pilot embedde <
arcHItecturE fou i SC SEVEN FRAMEWORK
PROGRAMME

Project no: 100204
p-SHIELD
pilot embedded Systems architecture for multi-Layer Dependable solutions
Instrument type: Capability Project

Priority name: Embedded Systems (including RAILWAY'S)

D5.2: SPD middleware and overlay functionalities prototype

Due date of deliverable: M15 (30" August 2011)
Actual submission date: M15 (15" September 2011)

Start date of project: 1% June 2010 Duration: 19 months

Organisation name of lead contractor for this deliverable: UNIROMA1

Revision [Version 1.0]

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2012)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services) X
CcO Confidential, only for members of the consortium (including the Commission Services)

Version 1.0 Page i

SEVEN FRAMEWORK
PROGRAMME

Document Authors and Approvals

Authors

Name

Company

Date

Signature

Andrea Fiaschetti

Univ. “La Sapienza”

Andrea Morgagni

Elsag Datamat

Renato Baldelli

Elsag Datamat

Jose verissimo CS
Mohammad Chowdhury CWIN
Andrea Taglialatela TRS

Vincenzo Suraci

Univ. “La Sapienza”

Andi Palo

Univ. “La Sapienza”

Spase Drakul Thyia
Mohammad Chowdhury CWIN
Reviewed by
Name Company
Approved by
Name Company

Andrea Morgagni

Elsag Datamat

Modification History

Issue Date (DD/MM/IYY) Description

Draft A 15/03/2011 First issue for comments

Draft B 30/06/2011 Second issue for comments

Version 1 | 15/09/2011

First version

Version 1.0

Page ii

1
2

SEVEN FRAMEWORK
PROGRAMME

Contents
EXECULIVE SUMIMAIY ...oeiiiiiiiiiiiiieieeee ettt ettt e e ee e e 9
Terms and definitioNSoooo e 10
2.1 Y o I oi (o = V2SR 10
pSHIELD Middleware and core SPD Services Prototypeuuuverrrrmmmmmmmmmnmmnininiininnnnnnnns 11
3.1 From concept to arChiteCture...........ooooiiii i 11
3.2 The Innovative SPD FUNCHONANTIES..........uuuuiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeees 16
3.3 Prototype ODJECHIVE........coo i 18
3.4 THE OSGi frAMEWOTK. ...t nnne 19
3.5 Prototype ArChItECIUIEvvie e e e e e e e e e e eaaees 20
351 DISCOVEIY BUNAIEvvii et e e e e eaeees 21
3.5.2 Service Registry BUNdIe ... 22
3.5.3 Adapter BUNAIEiii i e e e e aaaees 22
354 Semantic DB BUNAIE ..o 23
3.55 Composition BUNAIEoooiii 23
3.5.6 SPD Security Agent Bundle ... 23
3.6 Deployment detaiilS..........cooeee e 25
Policy based management: rationale and prototypecevvvveeviiiiiiiiiiiieiiiiiiieieeeeeeeeeeee 26
4.1 INEFOAUCTION ... 26
41.1 0 03 26
4.1.2 Policy-Based ManagemMENtuuuuuuuumumereeiunnnnnenennnnnnnnnnnnnnennnnnnnnneennennnnnnnes 26
4.1.3 MOTIVATIONS oottt 26
4.2 TYPICAl ATCRITECIUIE ... 27
421 Policy Management TOOL...........uuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiieiaeeeneeeeeeneeeeneeseenennennnee 27
4.2.2 POlICY DECISION POINT......uuiiiiiiiiiiiiiiiiiiiiiiiiii i eeeeeeeeeeeee 28
4.2.3 Policy Enforcement POINtuiiiiiiiiicee e e e e e e aaeees 28
424 POIICY TYPES ittt 28
4.3 POIICY SPECITICALION ... 30
431 KA CML e 30
432 IBM EPAL ettt e et e e 32
4.3.3 LTS PP PT PP PPPPPPPP 32
4.3.4 PONAEEN (2) oo e e aaaaaaana 33
4.35 B TP L e 34
4.3.6 P T USE oo e e e e ennne 34

Version 1.0 Page iii

SEVEN FRAMEWORK
PROGRAMME

4.3.7 Pl OtUNE e e et et aaans 35

4.3.8 001 35

4.3.9 = 36

4.3.10 DISCUSSION oottt e e e e e e et e e e e e e e e e eeeetaa e e e eeaeeennees 36

4.4 Affiliated ProtOCOIS.... ..o 38

441 COP S 38

4.4.2 SN P 38

4.4.3 0D N 38

4.5 Reflection 0N PSHIELDcoiiiiiiic e e e e e eaaees 39

45.1 Performance evaluationcooiiiiiiiiiiiiiee e e e e e eaeees 40

4.6 (O] o111 13 o] 1 PP 42

5 pSHIELD Overlay and control algorithms prototypes........c.coovivviiiiiiiii e, 43

5.1 INEFOAUCTION ... a e e e e e 43

52 OVerlay BENAVIOUTccoiiiiiiiiiiiiiiiieieeeee ettt 45
5.3 Hybrid Automata approach to model and control complexity in ESs (by

means of context iNfOrmMation)uioii i 47

531 HYDIIO AULOMIE@LAL ...t ennnnes 47

5.3.2 Prototype a — Static Approach with Simple Optimizationcccceeeeevvveenns 48

5.3.3 Prototype b — Operating conditions approach with MPC Control.................... 50

54 L0 111153 o] 1 PP 54

6] (=] = o >TSS 55

ANNEX 1 — PSHIELD GIOSSANYcoiiiiiiiiiiiiiiee ettt 56

Annex 2 - Core SPD Services implementation: OSGi Source Codeccevvvvvviiiiiiiiiiieeenennnnn. 70

Annex 3 — Overlay control algorithms — Matlab Source Code prototypecccccvvvvvvvvveveeeennnn. 154

