Validation and Verification

Draft 4 28/02/13
Network Prototypes Validation and Verification - Reputation-Based Secure
Routing prototype

Draft 5 13/03/13
Middleware Prototypes Validation and Verification- SHIELD Middleware
Protection Profile

Draft 6 19/03/13 Node prototype – Secure power (&) communication cape

Draft 7 04/04/13
Network Prototypes Validation and Verification – SPD-driven Smart
Transmission Layer

Draft 8 19/04/13 Node prototype – nS-ESD-GW

Draft 9 24/04/13 Link layer security prototype

Final 25/04/13 Contributions to Chapter 3, 4, 5, 6. Final Issue

Page iv Final

Executive Summary

The purpose of this document is to present the plan and methodologies driving the validation and
verification activities for the nSHIELD prototypes. The document is structured as follows:

• Chapter 1 – provides a brief introduction on V&V methodologies and activities

• Chapter 2 – presents the SHIELD taxonomy

• Chapter 3 – is related to the Validation and Verification of Node layer prototypes

• Chapter 4 – is related to Validation and Verification of Network layer prototypes

• Chapter 5 – is related to Validation and Verification of Middleware and Overlay layer prototypes

• Chapter 6 – draws the conclusions

Final Page v

Contents

1 Introduction .. 12

1.1 Security Evaluation methodology supplementing Validation
and Verification of secure technologies ... 15

1.1.1 Security evaluation methodology - MEFORMA .. 15
1.1.2 Components of MEFORMA .. 15

2 Terms and definitions .. 19

3 Node Prototypes validation and verification 20

3.1 SHIELD Node requirements ... 20

3.2 SHIELD Node prototypes overview ... 22

3.2.1 Audio Surveillance System (Prototype 34) ... 22
3.2.2 Secure Boot (Prototype 04) .. 22
3.2.3 SICS Hypervisor (Prototype 03) ... 22
3.2.4 BeagleBoard-Xm prototype for SICS Hypervisor (Prototype 35).................. 22
3.2.5 Smart-Card based services (Prototype 06) .. 23
3.2.6 Secure Power (&) Communication cape (Prototype 05) 23
3.2.7 Gateway nS-ESD-GW (Prototype 21) .. 24
3.2.8 Automatic Access Control (Prototype 11) ... 25
3.2.9 Face recognition prototype (Prototype 07) ... 26

3.3 SHIELD Node prototypes verification and validation 26

3.3.1 Audio Surveillance System (Prototype 34) ... 26
3.3.2 Secure Boot (Prototype 04) .. 27
3.3.3 SICS Hypervisor (Prototype 03) ... 28
3.3.4 BeagleBoard-Xm prototype for SICS Hypervisor (Prototype 35).................. 29
3.3.5 Smart-Card services module (Prototype 06) .. 29
3.3.6 Secure Power (&) Communication cape (Prototype 05) 29
3.3.7 Gateway nS-ESD-GW (Prototype 21) .. 35
3.3.8 Automatic Access Control (Prototype 11) ... 36
3.3.9 Face recognition prototype (Prototype 07) ... 36

4 Network Prototypes validation and verification 39

4.1 nSHIELD Network Requirements ... 39

4.2 SHIELD Network prototypes overview .. 41

4.2.1 Reputation-Based Secure Routing prototype (Prototype 16) 41
4.2.2 Reputation-Based Secure Routing Prototype #2 (Prototype 16) 42
4.2.3 SPD-driven Smart Transmission Layer prototype (Prototype 09) 42
4.2.4 Link Layer Security prototype (Prototype 23) ... 42
4.2.5 DoS attack Defence (Prototype 12) .. 43
4.2.6 Network Layer Security prototype (Prototype 24) ... 43
4.2.7 Anonymity & Location Privacy service (Prototype 10) 44

4.3 SHIELD Network prototypes verification and validation 44

4.3.1 Reputation-Based Secure Routing prototype (Prototype 16) 44
4.3.2 Reputation-Based Secure Routing Prototype #2 (Prototype 16) 52

Page vi Final

4.3.3 SPD-driven Smart Transmission Layer Prototype (Prototype 09) 52
4.3.4 Link Layer Security prototype (Prototype 23) .. 61
4.3.5 Dos Attack Defence (Prototype 12) ... 63
4.3.6 Network Layer Security prototype (Prototype 24) ... 63
4.3.7 Anonymity & Location Privacy prototype (Prototype 10) 68

5 Middleware and Overlay Prototypes validation and
verification ... 70

5.1 SHIELD Middleware and Overlay requirements............................... 70

5.2 SHIELD Middleware and Overlay prototypes overview 74

5.2.1 SHIELD Semantic Model (Prototype 26) ... 74
5.2.2 SHIELD Secure Discovery (Prototype 32) .. 74
5.2.3 SHIELD Security Agent (Prototype 33) ... 74
5.2.4 SHIELD Control Algorithms (Prototype 20) ... 75
5.2.5 SHIELD Middleware Intrusion Detection System (Prototype 22) 75
5.2.6 SHIELD Policy-based Access Control (PBAC) & Policy-based

Management (PBM) (Prototype 19) .. 75
5.2.7 SHIELD Middleware Protection Profile (Prototype 31) 76
5.2.8 Adaptation of Legacy Systems (Prototype 29) .. 76

5.3 SHIELD Middleware and Overlay prototypes verification
and validation ... 76

5.3.1 SHIELD semantic model (Prototype 26) ... 77
5.3.2 SHIELD secure discovery (Prototype 32) .. 77
5.3.3 SHIELD Security Agent (Prototype 33) ... 80
5.3.4 SHIELD Control Algorithms (Prototype 20) ... 80
5.3.5 SHIELD Middleware Intrusion Detection System (Prototype 22) 83
5.3.6 SHIELD Policy-based Access Control (PBAC) & Policy Based

Management (PBM) (Prototype 19) .. 83
5.3.7 SHIELD Middleware Protection Profile (Prototype 31) 89
5.3.8 Adaptation of Legacy Systems (Prototype 29) .. 90

6 Conclusions .. 91

7 References ... 92

Final Page vii

Figures

Figure 1-1: nSHIELD Integration, Validation and Verification approach ... 12

Figure 3-1: BeagleBone Cape prototype .. 23

Figure 3-2: nS-ESD-GW Logical View .. 25

Figure 4-1: Test bed composition and nodes’ connectivity (reputation-based secure routing) 44

Figure 4-2: Test bed block diagram .. 53

Figure 4-3: Test bed block diagram .. 61

Figure 5-1: nSHIELD Knowledge Bases ... 74

Figure 5-2: Protection Profile contents .. 89

Page viii Final

Tables

Table 1-1: nSHIELD prototypes ... 13

Table 1-2: Likelihood x severity risk calculation .. 18

Table 3-1: Requirements relevant against validation and verification of Node layer prototypes 20

Table 3-2: Prototype 05 - Node Requirements addressed .. 24

Table 3-3: Prototype 04 - Secure Boot identified test cases ... 27

Table 3-4: Prototype 03 - Hypervisor identified test cases .. 28

Table 3-5: Prototype 06 - Verification procedures ... 29

Table 3-6: Prototype 05 - Verification procedures ... 30

Table 3-7: Prototype 05 - Validation procedure ... 30

Table 3-8: Prototype 05 - Verification test #1 .. 31

Table 3-9: Prototype 05 - Verification test #2 .. 32

Table 3-10: Prototype 05 - Verification test #3 .. 33

Table 3-11: Prototype 05 - Validation test #1 .. 34

Table 3-12: Prototype 21 - nS-ESD-GW identified test cases... 35

Table 3-13: Prototype 07 - Face Recognition identified test cases ... 36

Table 4-1: Requirements relevant against validation and verification of Network layer prototypes 39

Table 4-2: Prototype 16 - Network Requirements addressed ... 41

Table 4-3: Prototype 09 - Network Requirements addressed ... 42

Table 4-4: Prototype 23 - Link Layer Security requirements addressed ... 43

Table 4-5: Prototype 12 - DoS Attack Defence requirements addressed ... 43

Table 4-6: Prototype 24 - Network Requirements addressed ... 43

Table 4-7: Prototype 10 - Network Requirements Addressed ... 44

Table 4-8: Prototype 16 - Verification procedures ... 45

Table 4-9: Prototype 16 - Validation procedure ... 45

Table 4-10: Prototype 16 - Verification test #1 .. 46

Table 4-11: Prototype 16 - Verification test #2 .. 47

Table 4-12: Prototype 16 - Verification test #3 .. 48

Table 4-13: Prototype 16 - Verification test #4 .. 49

Table 4-14: Prototype 16 - Validation test #1 .. 50

Table 4-15: Prototype 16 (#2) – Verification .. 52

Table 4-16: Prototype 09 - Verification procedures ... 53

Table 4-17: Prototype 09 - Validation procedure ... 53

Table 4-18: Prototype 09 - Verification test #1 .. 54

Table 4-19: Prototype 09 - Verification test #2 .. 55

Final Page ix

Table 4-20: Prototype 09 - Verification test #3.. 56

Table 4-21: Prototype 09 - Verification test #4.. 57

Table 4-22: Prototype 09 - Verification test #5.. 58

Table 4-23: Prototype 09 - Validation test #1 .. 59

Table 4-24: Prototype 23 - Verification Procedure .. 61

Table 4-25: Prototype 23 - Validation Procedure .. 61

Table 4-26: Prototype 23 - Verification test #1.. 62

Table 4-27: Prototype 24 - Verification procedures .. 63

Table 4-28: Prototype 24 - Validation procedure .. 63

Table 4-29: Prototype 24 - Verification test #1.. 64

Table 4-30: Prototype 24 - Verification test #2.. 65

Table 4-31: Prototype 24 - Verification test #3.. 66

Table 4-32: Prototype 24 - Verification test #4.. 67

Table 4-33: Prototype 10 - Validation procedure .. 68

Table 4-34: Prototype 10 - Validation test #1 .. 69

Table 5-1: Requirements relevant against validation and verification of Middleware and Overlay layers
prototypes .. 70

Table 5-2: Prototype 26 - Semantic Models Verification cases .. 77

Table 5-3: Prototype 32 - Secure Discovery Verification cases.. 77

Table 5-4: Prototype 32 - Verification case #1 .. 78

Table 5-5: Prototype 32 - Verification case #2 .. 79

Table 5-6: Prototype 33 - Secure Agent Verification cases .. 80

Table 5-7: Prototype 20 - Control Algorithms Verification cases .. 80

Table 5-8: Prototype 20 - Verification case #1 .. 81

Table 5-9: Prototype 19 - Policy Based Management Framework Verification cases 83

Table 5-10: Prototype 19 - Verification case #1 .. 85

Table 5-11: Prototype 19 - Verification case #2 .. 86

Table 5-12: Prototype 19 - Verification case #3 .. 87

Table 5-13: Prototype 19 - Validation test #1 .. 88

Table 5-14: Prototype 31 - PP evaluation components .. 90

Page x Final

Glossary

Please refer to the Glossary document, which is common for all the deliverables in nSHIELD.

Final Page xi

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 12 of 92 Final

1 Introduction

The final objective of the SHIELD project is to develop innovative SPD functionalities and to build a
framework that is able to dynamically compose them. This objective is reached in four steps. Up to now,
two steps have been almost done:

• WP2 has defined the SHIELD system and scenario requirements that drive the design

• WP3-4-5 have designed and developed the technological enablers and the enriched components
that are the building blocks of the SHIELD framework

At this point, it is necessary to put these components together and to demonstrate, in a significant
environment, the effectiveness of the results. So two further steps are needed:

• WP6 is in charge to verify and validate the behaviour of the individual SHIELD prototypes and
then to integrate them together in a common (still generic) platform, that is validated and verified
as well.

• WP7 is finally in charge to tailor and refine the generic platform for the specific needs of the
application scenarios (demonstrators) and to validate the final behaviour.

These two steps are depicted in Figure 1-1.

Figure 1-1: nSHIELD Integration, Validation and Verification approach

This deliverable addresses the first part of step three (corresponding to the lowest phase of Figure 1-1):
the validation and verification of the individual prototypes, some of which will be selected for integration in
the common platform or in the final demonstrators.

In particular, as well described in the corresponding technical deliverables, the complete list of prototypes
developed in the framework of the nSHIELD project is the following:

Individual
SHIELD
Prototypes

SHIELD Prototypes
Validation & Verification

SHIELD
common
platform

SHIELD
demonstratos

Validated
SHIELD
Prototypes

SHIELD platform
integration

SHIELD Demonstrator
integration

SHIELD Demonstrator
Validation & Verirication

Validated
SHIELD

Validated
SHIELD
common
platform SHIELD platform

Validation and Verification

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 13 of 92

Table 1-1: nSHIELD prototypes

ID Prototype name Owner

0 Elliptic Curve Cryptography UNIGE

1 Lightweight Cyphering TUC

2 Key Exchange Protocol TUC

3 Hypervisor SICS

4 Secure Boot T2D

5 Secure Power (&) Communication cape AT/TELC/TUC

6 Smart Card TUC

7 Facial Recognition ETH

8 GPU Hase TUC

9 Smart Transmission SES/UNIGE

10 Anonymity TUC

11 Automatic Access Control TUC

12 DDoS Attack Mitigation ATHENA

13 Recognizing DoS ATHENA

14 Dependable Distributed Computation Framework UNIUD

15 Intrusion Detection System MGEP

16 Reputation-Based Secure Routing TUC/HAI

17 Access Control Smart Grid TECNALIA

18 Policy Definition ASTS/SES/SESM

19 Policy Based Management Framework TUC/HAI

20 Control Algorithms UNIROMA

21 Gateway SESM

22 Middleware Intrusion Detection System S-LAB

23 Link Layer Security INDRA

24 Network Layer Security TUC

25 OSGI Middleware UNIROMA1

26 Semantic Model UNIROMA1

27 Multimetrics TECNALIA

28 Attack Surface Metrics SES

29 Adaptation of Legacy System ATHENA

30 Reliable Avionic ALFATROLL

31 Protection Profile SES

32 Secure Discovery UNIROMA1

33 Secure Agent UNIROMA1

34 Audio Surveillance System ISD

35 BeagleBoard-Xm SICS

36 OMNIA-IMA SES

37 ETH SecuBoard ETH

These prototypes are highly heterogeneous and in this deliverable it has been decided to split them
depend on the layer, from node to overlay layer:

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 14 of 92 Final

• Node Layer prototypes

1) Audio Surveillance System (Prototype 34)

2) Secure Boot (Prototype 04)

3) SICS Hypervisor (Prototype 03)

4) BeagleBoard-Xm prototype for SICS Hypervisor (Prototype 35)

5) Smart-Card based services (Prototype 06)

6) Secure Power (&) Communication cape (Prototype 05)

7) Gateway nS-ESD-GW (Prototype 21)

8) Automatic Access Control (Prototype 11)

9) Face recognition (Prototype 07)

• Network Layer prototypes

1) Reputation-Based Secure Routing prototype (Prototype 16)

2) SPD-driven Smart Transmission Layer prototype (Prototype 09)

3) Link Layer Security prototype (Prototype 23)

4) DoS attack Defence (Prototype 12)

5) Network Layer Security prototype (Prototype 24)

6) Anonymity & Location Privacy service (Prototype 10)

• Middleware and Overlay layers prototypes

1) SHIELD Semantic Model (Prototype 26)

2) SHIELD Secure Discovery (Prototype 32)

3) SHIELD Security Agent (Prototype 33)

4) SHIELD Control Algorithms (Prototype 20)

5) SHIELD Intrusion Detection System (Prototype 22)

6) SHIELD Policy-based Access Control (PBAC) & Policy Based Management (PBM) (Prototype
19)

7) SHIELD Middleware Protection Profile (Prototype 31)

8) Adaptation of Legacy Systems (Prototype 29)

As it has been indicated previously, all these prototypes are highly heterogeneous. Some of them are
software components, some are hardware components and some others are algorithms or models. For
this reason, a common methodology for validation and verification activities is not provided, giving the
choice of the most suitable mean of verification to the experts of the different layers.

However the macro areas of validation and verification should be chosen among the following standard
procedures:

[A] Analysis: the verification that the requirement is covered is performed by means of a

dedicated analysis

[D] Design: the verification that the requirement is achieved by means of a specific design

choice

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 15 of 92

[I] Inspection: the verification that the requirement is covered is obtained by means of a visual

inspection of the element

[T] Test: the verification that the requirement is satisfied is done through dedicated tests, which

are well described and documented.

[R] Review: the verification that the requirement is covered is achieved by the review of project’s

documentation

Last, but not least, a distinction should be done between validation and verification activities. Commonly,
verification is done with respect to a local or a functional property or requirement, while validation is done
with respect to a wider end-to-end behaviour.

In the SHIELD system, the end-to-end behaviour is SPD behaviour, so the adopted rationale could be:

• To verify all the requirements that can be classified as functional and are necessary to make the
prototype “work”

• Then, to validate the remaining SPD requirements and consequently the SPD behaviour of the
prototype.

Since this distinction is not available in the requirements document, it will be done case by case.

Just to provide an example, let’s consider as prototype, a network module for communication encryption;
the validation and verification of the SPD functionality “secure communication exchange” could be treated
as follows:

• A “ping” command is used to verify that the communication is enabled and messages could be
delivered (no matter which is the content of the message)

• A brute force attack is done on an exchanged message to validate the security of the
communication

Obviously one prototype could cover more than one SPD functionality, so there could be several
validation procedures (one per SPD functionality) with the associated test cases. Verification procedures
are most likely common to several validation procedures.

In the prosecution of the document the three SHIELD layers, with the associated prototypes (only the
prototypes that were actually realised, not those which are in the study phase) are analysed with respect
to V&V results.

1.1 Security Evaluation methodology supplementing Validation and
Verification of secure technologies

The requirements developed in the work package WP2 in the nSHIELD project contain several security-
relevant requirements, where validation and verification against these requirements would require
evaluation of the security in the components.

1.1.1 Security evaluation methodology - MEFORMA

MEFORMA is a security evaluation methodology developed by SEARCH-LAB. The methodology was
created to provide a framework for commercial evaluation projects, and it has been used (and further
refined) in more than 50 evaluation projects over twelve years. The methodology was designed for
manual security evaluation of (software and/or hardware) products.

SEARCH-LAB carries out security evaluation of some of the security-relevant components according to
the MEFORMA methodology for assisting the validation and verification of those components against the
requirements that have been identified.

1.1.2 Components of MEFORMA

1.1.2.1 Evaluation milestones

A MEFORMA evaluation consists of three to four phases.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 16 of 92 Final

• Preparation Phase: The test environment is established, and threat modelling is performed on the
TOE to specify what exactly should be performed during the Evaluation Phase.

• Evaluation Phase: The test cases defined in the Preparation Phase are executed, confirming
whether the originally-identified threats are viable or not. New findings are reported to the client
regularly during the evaluation.

• Documentation Phase: The evaluators collect the findings of the Evaluation Phase, list all threats
collected during the Evaluation Phase, and perform a risk analysis. Recommendations are given
to deal with each threat.

• Review Phase: During this optional phase, a fixed version of the TOE can be re-evaluated to
determine whether the threats identified during evaluation had been adequately addressed.

1.1.2.2 Deliverables

• Evaluation Plan: Contains the definition of the scope, the identified security objectives in the TOE,
the threat model of the TOE, and the list of test cases to be executed during the Evaluation
Phase.

• Weekly Status Reports: Sent to the client every week, these reports contain the current progress
with the evaluation, schedule information, and any relevant findings.

• Evaluation Report: Delivered at the end of the Evaluation Phase, it contains all results of the
evaluation along with a list of found threats, recommendations, and a risk analysis.

• Review Report: Delivered at the end of the (optional) Review Phase, it contains the results of the
re-evaluation along with a revised list of found threats, recommendations, and a residual risk
analysis.

1.1.2.3 MEFORMA evaluation process

1.1.2.3.1 Scope definition

Before performing a MEFORMA evaluation, the TOE (Target of Evaluation) must be identified, and the
scope of the evaluation must be specified. The definition of the evaluation’s scope is a co-operative effort
between the Evaluator (e.g. SEARCH-LAB) and the client (prototype owner).

Basically there are three main aspects of planning an audit: scope, depth of analysis and the audit risk. If
we limit the scope of the evaluation, important issues may not be addressed even if we increase the depth
of the analysis. Contrarily, if we want to keep the scope as wide as possible and evaluate the whole
system, limits in the available resources will imply limitations in the depth of the analysis. In both cases it
is important to be aware of those remaining risk factors that the investigations would not cover.

In the current case of evaluating nSHIELD prototypes, efforts are allocated based on the experiences of
previous audit projects and based on the time estimations of the proposed tasks. If the proposal is
accepted in a review by the prototype owner, the Evaluator takes on to execute the specific tasks as long
as the scope of the evaluation remains the same (minor problems are included).

1.1.2.3.2 Identification of security objectives

As a first step, the security objectives towards the TOE are specified. These are collected by first
identifying the important assets within the system that need to be protected, and then determining which
particular aspect of security from the industry-standard CIA triad (Confidentiality, Integrity, and Availability)
must be applied to them. The assets are further grouped into categories appropriate to the specific
evaluation (e.g. a software evaluation would likely have ‘software assets’, ‘data assets’, and ‘other assets’
categories).

If the client provides their own list of security requirements, those are used to refine these further,
prioritizing the security of the assets the client finds to be the most important. In the case of nSHIELD
prototypes, the relevant nSHIELD requirements identified form the basis of the objectives.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 17 of 92

1.1.2.3.3 Threat modelling

Based on the security objectives, the evaluators perform threat modelling. This can be done following two
different approaches.

• Attack tree modelling consists of drawing conceptual diagrams of perceived threats to a system.
This process is performed by identifying an attacker goal, and then modelling the various ways
these goals can be achieved. E.g. an attacker may have a goal of obtaining a web application’s
administrator password which is also stored on the user’s computer. He could do this by
deploying malware on the user’s computer, eavesdropping communication between the user’s
computer and the web server, or even by exploiting vulnerability in the web application to obtain
the password.

• Misuse cases are similar to the use case UML formalism, but instead of describing ways to use
system functionality, they present ways on how to misuse it. These diagrams are useful for
eliciting security requirements in the early stages of the software development lifecycle, and
therefore MEFORMA uses misuse cases for design review projects. Misuse cases are derived
from the normal use cases of the TOE – e.g. for a normal ‘shutdown’ use case there may be
several misuse cases defined where the system shuts down.

Optionally, attacker profiling may also be performed in this stage. This identifies several different types of
attackers that may have different goals when it comes to attacking the security of the TOE, and may also
have different resources and expertise at their disposal. Example profiles are insider, exploiter, misuser,
and thief.

1.1.2.3.4 Test case specification

During the threat modelling, many potential threats will be identified. Some of these threats may be
considered out of scope for the evaluation due to being unfeasible (such as the vendor’s secret key being
leaked) or trivial (e.g. a particular aspect of the system is insecure by design). However, most of the
threats will require investigation to confirm their feasibility.

To that end, the evaluators group relevant threats together, and specify test cases – evaluation of specific
aspects of the TOE – in an effort to determine whether the relevant threats identified during the threat
modelling process are feasible.

1.1.2.3.5 Evaluation

The test cases defined during the test case specification step are executed. Actual evaluation of a test
case can consist of black-box / white-box / grey-box testing, or source code review. Throughout the
evaluation, we use several symbols to denote the results of individual tests within a test case. These
symbols are as follows:

: Normal operation. The outcome of the test indicates that the implementation is correct.

: Problem. The outcome of the test has clearly identified a security problem.

: Potential / possible problem. The outcome of the test does not clearly indicate a security
problem, but may lead to unexpected or abnormal operation. This symbol is also used if a
security issue is suspected, but could not be verified (e.g. a necessary interface wasn’t
available during the test).

1.1.2.3.6 Threat documentation

We compile a list of threats based on the results of the evaluation. These may be threats that were
identified during the threat modelling step, or completely new threats altogether.

For each threat, we perform a preparedness evaluation: the resources and expertise required by the
attacker to realize it.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 18 of 92 Final

1.1.2.3.7 Risk analysis

We estimate the risk each discovered threat poses to the system. This is done by specifying the severity
(damage that can be potentially done by realizing the threat) and likelihood (the difficulty of realizing the

threat) of each threat. The risk is the product of these two values using the standard likelihood severity
risk calculation:

Table 1-2: Likelihood x severity risk calculation

Likelihood / Severity Low Medium High

Low Very Low Low Medium

Medium Low High Very High

High Medium Very High Catastrophic

Very High High Catastrophic Catastrophic

The risk value of each threat can take the following levels:

• Very Low (VL): The threat has a very minor – but not negligible – effect on the security of the
asset.

• Low (L): The threat has a minor effect on the security of the asset.

• Medium (M): The threat has a noticeable effect on the security of the asset.

• High (H): The threat significantly endangers the asset.

• Very high (VH): The threat significantly endangers the asset or the system as a whole.

• Catastrophic (C): The threat presents a critical risk to the system as a whole; if not mitigated, its
effects could put the entire business process at risk.

1.1.2.3.8 Recommendations

For each threat, we specify recommendations that could be used to reduce its risk or eliminate the threat
entirely. In each case, we aim to reduce either the likelihood or severity of the threat to zero.

After finishing the recommendations, the Evaluation Report is sent to the client, who can then make the
appropriate steps to address the issues.

1.1.2.3.9 Review

Following the evaluation, a several weeks long review phase may be requested by the client. If so, we
receive a newer version of the TOE, and re-run all of the test cases on the new TOE to verify if the threats
have been appropriately dealt with.

After this re-evaluation, we create a residual risk analysis, showing the threats that still remain in the
system after the review. If new threats are discovered during the review, those are listed as well.

The final review will describe the validation and verification results against relevant nSHIELD
requirements.

[reference accepted best practices/standards]: Cert C++ source code analysis, CISA auditing
methodology

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 19 of 92

2 Terms and definitions

Audit
Involves recognizing, recording, storing, and analysing information related to SPD
relevant activities. The resulting audit records can be examined to determine
which SPD relevant activities took place.

Authorised
User

A user who possesses the rights and/or privileges necessary to perform an
operation

Class and
Family

The CC has organized the components into hierarchical structures: Classes
consisting of Families consisting of components. This organization into a
hierarchy of class - family - component - element is provided to assist consumers,
developers and evaluators in locating specific components

Common
Criteria

The Common Criteria for Information Technology Security Evaluation
(abbreviated as Common Criteria or CC) is international standard (ISO/IEC
15408) for computer security certification. It is currently in version 3.1. Common
Criteria is a framework in which computer system users can specify their security
functional and assurance requirements, vendors can then implement and/or make
claims about the security attributes of their products, and testing laboratories can
evaluate the products to determine if they actually meet the claims. In other
words, Common Criteria provides assurance that the process of specification,
implementation and evaluation of a computer security product has been
conducted in a rigorous and standard manner.

Composability

Is the possibility to compose different (possibly heterogeneous) SPD
functionalities (also referred to as SPD components) aiming at achieving in the
considered system of Embedded System Devices a target SPD level which
satisfies the requirements of the considered scenario.

Cryptographic
Algorithms

Algorithms to hiding the information, to provide security and information protection
against different forms of attacks

Discovery
Provide to the pSHIELD Middleware Adapter the information, raw data,
description of available hardware resources and services in order to allow the
system composability

Life-Cycle
support
elements

It is the set of elements that support the aspect of establishing discipline and
control in the system refinement processes during its development and
maintenance. In the system life-cycle it is distinguished whether it is under the
responsibility of the developer or the user rather than whether it is located in the
development or user environment. The point of transition is the moment where the
system is handed over to the user.

Overlay Layer
The “embedded intelligence” that drives the composition of the pSHIELD
components in order to meet the desired level of SPD. This is a software layer as
well.

Personal Area
Network

Computer used for communication among computer devices, including
telephones and personal digital assistants, in proximity to an individual's body.

PAN
Coordinator

The ZigBee device which is responsible for starting the formation of a ZigBee
network. The ZigBee PAN coordinator chooses the PAN ID. There is only one
ZigBee PAN Coordinator in any ZigBee network; its ZigBee address is always 0.

TinyOS
This operating system (OS) is a free and open source operating system and
platform that is designed for WSNs.

User session A period of interaction between users and SPD functional components.

Wireless
Sensor
Network

It consists of spatially distributed autonomous sensors to monitor physical or
environmental conditions, such as temperature, sound, vibration, pressure, motion
or pollutants and to cooperatively pass their data through the network to a main
location.

http://en.wikipedia.org/wiki/International_standard
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Telephone
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Autonomous
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/wiki/Pressure

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 20 of 92 Final

3 Node Prototypes validation and verification

3.1 SHIELD Node requirements

An initial node requirements assessment has been conducted in nSHIELD deliverable D2.2: Preliminary
System Requirements and Specifications. In this section, the requirements are recited and their approach
is updated through the -up to now- available input from the technical developments of nSHIELD Node
Layer design (WP3) and related work.

In the following table the requirements that are addressed by the prototypes developed for the SHIELD
node are reported, with the indication of the mean of verification (A, D, I, T) and the applicability scope
(validation or verification). Only requirements covered by test are extensively investigated.

Table 3-1: Requirements relevant against validation and verification of Node layer prototypes

REQ_ND01 - Code execution

An nSHIELD node should verify that only authorized code (booting, kernel and application) runs
on the system.

Carried out for SICS Hypervisor through a Security Evaluation with MEFORMA methodology [A, D, T]

REQ_ND02 - Data Freshness

An nSHIELD node should include data freshness checks to avoid replay attacks. This requirement
depends on network protocol. Some cryptographic primitives/low level mechanisms are supported by
several chips (e.g. MRF chip). [A, D]

REQ_ND03 - Digital Signatures

An nSHIELD node should be able to verify digital signatures even in cases where a trusted third party
is not available. This is important to allow flexible secure operation in highly mobile scenarios.
Different signature verifications can be done using JavaCard applets (like implementation of ECDSA
java card applet on the smart card) [A, D]

REQ_ND05 - TPM Low Power mode

An nSHIELD node’s TPM shall be able to enter into a low power state without compromising its
security. Resource-constraints may lead to a device running out of power. In that scenario the system
must ensure it won’t compromise the network’s security or the security of stored data on the node
itself. In this case, this requirement depends on the TPM module selected. [A, D]

REQ_ND09 - Virtualization

An nSHIELD power node should employ virtualization techniques to allow concurrent virtual nodes to
run independently onto the system.

Carried out for SICS Hypervisor through a Security Evaluation with MEFORMA methodology [A, D, T]

REQ_ND11 - Node – Physical/tamper resilience

An nSHIELD node shall be designed to not compromise the privacy of the contained information in
the case of a malicious user gaining physical possession of the device. The device shall be resilient
to tampering, micro-probing and reverse-engineering. Nodes often deployed in hostile and/or not
monitored environments, thus owner’s physical control over the device is not always an option (i.e.
malicious users might have access to the actual node without being detected). This feature is a
requirement that needs to be considered during design stage and it will depend on the final
environment where the node will be work. [A, D, T]

REQ_ND12 - Low computation authentication schemes

An nSHIELD node should include an optimized hardware implementation for an ECC-based public-
key authentication algorithm. ECC will be one of the main lightweight cryptographic primitives utilized
by nSHIELD nodes, both for encryption and digital signatures. Some high performance TPM chips
include features such acceleration. Other way to cover this requirement is by means a software
solution like using JavaCard/JCOP smart cards (built-in functionality in JavaCard). [A, D]

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 21 of 92

REQ_ND17 - Privacy in different trust domains

An nSHIELD node shall feature the necessary mechanisms for security token exchange to enable the
issuance and dissemination of credentials within different trust domains.

REQ_ND23 - Hardware/Software co-design

An nSHIELD node should incorporate hardware-software co-design techniques to substantially
increase application (e.g. public-key cryptography) performance with minimal device surface area and
cost increase. Some chips include minimal hardware acceleration of cryptographic primitives, e.g. the
MRF chip, as dictated by the IEEE 802.15.4-2003 Standard. [A, D]

REQ_ND27 - Accommodations for future energy sources

An nSHIELD node should have provisions for future alternative power sources including super-
capacitors and wireless power schemes. Utilization of advances in the field of energy sources which
would help alleviate some of the resource-constraints or offer fail-safe alternatives. The design of AT
custom power module will include a power input interface for alternative power sources and on-board
battery to allow the future implementation of power harvesting technologies. [A, D]

REQ_ND28 - Power management

In the nSHIELD system the hardware shall provide frequency dividers and variable supply voltage, in
order to meet the most appropriate energy/performance trade-off. This requirement manages any
system power supply risk, which might affect to the node behaviour. It is useful at this level a
continuous power supply source, without any cut in time neither in the power, voltage or current
levels, to correctly bias the devices. In case of failure of any of the countermeasures, being able to
protect all the electronics and devices, in order to avoid further damages into the system and increase
the node availability. [A, D]

REQ_ND29 - Power management interface

In the nSHIELD system the hardware shall provide an appropriate interface, such as I/O ports or
memory mapped registers, in order to allow the software to drive the frequency dividers and the
supply multiplexers. The power management policies should be realizable as software routine, to
allow flexibility and upgrading. [A, D, T]

REQ_SH07 Secure node deployment

A new node shall be identified as a trusted node prior to be accepted in the system.

REQ_SH10 Secure execution

A system node should provide an isolated protected execution environment that can offer secure
execution for the most security sensitive computing tasks.

Carried out for SICS Hypervisor through a Security Evaluation with MEFORMA methodology [A, T]

REQ_SH11 Secure Boot

All nodes should provide a secure boot process. Carried out for Secure Boot and SICS Hypervisor
through a Security Evaluation with MEFORMA methodology. [A, D, T]

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 22 of 92 Final

3.2 SHIELD Node prototypes overview

In this section a brief overview of the node layer prototypes is given, that shows, at high level, how these
requirements have been addressed in the design and development activities.

3.2.1 Audio Surveillance System (Prototype 34)

ISD has been designing a novel audio based surveillance infrastructure that aims to overcome the most
important limitations of non-military grade systems currently utilized in acoustic based research by
providing correlated data acquisition from a large number of overlapping sensors. It will be the only
system able to deliver to the main memory of a single host synchronized uncompressed audio streams
from up to 768 microphones with zero CPU load. Its hierarchical structure is fully extensible and able to
support any number of microphones. The targeted implementations will support from 8 up to 768 sensors
in multiples of 8 units.

3.2.2 Secure Boot (Prototype 04)

The firmware should be an integral part of the CPU core to prevent tampering. The secure boot is the first
software executed after a reset. Prior to transfer control to next layer of software, the contents of the
payload are verified to assure integrity of the node.

The payload is divided into individually signed sections. The first section address memory configuration,
the following sections contain header carrying information where to locate the image in memory. The
design supports any operating system to be loaded, as well as hypervisor. The prototype implementation
is not integrated into the core CPU, but designed to operate in a constrained environment.

The modular design has been applied to BeagleBone and BeagleBoard as well as AMD SC2200 X86
SOC.

3.2.3 SICS Hypervisor (Prototype 03)

As part of the nSHIELD prototyping efforts, SICS has developed a hypervisor that aims to enhance
security in embedded systems by guaranteeing isolation and secure interaction between co-existing open
software components and closed trusted security critical components.

The isolation properties have been achieved by implementing the hypervisor to be the only software to run
at the most privileged level of the CPU, giving it full access to the system. All guest execution
environments have also been modified to run exclusively in the CPU's user mode, which required
paravirtualization of the guest OS. This requires some effort, however the advantages are many. Besides
having the possibility to run multiple execution environments on the hardware with secure access policies,
the trusted computing base also becomes imminently smaller by not having vast amounts of OS kernel
code running in the privileged mode. The performance overhead of a well-designed hypervisor is low
enough that the performance trade away is well worth the increased security of the system.

3.2.4 BeagleBoard-Xm prototype for SICS Hypervisor (Prototype 35)

For the prototype, SICS is using the BeagleBoard-XM rev C running on the OMAP3530 SOC which
includes an ARM Cortex A8 single core CPU. The Linux kernel 2.6.34.3 have been paravirtualized to run
on top of the hypervisor in user privileged mode, co-existing with a security application that offers security
services running in a different execution environment isolated from the Linux OS. Communication
between the trusted application and the Linux OS can only occur through a well-defined interface that the
hypervisor provides. The hypervisor also maintains isolation between the Linux kernel and its user
processes, just like in the normal case of an unmodified Linux kernel.

Currently, only the most important peripherals have been mapped to the Linux kernel such as the interrupt
controller, timer and UART. No other device mappings are possible but will be supported in the near
future. A solution for virtualizing the DMA has also been developed but is not supported on the current
BeagleBoard version of the hypervisor. There is no graphical support, and all communication with the OS

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 23 of 92

is done through the UART. A bash shell console is available, in where you can navigate, explore and
execute programs in the init ramdisk filesystem.

3.2.5 Smart-Card based services (Prototype 06)

To build trust among different type of nodes on the nSHIELD architecture we can exploit the benefits of
smart cards and the cryptographic schemes they implement. Considering, the nSHIELD architecture
where decentralized components are interacting not only with each other but also with centralized ones,
depending on the type of the device and the employed scenario; there is a need for integrating security
and interoperability. In this context, we developed a module for build building secure communication
channels among different devices that supports the following security services:

 Allow secure key management required for establishing secure channels between different
nodes.

 Authentication e.g., between the sensor and central or other distributed components in the train
network.

 Protecting message integrity, for sensor data in the train network among the node and the central
system.

3.2.6 Secure Power (&) Communication cape (Prototype 05)

This nSHIELD node prototype is composed of different subsystems that are directly related to different
partners’ expertise. In deliverables D3.2 and D3.3 the BeagleBone/BeagleBoard devices have been
presented as the selected by several partners as the base platform to support the implementation of their
nSHIELD solution. This prototype has been designed as a BeagleBone cape. This cape could be used by
any partner working with BeagleBone as reference board.

B
e

a
g

le
B

o
n

e
 C

a
p

e

TPM module –

smart card

(ID-000)

Custom encapsulation +

Supervisor à

anti-tampering

U
S

A
R

T

J
a

c
k

 t
o

B
e

a
g

le
B

o
n

e

n
S

H
IE

L
D

 c
o

m
m

 I
2

C

I2
C

G
P

IO

Power Unit

RF Module

802.15.4
supports

S
P

I

S
c

re
w

 C
o

n
n

e
c
to

r

(1
2
v
)

Input block

open/closed

lines

Output block

(Relays)

S
c

re
w

c
o

n
n

e
c
to

r

S
c
re

w
 C

o
n

n
e

c
to

r

(m
a

in
 p

o
w

e
r)

485 Connector

(x2)

S
c

re
w

C
o

n
n

e
c
to

r

S
c

re
w

c
o

n
n

e
c
to

r

Figure 3-1: BeagleBone Cape prototype

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 24 of 92 Final

Designed features:

1. Custom encapsulation + Supervisor and anti-tampering The physical protection will depend
on the needs of the board and it can be vary from a simple box that include a tamper detection
switch to a custom encapsulated, more costly mesh, that offer higher security levels (i.e. when
there whole enclosure integrity needs to be protected). However in the second case a custom
redesign should be performed of the board to be protected (board dimensions, number, location
and size of external connectors…) in order to be able to apply a convenient protection mesh at
reduced cost. If the TPM module provides the required security level and only the stored secure
keys need to be protected it is not necessary to add a secure mesh encapsulation to the whole
target board. In this prototype the first option has been implemented.

2. Power unit for the BeagleBone board and third-party boards

3. TPM module to support the storage of the security keys that are involved in the partners
cryptographic developments. This feature is provided through a holder/slot for a smart card with
form factor ID-000 (same as a typical SIM-card). This way, different hardware can be used
depending on the application (using a smart card with Java Card for secure storage and to serve
as a crypto co-processor).

4. RF Module that supports the 802.15.4, based on the MRF24J40 that provides a wireless
communication link.

5. Other features:
a. Additional RS-485/RS-232 external interfaces (driver + connector) will be available in the

cape.
b. RTC signal will be provided.
c. Two relays
d. Several digital inputs

The table below summarizes the list of node requirements addressed by this prototype.