Version 1.0 Page iv

Pilot SHIEL

pilot embedde d ¢

arcHitecturE for mi SEVEN FRAMEWORK

PROGRAMME

Figures
Figure 1.1 WP5 Composability CONCEPL.......uiiii it 9
Figure 3.1 Core SPD services in the pSHIELD functional component architecture.................... 11
Figure 3.2 Core SPD services conceptual frameworkK............ccoovvviiiiiiiiieeee i, 13
Figure 3.3 Details of the Discovery Core SPD SEIVICE.....ccoiiiviiiiiiiiiiiii et 14
Figure 3.4 Legacy deviCe COMPONENLScuuuuuiiiieeeeieeiiiiiee s e e e e e e ettt a e e e e e e e e eeaataa s e e e e e e eearraaans 16
Figure 3.5 pSHIELD Components’ interactionsccccoiiiiiiiiiiiiiiiici e 17
Figure 3.6 Innovative SPD Functionalities registration..............ccccccvieeiiiieee i, 17
Figure 3.7 Knopflerfish start-up enviroNmMENt.............oouiiiiiiii i 19
Figure 3.8 BUNIE ArCRItECIUIE.uuiiiitiiiiiiieet it enennnnne 20
Figure 3.9 High level Core SPD Services prototype arChiteCtureeuevvvvemvevimnieieeininnnnnns 21
Figure 3.10 Discovery BUNAIE SITUCTUIEuuuuieiiiiiiiiiiiiiiiiiiiiieeieeeee e eeeeeesseeebseeeeeeeneneenne 21
Figure 3.11 Service RegiStry BUNGIEuuuiiiiiiiiiiiiiiiiiiiiiiiiieieieeiii e eeeeeeeeeeeeeeeeennnes 22
Figure 3.12 Adapter BUNGIE............uuueiiiiiiiiiiiiiiieie bbb eenenennne 22
Figure 3.13 Semantic DB BUNAIEuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieiebbbiee e esbbeeeneeneennnnnes 23
Figure 3.14 COMPOSItION BUNGIEuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee bbb eeneeeeennnnne 23
Figure 3.15 SPD Security AGeNt BUNAIEuuiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 24
Figure 3.16 OSGI ENVIFONIMENTuiiiiiiiiiiiiiiiiiiiiiiiiieieieeiibeeeseebe bbb sesasseeesbsbseneneennennnnne 25
Figure 4.1 Typical IETF PBM ArChItECIUE..........uuuiiiiiiiiiiiiiiiiiiiiiitiiiiiiii i eeeeeeeeeeeeeeeennenees 27
Figure 4.2 Non-Functional Policy Transformation Example (Matthys, et al., 2008) 28
Figure 4.3 XACML Policy Language Model (OASIS, 2009)uuuuuurmmmmmmmminiimiiiniiieieniiinnnnnnnnnne. 30
Figure 4.4 XACML Data-Flow Diagram (OASIS, 2009)........uuuuurummmmmumimnmmnnnnniniinnnennnnnnnnnnennnnnnnne. 31
Figure 4.5 An Example of Policy Merging in WSPL (Anderson, 2004)eueeverrememmmmenennnnnn. 32
Figure 4.6 Ponder Base-Class Diagram (Damianou, et al., 2000)euuuummmmmmmmmmmmmmnnemnnnnnn. 33
Figure 4.7 Ponder Authorisation Policy Example (Damianou, et al., 2001)cuvviieininnnnn. 33
Figure 4.8 Ponder Role Policy Example (Damianou, et al., 2001)uuvvummmmimmmmmmmninnnnnnnnnn. 34
Figure 4.9 PeerTrust Policy Example (Nejdl, et al., 2004)...........uuuuuremmmmmmmmmmmnnininnnnnnnnnnnnnnnnnnnnn. 34
Figure 4.10 Basic KA0oS Framework Elements (Uszok, et al., 2004)............uuuureemmemmmmmmmmnnnnnnnnnns 35
FIQUIE 4.11 PBIM MaPPING ...ettettueunnnnnnnnnnnnnnnnnnennnnnnnsnsnsssssssssnssnsssssnsssssssssssssssssssssssssssssnnsssnsnnnnnns 39
Figure 4.12 N° of instances/class in KNnowledge BaSecccovvviiiiiiiiiiieeeceeeieiee e 40
Figure 5.1 pSHIELD overlay: a fuNCtioNal VIEWuuuuuuueeiiiiiiiiiiiiiiiiiiieeeeneenennennennnnnnnnennnnne 43
Figure 5.2 Overlay DENAVIOUFoooi e 45
Figure 5.3 Overlay approach for configuration identificationcccceeviiiiiiiiiii e 46
FIGUIE 5.4 SINGIE STALE ..o ittt e e e e e e e e e e e 48
Figure 5.5 Hybrid Automata to describe all the possible configurationsccccccceeeiiiinnne. 48
Figure 5.6 SIMUIINK MOGEouiiiiiiiii e 49
Figure 5.7 Hybrid automata with fOur Statesccoviiiiiiiii e 49
Figure 5.8 Configuration switching to optimize piower CONSUMpPLioNncceeeeieeeeeveeeiinnnnnn. 50
Figure 5.9 Operating condition of a manufacturing system as modelled in[4]ccoevvvvevinnnnnn. 50
Figure 5.10 Hybrid Automata representing the pSHIELD node.........cccoooevvviiiiiiiiiiiieeeeceeiiin. 51
Figure 5.11 Hybrid Automata representing the pSHIELD networkccoovvviieiiiieeenieeiiiinnnnn. 52
Figure 5.12 System behaviour with MPC CONEIOlcoiiiiiiiiiiciee e 52

Version 1.0 Page v

SEVEN FRAMEWORK
PROGRAMME

Tables

Table 1 Policy Language/Model Evaluation Table
Table 2 pSHIELD Glossary

Version 1.0 Page vi

.

Pilot SHIELD W |

-
pilot embedde #@ 28
- S xv. >

arcHItecturE fou

#

SEVEN FRAMEWORK
PROGRAMME

Acronyms
Acronym Meaning
ESD Embedded System Device
ESs Embedded Systems
L-ESD Legacy Embedded System Device
MS Middleware Service
MwA Middleware Adapter
NC Node Capability
NoA Node Adapter
NS Network Service
NwA Network Adapter
pS-ESD pSHIELD Embedded System Device
pS-MS pSHIELD Middleware Service
pS-0S pSHIELD Overlay Service
pS-P pPSHIELD Subsystem
pS-P pSHIELD Proxy
pS-SPD-ESD SPD Embedded System Device
SPD Security Privacy Dependability
CC Common Criteria
FUA Faults with Unauthorized Access
HMF Human-Made Faults
NFUA Not Faults with Unauthorized Access
NHMF Nonhuman-Made Faults
SoC System on Chip
Version 1.0 Page vii

SEVEN FRAMEWORK
PROGRAMME

- This page intentionally left blank -

Version 1.0 Page viii

pSHIELD SPD middleware and overlay functionalities prototype
RE

1 Executive Summary

The purpose of this document is to present the prototypes developed in WP5 with respect to:
e the pSHIELD Middleware and its core SPD services,
e the Policy Based Management
o the Overlay architecture and control algorithms.