Table 3-2: Prototype 05 - Node Requirements addressed

Prototype ND06: BeagleBone Cape Mean of Verification

REQ_ND02 - Data Freshness A, D

REQ_ND03 - Digital Signatures A, D

REQ_ND05 - TPM Low Power mode A, D

REQ_ND11 - Physical/tamper resilience A, D, T

REQ_ND12 - ECC Authentication A, D

REQ_ND23 - Hardware/Software co-design A, D

REQ_ND28 - Power management A, D

REQ_ND29 - Power management interface A, D, T

3.2.7 Gateway nS-ESD-GW (Prototype 21)

SESM has been developing the nS-ESD-GW (nSHIELD Embedded System Device Gateway) that is used
to interconnect the nSHIELD Middleware and the node layers. It provides enhanced capabilities in terms
of security and dependability to the cluster where it will be integrated in. The hardware computing platform
of the Gateway consists of a hybrid architecture composed by dual-core Cortex ARM A9 and FPGA. The
choice of using this kind of platform confers to this node high performance thanks to the coexistence of
hardware-software developing techniques for the same device. As reported by the Reference System
Architecture Design D2.4, the nS-ESD-GW includes different modules whose synergy will foster the
integration of legacy embedded systems into the nSHIELD architecture as well as they will confer specific
capabilities in terms of composability and SPD. The Figure 3-2 shows a logical view of the internal
architecture of the Gateway.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 25 of 92

Figure 3-2: nS-ESD-GW Logical View

The development of the gateway has been done performing a modular approach. This enables the tight
partitioning and isolation between internal components involved to implement security, communication
and monitoring functions.

Design and development activities:

 blocks referred as Middleware and Physical Controllers are responsible for communication, data
conversion and proxy services. In particular, the physical interface controller, used to connect
legacy nodes, provides a subset of common ready-to-use interfaces as: ETH, SPI and I2C.

 the Coordination Module represents resources, both hardware and software, executing balancing
and safety algorithms as well as nSHIELD specific operations.

 the component identified as DRM (Dynamic Reconfiguration Module) is in charge of managing the
reconfiguration of the processing block and software applications based on the nSHIELD request.
The purpose of this functional block is to increase security and dependability aspects of the node
allowing the device to switch between different operational modes.

 the Fault Detection module encompasses the nSHIELD algorithms. It consists of several software
modules and some processing blocks.

 the accuracy and consistency of data exchanged among the nSHIELD middleware and legacy
nodes is assured by the Data Integrity module. Moreover, the confidentiality and security of long-
term data storage is ensured by the Encrypt/Decrypt controller. Due to the fact that cryptographic
algorithms are processing consuming, this block is implemented as a FPGA-based module,
providing a software-like flexibility with hardware-like performances.

3.2.8 Automatic Access Control (Prototype 11)

For automatic access control functionality, TUC implement the Gossamer protocol. Gossamer utilizes
pseudorandom numbers and simple bit operations and is an ultra-lightweight protocol for mutual
authentication. It furthers provide data confidentiality, tag anonymity, data integrity, forward security,
robustness against replay attacks and DoS attack prevention. A tag and a server use 96-bit keys and
nonces (to counter replay attacks). The session data is a triple of an index-pseudonym and two keys. It is
updated at each session to achieve forward security. When the protocol fails to recognize a legitimate
user, it may lead to the conclusion that the system is under attack. The two entities communicate through
the network with sockets. The implementation is in C++ and is applied on Memsic IRIS and BeagleBone
devices.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 26 of 92 Final

3.2.9 Face recognition prototype (Prototype 07)

The face recognition prototype is an all-in-one solution created to practically demonstrate the
functionalities and potentialities of the face recognition system for people identification. It represents a
proof of concept of the technologies adopted for the face recognition and it will be used to develop the
final prototype. This prototype belong to the “Face and voice recognition” application scenario and has
been developed during the first part of nSHIELD project. During the second part of the project it will
finalized developing the embedded camera for face recognition that can be used in a real environment.

From a software point of view, the approach identified in the assessment phase has been implemented
and satisfies the technical requirements for face recognition. The prototypes, both the Windows and the
Linux versions, are based on the Eigenface method. This method is based on the idea of extracting the
basic features of the face: the objective is to reduce the problem to a lower dimension maintaining, at the
same time, the level of dependability required for this application context. The core of this solution is the
extraction of the principal components of the faces distribution, which is performed using the Principal
Component Analysis (P A) method. This method is also known in the pattern recognition context as
 arhunen-Lo ve (L) transform. The principal components of the faces are eigenvectors and can be
computed from the covariance matrix of the face pictures set (faces to recognize). Every single
eigenvector represents the feature set of the differences among the face picture set. The graphical
representations of the eigenvectors are also similar to real faces and, for this reason, they are called
eigenfaces. The PCA method is autonomous and therefore is particularly suggested for unsupervised and
automatic face recognition systems. This software solution has been developed in C++ and has been
compiled for Windows, (all-in-one demonstrator) and for Linux-ARM (final embedded camera prototype).

3.3 SHIELD Node prototypes verification and validation

In this section a description of the verification and validation activities is reported, with particular attention
to those prototypes whose associated requirements are marked with a T (i.e. a test is needed or verifies
that the requirement is met).

3.3.1 Audio Surveillance System (Prototype 34)

1 Verification Procedure

i. Verification of the functionality of an individual system port [I]. A microphone is attached to
one system port and is exposed to a known audio signal. Audio capturing is activated for
several seconds. An audio file is generated by the system and its contents are played back
by an operator who verifies that the captured data match the audio signal to which the
microphone was exposed. The experiment is repeated for all system ports and for all
sampling frequencies.

ii. Verification of synchronous audio capture [I]. Several microphones are mounted on system
ports and placed in a linear topology. Capturing is activated for several seconds and an audio
signal is produced at a distant location. The captured data are analysed by an operator
verifying that the time offset of each signal peak in the captured data is analogous to the
distance between the respective microphone and the audio source.

2 Validation Procedure

i. REQ_ND01 Code execution [D]. The firmware is not upgradeable in the field avoiding by
design the execution of malicious code.

ii. REQ_ND02 Data Freshness [D]. A monotonically increasing serial number is attached to
each audio sample captured ensuring the ability to perform data freshness checks.

iii. REQ_ND07 Situational-aware SPD [D]. The system reports the availability of data acquired
from each sensor and it’s able to operate even when most of its sensors have been
destroyed by an attack due to its inherent redundancy.

iv. REQ_ND11 Node - Physical/tamper resilience [D]. If required by an application scenario,
some of the sensors can be used in order to detect any attempt for unauthorized access to
the system itself

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 27 of 92

3.3.2 Secure Boot (Prototype 04)

Verification and Validation of the Secure Boot prototype was carried out through the Security Evaluation of
this technology using the MEFORMA methodology (see chapter 0) by SEARCH-LAB. The actual test
cases were described in the Evaluation Plan, provided based on the relevant nSHIELD requirements. The
Evaluation Plan and Evaluation Report were submitted to the prototype owner T2DATA.

Test cases identified:

Table 3-3: Prototype 04 - Secure Boot identified test cases

Test Case
Means of

verification
nSHIELD

requirements
Description

Source code
analysis of the
Secure Boot

A, D, T

REQ_SH07
Secure node
deployment

REQ_SH11
Secure Boot

The Secure Boot is responsible to load and verify the
Kernel and the Hypervisor before it would be started. In
this test case we checked whether the main function
and the high level logic of the Secure Boot were
implemented correctly. We also checked whether the
implementation of the Secure Boot was free from
typical security flaws such as buffer overflows, integer
overflows, logic flaws and memory handling issues.

Security of the
signature

verification
process

A, D

REQ_ND01
Code

execution

The signature verification process is the most
important part of the Secure Boot, which ensures that
only trusted Kernel and Hypervisor will be able to
execute on the device. The aim of this test case was to
check whether the image validation was implemented
correctly and whether it was free from typical security
flaws such as buffer overflow, integer overflow, logic
flaws, memory handling issues and cryptographic
issues. We paid attention to the following specific
issues:

 Implementation of the cryptographic algorithms
such as the possibility of the Bleichenbacher
attack.

 Protection of the used public key.

Source code
analysis of

other libraries
A, D

REQ_SH11
Secure Boot

REQ_SH10
Secure

execution

REQ_ND01
Code

execution

To access hardware devices and load the boot image
from the MMC, the Secure Boot should use additional
libraries, which may contain security flaws. In this test
case we checked whether these libraries (MMC, VFAT,
etc.) were free from typical security flaws such as
buffer overflows, integer overflows, logic flaws and
memory handling issues.

The review document provided results for all tests validating and/or verifying if the identified requirements
were met. The evaluation was carried out with the following goals:

 Validate that the design of the Secure Boot provides the necessary features to fulfil nSHIELD
requirements

 Verify that the design is correct to implement the security implied by the nSHIELD requirements

 Verify that the implementation is correct with regard to the design, i.e. it is free of implementation
errors regarding security

The evaluation milestones 1-3 (see chapter 2.1.2.1) were carried out in the process of the validation and
verification of the Secure Boot, while milestone 4 (review phase) will be reached at the time of the

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 28 of 92 Final

integration of this prototype. In the evaluation and documentation phases the following findings were
identified, which need correction in order to fulfil related nSHIELD requirements:

 It was possible to bypass the integrity protection mechanisms of the boot loader due to logic and
design flaws. This could allow an attacker to start any kernel or hypervisor on the system.

 Several vulnerabilities in the boot loader could be potentially exploited, allowing an attacker to run
arbitrary code.

The Evaluation Report contained detailed error description with annotated code parts related to the
problem, to make it straightforward to correct the findings. There were recommendations given for each
threat discovered during the evaluation. Of these, the most important recommendations are:

 Make sure that all data in the boot image is verified or validated before using this data.

 Use appropriate input validation and error handling in all functions dealing with external input.

3.3.3 SICS Hypervisor (Prototype 03)

Verification and Validation of the SICS Hypervisor prototype is carried out through the Security Evaluation
of this technology using the MEFORMA methodology (see chapter 0) by SEARCH-LAB. The actual test
cases were described in the Evaluation Plan, provided based on the relevant nSHIELD requirements. The
Evaluation Plan and Evaluation Report were submitted to the prototype owner SICS. Test cases
identified:

Table 3-4: Prototype 03 - Hypervisor identified test cases

Test Case
Means of

verification
nSHIELD

requirements
Description

Source
code

analysis of
hypercalls

A, D, T

REQ_ND17
Privacy in

different trust
domains

The guest operating system can communicate with the
Hypervisor via hypercalls. The aim of this test case was to
check whether the hypercalls were implemented correctly and
whether it was free from typical security flaws such as buffer
overflow, integer overflow or logic flaws. Since hypercalls can
be called only from the kernel, we supposed that an attacker
could execute code from the kernel during this test case.

Protection
of virtual

guest
modes

A, D

REQ_ND09
Virtualization

REQ_SH10
Secure

execution

Virtual guest modes are set by the Hypervisor based on the
various hypercalls initiated by the Kernel. These guest modes
provide the separation mechanism between the kernel, trusted
applications, user applications and the interrupt handlers. In
this test case we checked whether state of the virtual guest
modes were protected well and whether the implementation
was free from any logical flaw.

Protection
of Trusted
Application

A, D

REQ_ND17
Privacy in

different trust
domains

Trusted Application is running in a completely separated
environment from the guest. Applications in the guest can
communicate with the Trusted Application only via RPC
hypercalls. The aim of this test case was to verify whether
these RPC calls was not decrease the overall security of the
system and whether it was possible to bypass the Hypervisor
and access the Trusted Application in any other ways.

Protection
of hardware

devices
A, D

REQ_SH10
Secure

execution

The Hypervisor should prevent mapping of hardware devices
for the guest system. The aim of this test case was to check
whether this restriction was implemented correctly and
whether any way existed to bypass this protection.

The review document provided results for all tests validating and/or verifying if the identified requirements
were met. The evaluation was carried out with the following tasks goals:

 Validate that the design of the Hypervisor provides the necessary features to fulfil requirements

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 29 of 92

 Verify that the design is correct to implement the security implied by the requirements

 Verify that the implementation is correct with regard to the design, i.e. it is free of implementation
errors regarding security

The evaluation milestones 1-3 (see chapter 2.1.2.1) were carried out in the process of the validation and
verification of the Hypervisor, while milestone 4 (review phase) will be reached at the time of the
integration of this prototype. In the evaluation and documentation phases the following findings were
identified, which need correction in order to fulfil related nSHIELD requirements:

 A vulnerability in one of the hypercall handlers within the hypervisor could allow an attacker to
write data anywhere in memory, potentially resulting in arbitrary code execution.

 A design weakness in the example Trusted Application’s signature verification function could
allow an attacker to forge a valid signature relatively easily.

The Evaluation Report contained detailed error description with annotated code parts related to the
problem, to make it straightforward to correct the findings. There were recommendations given for each
threat discovered during the evaluation. Of these, the most important recommendations are:

 Use appropriate input validation and error handling in all functions dealing with external input.

 The signature verification function in the example Trusted Application should use the appropriate
method for comparing binary data objects.

All the above identified SICS hypervisor prototype implementation vulnerabilities have been addressed
and a new updated more secure release of the hypervisor is now available.

3.3.4 BeagleBoard-Xm prototype for SICS Hypervisor (Prototype 35)

The validation of this prototype was linked with the validation of the software environment executed on it,
namely the validation of Secure Boot and SICS Hypervisor prototypes was carried out in the context of the
BeagleBoard-Xm software environment. The hardware platform was not validated as such, but the
protection of the relevant assets was taken into account. See chapters 4.2.2 and 4.2.3 for further details.

3.3.5 Smart-Card services module (Prototype 06)

The proposed module will be verified through an experimental specific test bed. Particularly, the module
will verify the provided requirements as described in the following Table.

Table 3-5: Prototype 06 - Verification procedures

Relevant nSHIELD
requirements

Means of
Verification

Description

REQ_ND17 Privacy in
different trust domains

T, D
Valid as well as invalid smart cards will be used in order to
demonstrate solution’s ability to exchange the security tokens and
disseminating credentials correctly among different trust domains.

REQ_ND02 - Data
Freshness

T, D
A node in the network that will use previous values to
demonstrate the ability of the solution to avoid replay attacks.

REQ_ND11 -
Physical/tamper resilience

D Smart Cards are by design physical/tamper resilience.

3.3.6 Secure Power (&) Communication cape (Prototype 05)

The Smart Power unit has been design as a BeagleBone cape, and some additional functionality has
been added in order to enrich the prototype.

Three verification procedures for the communication with the different modules included in the prototype
have been developed for prototype 06:

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 30 of 92 Final

Table 3-6: Prototype 05 - Verification procedures

Verification Procedures for powering
and communication prototype

Test Description

Test Nr 3.3.6.1 Communication and power BeagleBone-SPC cape

Test Nr 3.3.6.2 Communication - SPC cape (TPM module)

Test Nr 3.3.6.3 Communication - SPC cape (Wireless module)

For the validation that the operation of Prototype 05 meets node requirements (T) of Table 3-2, the
following validation procedure was developed.

Table 3-7: Prototype 05 - Validation procedure

Validation Procedure for powering and
communication prototype

Test Description

Test Nr 3.3.6.4 Tamper detection and countermeasures actions

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 31 of 92

Table 3-8: Prototype 05 - Verification test #1

Verification Test Nr.:

3.3.6.1
Written by: AT Conducted by: Date:

Test Category:

Node powering

Software and Hardware
Configuration Details

 BeagleBone

 Secure Power Communication cape (BeagleBone Cape)

 PC running telnet program

 Multimeter

Test Name: Communication and power supply BeagleBone-Smart Power Unit

Purpose: Verify that that the power module powers the BeagleBone and third party chips.

Modules/Interfaces/Code
Tested:

Node layer module

Power manager and tamper module

Step Action Expected Result Pass/Fail Remarks

1
Stack the Secure Power Communication cape
to the BeagleBone

-

2
Connect power cable between cape and main
board.

-

3
Provide external source power to the cape
board and switch it on.

Beagle bone is powered, led status is ok and communication
is working. BeagleBone power signal is stable at 5V.

4
Communication between BeagleBone PC is
functional

Control commands return valid responses.

5

6

7

8

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 32 of 92 Final

Table 3-9: Prototype 05 - Verification test #2

Verification Test Nr.:

3.3.6.2
Written by: AT Conducted by: Date:

Test Category:

Node Security

Software and Hardware
Configuration Details

 BeagleBone

 Secure Power Communication cape (BeagleBone Cape)

 PC running telnet program

Test Name: Communication - Secure Power (&) Communication cape (TPM module)

Purpose: Verify the communication and main functionality between the Smart Card (TPM module) with the BeagleBone board.

Modules/Interfaces/Code
Tested:

Node layer module

TPM module

Step Action Expected Result Pass/Fail Remarks

1
Stack the Secure Power Communication cape
to the BeagleBone

-

2
Connect power cable between cape and main
board.

-

3
Provide external source power to the cape
board and switch it on.

Beagle bone is powered, led status is ok and communication is
working. BeagleBone power signal is stable at 5V.

4
Communication between BeagleBone PC is
functional

Control commands return valid responses.

5
Communication between BeagleBone and
Smart Card module is functional.

Control commands return valid responses.

It will be use a test applet to verify the correct functionality.

Main command subset to test:

1) Request JCOP version from card manager

2) Select test applet and provide applet PIN

3) Send command to test applet and receive expected response

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 33 of 92

Table 3-10: Prototype 05 - Verification test #3

Verification Test Nr.:

3.3.6.3
Written by: AT Conducted by: Date:

Test Category:

Node Communication

Software and Hardware
Configuration Details

 2 x BeagleBone

 2 x Secure Power Communication cape (BeagleBone Cape)

 PC running telnet program

Test Name: Communication -Smart Power Unit (Wireless module)

Purpose: Verify the communication between the wireless module and the BeagleBone, and also the wireless communication between two
BeagleBone boards with the Secure Power Communication cape (BeagleBone Cape).

Modules/Interfaces/Code
Tested:

Node layer module

Wireless module

Step Action Expected Result Pass/Fail Remarks

1
Setting up two BeagleBones loading the
correct kernel

-

2 Initialize the interface of the wireless chip
Communication between the BeagleBone and Wireless chip is
initialized

3
Wireless Communication between the two
BeagleBones (with Smart power unit Cape)
running a simple ping-pong test between them

4

5

6

7

8

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 34 of 92 Final

Table 3-11: Prototype 05 - Validation test #1

Validation Test Nr.:

3.3.6.4
Written by: AT Conducted by: Date:

Test Category:

Node Security

Software and Hardware
Configuration Details

 BeagleBone

 Smart Power Unit (BeagleBone Cape)

 External Li-on battery for Smart Power Unit

 PC running telnet program

 Multimeter

Test Name: Tamper detection and countermeasures actions

Purpose:

Test Validation of nSHIELD Network requirements:

 REQ_ND011 - Node – Physical/tamper resilience

 REQ_ND029 - Power management interface

Modules/Interfaces/Code
Tested:

Node layer module

Power manager and tamper module

Step Action Expected Result Pass/Fail Remarks

1
Stack the Smart Power unit to the
BeagleBone

-

2
Connect power cable between cape and
main board.

-

3
Provide external source power to the cape
board and switch it on.

BeagleBone is powered, led status is ok and communication is
working.

4
Remove external source power and check
that the external battery provides energy.

BeagleBone should not experience any anomalies in its
functional state while running on battery power.

5 Tamper event is triggered manually

Tamper event is detected by BeagleBone

Supervisor removes sensitive information from its internal secure
memory.

6 Modify external voltage in the 0V-12V range External measured voltage matches configured value

7
Progressive lower external load to reach the
500mA limit

External current is provided until 500mA, the current is limited at
that value and no damages are suffered by the cape board.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 35 of 92

3.3.7 Gateway nS-ESD-GW (Prototype 21)

The following table reports requirements covered by the nS-ESD-GW.

Table 3-12: Prototype 21 - nS-ESD-GW identified test cases

ID
nSHIELD

Requirement
Mean of

verification
Description

T.1
REQ_ND02

Data Freshness
A

The nS-ESD-GW encompasses two distinct Data Freshness methods.
Stored data can be updated periodically or upon system requests. The
update time interval is controlled by a configurable parameter. The
system is endowed by a set of registers that contain information about
the data freshness.