Particular attention has been devoted to the most innovative aspect: the composability functionality
performed by the Middleware and Overlay, that is the key enabling technology for the pSHIELD
framework. This concept is depicted in Figure 1.1 as a closed loop problem and the WP5 activities
covered by this deliverable and necessary to enable it are highlighted (Tasks 5.2, 5.3 and 5.4 as
described in the Technical Annex).

5.4 Overlay 5.3 Policy-based 5.2 Core Services

Composition Discovery

Orchestration

System

) MIDDLEWARE
Desired

SPD Control
Algorithms N4

Overlay “Embedded Intelligence”
N

f
1

OowL E OowL
1
1

Metrics Description OWL

(XML) ' (XML) Metrics
!] (XML)

5.1 Semantic Technologies

Figure 1.1 WP5 Composability Concept

Since pSHIELD is a pilot project, the solutions proposed in this document don'’t pretend to be exhaustive
and optimal, but their purpose is to realize a proof of concept of the pSHIELD key concepts in a reduced
(but significant) scope and in a simple scenario, putting the bases for further improvements and
investigations.

The nature of this deliverable is “other”, to indicate the heterogeneity of the output, that can be software
code, architectural design, simulations, diagrams and so on. This material is provided as attachment of
the document.

D5.2, enriched with background analysis, state of the art and performance considerations carried out in
the D5.4 report, cover all the work carried out by WP5 partners.

The document is structured as follows: after the punctualization of terms and definitions in Section 2, in
Section 3 the prototype of pSHIELD Middleware and core SPD services (based on the OSGi framework)
is presented. Then in Section 4 the rationale and architectural prototype of potential implementation of
Policy Based Management in pSHIELD environment is reported. Last, but not least, in Section 5 the
Overlay architecture and behaviour is described, with particular attention to the underlying control theory
supported by some simulations as prototype. Finally, in the Annexes the source code of the presented
prototypes is included.

RE D5.2
Draft B Page 9 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
2 Terms and definitions
This section lists the applicable documents
Ref Document Title Issue/Date
TA pPSHIELD Technical Annex 1
MO0.1 Formalized Conceptual Models of the Key pSHIELD Concepts 1
MO0.2 Proposal for the aggregation of SPD metrics during composition 1
D2.1.1 pSHIELD Systems requirements and specifications 1
D2.2.1 pPSHIELD metrics definition 1
D5.1 pSHIELD Semantic Models 1
2.1 SPD Dictionary

A comprehensive dictionary of the SPD concepts is provided by the project glossary included in Annex 1.

Draft B

RE

D5.2
Page 10 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

3 PSHIELD Middleware and core SPD Services
prototype

3.1 From concept to architecture

The core SPD services are a set of mandatory basic SPD functionalities provided by a pSHIELD
Middleware Adapter in terms of pSHIELD enabling middleware services. The core SPD services aim to
provide a SPD middleware environment to actuate the decisions taken by the pSHIELD Overlay and to
monitor the Node, Network and Middleware SPD functionalities of the Embedded System Devices under
the pSHIELD Middleware Adapter control. The following core SPD services are provided:

e service discovery;
e service composition;
e service orchestration.

Application Scenario

PSHIELD Middleware Layer

pSHIELD Middleware Adapter Sensed
Metadata

Semantic

Innovative SPD Functionalities ! Knowledge
| Repository

Core SPD Services
[: Orchestration

Capabilities

Elaborated Metadata

Composition

[: = Rules for discovery
d Discovery i and composition

Legacy Middleware

Control algorithms

pSHIELD Node Adapter

pSHIELD Network Adapter

Innovative SPD
Functionalities

Innovative SPD
Functionalities

Legacy Node
Capabilities

Legacy Network
Capabilities

Heterogeneous SPD-relevant SPD Security Agent
/ parameters and measurements e
Commands for composition and //‘ Exchanged
configuration of SPD modules metadata
SHIELD Node Layer SHIELD Network Layer .
p Y P Y Other SPD Security

Agents

pSHIELD Overlay
Layer

Figure 3.1 Core SPD services in the pSHIELD functional component architecture

Service discovery allows any pSHIELD Middleware Adapter to discover the available SPD functionalities
and services over heterogeneous environment, networks and technologies that are achievable by the
pSHIELD Embedded System Device (pS-ESD) where it is running. Indeed the pSHIELD secure service
discovery uses a variety of discovery protocols (such as SLP', SSDP?, NDP®, DNS*, SDP°, UDDI®) to
harvest over the interconnected Embedded System Devices (ESDs) all the available SPD services,
functionalities, resources and information that can be composed to improve the SPD level of the whole
system. In order to properly work, a discovery process must tackle also a secure and dependable service
registration, service description and service filtering. The service registration consist in advertising in a

! |ETF Service Location Protocol V2 - http://www.ietf.org/rfc/rfc2608.txt

2 UPnP Simple Service Discovery Protocol - http://upnp.org/sdcps-and-certification/standards/

® IETF Neighbour Discovery Protocol - http://tools.ietf.org/html/rfc4861

* IETF Domain Name Specification - http://www.ietf.org/rfc/rfc1035.txt

® Bluetooth Service Discovery Protocol

® OASIS Universal Description Discovery and Integration - http://www.uddi.org/pubs/uddi v3.htm

RE D5.2
Page 11 of 158

Draft B

http://www.ietf.org/rfc/rfc2608.txt
http://upnp.org/sdcps-and-certification/standards/
http://tools.ietf.org/html/rfc4861
http://www.ietf.org/rfc/rfc1035.txt
http://www.uddi.org/pubs/uddi_v3.htm

pSHIELD SPD middleware and overlay functionalities prototype
RE

secure and trusted manner the available SPD services. The advertisement of each service is represented
by its formal description and it is known in literature as service description. The registered services are
discovered whenever their description matches with the query associated to the discovery process, the
matching process is also known in literature as service filtering. On the light of the above a SPD services
discovery framework is needed as a core SPD functionality of a pSHIELD Middleware Adapter. Once the
available SPD services have been discovered, they must be prepared to be executed, assuring that the
dependencies and all the services preconditions are validated. In order to manage this phase, a service
composition process is needed.

Service composition is in charge to select those atomic SPD services that, once composed, provide a
complex and integrated SPD functionality that is essential to guarantee the required SPD level. The
service composition is a pSHIELD Middleware Adapter functionality that cooperates with the pSHIELD
Overlay in order to apply the configuration strategy decided by the Control Algorithms residing in the
pSHIELD Security Agent. While the Overlay works on a technology independent fashion composing the
best configuration of aggregated SPD functionalities, the service composition takes into account more
technology dependent SPD functionalities at Node, Network and Middleware layers. If the Overlay
decides that a specific SPD configuration of the SPD services must executed, on the basis of the
services’ description, capabilities and requirements, the service composition process ensures that all the
dependencies, configuration and pre-conditions associated to that service are validated in order to make
all the atomic SPD services to work properly once composed.

Service orchestration is in charge to deploy, execute and continuously monitor those SPD services
which have been discovered and composed. This is part of the pSHIELD Middleware Adapter
functionality. While service composition works “off-line” triggered by an event or by the pSHIELD Overlay,
service orchestration works “on-line” and is continuously operating in background to monitor the SPD
status of the running services.

The Orchestration, Composition and Discovery functionalities are the enablers (i.e. the sensors and the
actuators) of the decisions taken by the pSHIELD Security Agent Control Algorithms residing in the
pSHIELD Overlay. The mutual interoperation between the pSHIELD Middleware Adapter and the
pSHIELD Security Agent enables the pSHIELD Composability concept.

It is worth to note that not all the core SPD services must be necessarily located in each pSHIELD
Embedded System Device (pS-ESD). Indeed the pSHIELD component architecture depicted in Figure 3.1
identifies the Discovery, Composition and Orchestration functionalities that must be supported by at least
one pS-ESD in a network of Embedded System Devices. Moreover the core SPD services can be
deployed applying centralized or distributed approaches. It is a matter of the precise application scenario
to decide whether a specific functionality must be supported by each Embedded System Device (ESD). It
is obvious that the more ESDs are equipped with the pSHIELD Middleware Adapter (resulting to be a pS-
ESD), the more will be the coverage area and the effectiveness of the pSHIELD functionalities to
guarantee a certifiable SPD level (based on common shared SPD metrics) over the whole system.

Let see more in detail the formalized conceptual model of the Core SPD services, detailing the
architecture depicted in Figure 3.1 and exploding the core SPD services into their functional components,
in compliance with the pSHIELD functional architecture described in deliverable D2.3.1

RE D5.2
Draft B Page 12 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
Innovative SPD
SPD Middleware Security
Functionalities Agent

pS MS PSMS ™

pShield Core SPD Services
Network

Adapter 3

- Semantic DB
d)}ﬂsﬁ Service ORCHESTRATION || -

Registry
Q\ PSNC COMPOSITION

|
_ |
pShield
Node | DISCOVERY
Adapter }

1

Figure 3.2 Core SPD services conceptual framework

Apart the Discovery, Composition and Orchestration components already described in the previous
section, the following additional conceptual entities have been introduced:

e Service Registry: it acts as a database to store the service entries (e.g. the SPD components
description of provided functionalities, interfaces, semantic references, etc.). Any pSHIELD Node,
Network or Middleware layer component can be registered here to be discovered.

e Semantic Database: it holds any semantic information related to the pSHIELD components
(interface, contract, SPD status, context, etc.). The use of common SPD metrics and of a shared
ontology to describe the different SPD aspects involved in guaranteeing a precise level of SPD,
allows to dominate the intrinsic heterogeneity of the SPD components. Any semantic data is thus
technology neutral and it is used to interface with the technology independent mechanisms
applied by the pSHIELD Overlay.

Focusing exclusively on the Core SPD services located in the pSHIELD Middleware Adapter, we can
describe how it works when it is in an operative status. Let consider a typical situation, where the whole
system is properly working at runtime. The Orchestration functionality is in charge to monitor continuously
the Semantic DB with the updated status of the functionalities operating at node, network and
middleware layers. The pSHIELD Adapters are in charge to update in the Semantic DB (by proper
Semantic hubs that, for the sake of simplicity, have not been shown in Figure 3.2) their status.

Whenever the needed application SPD level, for any reason, due to external/internal unforeseen/
predictable events, changes and goes beyond the threshold, the Orchestrator triggers the Overlay. The
Overlay try to react and to restore the SPD level back to an acceptable level identifying the best
configuration rules. The Discovery and Composition are then triggered by the pSHIELD Overlay with the
aim to apply the configuration rules. On the basis of the configuration rules, the Composition service
make use of the Discovery service to search for all the needed and available SPD components. In
particular the Composition uses the Discovery mechanism to look for the available SPD component
interfaces and contracts over the network. Then the Composition, on the basis of the configuration rules
provided by the Overlay, determines which SPD components are required, which should be activated and
in which order to make the configuration of SPD components properly work. Thus while the Overlay
operate in a technology independent fashion, the Composition service operates all the needed low-level,
technology-dependent activities to actuate the Overlay decisions.

From the above description, it is clear that a key role is played by the Discovery mechanism. In pSHIELD
the main focus of the Discovery is to look for any available, composable SPD component over the
network. In order to cope with this important functionality the Discovery core SPD service must be
decoupled into several elementary elements each deputed to a proper functionality.

RE D5.2
Draft B Page 13 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

Core 5PD Services

e —
= COMPOSITION cemantic OB

DISCOVERY Service M

Discovery
Engine |
Query Filter
Preprocessor Engine

Service Discovery Discovery Discovery
Registy _J || Protocol 1 Protocol2 | """ | Protocol N

Figure 3.3 Details of the Discovery core SPD service

Zooming more in the detail the Discovery service, as shown in Figure 3.3, the following elements can be
distinguished:

Discovery Engine: it is in charge to handle the queries to search for available pSHIELD
components sent by the Composition service. The Discovery Engine manages the whole
discovery process and activates the different functionalities of the Discovery service: (i) the query
pre-processor to enrich semantically and contextually the query, (ii) the different discovery
protocols to harvest over the interconnected systems all the available SPD components, (iii) the
Filter Engine to discard those components not matching with the enriched query;

Query Pre-processor: it is in charge to enrich the query sent by the Composition service with
semantic information related to the peculiar context. The query pre-processor can be configured
by the Overlay to take care of the current environmental situation;

Discovery Protocol: it is in charge to securely discover all the available SPD components
description stored in the Service Registry, using a specific protocol (e.g. Service Location
Protocol — SLP or Universal Plug and Play Simple Service Discovery Protocol — UPnP SSDP,
etc.). Indeed the SPD component descriptions can be registered in different types of Service
Registries, located everywhere in the network, using heterogeneous protocols to be inquired;

Filter Engine: it is in charge to semantically match the query with the descriptions of the
discovered SPD components. In order to perform the semantic filtering, the Filter Engine can
retrieve from the Semantic DB the information associated to the SPD components, whose
location is reported in the description of the SPD component.

The Composition engine tries to accomplish the pSHIELD Overlay configuration rules applying the
following procedure:

1.