[A] – A number representing the amount of time since data have been
stored is saved into a specific register of the Gateway and it is available
as output.

T.2

REQ_ND03
Digital

Signatures
A, T

A mechanism of Digital Signature check is applied to communicate with
legacy nodes.

[A] – Once a legacy node is elected as trusted, its status is written into
the data memory.

[T] –A non-trusted node, or a node that is not capable of sharing a
trusted digital signature, will be detected by the Gateway and any
attempt to open a communication channel will refused.

T.3
REQ_ND04

Policy updates
D

The nS-ESD-GW is endowed by several communication policies. These
policies specify and regulate the interrogations (interval, priority,
broadcast, unicast, etc), the messages to be dispatched and accepted
(message alive time, timeout, etc) and the Gateway modes.

[D] – Policies are not upgradeable, avoiding by design the risk of
malicious attacks.

T.4

REQ_ND14
Storage of

private
information

A, D

The confidentiality and the security of private information is ensured
through the adoption of encryption/decryption blocks for the data writing.
A non-volatile memory is the support for the storage of long-term
information.

[A] – During the secure operational mode execution all data that are
stored into the memory are encrypted.

T.5

REQ_ND21
Dynamic
security

behaviour

A

In accordance to the policies of the nSHIELD framework, the nS-ESD-
GW is able to evaluate the SPD level provided by the Middleware and to
change its operational mode. This means that the Gateway is able to:

 Increase/decrease the rate of the messages requests sent to
legacy nodes;

 Enable/disable cryptographic modules;

 Increase/decrease the writing of the log file concerning the audit
function.

[A] – As consequence of the operational mode changing, log files are
stored into the memory with a different rate. Likewise, data saved into
the non-volatile support are encrypted if the status of the Gateway
requires a more accurate behaviour.

T.6

REQ_ND23
Hardware/Softw
are co-design

D

The platform used to develop the nS-ESD-GW prototype is a chip that
integrates a hybrid architecture compose by a dual-core ARM Cortex A9
and a 7-Series Xilinx FPGA. This allows the possibility to use a specific
design flow that speed up the entire development process and permits
the coexistence, on the same device, of hardware-software co-design
techniques.

T.7

REQ_ND24
Situational-
aware and

context-aware
SPD

D

With the aim to optimize Gateway’s performances, a coordination
module is able to provide a services balancing according to the SPD
level.

[D] – A module that provides fault detection and SPD evaluation
encompasses the nSHIELD algorithms. It consists of several software
modules and some FPGA-based IP processing blocks.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 36 of 92 Final

3.3.8 Automatic Access Control (Prototype 11)

Verification procedure

Verify the proper operation of the Gossamer protocol. We initialize the Gossamer protocol for a server and
a client. Then, we execute the protocol and prompt the communication messages – verifying that all
messages are correct. Finally, we check that the two entities have correctly calculated the relevant data
for the next session (forward security) and aren’t desynchronized.

Verify the proper operation of the Gossamer protocol under a DoS attack. We initialize the server. Then,
send random messages and observe if the server drops them instantly. We check if the server calculates
the SPD metrics properly (e.g. transaction rate, failed authentication) and if it detects the DoS attack and
arises an alarm.

Validation procedure

1. REQ_ND02 - Data Freshness (A, D): the Gossamer protocol by design enforces data freshness
procedures to avoid replay attacks.

3.3.9 Face recognition prototype (Prototype 07)

The following table describes the requirements covered by the face recognition prototypes.

Table 3-13: Prototype 07 - Face Recognition identified test cases

ID
nSHIELD

Requirement
Mean of

verification
Description

VF.1

REQ_VF01
Secure

identification
through face
recognition

T

The system should allow secure identification of end users
through face recognition. The biometric profile of a person is
acquired using face recognition and is used as a mean to
securely identify end-users in the system.

[T] – A set of synthetic and real tests is set up to understand
the recognition capabilities of the system. The tests include
synthetic images, real images and real pictures taken with a
camera. These inputs include accredited biometric profiles,
unknown biometric profiles, false positive and false negative.

VF.2

REQ_VF03
Protection of

biometric data and
metadata storage

D, A

Confidentiality of biometric data and metadata storage should,
due to security and privacy reasons, be protected. The face
recognition prototype doesn’t allow an intruder to break the
security of people identification process by extracting stored
biometric data from the system.

[D] – Biometric profiles are stored in a secure way. They are
encrypted, both when they are passed from one module to the
other and when they are stored. At the end of the recognition
process these data are permanently deleted.

[A] – The analysis of the recognition procedure allows the
identification of possible weak points where the data
confidentiality is compromised.

VF.3

REQ_VF04
Biometric data

privacy
D, A

The acquired image must be deleted after analysis and cannot
be transferred in any way outside the embedded device used
for the acquisition and recognition. The illegal usage or
diffusion of biometric data is prevented in the system due to
privacy reasons.

[D] – The biometric profile is not stored anyway on the system.
It is represented in an internal data structure, encrypted and
stored in memory. This data structure is deleted immediately
after the result of the recognition process is available.

[A] – The analysis of the recognition algorithm ensures that the
biometric data are deleted after being used.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 37 of 92

VF.4

REQ_VF05
Biometric data and

metadata
confidentiality

A, D

Biometric data and metadata shall be encrypted when used or
transmitted for any purposes. In order to prevent an attacker to
gain access to biometric data, the information acquired from the
camera is encrypted when sent to or used by the processing
unit.

[D] – The recognition algorithm encrypts all the sensible data
used during the recognition process.

[A] – The analysis of the recognition algorithm can confirm that
confidentiality is achieved thanks to encryption.

VF.5

REQ_VF06
Face recognition

quality
T

Secure identification based on face recognition shall provide
high quality results in order to reduce the risk of false
identifications. The probability of false detection satisfies the
ICAO standard.

[T] – A set of specific tests has been conceived to measure the
quality of the recognition. The tests and the datasets have been
organized in an evaluation framework.

VF.6

REQ_VF07
Biometric metadata

privacy
A, D

The metadata obtained from the analysis of images must be
used respecting privacy. Although the metadata obtained from
images are less sensible than their corresponding analogue
sources, they always represent important information,
especially when contextualized and, for this reason, they are
treated respecting privacy.

[D] – The biometric metadata are not stored anyway on the
system. They are represented in an internal data structure,
encrypted and stored in memory. This data structure is deleted
immediately after the result of the recognition process is
available.

[A] – The analysis of the recognition procedure ensures that the
biometric metadata are deleted after being used.

VF.7

REQ_VF09
System fault

tolerance
D, T

The components of the recognition system shall use periodic
keep alive messages, independent from the acquisition
process, in order to inform each other of any fault occurred in
the system. To ensure the dependability of the overall
recognition system, the embedded device sends period keep
alive message to the other components of the recognition
system.

[D] – The recognition system has been designed to enter in an
alarm state if one or more components are, for any reason, not
functioning properly. This emergency situation occurs when
one or more components don’t receive the expected keep alive
messages.

[T] – It is possible to recreate this faulty situation stopping one
of the components or blocking it manually.

VF.8

REQ_VF10

Recognition
process

determinism

A, T

The recognition process is self-learning and requires a training
procedure. For its intrinsic nature it doesn’t provide a binary
result in terms of recognition but only a matching score and
could be non-deterministic. In order to guarantee the reliability
of the recognition process and the overall system, it must be
“forced” to be deterministic.

[A] – The analysis of the algorithm can demonstrate that it is
deterministic.

[T] – A specific set of test has been conceived to verify that the
algorithm is deterministic. The test includes images that
stresses the algorithm to the conditions that make the
recognition fail.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 38 of 92 Final

VF.9
REQ_VF11

Onsite recognition
A, D

The recognition (not the identification) of human faces in the
input stream must be entirely performed by the embedded
system on site. The features detection and recognition of face
is performed entirely onsite and there is no need to send these
sensible data to another computing unit over the network, and
this increase security and privacy.

[A] – The analysis of the feature detection component can
verify this aspect.

[D] – The feature extraction module is autonomous and doesn’t
need to communicate to the other modules, except to pass the
results of the feature extraction. The module is installed on the
embedded camera.

VF.10

REQ_VF12

Transmitted
biometric

information
integrity

D

Metadata transmitted over wireless or cable networks shall be
protected in terms of integrity. It is not possible to modify
biometric metadata that contain critical information used for
user identification during any kind of data transmission.

[D] – Metadata obtained by the recognition process are
encrypted, both when they are used by the software modules
and when they are transmitted.

VF.11
REQ_VF13

Secure execution
D, T

The embedded system in charge of recognition should provide
an isolated and protected execution environment that can
guarantee the security during the recognition and identification
process. It is not possible to interfere in any way with the
system during the recognition and identification process.

[D] – The components of the recognition system have been
designed to strictly respect the presence of keep alive
messages, timeouts and a handshaking based procedure.

[T] – A set of tests, that alters this procedure, stops one or
more modules, alter the handshaking timeline, has been used
to verify this requirement.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 39 of 92

4 Network Prototypes validation and verification

4.1 nSHIELD Network Requirements

An initial network requirements assessment has been conducted in nSHIELD deliverable D2.2:
Preliminary System Requirements and Specifications. In this section, the requirements are recited and
their approach is updated through the -up to now- available input from the technical developments of
nSHIELD Network Layer design (WP4) and related work. The following table recapitulates nSHIELD
network specifications under the view of validation and test processes. However it is useful to bear in
mind the basic categorization criteria and dependency parameters that constitute the context of
requirements analysis and design:

1. Significance: some requirements ensure the compliance with fundamental networking and
security principles, where others are more loosely related with prerequisite actions. However, the
vast majority of the 23 network requirements presented here fall in the first category.

2. Application: some requirements are more application specific than others or differently, each
scenario (4 in nSHIELD) is best served by its own sheaf.

3. Functionality: the category includes requirements that explain what the system should do.

4. SPD level: different requirement types and levels are specified at various stages of nSHIELD
subsystems operation.

5. Complexity: it would be desirable for a system to be designed in detailed compliance with each
and every requirement. This, however, would result in losses in other fields that can be roughly
summarized as “resources”: increased information overhead and demands for computational
power are great consumers of energy and memory.

The reference notation of D2.2 is retained, whereas an indication declaring the current level of verification
(A, D, I, T) is added, as these levels were introduced in the Introduction of this document and will be
implemented in this first stage of Integration, Validation and Demonstration activities.

Table 4-1: Requirements relevant against validation and verification of Network layer prototypes

REQ_NW01 Confidentiality - REQ_NW08 Network Security Cryptographic Support

A basic principle for a secure network implemented through data encryption. It is possibly applicable
only on the most powerful of nSHIELD nodes. As for the specific cryptography scheme, in our
preliminary analysis the employment of both symmetric and asymmetric cryptography is foreseen.
However, this is a broad technical issue dependent on the aforementioned parameters (especially 2,
4 and 5) and possibly concerning a second stage of specific application management or specific
component design (D,T).

REQ_NW02 Integrity

Integrity refers to the network prerequisite of transmitting intact data packets.

Applies with the trade-off of the previous one (meaning that is an important network feature but also
resource consuming) (D, T).

REQ_NW03 Secure Routing - REQ_NW11 Reputation-Based Secure Routing

One method to ensure Secure Routing in nSHIELD Network layer is through a Reputation-based
scheme, which can build evidence of trustworthy cooperation fast by taking into account third-party
ratings of trust beside first-hand observations. However the reputation-based trust mechanism can
be also a target of attacks, the most important of which are:

• Bad mouthing attack: an attacker node propagates false reputation values for malicious
nodes, in order to increase their trust values.

• On-Off attack: A malicious node behaves successively bad or well, aiming to confuse the
trust calculation scheme.

• Conflicting behaviour attack: a malicious node can follow a contradictory behaviour pattern
towards two nodes. This will probably result in the two nodes estimating a low trust value for

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 40 of 92 Final

each other, whereas there is no reason to do so.

The verification for the requirement will be provided through testing (T).

REQ_NW04 Fault Tolerance - REQ_NW07 Availability - REQ_NW13 Fault Recovery

The three requirements are grouped here to represent a desired property of an always available
network. This is translated in a redundant network having the capability to adjust and overcome
some nodes failing. (D).

REQ_NW05 Self-Management and Self-Coordination

A node’s capability to organize itself is a very useful property. However, it is quite unfeasible to
prescribe such a requirement in an overall network scale. Once more, it is the more powerful nodes
that will implement more automated and autonomous functions, but selected self-management
actions can be conducted by small nodes also. As an example we can refer to the propagation of
trust metrics between nano/micro nodes, contributing in the formulation of trust tables and therefore
more secure routing (A, D).

REQ_NW06 Multiple Protocol Support

Since one of the core concepts of nSHIELD is service composability, component heterogeneity is
highly probable and therefore the need for the network layer to provide support for a variety of
protocols. Indicatively, application domains interconnecting PC formed data units, servers or
workstations (running IP based protocols) with “clouds” of sensors (running WSN routing protocols)
are foreseen (T).

REQ_NW09 Traceability

That the nSHIELD network should provide traceability information on each transmitted packet is an
intriguing requirement difficult to be accomplished in resource constrained sensor nodes with limited
memory (A).

REQ_NW10 Audit

nSHIELD network shall maintain and provide data and statistics reflecting information such as
network performance and network status updates. A simple example is keeping log files in fixed
intervals which show network’s reaction in the same or different conditions over time. This enables
comparisons and assists in planning future actions. The requirement concerns mainly non-
constrained nodes, having a centralized and supervisory role (D).

REQ_NW12 Reputation-Based Intrusion Detection

The requirement will be covered by the IDS system described in nSHIELD D4.3, based on
cooperation between nodes and fully distributed architectures. This module is part of the general
nSHIELD Reputation scheme. Furthermore, intrusion detection can be implemented as a simple
extension of Trusted Routing Scheme (T).

REQ_NW14 Application-Based Dependable Connectivity

Each application presents specific communication needs that should be met to ensure dependable
connectivity (T).

REQ_NW15 Dependable Authentic Key Distribution Mechanisms - REQ_NW23 Key Exchange
Interfaces

The requirements are listed here as they are related to Confidentiality. As referred previously, the
adopted encryption mechanism and corresponding processes (e.g. key distribution methods,
distributor’s ID, key propagation, man-in the middle attack and possible key alterations) are
specialized topics that could be objectives of an application specific dedicated study. (A, D).

REQ_NW16 Reliable Transmission Methodologies

The nSHIELD network layer shall provide waveform-agile and reliable transmission methodologies.
The requirement will be addressed by the SDR radio platform, enabling smart SPD transmission
and will be verified with SDR prototype (T).

REQ_NW17 Anonymity - REQ_NW18 Location Privacy

The selection to fulfil this requirement and provide users with source anonymity comes along with
computation overhead that may be prohibiting for the majority of nSHIELD nodes (A).

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 41 of 92

REQ_NW19 Application-Based Configurability

Ensures that nSHIELD platform will be capable to adapt its operation and provide the SPD level
each application demands (T).

REQ_NW20 Low Network Delay

nSHIELD network designer will may have to balance between quick response times and cost,
security or reliability (D, T).

REQ_NW21 Information Capacity

The efficiency of available bandwidth depends (among others) on the applications needs, the
topologies and technologies used (D, T).

REQ_NW22 Secure Channel Establishment Interfaces

The nSHIELD network shall provide well-defined interfaces for establishing secure channels. The
requirement seeks to ensure secure system scalability (D).

4.2 SHIELD Network prototypes overview

In this section a brief overview of the prototypes is given, that shows, at high level, how these
requirements have been addressed in the design and development activities.

nSHIELD network prototypes are independent development efforts able to verify and validate that the
network requirements identified in WP2 and summarized in the above section have been met. These
prototypes can work as a proof of concept that the system behaves accordingly to the network specified
rules providing a specific SPD level functionality and can be also considered as an input source to the
nSHIELD application scenario demonstrators.

4.2.1 Reputation-Based Secure Routing prototype (Prototype 16)

The purpose of this prototype is to validate that fault-tolerant network connectivity can be guaranteed
using a distributed reputation-based trust scheme running in each node of a wireless ad-hoc network. Two
mechanisms have been taken into account during the design phase of the prototype to secure routing and
protect the undisrupted network operation:

• Packets Overhearing: The purpose of this mechanism is to enable each node to obtain an
evidence that every packet forwarded to the next node has been properly forwarded from this
node towards the end network point in case that the next node is not the final destination itself.
Implementing this mechanism can provide immunity to network-layer attacks starting from either
malicious nodes (Black-hole, Gray-hole attacks) or from selfish behaviour.

• Validation of reputation-based information: using a modified Bayesian approach only second-
hand reputation information that is not incompatible with the current reputation rating is accepted.
This is important for every reputation-based scheme as malicious nodes can alter the ratings of
their collaborating nodes forming attacks knows as bad mouthing attacks that can severely
degrade the usefulness of a reputation-based scheme.

The table below summarizes the list of network requirements addressed by Prototype 16.

Table 4-2: Prototype 16 - Network Requirements addressed

Prototype 16: Reputation-Based Secure Routing prototype Mean of Verification

REQ_NW03 Secure Routing

REQ_NW11 Reputation-Based Secure Routing

REQ_NW04 Fault Tolerance

REQ_NW05 Self-Management and Self-Coordination

REQ_NW07 Availability

REQ_NW19 Application-Based Configurability

T

T

T

T

T

T

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 42 of 92 Final

4.2.2 Reputation-Based Secure Routing Prototype #2 (Prototype 16)

In WSNs, due to the open medium and the dynamic entrance of new nodes, there must be a way to
establish trust relationships to avoid malicious entities. Trust and reputation-based schemes are used in
wireless networking to provide secure routing functionality. A common approach for implementing secure
routing functionality is the integration of a routing protocol with a reputation scheme.

For nSHIELD network layer, we implement a novel module reputation-based scheme that can act as a
general purpose scheme for a wide range of applications. We identify the common components of
reputation-based schemes and provide an abstract framework. We conclude in eleven components where
each one of them serves a specific functionality. For every component we propose a set of features that
implements the component’s functionality. The segmentation of the scheme into components enables the
dynamic deployment and extension of the scheme.

The network manager selects which components are active and the exact set of features that implements
them. During the selection process, a designer could model the combination of more than one feature for
some components. The designing options can range from ultra-lightweight schemes to heavily secure
ones. The selection decision will be either static at deployment time or dynamic at run time, if such
operation is supported. Also, heterogeneous nodes could utilize different features for some components.
To make our proposal more applicable and acceptable, we have pre-set the configuration options for
implementing the decision making process of well-known trust and reputation schemes for secure routing.
The properties of the pre-defined schemes are known and each one of them protects the system against
a set of specific attacks.

The trust and reputation system is implemented in C++ and extends the routing protocol DSR. It will be
applied in BeagleBone and BeagleBoard devices.

4.2.3 SPD-driven Smart Transmission Layer prototype (Prototype 09)

Purpose of the prototype is demonstrating the provision of secure and robust communication in critical
and hostile channel conditions. This was done via means of the simulated RF test-bench, consisting of 3
Software Defined Radio (SDR) handheld terminals, each interconnected with the OMBRA v2 (a
representative of the nSHIELD Power node) as the processing platform.

The prototype allows for emulating various types of interferers in the channel, as well as creating and
deploying appropriate counter-mechanisms.

The following table summarizes the list of network requirements addressed by Prototype 09.

Table 4-3: Prototype 09 - Network Requirements addressed

Prototype 09: SPD-driven Smart Transmission Layer Mean of Verification

REQ_NW01 Confidentiality

REQ_NW02 Integrity

REQ_NW04 Fault Tolerance

REQ_NW05 Self-Management and Self-Coordination

REQ_NW07 Availability

REQ_NW13 Fault Recovery

REQ_NW16 Reliable Transmission Methodologies

REQ_NW19 Application-Based Configurability

A

T

T

D,T

D,T

D,T

D,T

T

T

4.2.4 Link Layer Security prototype (Prototype 23)

Purpose of the prototype is demonstrating the provision of secure communication on the link layer, and to
do so the protocol to test should provide access control, message integrity, message confidentiality and
replay protection.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 43 of 92

The following table summarizes the list of network requirements addressed by Prototype 23.

Table 4-4: Prototype 23 - Link Layer Security requirements addressed

Prototype 23: Link Layer Security prototype Mean of Verification

REQ_NW01 Confidentiality

REQ_NW02 Integrity

T

T

4.2.5 DoS attack Defence (Prototype 12)

The purpose of this prototype is to demonstrate the operation of the developed algorithms. The prototype
consists of the cooperation of two algorithms that run as software processes in the system, the Statistical
analysis algorithm and the Pattern matching algorithm. The Statistical analysis algorithm communicates
with all four input modules, reads and processes that information and the Pattern matching algorithm
communicates with the network traffic module. Its task is to sample network packets and compare them
with the signature database.

Initially, requirements of the network layer have been considered in the design process of the algorithms.
The self-management requirement was considered and as a result the algorithms can operate in single-
node mode, processing and correlating information that relates to the single node they operate. As the
analysis algorithm gets positive detections, these are stored in the node memory and re-used by the
matching algorithm. These allows for the algorithms to be self-managed without information from other
nodes. The audit requirement is embedded in the design of the algorithms since all positive detections are
logged for the operation of the algorithm and can later be reviewed together with all the input information
that resulted in the positive detection. The Low Network delay requirement was considered in the design
of the algorithms. The mechanism by which this is achieved is the sampling of the network data which can
is adjustable and can be set to values that don’t cause any load in the exchange of data in the network.

Table 4-5: Prototype 12 - DoS Attack Defence requirements addressed

Prototype 12: DoS attack Defence Mean of Verification

REQ_NW05 Self-Management and Self-Coordination

REQ_NW10 Audit

REQ_NW20 Low Network Delay

D, A

D, A

D, A

4.2.6 Network Layer Security prototype (Prototype 24)

The network layer security prototype deals with the ability to provide message protection at the network
layer. The deployed protocol provides end-to-end confidentiality and integrity satisfying applications’
requirements. It is an adaptation of the standardized IPsec protocol, specifically designed to satisfy the
restricted nodes of the nSHIELD network.

The following table summarizes the list of network requirements addressed by Prototype 24.

Table 4-6: Prototype 24 - Network Requirements addressed

Prototype 24: Network Layer Security prototype Mean of Verification

REQ_NW01 Confidentiality

REQ_NW02 Integrity

REQ_NW06 Multiple Protocol Support

REQ_NW08 Network Security Cryptographic Support

REQ_NW19 Application-Based Configurability

REQ_NW20 Low Network Delay

D, T

D, T

A,D

D

D,T

D, T

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 44 of 92 Final

4.2.7 Anonymity & Location Privacy service (Prototype 10)

This prototype is intended for applications where personal location privacy must be preserved while
enabling the system to provide location monitoring services as well as users’ access to location-based
services. The mechanism implemented is lightweight, relies on the K-anonymity privacy concept that aims
to make a user indistinguishable from "K" of her neighbours.

The table below summarized the list of network requirements addressed by Prototype 10.

Table 4-7: Prototype 10 - Network Requirements Addressed

Prototype 10: Anonymity & Location Privacy service Mean of Verification

REQ_NW17 Anonymity

REQ_NW18 Location Privacy

A, D, T

A, D, T

4.3 SHIELD Network prototypes verification and validation

In this section a description of the verification and validation activities is reported, with particular attention
to those prototypes whose associated requirements are marked with a T (i.e. a test is needed or verifies
that the requirement is met).

4.3.1 Reputation-Based Secure Routing prototype (Prototype 16)

This prototype testing is based on Reputation-Based Trust module developed from HAI for Memsic IRIS
sensor nodes which are IEEE 802.15.4 compliant at physical and MAC layers. The programming
environment used is TinyOS 2.x. The routing engine implements Greedy Perimeter Stateless Routing
(GPSR) a geographical-type routing algorithm with precompiled position coordinates. For the testing
purposes the topology of the figure below was used in a controlled neighbourhood manner – each node
rejects as neighbours other nodes than those depicted in the figure, even in cases where data link
connectivity is feasible. On top of the routing module a reputation-based trust module is implemented
which interacts with packet overhearing to rate the forwarding behaviour of the next node and take
countermeasures in cases of routing attacks like Black-hole and Gray-hole attacks selecting a well
behaving node for packet forwarding. To build trust evidence more quickly, a reputation based scheme
which takes into account indirect trust was build. The system is tested against attacks that can degrade
reputation performance in the form of bad mouthing attack where a node advertises deliberately fault trust
values for nodes that interact with.

Figure 4-1: Test bed composition and nodes’ connectivity (reputation-based secure routing)

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 45 of 92

Four verification procedures for various types and combinations of routing attacks have been developed
for prototype 16:

Table 4-8: Prototype 16 - Verification procedures

Verification Procedures for Reputation
Based Secure Routing

Test Description

Test Nr 4.3.1.1 Security Verification against Black-hole attack

Test Nr 4.3.1.2 Security Verification against Gray-hole attack

Test Nr 4.3.1.3 Security Verification against Bad mouthing attack

Test Nr 4.3.1.4 Security Verification against several simultaneous attacks

For the validation that the operation of Prototype 16 meets all security requirements of Table1, the
following validation procedure was developed.

Table 4-9: Prototype 16 - Validation procedure

Validation Procedure for Prototype 16 Test Description

Test Nr 4.3.1.5
Validate that for Prototype 16 all network requirements of
Table 1 are met

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 46 of 92 Final

Table 4-10: Prototype 16 - Verification test #1

Verification Test Nr.:

4.3.1.1
Written by: HAI Conducted by: Date: Test Category: Network Security

Software and Hardware
Configuration Details

 20 Memsic IRIS nodes with mda100 sensor-boards

 Nodes compiled with T-GPSR (v X.X)

 1 Base-station IRIS node (connected to pc) compiled with Base-Station (v X.X)

 PC running GUI application monitoring routing paths using a Sniffing node

 1 node performing Black-Hole attack

Test Name: Secure Routing Verification against Black-hole attack
Purpose: Verify that the routing layer of the sensor node performs correctly under a black-hole attack
Modules/Interfaces/Code
Tested:

Network layer module
Reputation-based trust management module

Step Action Expected Result Pass/Fail Remarks

1

Compile all nodes comprising the island so that
both distance and trust weighting factor are
taken into account during routing decision.
Compile one node as black-hole attacker
dropping all forwarding messages. Only node 1
sends data packets in order to keep a clear
track of the routing path.

-

2 Switch on all nodes.

Network layer control messages (Beacons) are exchanged among
nodes. Routing tables are filled according to trust-enabled GPSR
algorithm. Multihop routing is enabled.
Sniffer overhears all messages exchanged among the nodes.

3 Switch on Base-Station node.
Base-Station receives beacons, data packets, etc exchanged
among the nodes.

4
Start transmitting application-layer messages
from node 1.

Messages received at BS (write down the route, number of hops).
The route and the number of hops can be monitored from the PC
application connected to sniffing node.

5
Replace one of the nodes on the route with one
compiled to perform as a black-hole attacker.

Messages received at BS via a different route, bypassing the BH
node (write down the route, number of hops). The route and the
number of hops can be monitored from the PC application
connected to sniffing node.

6
Repeat the test placing black-hole attacker to
another place.

The network is able to bypass the BH attacker in every network
place.

7 Switch off all nodes of the island.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 47 of 92

Table 4-11: Prototype 16 - Verification test #2

Verification Test Nr.:

4.3.1.2
Written by: HAI Conducted by: Date:

Test Category: Network

Security

Software and Hardware
Configuration Details

 20 Memsic IRIS nodes with mda100 sensor-boards

 Nodes compiled with T-GPSR (v X.X)

 1 Base-station IRIS node (connected to pc) compiled with Base-Station (v X.X)

 PC running GUI application monitoring routing paths using a Sniffing node

 1 node performing Gray-Hole attack

Test Name: Secure Routing Verification against Gray-hole attack
Purpose: Verify that the routing layer of the sensor node performs correctly under a gray-hole attack
Modules/Interfaces/Code
Tested:

Network layer module
Reputation-based trust management module

Step Action Expected Result Pass/Fail Remarks

1

Compile all nodes comprising the island so
that both distance and trust weighting factor
are taken into account during routing
decision. Compile one node as gray-hole
attacker randomly dropping some forwarding
messages. Only node 1 sends data packets
in order to keep a clear track of the routing
path.

-

2 Switch on all nodes.

Network layer control messages (Beacons) are exchanged
among nodes. Routing tables are filled according to trust-
enabled GPSR algorithm. Multihop routing is enabled.
Sniffer overhears all messages exchanged among the nodes.

3 Switch on Base-Station node.
Base-Station receives beacons, data packets, etc. exchanged
among the nodes.

4
Start transmitting application-layer
messages from node 1.

Messages received at BS (write down the route, number of
hops). The route and the number of hops can be monitored
from the PC application connected to sniffing node.

5
Replace one of the nodes on the route with
one compiled to perform as a gray-hole
attacker.

Messages received at BS via a different route, bypassing the
gray-hole node (write down the route, number of hops). The
route and the number of hops can be monitored from the PC
application connected to sniffing node.

6
Repeat the test placing gray-hole attacker to
another place

The network is able to bypass the gray-hole attacker in every
network place.

7 Switch off all nodes of the island.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 48 of 92 Final

Table 4-12: Prototype 16 - Verification test #3

Verification Test Nr.:

4.3.1.3
Written by: HAI Conducted by: Date: Test Category: Network Security

Software and Hardware
Configuration Details

 20 Memsic IRIS nodes with mda100 sensor-boards

 Nodes compiled with T-GPSR (v X.X)

 1 Base-station IRIS node (connected to pc) compiled with Base-Station (v X.X)

 PC running GUI application monitoring routing paths using a Sniffing node

 1 node performing Bad-mouthing attack

Test Name: Secure Routing Verification against Bad-mouthing attack
Purpose: Verify that the routing layer of the sensor node performs correctly under a Bad-mouthing attack
Modules/Interfaces/Code
Tested:

Network layer module
Reputation-based trust management module

Step Action Expected Result Pass/Fail Remarks

1

Compile all nodes comprising the island so
that both distance and trust weighting factor
are taken into account during routing decision.
Compile one node as bad-mouthing attacker
advertising deliberately false trust ratings in its
reputation messages. Only node 1 sends data
packets in order to keep a clear track of the
routing path.

-

2 Switch on all nodes.

Network layer control messages (Beacons) are exchanged
among nodes. Routing tables are filled according to trust-
enabled GPSR algorithm. Multihop routing is enabled.
Sniffer overhears all messages exchanged.

3 Switch on Base-Station node.
Base-Station receives beacons, data packets, etc. exchanged
among the nodes.

4
Start transmitting application-layer messages
from node 1.

Messages received at BS (write down the route, number of
hops). The route and the number of hops can be monitored from
the PC application connected to sniffing node.

5
Replace one of the nodes on the route with
one compiled to perform as a bad-mouthing
attacker.

When reputation message is received from the attacker,
forwarding from the most trusted path must be continued
neglecting false rating advertised by bad-mouthing attacker.
Messages received at BS (write down the route, number of
hops). The route and the number of hops can be monitored from
the PC application connected to sniffing node.

6
Repeat the test placing bad-mouthing attacker
to another place.

The network is able to bypass the BH attacker in every network
place.

7 Switch off all nodes of the island.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 49 of 92

Table 4-13: Prototype 16 - Verification test #4

Verification Test Nr.:

4.3.1.4
Written by: HAI Conducted by: Date: Test Category: Network Security

Software and Hardware
Configuration Details

 20 Memsic IRIS nodes with mda100 sensor-boards

 Nodes compiled with T-GPSR (v X.X)

 1 Base-station IRIS node (connected to pc) compiled with Base-Station (v X.X)

 PC running GUI application monitoring routing paths using a Sniffing node

 1 mote performing black-hole, 1 mote performing gray-hole and 1 mote performing bad-mouthing attacks

Test Name: Secure Routing Verification against several attacks

Purpose: Verify that the routing layer of the sensor node performs correctly under a number of network-layer attacks

Modules/Interfaces/Code
Tested:

Network layer module
Reputation-based trust management module

Step Action Expected Result Pass/Fail Remarks

1
Compile all nodes comprising the island so
that both distance and trust weighting factor
are taken into account during routing decision.

-

2 Switch on all nodes.

Network layer control messages (Beacons) are exchanged
among nodes. Routing tables are filled according to trust-
enabled GPSR algorithm. Multihop routing is enabled.
Sniffer overhears all messages exchanged.

3 Switch on Base-Station node.
BS receives beacons, data packets, etc. exchanged among
the nodes.

4 Start transmitting messages from node 1.
Messages received at BS (write down the route, number of
hops). The route and the number of hops can be monitored
from the PC application connected to sniffing node.

5
Replace one of the nodes on the route with a
node compiled to perform as a black-hole
attacker.

Messages received at BS via different route, bypassing the
black-hole attack (write down the route, number of hops).

6
Replace one of the nodes on the new route
with a node compiled to perform as a gray-
hole attacker.

Messages received at BS via different route, bypassing the
gray-hole attack (write down the route, number of hops).

7
Replace one of the nodes on the new route
with a node compiled to perform as a bad-
mouthing attacker.

Messages received at BS via the most trusted network path
(write down the route, number of hops).

8 Switch off all nodes of the island.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 50 of 92 Final

Table 4-14: Prototype 16 - Validation test #1

Validation Test Nr.:

4.3.1.5
Written by: HAI Conducted by: Date: Test Category: Network Security

Software and Hardware
Configuration Details

 20 Memsic IRIS nodes with mda100 sensor-boards

 Nodes compiled with T-GPSR (v X.X)

 1 Base-station IRIS node (connected to pc) compiled with Base-Station (v X.X)

 PC running GUI application monitoring routing paths using a Sniffing node

 1 mote performing black-hole, 1 mote performing gray-hole and 1 mote performing bad-mouthing attacks

Test Name: Test Validation of network requirements for Prototype 16

Purpose:

Test Validation of nSHIELD Network requirements:

 REQ_NW05 Self-Management and Self-Coordination

 REQ_NW04 Fault Tolerance

 REQ_NW07 Availability

 REQ_NW03 Secure Routing

 REQ_NW11 Reputation-Based Secure Routing

 REQ_NW19 Application-Based Configurability

Modules/Interfaces/Code
Tested:

Network layer module

Reputation-based trust management module

Security configuration module

Step Action Expected Result Pass/Fail Remarks

1

Compile all nodes comprising the island so
that both distance and trust weighting factor
are taken into account during routing
decision.

-

2 Switch on all nodes.

Network layer control messages (Beacons) are exchanged
among nodes. Routing tables are filled according to trust-
enabled GPSR algorithm. Multihop routing is enabled.

Sniffer overhears all messages exchanged.

Validation of Self-Management
and Self-Coordination of
network layer operation.

3 Switch on Base-Station node.
BS receives beacons, data packets, etc. exchanged among
the nodes.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 51 of 92

4 Start transmitting messages from node 1.
Messages received at BS (write down the route, number of
hops). The route and the number of hops can be monitored
from the PC application connected to sniffing node.

5 Switch off a network node.
Network must be available and fault tolerant routing traffic
from a different path.

Validation of Network
availability and fault tolerance.

6
Replace one of the nodes on the route with
a node compiled to perform as a black-hole
attacker.

Messages received at BS via different route, bypassing the
black-hole attack (write down the route, number of hops).

7
Replace one of the nodes on the new route
with a node compiled to perform as a gray-
hole attacker.

Messages received at BS via different route, bypassing the
gray-hole attack (write down the route, number of hops).

8
Replace one of the nodes on the new route
with a node compiled to perform as a bad-
mouthing attacker.

Messages received at BS via the most trusted network path
(write down the route, number of hops).

Validation of Reputation-Based
Secure Routing which
counteracts against a number
of security attacks (Steps 6-9).

9
Configure from the PC application the
security level of a node.

Node network security is configured to the desired SPD
level:

1. Trust disabled

2. Direct Trust enabled

3. Weighted Direct Trust and Indirect Trust enabled

4. Direct Trust + Beta distribution Indirect Trust
enabled

Validation of network security
level configuration according to
application requirements.
Quantitative performance
comparison of different
approaches will be conducted.

10 Switch off all nodes of the island.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 52 of 92 Final

4.3.2 Reputation-Based Secure Routing Prototype #2 (Prototype 16)

The following table summarizes the verification and validation process.

Table 4-15: Prototype 16 (#2) – Verification

Prototype 16: Reputation-Based Secure
Routing prototype #2

Verification Validation

REQ_NW03 Secure Routing T
Validate that the scheme is resilient
against attacks on the pure routing
protocol (e.g. black whole attack)

REQ_NW04 Fault Tolerance D
The scheme provides fault tolerance
mechanisms

REQ_NW05 Self-Management and Self-
Coordination

A, D
The scheme is designed as a self-
management and self-coordination
system

REQ_NW07 Availability D
The scheme provides protection
against several attacks and ensures
availability under them

REQ_NW11 Reputation-Based Secure
Routing

T

Validate that the scheme is resilient
against attacks on the pure routing
protocol (e.g. black whole attack) and
the trust & reputation scheme (e.g.
badmouthing attack)

REQ_NW12 Reputation-based intrusion
detection

T
Detection of attacks on the routing
protocol and the trust & reputation
scheme

REQ_NW19 Application-Based
Configurability

T
The scheme can be configured to
comply with the applications
requirements

REQ_NW20 Low network delay D, T

The pre-defined schemes produce
specific network delay and
computation overhead. For a
configured scheme the
aforementioned parameters must be
evaluated

4.3.3 SPD-driven Smart Transmission Layer Prototype (Prototype 09)

This prototype testing is based on the test bed implementation consisting of 3 SWAVE HH Software
Defined Radios, 3 OMBRA v2 nSHIELD Power nodes, a spectrum analyser, a vector signal generator
and several auxiliaries allowing the components’ interconnectivity.

The software environment includes a combination of:

 Proprietary C++ libraries, algorithms and functions, running on the Power node

 SOAP XML web service, running on the Power node

 Simple Network Management Protocol (SNMP) client, running on the Power node

 Software Communications Architecture-compliant operating system, running on SWAVE HH

By continuously receiving and interpreting the instructions from the Overlay regarding the desired SPD-
level, SPD-driven STL provides several on-the-fly reconfigurability potentials of the radios to
accommodate the current needs, such as:

 Power state of the radios (on/off)

 Transmit power of the radios

 Deployed waveform on the radios

 Transmit frequency on the radios

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 53 of 92

 Modulation type (waveform-dependant) on the radios

 Deployed cryptography

Vector signal generator will be used as the means for creating various types of interference.

Figure 4-2: Test bed block diagram

Correct functioning of each of the components comprising the test bed needs to be verified on an
individual basis. Then, a set of verification and validation methods of the prototype’s developed
functionalities-of-interest may be performed. These are described as follows:

Table 4-16: Prototype 09 - Verification procedures

Verification Procedures for Prototype 09 Test Description

Test Nr 4.3.3.1
Individual verification of the correct functioning of each of the
test bed’s components

Test Nr 4.3.3.2 Verification of the remote control functionality of the radios

Test Nr 4.3.3.3
Verification of the spectrum sensing data acquisition
functionality of the radios

Test Nr 4.3.3.4
Verification of the waveform identification network
functionality

Test Nr 4.3.3.5 Verification of the developed jamming mitigation algorithms

For the validation that the operation of Prototype 09 meets all the defined security requirements, the
following validation procedure was developed.

Table 4-17: Prototype 09 - Validation procedure

Validation Procedures for Prototype 09 Test Description

Test Nr 4.3.3.6
Validate that for Prototype 09 all of the described network
requirements are met

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 54 of 92 Final

Table 4-18: Prototype 09 - Verification test #1

Verification Test Nr.: 4.3.3.1
Written by:

UNIGE
Conducted by: Date:

Test Category: Assessment

of individual components

Software and Hardware
Configuration Details

 3 SWAVE HHs

 3 OMBRA v2 Power Nodes running Windows CE

 3 RS232-RS485 converters

 2 dual directional couplers for the frequency range of interest

 3 programmable attenuators (min 30dB)

 Vector signal generator

 Spectrum analyser

Test Name: Test bed’s individual components assessment
Purpose: Verify that each of the components is functioning as envisioned
Modules/Interfaces/Code Tested: ???