Composition service triggers the Discovery service, sending a SPD component request, looking
for those SPD components defined in the configuration rules provided by the Overlay;

The Discovery Engine sends the request to the Query Preprocessor;

The Query Preprocessor enriches the service request with contextual information and sends it
back to the Discovery Engine;

The Discovery Engine applies a global service discovery using heterogeneous Discovery
Protocols, in order to collect as much available SPD functionalities as possible over the
networked Embedded System Devices;

Each Discovery Protocol interacts with the Service Registries reachable in the network and
retrieves the SPD components’ descriptions and provides them back to the Discovery Engine;

Draft B

RE D5.2
Page 14 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

6. The Discovery Engine collects the discovered descriptions and sends them to the Filter Engine;

7. The Filter Engine applies a semantic filtering, retrieving the semantic metadata from the semantic
DB, accordingly with the references reported in each SPD component description. The filtered list
of component is then sent back to the Discovery Engine;

8. The Discovery Engine sends the list of available, filtered SPD components to the Composition
service;

9. If the Composition service, considering the available SPD components is able to provide a new
configuration, these components are activated, otherwise the Composition service advise the
Overlay that it is not possible to apply its decision.

It is important to note that the validity of this conceptual framework model is independent from the specific
application scenario. On the basis of this conceptual framework it is possible to derive a number of
possible alternative implementations, belonging to different pSHIELD compliant technology providers. If
the interfaces and the operation between the different elements are respected, it is possible to setup
heterogeneous systems with the enhanced pSHIELD SPD functionalities.

However being pSHIELD a pilot project, a targeted demonstrator will be described in the following.
Starting from the conceptual framework depicted above, an instance of the presented framework will be
derived in order to achieve the target SPD objectives defined in the pSHIELD application scenario.

RE D5.2
Draft B Page 15 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

3.2 The Innovative SPD Functionalities

The core SPD services introduced in the previous section are in charge to discover, compose and
orchestrate those Innovative SPD Functionalities provided by any specific application scenario. An
Innovative SPD Functionality can be developed from scratch or can be developed starting from an
already existing legacy SPD functionality. In order to make any legacy SPD functionality to be an
Innovative SPD Functionality, it must be discoverable, composable and orchestrable.

The legacy device components, i.e. the SPD functionalities already present in the legacy devices, can be
classified in Node, Network and Middleware legacy device components according to whether they have
been included in a legacy Node, Network or Middleware layer.

Legacy Node Capabilities Legacy Network Services

Node Node Node Network Network Network
Legacy Legacy Legacy Legacy Legacy Legacy
Device Device Device Device Device Device

C C LI e C C LA

1 2 K Ne 1 2 w NS

[[I O [[[O

Legacy Middleware Services

Legacy Legacy Legacy
Device Device Device
C C LI e

1 2 Q Ms

[| | O

Figure 3.4 Legacy device components

The legacy functionalities interact with the surrounding world through proprietary interfaces (namely the
NC, NS and MS interfaces). To cope with this heterogeneity, it is necessary to introduce an intermediate
component between the legacy world and the pSHIELD framework. The role of mediator is played by the
pSHIELD Adapter.

The pSHIELD Adapters hosts those Innovative SPD Functionalities that have been ad hoc developed for
the pSHIELD project to let the legacy functionalities to be correctly used by the pSHIELD framework. The
pSHIELD Adapter allows the legacy functionalities to be discovered, composed and orchestrated. The
pSHIELD Adapters can be classified in Node, Network and Middleware pSHIELD-specific components
according to whether they are included in the pSHIELD Node, Network or Middleware layer. The
Adapters can be directly accessed by pSHIELD Middleware Core SPD Services through the pS-NC, pS-
NS and pS-MS interfaces.

RE D5.2
Draft B Page 16 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
DS’NS\ pShield Middleware Adapter
J Core SPD Services
N
/
pS-NC - - -
Innovative SPD Functionalities
Legacy Middleware Services = : i
e LD Soectc || Spectc Specitc
Device Device Device c & e €
Component Component Component Ms 1 2 H pS-MS
1 2 Q MS
| | I \ —— — O
O)
pShield Network Adapter
Innovative SPD Functionalities
Network Network Network
pShield pshield pShield
Legacy Network Services Seaci Soectic R
Component Component Component
Network Network Network 1 2 e M
Legacy Legacy Legacy pS-NS
Device Device Device | I
Component Component *** | Component O
1 2 w NSNS
[[[3
J
pShield Node Adapter
Innovative SPD Functionalities
Node Node Node
pshield pshield pshield
Legacy Node Capabilities opecfic | | Speciic i
Node Node Node 1 2 o N
Legacy Legacy Legacy pS-NC
Device Device Device | |
Component Component *** | component O
1 2 K neNe
[I [3
O)

Figure 3.5 pSHIELD Components’ interactions

Any Innovative SPD Functionality must be discoverable and composable.
Innovative SPD Functionality need to advertise itself. To be composable, it must be described using a
semantic formalism, compliant with the pSHIELD semantic model. Thus any Innovative SPD Functionality
applies for the registration both to the Semantic Database and to the Service Registry.

PSHIELD
Middleware | pS-MS
Innovative SPD e
functionalities Semantic
Database
: ~—
PSHIELD :
Network e ----E \—/
Innovative SPD _L......, Service
functionalities L} : psws| Registry
PopSNS T "
pS-NC
PSHIELD
Node
Innovative SPD
functionalities -

Figure 3.6 Innovative SPD Functionalities registration

To be discoverable, an

Draft B

RE

D5.2
Page 17 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

3.3 Prototype objective

The pSHIELD WP5 Core SPD Services prototype aims to demonstrate the pSHIELD composability
concept by means of a software implementation of the above described architecture. In order to cope with
the complexity of such architecture the prototype deployment has been concentrated on the main
features provided by the Core SPD Services:

o Discovery of Innovative SPD Functionalities provided by an Embedded System Device at Node,
Network and Middleware discovery;

e Composition of available Innovative SPD Functionalities to guaranteed a requested level of SPD;

e Orchestration of composed Innovative SPD Functionalities to guarantee a correct operation of the
whole system.

In our vision, given a proper application scenario and a desired SPD level the Core SPD Services can
autonomously operate to setup a composition of available Innovative SPD Functionalities that matches
the requested SPD level.