Step Action Expected Result Pass/Fail Remarks

1 Switch on SWAVE HHs.
Boot-up screen turns on, followed by the “username and
password” menu.

2

Ensure that the tested SWAVE HHs have a
same waveform, modulation and carrier
frequency set. Start transmitting several bursts
of speech/data. Repeat procedure, pairing up all
of the tested HHs.

Speech/data should be received at the observed HH
terminals.

3 Switch on OMBRA v2 Power Nodes. Windows CE boots.

4

Connect the vector signal generator to the
spectrum analyser via the coaxial RF cable.
Create a signal via the VSG and verify that it is
correctly seen on the SA.

Whichever signals were created by the VSG should be
visible on the SA.

5

Set a pair of programmable attenuators to at
least 30dB attenuation value, connect them on
the ports of the directional coupler, and connect
two SWAVE HHs. Start transmitting voice/data
bursts. Repeat for different pairs of attenuators
and HHs.

Voice/data bursts should be received without too many
errors, even with the low transmit powers.

6 Turn off all the components.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 55 of 92

Table 4-19: Prototype 09 - Verification test #2

Verification Test Nr.:

4.3.3.2
Written by: UNIGE Conducted by: Date:

Test Category: Node

functionality

Software and Hardware
Configuration Details

 3 SWAVE HHs

 3 OMBRA v2 Power Nodes running Windows CE, with SNMP v3 clients installed

 3 Ethernet cables

Test Name: Remote control of the radio

Purpose: Verify that the remote control of the radio functions properly

Modules/Interfaces/Code
Tested:

???

Step Action Expected Result Pass/Fail Remarks

1

Via Ethernet cable, connect each SWAVE
HH with an OMBRA v2 Power node (or a
PC) with installed SNMP client. Make sure
HH and PN/PC are on the same domain
(might need to set the IP address manually),
and try pinging the HH via cmd terminal.

Ping should invoke “reply” from the HH, i.e. sent packets
should be received

2

Open SNMP client, and load the appropriate
MIB table. Set the appropriate parameters
for the SNMP v3 protocol, and scan for
devices

Scanning should recognize the HHs that wish to be targeted

3
Invoke SET/GET/TRAP commands for the
wanted radio parameters (from the MIB
table)

Radio’s parameters may be read/altered/flagged,
depending on the invoked command

4 Turn off all the components.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 56 of 92 Final

Table 4-20: Prototype 09 - Verification test #3

Verification Test Nr.:

4.3.3.3
Written by: UNIGE Conducted by: Date:

Test Category: Node

functionality

Software and Hardware
Configuration Details

 3 SWAVE HHs

 3 OMBRA v2 Power Nodes running Windows CE, with serial terminals installed

 3 RS232-RS485 converters

Test Name: Spectrum sensing data acquisition verification

Purpose: Verify that spectrum sensing data is read and shown in a correct manner

Modules/Interfaces/Code
Tested:

???

Step Action Expected Result Pass/Fail Remarks

1
Connect each HH to the PN via serial
interface. Due to different interfaces (RS232
vs. RS 485), a converter needs to be used.

2
Open a serial terminal on the PN, and set
the read speed to 115200 bps, 8/1. Turn on
the data logger and store read data.

Every 20 seconds, 8192 words (2B each) should be
transmitted in raw format for the band-of-interest.

3
Convert the stored data to HEX values
following instructions provided in D4.2 and
D4.3

Each of the HEX values represents an FFT value at a
certain frequency.

4 Plot the data.
A representation of a current spectrum status for the band-
of-interest should be plotted

5 Turn off all the components.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 57 of 92

Table 4-21: Prototype 09 - Verification test #4

Verification Test Nr.:

4.3.3.4
Written by: UNIGE Conducted by: Date:

Test Category: Network

security

Software and Hardware
Configuration Details

 3 SWAVE HHs

 3 OMBRA v2 Power Nodes running Windows CE

 3 RS232-RS485 converters

 2 dual directional couplers for the frequency range of interest

 3 programmable attenuators (min 30dB)

 Vector signal generator

 Spectrum analyzer

 Waveform identification – proprietary software

Test Name: Waveform identification verification

Purpose: Newly detected waveform’s features are compared to those of allowed waveforms from the database, and categorized

Modules/Interfaces/Code
Tested:

???

Step Action Expected Result Pass/Fail Remarks

1
Assemble the STL test bed and start the
“waveform identification” executable on one
of the PNs

2
Transmit a waveform through one of the
HHs.

By comparing its characteristics with the ones from the
database, the waveform should be recognized and
characterized as “known, non-malicious”

3
Create a signal somewhere in the band-of-
interest by a vector signal generator

Waveform should not correspond to a list of the waveforms
from the database, and should be classified as “unknown,
potentially malicious”

4 Turn off all the components.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 58 of 92 Final

Table 4-22: Prototype 09 - Verification test #5

Verification Test Nr.:

4.3.3.5
Written by: UNIGE Conducted by: Date:

Test Category: Network

dependability

Software and Hardware
Configuration Details

 3 SWAVE HHs

 3 OMBRA v2 Power Nodes running Windows CE

 3 RS232-RS485 converters

 2 dual directional couplers for the frequency range of interest

 3 programmable attenuators (min 30dB)

 Vector signal generator

 Spectrum analyzer

 Jamming mitigation – proprietary software

Test Name: Jamming attack mitigation

Purpose: Verify that spectrum sensing data is read and shown in a correct manner

Modules/Interfaces/Code
Tested:

???

Step Action Expected Result Pass/Fail Remarks

1
Assemble the STL test bed and start the
“jamming mitigation” executable on the PNs
which are to be used as receivers

2
Start transmitting from the other HH at
frequency f

Signal should be received and decoded without significant
interference. This may also be verified by running the BER
test on the HHs

3
Using vector signal generator, create a
significantly powerful interfering signal at
frequency f

Interfering signal is observable on the spectrum analyser,
and is superimposed on the original signal. Communication
is significantly degraded (also verifiable by BER test), and
the channel surfing/waveform switching/power allocation
algorithm is initiated. Communication should be improved
significantly, depending on which jamming mitigation
algorithm was deployed.

4
Alter the created interfering signal’s
parameters to successfully jam the altered
transmission.

- | | -

5 Turn off all the components.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 59 of 92

Table 4-23: Prototype 09 - Validation test #1

Validation Test Nr.:

4.3.3.6
Written by: UNIGE Conducted by: Date:

Test Category: Network Security and

Dependability

Software and Hardware
Configuration Details

 3 SWAVE HHs

 3 OMBRA v2 Power Nodes running Windows CE

 3 RS232-RS485 converters

 2 dual directional couplers for the frequency range of interest

 3 programmable attenuators (min 30dB)

 Vector signal generator

 Spectrum analyzer

 Jamming mitigation – proprietary software

 Modified SOAP library - interface with the Overlay Layer

Test Name: Test Validation of network requirements for Prototype 09

Purpose:

Test Validation of nSHIELD Network requirements:

- REQ_NW01 Confidentiality

- REQ_NW02 Integrity

- REQ_NW04 Fault Tolerance

- REQ_NW05 Self-Management and Self-Coordination

- REQ_NW07 Availability

- REQ_NW13 Fault Recovery

- REQ_NW16 Reliable Transmission Methodologies

- REQ_NW19 Application-Based Configurability

Modules/Interfaces/Code
Tested:

???

Step Action Expected Result Pass/Fail Remarks

1

Assemble the STL test bed and start the
“waveform identification” and “jamming
mitigation” executable on the PNs which are to
be used as receivers

2

Test the communication of each of the
terminals with the Overlay – a client-server
communication is instantiated using the
modified SOAP web service

Log file is created, describing whether the communication is
successful, i.e. terminal can successfully receive commands
from Overlay

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 60 of 92 Final

3
Set the initial SPD level for each of the nodes
(SPD level is communicated through SOAP)

Each node should display a set of algorithms that the current
SPD level supports.

4 Create interfering signal as in test 4.3.2.5.

A set of security measures corresponding to the given SPD
level will be invoked. E.g. for high SPD level, channel surfing
may be the preferred anti-jamming method, whereas for low
SPD level, power allocation may be preferred

5 Change the SPD level for the nodes.
Each node should display a set of algorithms that the current
SPD level supports.

6
Modify the interfering signal to successfully
degrade the re-establish communication

Different anti-jamming algorithm should be invoked in this
case

7 TBD

8 TBD

9 TBD

10 Turn off all the nodes

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 61 of 92

4.3.4 Link Layer Security prototype (Prototype 23)

This prototype testing is bases on Link Layer Security module developed by INDRA for Zolertia Z1
sensor nodes which are IEEE 802.15.4 compliant. The programming environment used is TinyOS 2.x.
The security link layer protocols used according to IEEE 802.15.4 standard are CTR, CBC-MAC, CCM.

For the testing purposes we have used three nodes, two of them used as senders and the other one
used as base station.

One of the senders will have a different key value than the base station and the other sender.

Figure 4-3: Test bed block diagram

Following tables summarizes the verification and validation procedures.

Table 4-24: Prototype 23 - Verification Procedure

Verification Procedures for Prototype 23 Test Description

Test Nr 4.3.4.1 Verification of integrity and authentication

Table 4-25: Prototype 23 - Validation Procedure

Verification Procedures for Prototype 23 Test Description

Test Nr 4.3.4.2
Validate that for Prototype 23 all of the described network
requirements are met

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 62 of 92 Final

Table 4-26: Prototype 23 - Verification test #1

Verification Test Nr.:

4.3.4.1
Written by: INDRA Conducted by: Date:

Test Category: Assessment

of individual components

Software and Hardware
Configuration Details

 3 z1 motes, 1 as base station and two as senders with different key values

 Sniffer

Test Name: Test Link layer security

Purpose: Verify that each of the components is functioning as envisioned

Modules/Interfaces/Code
Tested:

???

Step Action Expected Result Pass/Fail Remarks

1

Compile all nodes with tinyOS 2.x operative
system. One receiver and sender with the
same key value and the other sender with
other key value

2 Switch on senders The senders begin to send data

3 Switch on receiver
The receiver, as base station, sends received data to the
serial port

4 Print serial port information

If CTR algorithm has been used, the data is encrypted.

If CBC-MAC algorithm has been used, MIC code is added to
the frame providing integrity but data isn’t encrypted.

If CCM algorithm has been used, MIC code is added to the
frame and data is encrypted.

With CBC-MAC and CCM packets processed with a
different key will be discarded.

5 Turn off all the components

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 63 of 92

4.3.5 Dos Attack Defence (Prototype 12)

4.3.5.1 Verification Procedure

This was achieved by code review (A) against the relevant requirements.

4.3.5.2 Validation Procedure

Simulations were performed in the OMNET++ simulator which achieved the validation of basic
functionality against requirements.

4.3.6 Network Layer Security prototype (Prototype 24)

This prototype testing is based on Network Layer Security module developed by TUC for Zolertia Z1
sensor nodes which are IEEE 802.15.4 compliant. The programming environment used is Contiki OS 2.6.
The network layer security protocols used are compatible with the IEEE 802.15.4 standard.

For the testing purposes we have used three nodes, two of them used as legitimate communicating
parties and the other one used as malicious/eavesdropping entity.

Correct functioning of each of the components comprising the test bed needs to be verified on an
individual basis. Then, a set of verification and validation methods of the prototype’s developed
functionalities-of-interest may be performed. These are described as follows:

Table 4-27: Prototype 24 - Verification procedures

Verification Procedures for Prototype 24 Test Description

Test Nr 4.3.6.1 Verification of confidentiality

Test Nr 4.3.6.2 Verification of the integrity feature

Test Nr 4.3.6.3
Verification that an application can set the level of
security provided

Test Nr 4.3.6.4 Verification that the mechanism introduces low delay

For the validation that the operation of Prototype 24 meets all the defined security requirements, the
following validation procedure was developed.

Table 4-28: Prototype 24 - Validation procedure

Validation Procedure for Prototype 24 Test Description

Test Nr 4.3.6.5
Validate that for Prototype 24 all of the described
network requirements are met

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 64 of 92 Final

Table 4-29: Prototype 24 - Verification test #1

Verification Test Nr.:

4.3.6.1
Written by: TUC Conducted by: Date:

Test Category: Network

Security

Software and Hardware
Configuration Details

 3 Z1 sensor nodes

 Nodes running Contiki OS 2.6 and the IPsec protocol with AES in CCM* mode.

 PC running GUI application monitoring communication using a Sniffing node

Test Name: Verification of confidentiality among communicated messages

Purpose: Verify that the network layer messages are encrypted (REQ_NW01).

Modules/Interfaces/Code
Tested:

Network layer module

IPsec module

Step Action Expected Result Pass/Fail Remarks

1

Compile all nodes comprising the scenario.

Only node 1 sends data packets in order to
keep track of the communication.

-

2 Switch on all nodes.

Network layer control messages are exchanged among
nodes.

Sniffer overhears all messages exchanged among the
nodes.

4
Start transmitting application-layer
messages from node 1.

Packets exchanged between nodes are encrypted

5 Switch off all nodes.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 65 of 92

Table 4-30: Prototype 24 - Verification test #2

Verification Test Nr.:

4.3.6.2
Written by: TUC Conducted by: Date:

Test Category: Network

Security

Software and Hardware
Configuration Details

 3 Z1 sensor nodes

 Nodes running Contiki OS 2.6 and the IPsec protocol with AES in CCM* mode.

 PC running GUI application monitoring communication using a Sniffing node

 1 node injecting malformed packets, bearing the destination node’s address

Test Name: Verification of message integrity among communicated messages

Purpose: Verify that the network layer messages are received correctly and any possible tampering (REQ_NW02).

Modules/Interfaces/Code
Tested:

Network layer module

IPsec module

Step Action Expected Result Pass/Fail Remarks

1

Compile all nodes comprising the scenario.

Only node 1 sends data packets in order to
keep track of the communication.

-

2 Switch on all nodes.

Network layer control messages are exchanged among
nodes.

Sniffer overhears all messages exchanged among the
nodes.

4
Start transmitting application-layer
messages from node 1.

MIC is added to the packet to provide integrity.

5
Inject malformed packets intended for node
2.

Packets should be rejected by receiving node.

6 Switch off all nodes.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 66 of 92 Final

Table 4-31: Prototype 24 - Verification test #3

Verification Test Nr.:

4.3.6.3
Written by: TUC Conducted by: Date:

Test Category: Network

Security

Software and Hardware
Configuration Details

 3 Z1 sensor nodes

 Nodes running Contiki OS 2.6 and the IPsec protocol with AES in CCM* mode.

 PC running GUI application monitoring communication using a Sniffing node

 1 node injecting malformed packets, bearing the destination node’s address

Test Name: Verification that an application can set the level of security provided

Purpose: Verify that the application has the ability to choose the level of protection provided by the underlying network layer security protocol
(REQ_NW19).

Modules/Interfaces/Code
Tested:

Network layer module

IPsec module

Step Action Expected Result Pass/Fail Remarks

1

Compile all nodes comprising the scenario.

Only node 1 sends data packets in order to
keep track of the communication.

-

2 Switch on all nodes.
Sniffer overhears all messages exchanged among the
nodes.

4 Observe exchanged messages
The application has the ability to choose among the different
options of provided security, regarding the use of encryption
and/or message authentication.

5 Switch off all nodes.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 67 of 92

Table 4-32: Prototype 24 - Verification test #4

Verification Test Nr.:

4.3.6.4
Written by: TUC Conducted by: Date:

Test Category: Network

Security

Software and Hardware
Configuration Details

 2 Z1 or MSP430-compatible sensor nodes

 Nodes running Contiki OS 2.6 and the IPsec protocol with AES in CCM* mode.

 PC running GUI application monitoring communication using a Sniffing node

 1 node injecting malformed packets, bearing the destination node’s address

Test Name: Verification that the mechanism introduces low delay

Purpose: Verify that the mechanism introduces low delay compared to an unprotected communication (REQ_NW20).

Modules/Interfaces/Code
Tested:

Network layer module

IPsec module

Step Action Expected Result Pass/Fail Remarks

1

Compile all nodes comprising the scenario.

Only node 1 sends data packets in order to
keep track of the communication.

-

2 Switch on all nodes.

Network layer control messages are exchanged among
nodes.

Sniffer overhears all messages exchanged among the
nodes.

4 Observe exchanged messages
Compare unprotected and protected messages for the
various levels of provided security and measure introduced
delay.

5 Switch off all nodes.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 68 of 92 Final

4.3.7 Anonymity & Location Privacy prototype (Prototype 10)

The fulfilment of the pertinent to the Anonymity & Location privacy prototype requirements will be
accomplished via a validation procedure which is detailed in the next table.

Table 4-33: Prototype 10 - Validation procedure

Validation Procedure for Prototype 10 Test Description

Test Nr 4.3.7.1 Anonymity & Location Privacy (A&LP) service validation

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 69 of 92

Table 4-34: Prototype 10 - Validation test #1

Validation Test Nr.:

4.3.7.1
Written by: TUC Conducted by: Date:

Test Category: Service

functionality validation

Software and Hardware
Configuration Details

 2 nodes setup as Anonymity & Location privacy proxies

 10 nodes setup as service users

 1 power node or PC running as Server GUI on Knopflerfish OSGi platform

Test Name: Anonymity & Location Privacy (A&LP) service validation

Purpose: Validate that the service works as intended, thus satisfying pertinent requirements.

Modules/Interfaces/Code
Tested:

User module

Anonymity Node (user & proxy) module

Server module (OSGi bundle)

Step Action Expected Result Pass/Fail Remarks

1

Setup 2 nodes as A&LP service proxies.
Setup 10 nodes acting as service users.
Setup a power node or PC with Knopflerfish
OSGi platform running the Server bundle.

Set K=5.

-

2 Switch on all nodes.
Proxy nodes are initialized and calculate their cloaked area
based on set “ ” value. GUI featuring service area is visible on
Server.

3
Have a client issue a Location-based service
request

Request is forwarded to nearest proxy node, is anonymized
and forwarded (via inter-proxy routing) to server.

4 Examine request arriving to server
The request should be anonymized, i.e. the server’s interface
should display requester’s pseudonym and a cloaked area with
at least “ ” users as the origin of the request.

5 Request is handled and returned to user
Server tends to the request and sends reply to nearest proxy
node. Request is routed to originating user.

6 Switch off all nodes.

nSHIELD D6.2 Prototype validation and verification

 RE

D6.2 RE

Page 70 of 92 Final

5 Middleware and Overlay Prototypes validation and
verification

5.1 SHIELD Middleware and Overlay requirements

An initial middleware and overlay requirements assessment has been conducted in nSHIELD deliverable
D2.2: Preliminary System Requirements and Specifications. In this section, the requirements are recited
and their approach is updated through the -up to now- available input from the technical developments of
nSHIELD Middleware and Overlay Layers design (WP5) and related work.

In the following table the requirements that are addressed by the prototypes developed for the SHIELD
middleware and overlay are reported, with the indication of the mean of verification (A, D, I, T) and the
applicability scope (validation or verification). Only requirements covered by test are extensively
investigated.

Table 5-1: Requirements relevant against validation and verification of Middleware and Overlay
layers prototypes

REQ_MW01 – Discovery

The nSHIELD middleware shall offer discovery functionalities.

In order to collect information on available SPD functionalities, the nSHIELD middleware must be
equipped with discovery functionalities that will be an OSGI bundle.

Mean of Verification: [R, D]

REQ_MW02 - Secure Discovery

It is recommended that the nSHIELD middleware discovery is performed in a secure way.

This requirement underlines that the nSHIELD middleware discovery is a security functionality
itself, so it must be performed in a secure way (see Discovery bundle)

Mean of Validation: [R, D, T]

REQ_MW03 Composition

The nSHIELD middleware shall be able to compose nSHIELD components and functionalities.

This requirement specifies that, once collected the necessary information, the nSHIELD
middleware must be able to use them to compose nSHIELD components and functionalities. This
functionality is a specific Bundle operated by the Security Agent

Mean of Verification: [R, D]

REQ_MW04 Secure/Trusted Composition

It is recommended that the composition of nSHIELD components and functionalities is performed
in a secure/trusted way.

With respect to components/functionalities composition, this requirement specifies that the
composition must be performed in a secure/trusted way (see composition bundle).

Mean of Validation: [R, D]

REQ_MW05 Orchestration and choreography

The nSHIELD middleware shall be able to orchestrate the composition of nSHIELD components
orchestration may be driven by defined policies, rules or control algorithms.

The objective of the SHIELD platform is to compose SPD functionalities, so the nSHIELD
middleware shall be able to orchestrate the composition of nSHIELD components. This
orchestration may be driven by defined policies, rules or control algorithms. This orchestration is
done by a dedicated OSGI bundle, part of the framework

Mean of Verification: [R, D]

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 71 of 92

REQ_MW06 - Information retrieving

The nSHIELD middleware shall be able to retrieve information and requests from nSHIELD
components.

It is supposed that the nSHIELD middleware, in order to communicate and orchestrate the system,
is able to retrieve information and requests from nSHIELD components.

Mean of Verification: [R, D, I].

REQ_MW07 - Information filtering for intrusion detection

The nSHIELD middleware shall be able to filter information and requests from/to nSHIELD
components to prevent malicious attacks.

Mean of Validation: [R, D, I, T]

REQ_MW08 – Enforcement

The nSHIELD middleware shall be able to enforce decisions taken by the overlay into SHIELD
components.

Once computed the optimal solution of the composition problem, the nSHIELD dedicated bundle
must be able to enforce decisions taken by the overlay into SHIELD components.

Mean of Verification: [R, D]

REQ_MW09 - Data management

The nSHIELD middleware shall be able to manage both service description and semantic data
related to the discovered nSHIELD components and to the specific application domain.

The nSHIELD middleware is aware of the system capabilities thanks to its discovery functionalities.
This requirement imposes that the middleware must be able to manage both service description
and semantic data related to the discovered nSHIELD components and to the specific application
domain.

Mean of Verification: [R, D]

REQ_MW10 – Interoperability

The nSHIELD middleware shall be able to provide a mechanism that allows legacy devices to be
integrated into nSHIELD framework and make use of nSHIELD services. This is done by using
specific software adapters (OSGi bundles) that contain the semantic information necessary for the
discovery/composition procedure and that are able to communicate them.

Mean of Verification: [R,I,T]

REQ_MW11 - Non-repudiation of origin for secure service discovery, composition and
delivery protocols

The middleware components for service discovery, composition and delivery protocols should
provide a method to ensure that a subject that receives information during a data exchange is
provided with evidence of the origin of the information. This evidence can then be verified by either
this subject or other subjects

In order to guarantee a secure behaviour of the SHIELD middleware, it is imposed a non-
repudiation functionalities between entities involved both in service discovery, composition and
delivery. In particular this requirement addresses the origin of information exchange.

Mean of Validation: [R, D, I]

REQ_MW12 - Non-repudiation of receipt for secure service discovery, composition and
delivery protocols

The middleware components for service discovery, composition and delivery protocols should
provide a method to ensure that a subject that transmits information during a data exchange is
provided with evidence of receipt of the information. This evidence can then be verified by either
this subject or other subjects.

In order to guarantee a secure behaviour of the SHIELD middleware, it is imposed a non-
repudiation functionalities between entities involved both in service discovery, composition and
delivery. In particular this requirement addresses the receipt of information exchange.

Mean of Validation: [R, D, I]

nSHIELD D6.2 Prototype validation and verification

 RE

D6.2 RE

Page 72 of 92 Final

REQ_MW13 - Access Control Policies for middleware components

Middleware components shall have policies that identify sets of the following entities for access
control functions: the subjects of access control, the objects of access control and the operations
between the object and the subject covered by the policy.

This requirement specifies the content of the policies developed to perform access control

Mean of Validation: [R, D, I]

REQ_MW14 - Access Control Functions for middleware components

A mechanism to perform Access Control, based on defined Access Control Policies, shall be
implemented in the Middleware component(s).

This requirement imposes the presence of a module performing access control on the bases of the
developed Access Control Policies.

Mean of Validation: [R, D]

REQ_MW15 - Configurations definition

The nSHIELD overlay shall be able to elaborate feasible system configurations. The elaboration
shall use, as input, service descriptions and semantic information retrieved by the middleware.

This requirement says that elaboration must use, as input, service descriptions and semantic
information retrieved by the middleware knowledge data bases.

Mean of Verification: [R, D]

REQ_MW16 - Configurations quantification

The nSHIELD overlay shall be able to measure the SPD level associated to each system
configuration.

Composing SPD functionalities towards an SPD objectives means that one is able to measure the
current and the desired level of SPD within the system. This requirement imposes that the
nSHIELD overlay must be able to measure the SPD level associated to each system configuration.

Mean of Verification: [R, T]

REQ_MW17 - Configurations selection

The nSHIELD overlay shall be able to choose, among the feasible configurations, the one that
satisfies the SPD requirements in terms of SPD level and pre-defined policies

The composition decision is based on two steps: first of all a feasible configuration must be
collected. Secondly, the best feasible configuration must be selected. This requirement specifies
this second point, i.e. the ability of choosing, among the feasible configurations, the one that
satisfies the SPD requirements in terms of SPD level and pre-defined policies

Mean of Verification: [D, R, T]

REQ_SH02 – Information transmission integrity

Integrity of data transmitted over wireless or cable networks shall be granted.

This requirement imposes the presence of mechanism that assures the integrity of the information
exchanged in the SHIELD system.

Mean of Validation: [A, T]

REQ_SH12 – SPD level assignment

Each component or set of component in the system must have an assigned SPD level.

As before, this requirement is focused on the needs of having a module and a methodology to
quantify the SPD level of each SHIELD component

Mean of Validation: [I]

REQ_SH16 - Data backup

The system shall provide data backup for most sensitive data.

Since data are at the basis of the nSHIELD behaviour and decision, it must be assured data
backup at least for most sensitive data.

Mean of Validation: [R, D]

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 73 of 92

REQ_SH17 - Data storage redundancy

Critical system data shall be secured through redundant storage

In particular, the availability of critical system data must be assured by the presence of redundant
storage

Mean of Validation: [R, D]

REQ_SH18 - Data storage integrity

Safety and/or security critical data shall be integrity protected at storage

Data are also a critical asset, so safety and/or security of critical data must be assured through
integrity protection at storage level

Mean of Validation: [A, D, T]

REQ_SH19 - Data storage confidentiality

Security critical data shall be confidentiality protected at storage.

As before, the security of critical data must be assured by confidentiality protection at storage level.

Mean of Validation: [R, D]

REQ_SH32 - Deployment manual

nSHIELD partners developing system components SHOULD provide description on how to deploy
those system components, and how to operate them safely

This optional requirement aims at improving the usability of the SHIELD framework.

Mean of Verification: [I]

REQ_SH33 – Automated testing tools

Assigned nSHIELD project partner(s) SHOULD create automated testing tool(s) to generate
arbitrary (even potentially faulty or malicious) input to exercise and evaluate input/output and
internal interfaces of the critical components.

This requirement is focused on the definition of a potential mean of verification of the SHIELD
behaviour and security.

Mean of Validation: [I]

REQ_SH34 - Guidance documents

nSHIELD partners developing system components SHALL provide user documentation on how to
use the system securely and safely. The guidance shall include warnings about actions that can
cause errors and lead to faults or failures in the secure environment.

This requirement is focused on the necessity of well-defined user documentation to improve SPD
characteristic of a generic SHIELD system.

Mean of Validation: [I]

REQ_SH35 – Vulnerability assessment

Using results from test, validation, and verification tools, assigned nSHIELD project partner(s)
SHALL carry out security analysis on the system components for all scenarios in order to find
potential threats that could leave the nSHIELD system vulnerable.

This requirement is focused on the usage of a defined and standardized methodology to obtain a
definition of the potential menaces to SHIELD system.

Mean of Validation: [A]

nSHIELD D6.2 Prototype validation and verification

 RE

D6.2 RE

Page 74 of 92 Final

5.2 SHIELD Middleware and Overlay prototypes overview

In this section a brief overview of the prototypes is given, that shows, at high level, how these
requirements have been addressed in the design and development activities.

5.2.1 SHIELD Semantic Model (Prototype 26)

The SHIELD Semantic Mode is based on a separation paradigm: on one hand a set of scenario
dependent DBs contain all the information necessary to tailor the system aspects to the specific
application. On the other hand, the abstract model of the generic SPD functionality, derived from the
“attack surface” logic, contains the quantification of the SPD capabilities of the component as well as the
mapping between menaces and means of mitigation (the basic principles of security). This concept is
depicted in Figure 5-1 and detailed in D5.2 and D5.3.

Figure 5-1: nSHIELD Knowledge Bases

All the requirements related to data integrity and management are addressed by an adequate data
storage mechanism (relational DB rather than global variable in system memory) with basic security
functionalities implemented by the software environment.

5.2.2 SHIELD Secure Discovery (Prototype 32)

This prototype enable the SHIELD Middleware with the possibility of discovering the available SPD
functionalities and services over heterogeneous environment, networks and technologies that are
achievable by the nSHIELD Embedded System Device (nS-ESD) where it is running. Indeed the
nSHIELD secure service discovery uses a variety of discovery protocols (such as SLP, SSDP, NDP, DNS,
SDP, UDDI) to harvest over the interconnected Embedded System Devices (ESDs) all the available SPD
services, functionalities, resources and information that can be composed to improve the SPD level of the
whole system.

In order to properly work, a discovery process must tackle also a secure and dependable service
registration, service description and service filtering. The service registration consists in advertising in a
secure and trusted manner the available SPD services (thus satisfying the non-repudiation requirements).
The advertisement of each service is represented by its formal description and it is known in literature as
service description. The registered services are discovered whenever their description matches with the
query associated to the discovery process, the matching process is also known in literature as service
filtering.

This prototype is further detailed in D5.2 and D5.3

5.2.3 SHIELD Security Agent (Prototype 33)

The requirement focused on SPD composition and orchestration are mainly addressed by the
Orchestrator and the Security Agent prototypes, two OSGI Bundles in charge of managing discovery,
putting together i) the semantic models, ii) the knowledge bases, iii) the registered services and iv) the
user needs and to elaborate a system configuration with a given (measurable) SPD level.

Technology

Independent

Abstraction

Domain

dependent

Libraries

SPD
ABSTRACTION DOMAIN

DEPENDENCIES

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 75 of 92

These different functionalities are reflected in the design of the Security Agent, whose detailed description
is available in D5.2 and D5.3.

5.2.4 SHIELD Control Algorithms (Prototype 20)

The security agent is only a software routine and need a set of “algorithms” to take intelligent decision. In
the scope of the SHIELD framework, several theoretical approaches have been investigated to better
model the SPD composition. The most expressive candidate for the SHIELD purposes appeared to be the
Colored Petri Nets, by which a model of system composition has been derived taking into account logical
conditions that enables the system evolution through a set of controlled transitions. This prototype, in the
form of theoretical model and simulation runs, shows that it is possible to drive the composability in an
automatic way by leveraging the abstraction achieved with the derivation of semantic models.

The control is strongly based on the quantification of SPD (both for the component and for the overall
system). This has been achieved through the implementation of the “attack surface” metrics, a
deterministic approach (simple but effective) whose baseline is available in literature and that has been
adapted to the project purposes with a cross fertilization with the Common Criteria.

These algorithms are described in detail in D5.2 and D5.3, while the metric approach is available in D2.5

5.2.5 SHIELD Middleware Intrusion Detection System (Prototype 22)

The Middleware Intrusion Detection System prototype is implemented to act as an input filter for other
Core SPD Services with public interfaces, e.g. SHIELD secure discovery. The current module implements
firewall functionality between other SHIELD components and the relevant middleware service interfaces.

The Middleware Intrusion Detection System provides filtering of messages received from other legitimate
(SHIELD) or malicious components forwarding them towards the other middleware functionalities, and
sending related responses back.

The following requirements formed core design rationale for the applied technical solution:

 REQ_MW07 Information filtering for intrusion detection - The nSHIELD middleware shall be
able to filter information and requests from/to nSHIELD components to prevent malicious attacks.

 REQ_MW10 Interoperability - The nSHIELD middleware shall be able to interface with
heterogeneous legacy component.

Document “Preliminary SPD middleware and Overlay technologies prototype Report” [6] contains design
documentation as well as interface specification for the resulting Intrusion Detection and Filtering module,
while document “Preliminary SPD middleware and overlay technologies prototype” [5] contains the
preliminary version of implementation, as well as the developed test cases referred in 0.

5.2.6 SHIELD Policy-based Access Control (PBAC) & Policy-based Management

(PBM) (Prototype 19)

The Policy-based Access Control framework implements access control based on policy restrictions
imposed by the system owner, hence controlling data accessibility and authorization. The solution
adopted for secure policy-based access control is based on eXtensible Access control Markup Language
(XACML) policies. It consists of several components that run on different nodes of the nSHIELD
architecture; these components are the Policy Enforcement Points (PEP), the Policy Decision Points
(PDP), the Policy Administration Point (PAP) and, optionally, the Policy Information Point (PIP). A node,
depending on its capabilities and the available resources, might include one or more of these functional
components This typical policy based access control architecture combined with XACML, is mapped to a
Service Oriented Architecture (SOA) network of nodes to provide protected access to their distributed
resources. The proposed framework is DPWS-compliant, utilizing the relevant specifications and existing
work to provide message-level security and fine-grained security policy functionality while maintaining
interoperability with the standard.

The following requirements formed core design rationale for the applied technical solution:

nSHIELD D6.2 Prototype validation and verification

 RE

D6.2 RE

Page 76 of 92 Final

 REQ_MW13 Access Control Policies for middleware components - Middleware components
shall have policies that identify sets of the following entities for access control functions: the
subjects of access control, the objects of access control and the operations between the object
and the subject covered by the policy.

 REQ_MW14 Access Control Functions for middleware components - A mechanism to
perform Access Control, based on defined Access Control Policies, shall be implemented in the
Middleware component(s).

5.2.7 SHIELD Middleware Protection Profile (Prototype 31)

In order to address security, privacy and dependability (SPD) open issues, the nSHIELD project aims at
addressing SPD in the context of ESs as "built in" functionalities, proposing and perceiving with this
strategy the first step towards SPD certification for future ESs.

In this direction, a first step to define a security problem definition and security objectives for embedded
systems could be represented by editing a particular document called “Protection Profile” that in this
acceptation can be considered as a prototype for the nSHIELD project.

A protection profile (PP) is a Common Criteria
1

(CC) term for defining an implementation-independent set
of security requirements and objectives for a category of products, which meet similar consumer needs for
IT security. Examples are PP for application-level firewall and intrusion detection system. PP answers the
question of "what I want or need" from the point of view of various parties. It could be written by a user
group to specify their IT security needs. It could also be used as a guideline to assist them in procuring
the right product or systems that suits best in their environment. Vendors who wish to address their
customers’ requirements formally could also write PP. In this case, the vendors would work closely with
their key customers to understand their IT security requirements to be translated into a PP. A government
can translate specific security requirements through a PP. This usually is to address the requirements for
a class of security products like firewalls and to set a standard for the particular product type.

In this case PP is defined by a research group (WP5 partners) to specify IT security needs of a generic
Embedded System middleware to be nSHIELD compliant.

5.2.8 Adaptation of Legacy Systems (Prototype 29)

The nSHIELD architecture should be also generic enough in order to allow participation of legacy
embedded systems not capable to support the nSHIELD SPD modules. Therefore nSHIELD can be
regarded as a network consisting of nSHIELD and Legacy embedded devices. The L-ESDs since they do
not understand nSHIELD middleware services they need a gateway nSHIELD device in order to
participate in the nSHIELD system.

In order to allow legacy devices to make use of nSHIELD services, specific adapters (ad-hoc software)
are provided. The ad-hoc software is OSGi bundles in the nSHIELD side and in L-ESD side. The software
in L-ESD side provides discovering of the nSHIELD remote services and the software in nSHIELD side
provides advertising nSHIELD services for being remotely discovered.

These ad-hoc routines are further described in detail in D5.2 and D5.3.

5.3 SHIELD Middleware and Overlay prototypes verification and
validation

In this section a description of the verification and validation activities is reported, with particular attention
to those prototypes whose associated requirements are marked with a T (i.e. a test is needed or verifies
that the requirement is met).

1
 Common Criteria is a standard for security specifications and evaluation, ISO15408.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 77 of 92

5.3.1 SHIELD semantic model (Prototype 26)

In this section the validation and verification means of the Semantic Models prototype are detailed.

Table 5-2: Prototype 26 - Semantic Models Verification cases

ID
nSHIELD

Requirement
Mean of

verification
Description

T.1

REQ_MW06
 Information

retrieving
R, D, I

[R, D] The possibility of retrieving information is verified by
review of the architectural documents (WP2) showing the
presence of data bases and modules to collect data.

[I] These components are also visible in the software code.

T.2
REQ_MW09

 Data management
R, D

[R, D] As above, it is reflected in the architectural design
documents the presence of module performing data
management

T.3
REQ_SH16

 Data backup
R, D

[R, D] This requirement is validate with the presence of
backup/redundancy in the definition of SHIELD data
repository T.4

REQ_SH17
 Data storage
redundancy

R, D

T.5

REQ_SH18
 Data storage

integrity
R, D

[R, D] The solution adopted to store information must include
a function that performs integrity check on the stored data.
This function is delegated to the environment (i.e. operating
system)

T.6

REQ_SH19
 Data storage
confidentiality

R, D
[R, D] The solution adopted to store information includes a
function that assures the confidentiality of the stored data
(ciphered repository).

5.3.2 SHIELD secure discovery (Prototype 32)

In this section the validation and verification means of the secure discovery prototype are detailed.

Table 5-3: Prototype 32 - Secure Discovery Verification cases

ID nSHIELD Requirement
Mean of

verification
Description

T.7 REQ_MW01 Discovery R, D

[R, D] The architectural design document includes a
bundle that is in charge of actuating service discovery.
No specific technology is requested, so a multi-
technology bundle is foreseen.

T.8
REQ_MW02

Secure Discovery
R, D, T

[R, D] The solution adopted to perform discovery,
includes security features (e.g. authentication or
cyphering) in order to assure the security of the
mechanism.

[T] Test 6.3.2.1 verifies that the discovery is performed
in a secure way

T.9

REQ_MW11
Non-repudiation of origin

for secure service
discovery, composition
and delivery protocols

R, D, I

[R, D, I] The design of the middleware framework
includes specific modules computing signature to mark
all the requests and consequently avoid repudiation

T.10

REQ_MW12
 Non-repudiation of

receipt for secure service
discovery, composition
and delivery protocols

R, D, I

nSHIELD D6.2 Prototype validation and verification

 RE

D6.2 RE

Page 78 of 92 Final

Table 5-4: Prototype 32 - Verification case #1

Verification Test Nr.:

5.3.2.1

Written by:

UNIROMA1
Conducted by: Date:

Test Category: Middleware

Security

Software and Hardware
Configuration Details

 SLP Secure Directory Agent should be running

 SLP Secure Service Agent should be installed on the OSGi

Test Name: Validation of the Secure Service Discovery: secure service registration

Purpose: Verify that the service discovery registration is performed in a secure way

Modules/Interfaces/Code
Tested:

SLP Secure Directory Agent (SLP Daemon Bundle)

SLP Secure Service Agent (Pluggable Discovery Module SLP)

Step Action Expected Result Pass/Fail Remarks

1
Install the SLP Secure Directory Agent on
the OSGi (SLP Daemon Bundle)

Installation should be ok, with no errors.

2
Install the Service Discovery APIs on the
OSGi (Pluggable Discovery Module API)

Installation should be ok, with no errors.

3
Install the SLP Secure Service Agent on the
OSGi (Pluggable Discovery Module SLP)

Installation should be ok, with no errors.

4 Run the SLP Secure Directory Agent
The SLP Secure Directory Agent should start, with its GUI
appearing as a proper window

5 Run the SLP Secure Service Agent
In case, debug message stating the SLP Secure Service
Agent was started

6
Start registration of services through the
SLP Secure Service Agent

The SLP Secure Service Agent should start sending SLP
messages to the SLP Secure Directory Agent. The list of the
registered services should appear in few moments on the
SLP Secure Directory Agent

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 79 of 92

Table 5-5: Prototype 32 - Verification case #2

Verification Test Nr.:

5.3.2.2

Written by:

UNIROMA1
Conducted by: Date:

Test Category: Middleware

Security

Software and Hardware
Configuration Details

 SLP Secure Directory Agent should be running

 SLP Secure User Agent should be installed on the OSGi

Test Name: Validation of the Secure Service Discovery: secure service discovery

Purpose: Verify that the service discovery is performed in a secure way

Modules/Interfaces/Code
Tested:

SLP Secure Directory Agent (SLP Daemon Bundle)

SLP Secure User Agent (Pluggable Discovery Module SLP)

Step Action Expected Result Pass/Fail Remarks

1
Install the SLP Secure Directory Agent on
the OSGi (SLP Daemon Bundle)

Installation should be ok, with no errors.