The best solution identified to develop a proof of concept demonstrator based on these requirements, and
implementing the architecture described in the previous sections is to choose an open service platform
based on SOA (Service Oriented Architecture). In a SOA, everything is treated as a service. Each service
has its interfaces, its requirements, its dependencies, its proper dynamic and static parameters. In a SOA
vision the node capabilities and the network and middleware services of an embedded system device can
be described and treated as a composable service. Each sensor, each node, each protocol, each
resource can be described as a service, can be discovered, composed and orchestrated to work properly.
In particular we decided to exploit the potentialities of the Open Service Gateway Initiative as the
reference SOA architecture to be used to develop the Core SPD Services Prototype.

RE D5.2
Draft B Page 18 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

34 The OSGi framework

Considering the possible available SOA open solutions, our decision was to select OSGi as the reference
service platform to develop the proof-of-concept demonstrator. The main reasons leading to this decision
are:

e OSGiis an open standard;

e OSGi has a number of open source implementation (Equinox, Oscar, Knopflerfish);

e OSGi can be executed even over lightweight nodes (Embedded Systems Devices);

e OSGi has been implemented using different programming languages (e.g. Java, C, C#);

e The Java implementations of OSGi is fast to deploy and it is much easier to learn, facilitating
even an active and collaborative prototype deployment among partners;

e OSGi plugins are available for a number of IDE tools (i.e. Eclipse, Visual Studio, etc.);

e OSGi can be easily deployed in Windows (XP, 7, Mobile), Linux, MAC and Google (Android)
OSes.

More in particular we decided to use the open source Knopflerfish OSGi service platform. Knopflerfish
(hereafter referred as to KF) is a component-based framework for Java in which units of resources called
bundles can be installed. Bundles can export services or run processes, and have their dependencies
managed, such that a bundle can be expected to have its requirements managed by the container. Each
bundle can also have its own internal classpath, so that it can serve as an independent unit, should that
be desirable. All of this is standardized such that any valid Knopflerfish bundle can be installed in any
valid OSGi container (Oscar, Equinox or any other).

Basically, running OSGi is very simple: one grabs one of the OSGi container implementations (Equinox,
Felix, Knopflerfish, ProSyst, Oscar, etc.) and executes the container's boot process, much like one runs a
Java EE server. Like Java EE, each container has a different startup environment and slightly different
capabilities. The KF environment can be downloaded here: http://www.knopflerfish.org/

The KF start-up environment is shown below:

+# Knopflerfish 05Gi desktop (knopflerfish) = Ellil

File Edit Bundes Yiew Help

J = .-"2{: H ! 3] & a |l E- Startlevel: |7 apy Listener, HTTF ract, Service Agent, servicedis.., v |
2 =]

-
@n Y Y Mo bundle selected
B\ 1 L
4 el ol Select ane or more bundles in the main view to view detail

System Bundle Log Service CHM Service information

% ow %

Console util Crimson =ML lib
e . .
@ s s
b £ p
150K b bundlerepasitory Device Manager
o~ o~ .
L7y L7y L7y
User Admin HTTP Server F4 Commands T | P |
e e e x| | Bundie Repository Manifest | Closure | Services | Packages [Log |

Fropflerfish 08Gi framework, wersion 3.3.6
Copyright ZO03-2004 Enopflerfish. A1l Pights Beserwved.

|
4 o

>

Figure 3.7 Knopflerfish start-up environment

One of the most important peculiarities of the KF OSGi is that it already offers a standard orchestration
environment that, once correctly setup, can act as the pSHIELD Orchestration Core SPD Service. Thus
the Orchestration functionalities comes for free when using an OSGi framework, instead of using other
SOA implementations.

RE D5.2
Draft B Page 19 of 158

http://www.knopflerfish.org/

pSHIELD SPD middleware and overlay functionalities prototype
RE

3.5 Prototype Architecture

The prototype architecture derives directly from the architecture described in the previous section. Each
pSHIELD component is mapped into an OSGi bundle and, when needed, decoupled into a composition of
interoperating bundles each providing a specific functionality. This modular approach simplify the design,
development and debugging of the whole system. Even the Innovative SPD Functionalities have been
implemented as OSGi bundles. Each OSGi bundle has its own dependencies, provides a set of
functionalities, requires a set of functionalities and is characterized by a specific SPD level. Each bundle
can be registered in the Service Registry to advertise itself, to maintain updated its status in order to be
discovered. Each bundle can also store its description in the Semantic Database, to be semantically
composed. Each bundle interfaces the rest of the architecture providing a set of functionalities and
requiring a set of functionalities, exactly as a software component does. More in particular each bundle is
decoupled into two parts: the interfacing part (API) and its implementation part (IMPL). This separation
between APl and IMPL ease the substitution at runtime of a specific bundle, to change from one
implementation to another. This substitution can be due, as an example, to the necessity to strengthen
the SPD level of a specific functionality.
Q Provided API

BUNDLE API

BUNDLE /CJP\

BUNDLE IMPL
[

/l\ Requested API

Figure 3.8 Bundle architecture

Applying for a top-down design approach, the Core SPD Services can be mapped in the following way:
e The Discovery and Composition are two separate bundles;

e The Orchestration is represented by the OSGi framework and orchestrate also the Discovery and
Composition bundles.

To consider the interaction of the middleware layer with the rest of the architecture, the following
additional bundles can be considered:

e The Service Registry bundle;

e The Semantic DB bundle;

e The SPD Security Agent bundle belonging to the pSHIELD Overlay layer;

e The pSHIELD Node, Network and Middleware Adapter that could be grouped into a single
Adapter bundle.

The high level prototype architecture maps perfectly the Figure 3.1 Core SPD services in the pSHIELD
functional component architecture, as depicted in the following figure:

RE D5.2
Draft B Page 20 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
SERVICE
DISCOVERY ADAPTER

REGISTRY —(O)—

BUNDLE BUNDLE BUNDLE

6 (5 ‘ (O SEMANTIC DB O) |

BUNDLE

COMPOSITION O\ SPD SECURITY AGENT

BUNDLE 7 BUNDLE

A O

0SGi Framework (ORCHESTRATION)

Figure 3.9 High level Core SPD Services prototype architecture

Let see in detail the structure of each bundle of the high level Core SPD Services prototype architecture.

3.5.1

Discovery Bundle

The discovery bundle structure is depicted in the following figure:

Q IGenericDiscovery()

DISCOVERY
BUNDLE DISCOVERY ENGINE BUNDLE
IQuervPreprocessor(/J\ J\ /]\ISerwcesFlterU
QUERY FILTER
PREPROCESSOR 'SE'”'“D'“W”V‘ ENGINE
BUNDLE DISCOVERY BUNDLE
IConfigureContext() PROTOCOL
BUNDLE
O)_ SPD SECURITY AGENT N
BUNDLE getOntology() CP
SERVICE REGISTRY O) SEMANTIC DB
BUNDLE findServices() BUNDLE

Figure 3.10 Discovery Bundle structure

As explained in the previous sections, the Discovery Bundle is composed by the following bundles:

Discovery Engine Bundle: it is in charge to handle the queries coming from the
IGenericDiscovery() interface. The Discovery Engine Bundle manages the whole discovery
process and activates the different functionalities of the Discovery service. It calls the
IQueryPreprocessor() interface to enrich semantically and contextually the query. After that the
query is sent to the different underlying discovery protocols, by means of the IServiceDiscovery()
interface, to harvest over the interconnected systems all the available SPD components. Finally
the list of discovered services is sent to the Filter Engine Bundle using the IServicesFilter()
interface to discard those components not matching with the enriched query.

Query Preprocessor Bundle: it is in charge to enrich the query sent by the Discovery Engine
with semantic information related to the peculiar context. The query pre-processor can be

Draft B

RE D5.2
Page 21 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

configured by the SPD Security Agent to take care of the current environmental situation using
the IConfigureContext() interface;

e Discovery Protocol Bundle: it is in charge to securely discover all the available SPD
components description stored in the Service Registry Bundle, using a the findServices()
interface;

e Filter Engine Bundle: it is in charge to semantically match the query with the descriptions of the
discovered SPD components. In order to perform the semantic filtering, the Filter Engine can
retrieve from the Semantic DB the information associated to the SPD components, by means of
the getOntology() interface.

3.5.2 Service Registry Bundle

The Service Registry Bundle structure is depicted in the following figure:

SERVICE
DISCOVERY (O O) ADAPTER
BUNDLE RBEUGI\IJSJFEY BUNDLE

findServices()

registerService()

Figure 3.11 Service Registry Bundle

e Service Registry Bundle: it is in charge to store the bundle (i.e. SPD component) description in
terms of provided functionalities, interfaces, semantic references, etc.. Any pSHIELD Node,
Network or Middleware layer component can be registered here to be discovered by its own
proper pSHIELD Adapter. The Adpater registers each bundle as a service, using the
registerService() interface. The Service Registry provides the services entries information to the
Discovery Bundle by means of the findServices() interface.

3.5.3 Adapter Bundle

The Adapter Bundle structure is depicted in the following figure:

SERVICE
K [Op AT (O s
BUNDLE

registerService() setOntology()

Figure 3.12 Adapter Bundle

e Adapter Bundle: it represents a generic (Node, Network or Middleware) pSHIELD Adapter for
any type of legacy SPD functionality. The Adapter Bundle is in charge to:

1. Provide an Innovative SPD functionality interacting with the underlying legacy services,
capabilities and resources;

2. register the provided Innovative SPD Functionality in the Service Registry using the
registerService() interface;

3. publish the semantic description of the Innovative SPD Functionality in the Semantic DB
using the setOntology() interface;

RE D5.2

Draft B Page 22 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

3.5.4 Semantic DB Bundle

The Semantic DB Bundle structure is depicted in the following figure:

DISCOVERY (O SEMANTI DB O) ADAPTER
BUNDLE BUNDLE BUNDLE
getOntology() 8) a) setOntology()
SPD SECURITY | | 0SGi
AGENT ‘ FRAMEWORK

getOntology() getOntology()

BUNDLE (ORCHESTRATOR)

Figure 3.13 Semantic DB Bundle

e Semantic DB Bundle: it is in charge to store properly the semantic set by each Adapter Bundle
through the setOntology() interface. The stored ontologies contains all the information to
compose the available Innovative SPD functionalities. The Semantic DB Bundle provide access
to the ontologies through the getOntology() interface.

3.5.5 Composition Bundle

The Composition Bundle structure is depicted in the following figure:

SPD SECUIRITY
DISCOVERY O COMPOSITION
BUNDLE) BUNDLE O)— AGENT
BUNDLE
findServices() start() runBundle()
stop()
install()
remove()
0OSGi

FRAMEWORK
(ORCHESTRATOR)

Figure 3.14 Composition Bundle

e Composition Bundle: it is in charge to compose the discovered bundles accordingly with the
composition rules determined by the SPD Security Agent. Once the SPD Security Agent
communicates through the runBundle() interface the necessity to run a composed functionality,
the Composition Bundle use the findServices() interface to discover any suitable SPD component
to be composed. Then the Composition Bundle compose the available bundles (taking care of the
inter-bundle dependencies and the API-IMPL relationships) and uses the start(), stop(), install()
and remove() interfaces provides by the Orchestrator (that is the OSGi framework itself).

3.5.6 SPD Security Agent Bundle

The SPD Security Agent Bundle structure is depicted in the following figure:

RE D5.2
Draft B Page 23 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

O setDesiredSPDLevel()

SPD SECUIRITY AGENT

ISemanticKnowledge()

BUNDLE
CONTROL SEMANTIC
ALGORITHM _<<) KNOWLEDGE
BUNDLE BUNDLE
| I
P PN PN
Q IConfigureContetx() CP runBundle() CPgetOntology()
DISCOVERY COMPOSITION SEMANTIC DB
BUNDLE BUNDLE BUNDLE

Figure 3.15 SPD Security Agent Bundle

As explained in the previous sections, the SPD Security Agent is composed by the following bundles:

e Semantic Knowledge Bundle: it is in charge to get the semantic description of the available

services using the getOntology() interface and to make inference on their semantic model to
extract the SPD level of their composition;

e Control Algorithm Bundle: it is in charge to evaluate the best control strategy for the whole

system in terms of proper configuration rules both for the Discovery and the Composition Bundle,
respectively through the IConfigureContext() and runBundle() interfaces. The Control Algorithm
can influence which services can be discovered configuring the query preprocessor and can
influence the composition process limiting the composition only to the best SPD functionalities
that can assure the desired SPD level.