2
Install the Service Discovery APIs on the
OSGi (Pluggable Discovery Module API)

Installation should be ok, with no errors.

3
Install the SLP Secure User Agent on the
OSGi (Pluggable Discovery Module SLP)

Installation should be ok, with no errors.

4 Run the SLP Secure Directory Agent
The SLP Secure Directory Agent should start, with its GUI
appearing as a proper window

5 Run the SLP Secure User Agent
In case, debug message stating the SLP Secure User Agent
was started

6
Start discovery of services through the SLP
Secure User Agent

The SLP Secure User Agent should start sending SLP
messages to the SLP Secure Directory Agent. The list of the
registered services should be returned by the SLP Secure
Directory Agent to the SLP Secure User Agent and appear
in few moments on this last one

nSHIELD D6.2 Prototype validation and verification

 RE

D6.2 RE

Page 80 of 92 Final

5.3.3 SHIELD Security Agent (Prototype 33)

In this section the validation and verification means of the Security Agent prototype are detailed.

Table 5-6: Prototype 33 - Secure Agent Verification cases

ID nSHIELD Requirement
Mean of

verification
Description

T.11

REQ_MW05
Orchestration and

choreography
R, D

[R, D] The requirement is verified because the
orchestration/choreography bundle is included in the
architectural design of the SHIELD middleware

T.12
REQ_MW03
Composition

R, D
[R, D] The requirement is verified because the
composition bundle is included in the architectural
design of the SHIELD middleware

T.13

REQ_MW04
Secure/Trusted

Composition
R, D

[R, D] The requirement is verified because the
composition is equipped with mechanisms or algorithms
that enable a secure/trusted composition

T.14
REQ_MW08
Enforcement

R, D
[R, D] The requirement is verified because the
enforcement bundle is included in the architectural
design of the SHIELD middleware

5.3.4 SHIELD Control Algorithms (Prototype 20)

In this section the validation and verification means of the Control Algorithms prototype are detailed.

Table 5-7: Prototype 20 - Control Algorithms Verification cases

ID nSHIELD Requirement
Mean of

verification
Description

T.11

REQ_MW15
Configurations

definition
R, D

[R, D] The requirement is validated because the security
Agent contains a module that, by using the available
data sources, is able to extrapolate a configuration
(domain data bases + abstraction data base)

T.12

REQ_MW16
Configurations
quantification

R, D
[R, D] The metric approach is translated into a set of
deterministic/logical steps to quantify a configuration.
This is done by the Security Agent

T.13

REQ_MW17
Configurations

selection
R, D, T

[R, D] In the architectural definition of the SHIELD
middleware the decision making engine has been
inserted to assure the elaboration of a solution of the
composability problem.

[T] 6.3.4.1 verifies that at least one configuration is
selected

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 81 of 92

Table 5-8: Prototype 20 - Verification case #1

Verification Test Nr.:

5.3.4.1

Written by:

UNIROMA1
Conducted by: Date:

Test Category: Middleware

Security

Software and Hardware
Configuration Details

 PC running CPNtools program

Test Name: Validation of the Secure Service Discovery

Purpose: Verify that the service discovery is performed in a secure way

Modules/Interfaces/Code
Tested:

OSGI

Service Discovery Bundle

Step Action Expected Result Pass/Fail Remarks

1 Open CPNtools and load the appropriate file

2

Open each SPD functionality module and
add the appropriate tokens (representing the
feasible implementations of each
functionality) in each place feasible

Place feasible initial marking represents the list of possible
implementation of each functionality.

3
Add a token representing the desired SPD
value to place desired in the main page, and
run the simulation.

If there is a least one solution (for each functionality, there is
at least one available implementation that respects the SPD
desired value) the system reaches the optimal configuration,
hence each place FUNC impl contains a token that satisfy
the desired SPD value. The configuration is determined by
the set of implemented functionalities and the optimal one is
obtained enabling, for each functionality, the implementation
with the smallest SPD value that satisfies the desired value.

4

Open a functionality sub-module (for
example Authentication) and add
appropriate tokens (representing new
available implementations) in the place
new_fnc.

The new implementation is added to place feasible. Then, if

enabling the new implementation the system achieves a
better configuration, the system reaches this new
configuration; else no configuration change is performed.

5

Open a functionality sub-module (for
example identification) and add a true
boolean token in the place off. This means
that the implemented functionality will
become unavailable.

The system actives a new implementation to achieve the
desired level of SPD, obviously if at least one is available.

nSHIELD D6.2 Prototype validation and verification

 RE

D6.2 RE

Page 82 of 92 Final

6
Add a new token representing a new desired
SPD value to place desired in the main
page.

The system achieves the new optimal configuration.

7

Open a relation sub-module (for example
Coupling) and add appropriate tokens
(representing the implementations that
needs specific are in relation with each
other) in each place of specific functionality.

Functionality places in each relation sub-page have a
marking representing the list of functionality implementation
that is in relation each other. The system checks if the
implemented functionalities have a coupling constraint to
satisfy. In particular, the control action addresses any
coupling constraint driving the system by means tokens only
if the implementations required by the coupling are available
and satisfies the required SPD level. On the other hand, if
this condition is not verified then the coupling block “turns
off” the implementations that required the coupling. Thus the
system actives a new implementation to achieve the desired
level of SPD, obviously if at least one is available.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 83 of 92

5.3.5 SHIELD Middleware Intrusion Detection System (Prototype 22)

Validation and Verification for the SHIELD Middleware Intrusion Detection System consists of the
following activities:

1 Verification Procedure

 Code Review (A)

1) Against relevant requirements (REQ_SH02)

 Testing

1) Check against malformed input manually (REQ_MW07)

2 Validation Procedure

 Code Review (REQ_SH02)

1) Taint analysis,

2) Interfaces validation

 Automated testing scenario to validate the intrusion detection functionality

1) Automated testing tools developed (fulfilling REQ_SH33)

- Basic functionality test (SendReceiveTest)

- load generation (CriticalLoadTest)

- Information filtering tests (BlackListTest and WhiteListTest)

2) Validation of functionality against requirements (REQ_SH02, REQ_MW07, MW17)

Relevant test cases were developed as test units part of the development, and submitted in source code
form in [5]. Test results verified that related requirements (REQ_SH02 Information transmission integrity,
REQ_MW7 Information filtering for intrusion detection, REQ_MW17 Configurations selection) were
satisfied.

5.3.6 SHIELD Policy-based Access Control (PBAC) & Policy Based Management

(PBM) (Prototype 19)

In this section the validation and verification means of the Policy-based Access Control and Policy-base
Management prototypes are detailed. The functional requirements covered by the framework are verified
as follows:

Table 5-9: Prototype 19 - Policy Based Management Framework Verification cases

ID nSHIELD Requirement
Mean of

verification
Description

T.14
REQ_SH06

Authorisation
D,T

Verification that the only authorized entities can have
access to nSHIELD nodes’ resources and services.

T.15
REQ_MW01
Discovery

D,T
Verification that DPWS discovery functionality operates
properly on all entities.

T.16
REQ_MW02

Secure Discovery
D

Secure discovery is optional and facilitated by DPWS but
only pertinent for power nodes due to the imposed
performance overhead.

T.17
REQ_MW06

Information Retrieving
D, T

Verification that information retrieving and request
functionality operates as designed.

T.18
REQ_MW08
Enforcement

D
PBAC framework deals, by design, with the enforcement
of security policies. Validation of the whole framework
will verify that the requirement is covered.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 84 of 92 Final

T.19
REQ_MW09

Data Management
A, D

Prototype analysis to verify that DPWS device metadata
is defined and exchanged as intended.

T.20

REQ_MW11
Non-repudiation of
origin for secure

service discovery,
composition and

delivery protocols

D
Verify design data-origin authentication is integrated into
the design.

T.21

REQ_MW12
Non-repudiation of
receipt for secure
service discovery,
composition and

delivery protocols

D
Verify that appropriate mechanisms are integrated into
the design.

T.22

REQ_MW13
Access Control

Policies for
middleware
components

R, D, I

REQ_MW13 is core design requirement and formed the
rationale for the development of the PBAC framework.
Review documentation and design choices to verify that
the requirement is covered. Inspect elements to verify
that the required policies are present on pertinent
entities (e.g. Policy Administration Point).

T.23

REQ_MW14
Access Control
Functions for
middleware
components

R, D, T

REQ_MW14 is core design requirement and formed the
rationale for the development of the PBAC framework.
Review documentation and design choices to verify that
the requirement is covered. Validate Framework to
certify core requirements are covered.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 85 of 92

Table 5-10: Prototype 19 - Verification case #1

Verification Test Nr.:

5.3.6.T14
Written by: TUC Conducted by: Date:

Test Category:

Middleware Security

Software and Hardware
Configuration Details

 1 nano node setup as a DPWS device with PEP functionality

 1 micro node setup as a DPWS device with PEP functionality

 1 PC running DPWS client software

Test Name: Authorisation Verification

Purpose: Verify that access to node resource is limited to authorized entities only.

Modules/Interfaces/Code
Tested:

Nano node DPWS PEP module

Micro node DPWS PEP module

Step Action Expected Result Pass/Fail Remarks

1
Setup a nano and a micro node as DPWS
devices featuring Policy Enforcement Points
(PEPs). Setup PC as DPWS client.

2 Switch on all nodes and start applications.

3
Use unauthorised DPWS client application
on PC.

Client application discovers nano and micro nodes.

4
Attempt to access micro node resources via
client

DPWS Client fails to present required credentials and, thus,
cannot access micro node services.

5
Attempt to access nano node resources via
client.

DPWS Client fails to present required credentials and, thus,
cannot access nano node services.

6 Switch off all nodes.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 86 of 92 Final

Table 5-11: Prototype 19 - Verification case #2

Verification Test Nr.:
5.3.6.T15

Written by: TUC Conducted by: Date:
Test Category:

Middleware
Communications

Software and Hardware
Configuration Details

 1 nano node setup as a DPWS device with PEP functionality

 1 micro node setup as a DPWS device with PEP functionality

 1 power node running PDP bundle on Knopflerfish OSGi platform

 1 power node running PAP/PIP bundle on Knopflerfish OSGi platform

 1 PC running DPWS client software

Test Name: Discovery Verification

Purpose: Verify that DPWS discovery functionality operates properly on all types of PBAC entities.

Modules/Interfaces/Code
Tested:

Nano node DPWS discovery functionality

Micro node DPWS discovery functionality

Power node PDP discovery functionality

Power node PAP/PIP discovery functionality

Step Action Expected Result Pass/Fail Remarks

1

Setup a nano and a micro node as DPWS
devices featuring Policy Enforcement Points
(PEPs). Setup a power node with
Knopflerfish OSGi platform running the PDP
bundle. Setup a power node with
Knopflerfish OSGi platform running the
PAP/PIP bundle. Setup PC as DPWS client.

2 Switch on all nodes and start applications.

PDP discovers nano DPWS devices featuring PEPs.

PDP discovers micro DPWS devices featuring PEPs.

PDP discovers power DPWS devices PAP/PIP.

3 Use DPWS client application on PC.
Client discovers nano and micro nodes, their hosted services
and respective operations.

4 Switch off all nodes.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 87 of 92

Table 5-12: Prototype 19 - Verification case #3

Verification Test Nr.:
5.3.6.T17

Written by: TUC Conducted by: Date:
Test Category: Middleware Functionality &

Communications

Software and Hardware
Configuration Details

 1 nano node setup as a DPWS device with PEP functionality

 1 micro node setup as a DPWS device with PEP functionality

 1 power node running PDP bundle on Knopflerfish OSGi platform

 1 power node running PAP/PIP bundle on Knopflerfish OSGi platform

 1 PC running DPWS client software

Test Name: Information Retrieving Verification
Purpose: Verify that middleware is able to retrieve information and requests from nSHIELD components.

Modules/Interfaces/Code
Tested:

Nano node DPWS device
Micro node DPWS device
Power node PDP OSGi bundle
Power node PAP/PIP OSGi bundle

Step Action Expected Result Pass/Fail Remarks

1

Setup a nano and a micro node as DPWS devices
featuring Policy Enforcement Points (PEPs).
Setup a power node with Knopflerfish OSGi
platform running the PDP bundle. Setup a power
node with Knopflerfish OSGi platform running the
PAP/PIP bundle. Setup PC as DPWS client with
an “Allow” policy for said client in the PAP.

2 Switch on all nodes and start applications.

3
Use DPWS client application on PC to access
nano node resources.

Access attempt is intercepted by the node’s PEP.
PEP requests decision from PDP.
PDP retrieves policy information from PAP/PIP and communicates
“Allow” decision to PEP.
Client accesses nano node service and retrieves a value (e.g. a
current temperature value).

4
Use DPWS client application on PC to access
micro node resources.

Access attempt is intercepted by the node’s PEP.
PEP requests decision from PDP.
PDP retrieves policy information from PAP/PIP and communicates
“Allow” decision to PEP.
Client accesses micro node service and retrieves a value (e.g. a
current temperature value).

5 Switch off all nodes.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 88 of 92 Final

Then the whole framework is validated to certify that its core functionalities are covered as well. The validation procedure is detailed below:

Table 5-13: Prototype 19 - Validation test #1

Validation Test Nr.: 5.3.6.T23 Written by: TUC Conducted by: Date: Test Category: Middleware Validation

Software and Hardware
Configuration Details

 1 nano node setup as a DPWS device with PEP functionality

 1 micro node setup as a DPWS device with PEP functionality

 1 power node running PDP bundle on Knopflerfish OSGi platform

 1 power node running PAP/PIP bundle on Knopflerfish OSGi platform

 1 PC running DPWS client software and sniffer

Test Name: Policy-based Access Control Validation
Purpose: Verify that access to nodes’ resources is controlled by XA ML policies.
Modules/Interfaces/Code
Tested:

Nano node DPWS device code & PEP module
Micro node DPWS device code & PEP module
Power node PDP OSGi bundle
Power node PAP/PIP OSGi bundle

Step Action Expected Result Pass/Fail Remarks

1

Setup a nano and a micro node as DPWS
devices featuring Policy Enforcement Points
(PEPs). Setup a power node with
Knopflerfish OSGi platform running the PDP
bundle. Setup a power node with
Knopflerfish OSGi platform running the
PAP/PIP bundle. Setup PC as DPWS client.

2 Switch on all nodes and start applications.
PDP discovers DPWS devices featuring PEPs. Communication is
established between PEPs and PDP. Communication is established
between PDP and PEP/PIP.

3 Use DPWS client application on PC.
Client application discovers nano and micro nodes, their hosted
services and respective operations.

4
Attempt to access micro node resources via
client

Access attempt is intercepted by the node’s PEP, which communicates
with PDP to request decision. PDP consults with PAP/PIP in a secure
manner (as verified by network sniffer) and issues “Deny” decision to
PEP. lient’s access to node’s resources is refused.

5
Introduce a new XACML policy on the
PAP/PIP node, explicitly allowing access of
client to test node.

Repeating Step 4 now returns an “Allow” response from the PDP and
the client successfully invokes the service operation, accessing the test
node’s resources.

6
Repeat the test, replacing micro node with
nano node.

XACML policies are effectively enforced on nano nodes as well.

7 Switch off all nodes.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 89 of 92

5.3.7 SHIELD Middleware Protection Profile (Prototype 31)

A Protection Profile is a document type well defined in a particular standard (Common Criteria) and so it
has appropriate Validation and Verification processes. They can be considered in the “Analysis” macro
area identified in section 2 of this document and consist of the following activities:

• Verification Procedure: it is the process that a user community, TOE developers or large
corporations execute when define the Protection Profile according to the rules defined in the
Annex B of Common Criteria documentation Part 1 – Specification of Protection Profiles [2]. The
mandatory content for a PP is outlined in the following diagram

Figure 5-2: Protection Profile contents

The separate sections of a PP and the contents of those sections are briefly summarised below.

- a PP introduction containing a narrative description of the TOE type;
- a conformance claim, showing whether the PP claims conformance to any PPs and/or

packages, and if so, to which PPs and/or packages;
- a security problem definition, showing threats, OSPs and assumptions;
- security objectives, showing how the solution to the security problem is divided between

security objectives for the TOE and security objectives for the operational environment of
the TOE;

- Extended components definition, where new components (i.e. those not included in CC
Part 2 [3] or CC Part 3[4]) may be defined. These new components are needed to define
extended functional and extended assurance requirements;

- Security requirements, where a translation of the security objectives for the TOE into a
standardised language is provided. This standardized language is in the form of SFRs.
Additionally this section defines the SARs;

• Validation Procedure: it is a process identified with “PP Evaluation”. Evaluating a PP is required to
demonstrate that the PP is sound and internally consistent, and, if the PP is based on one or
more other PPs or on packages, that the PP is a correct instantiation of these PPs and packages.
These properties are necessary for the PP to be suitable for use as the basis for writing an ST or
another PP. The actions that an Evaluator executes during a PP evaluation process are defined in
the common criteria Class APE contained in section 10 of Common Criteria documentation Part 3
[4]. The components defined for the APE class are summarized in the following table.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 90 of 92 Final

Table 5-14: Prototype 31 - PP evaluation components

Assurance Class
Assurance

family

Assurance
component

Protection Profile
Evaluation

APE_CCL 1

APE-ECD 1

APE_INT 1

APE_OBJ 2

APE_REQ 2

APE_SPD 1

5.3.8 Adaptation of Legacy Systems (Prototype 29)

Validation and Verification for the SHIELD Adaptation of Legacy Systems consists of the following
activities:

• Verification:

1. Code review
2. Check against relevant requirements (REQ_MW06,REQ_SH01,REQ_MW18)
3. Check for network connectivity

• Validation: To validate the implementation of adaptation of Legacy Systems into the nSHIELD
framework we created a very simple service Nservice (Echo Service) that runs in server side and
registers itself to R-OSGi.On the other hand the client side runs a LeNoReSer (Legacy Node
Service) that connects remotely to the nSHIELD server and gets the Remote nSHIELD service
(Echo Service).

As a result of the above a local proxy for the remote service is created. The service proxy is
registered with the local service registry and can also be retrieved like a normal OSGi service.

In our test the Echo service is running on a machine and the ad hoc software bundle registers it in
R-OSGi.When the ad hoc LeNoReSer runs on another machine on the network gets the Echo
service from the remote machine and displays a message.

So we validate that the scenario of using nSHIELD services by Legacy Systems is applicable.

nSHIELD D6.2 Prototype validation and verification

 RE

 RE D6.2

Final Page 91 of 92

6 Conclusions

In this deliverable we have demonstrated that nSHIELD prototypes are independent development efforts
able to verify and validate that the network requirements defined in WP2 have been met. These
prototypes work as a proof of concept that a generic nSHIELD compliant system behaves accordingly to
specified rules providing a specific SPD functionality.

In WP7 these prototypes will be considered as the input sources to the nSHIELD scenario demonstrators
and whose final behaviour will be validated.

D6.2 Prototype validation and verification nSHIELD

 RE

D6.2 RE

Page 92 of 92 Final

7 References

[1] nSHIELD, D2.2: Preliminary Systems Requirements and Specifications

[2] Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and
General Model; CCMB-2012-09-001 - Version 3.1 Revision 4, September 2012

[3] Common Criteria for Information Technology Security Evaluation, Part 2: Security Functional
Components; CCMB-2012-09-002 - Version 3.1 Revision 4, September 2012

[4] Common Criteria for Information Technology Security Evaluation, Part 3: Security Assurance
Components; CCMB-2012-09-003 - Version 3.1 Revision 4, September 2012

[5] nSHIELD, D5.2: Preliminary SPD middleware and overlay technologies prototype

[6] nSHIELD, D5.3: Preliminary SPD middleware & Overlay technologies prototype Report