Draft B

RE

D5.2
Page 24 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

3.6 Deployment details

The prototype infrastructure has been deployed into a real OSGi framework. A screenshot of the OSGi
control panel is reported below:

Knopflerfish il des] =
File Edit Bundles View Help
=] :2,:, H ¥V rme 2 a3z Start level: & RemoteFW-API, DiscoveryProtocol_SLP-API, CantrolAl... -
#0 System Bundle nl |
] P o~ o~ P ~Fa . : = -
g e b byt byt by byt Location System Bundle
ﬁ <) "<y "y "y 7Y &) @ @ State active =i
System Bundle LogService n Console Dedarative-Services Event-Admin prefs uti-LIB JSDK-APT Symbolic namea system.bundle
Last modified 12/09/11 20.57
Start level o
. N . N N . N N N Bundle-Name System Bundle
7Y &y Ry Y LTy LYY &y LY LY Bundle-SymbolicName system.bundle
Bundle-Version 2.4.0
bundlerepository Device-Manager UserAdmin HTTP-Server FW-Commands-IMPL LogCommands-IMPL CM-Commands-IMPL HTTP-root-IMPL TTY-Console-IMPL) "
Export-Package javax.accessibility
javax.net

javax.net.ss|
javax.swing
N " " . " javax.swing.border
% w B € W W W W W
B javax.swing.filechoo
Telnet-Console-IMPL RemoteFW-API Desktop DiscoveryEngine-API DiscoveryProtocol-,.. DiscoveryProtocol ... QueryPreprocessor.,.. FilterEngine-API Semanticknowledg... javax.swing.plaf
‘ javax.swing.plaf.bas
javax.swing.plaf.me
javax.swing.table
§ § an an an an § an javax.swing.text
@ @ = b b b @ @l bl javax.swing.tree
W L {174 W L com.apple.eant
Controlalgorithm-API SecurityAgent-AP1 DiscoveryEngine-IMPLDiscoveryProtocol_... QueryPreprocessor... FilterEngineIMPL CompositionManag... UserAgent-API ServiceRegistry-IMPL com.apple.sio
com.sun.java.sving.
com.sun.java.sving.
javax.accessibility
o Gmume artiusbon
Qe M A e R Qe < i J r
o v {07 L W W 44 »
CompositionManag... ControlAlgorithm-I... SemanticKnowledg... MiddlewareAdapter... SecurityAgent-IMPL UserAgent-IMPL

Bundle Repository | Manifest | Closure | Services
Packages | [og | Events | Prefs |

a1

Figure 3.16 OSGI Environment
In this screenshot all the above introduced bundles are shown correctly running in a OSGi environment.
The Core SPD Services prototype will be used to setup the pSHIELD pilot Demonstrator by adding proper
pSHIELD Adapters representing meaningful components of the Railway Application Scenario.

In the Annex 2 the source code of the main OSGi bundles implemented for WP5 prototypes is listed.

RE D5.2
Draft B Page 25 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

4 Policy based management: rationale and
prototype

4.1 Introduction

This section focuses on the paradigm of policy-based management (PBM) by providing an overview of
the state-of-the-art and an elaboration on the mapping to pSHIELD especially to its scenario. The
motivations behind the interest in PBM are clarified besides a description of what is meant by policy (its
types) and PBM. The typical architecture followed in PBM will be detailed with an emphasis on policy
specification means, their discussion and affiliated protocols.

4.1.1 Policy

A policy can be abstractly seen as a mapping from a set of conditions to a set of actions. Also, policies
are meant to serve as the governing reference for any required adaptation a system may require. Others
see a policy as in: “information which can be used to modify the behaviour of a system”(Lupu, et al.,
1999). While in (Verlaenen, et al., 2007) policies are seen as a means to “configure the behaviour of
services” and are described in a declarative high-level manner that identifies what should be done in a
specific situation but not how it should be done. All of the above descriptions converge to the same
essence that a policy is intuitively a set of rules drawn in a high-level manner where under a given
evaluated situation; certain actions are dispatched for execution.

4.1.2 Policy-Based Management

Management comes as an intrinsic requirement for virtually all systems and indeed varies in type.
Essentially, Policy-Based Management (PBM) can be seen as a type of system management that allows
for minimal manual intervention in controlling, (re)configuring and monitoring system’s constituents and its
overall behaviour through predefined governing policies. In (Lymberopoulos, et al., 2003), the objective of
PBM is identified as to “allow flexible and adaptive management where the policies define the adaptation
choices or strategy which can be modified without recoding or even shutting down the system.” This
objective stresses on that PBM is meant mainly to provide for and regulate the adaptation a system may
require at certain points throughout its lifetime. However, PBM is not meant solely for adaptation but also
to aid in configuring, controlling and monitoring different system constituents (or components). Moreover,
PBM allows for system adaptation without the need for changing its implementation (Verlaenen, et al.,
2007). A specialisation of PBM that emphasise on managing networks and their services from a business
perspective through the usage of policies is referred to as Policy-Based Network Management (PBNM)
(Strassner, 2003). We mention the latter for disambiguation reasons but we continue to concentrate on
PBM in this section as it encapsulates the essentials of PBNM.

4.1.3 Motivations

The rationale behind choosing PBM comes as a nhatural consequence of the advancement of
computerised systems in general. Such systems tend to increasingly be distributed, complex, and
heterogeneous operating in a dynamic surrounding environment. Assuming the efficiency of human
intervention and continuous management is not realistic especially if the system is bound to alter its
behaviour frequently and adapt to emerging situations. Consequently, PBM comes -and increasingly so-
as an adopted simplifying approach to handling various operational, administrative and configuration
matters in different computerised systems (Verma, 2002). Essentially, allowing designers to specify in a
high-level descriptive manner a system’s policy is advantageous especially as they are consequently
relieved from defining various and often heterogeneous lower level strategies. These strategies are
inferred by the PBM which is responsible for interpreting the required steps and actions to be distributed
and enforced system-wide. More importantly, it will minimize human intervention in case of system
adaptation and will ensure the avoidance of conflicts among the policies to enforce. However, the use of
PBM does rely heavily on the quality of identified policies and hence they need to be carefully drawn.

RE D5.2
Draft B Page 26 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

4.2 Typical Architecture

A typical PBM architecture is defined by the IETF policy framework (IETF, 2000). The architecture
constitutes several points and elements, i.e., Policy Management Tool (including the required tools and a
policy repository), Policy Decision Point and a Policy Enforcement Point. Policy specification is also
considered as a main element and is discussed separately from the architecture onwards, see Section
Policy Specification.

Policy
IManagem ent Tool

Policy Decision Palicy
Point Repository

Policy Enforcement
Point

Figure 4.1 Typical IETF PBM Architecture

Figure 4.1 presents an illustration of the main points in a typical PBM.

4.2.1 Policy Management Tool

Different terminologies are used to refer to PMT such as Policy Administration Point (PAP) for instance.
PMT is mainly used by the administrator(s) in order to specify business-level (high-level) abstractions that
constitute polices. A number of elements are needed at this point typically (Verma, 2002; IETF, 2000):

1. A user interface that could be graphical with command-line support. Used as a policy editor with
simple validation

2. Aresource discovery element that determines the network topology, its capabilities, constituents,
users and running applications

3. A policy translation (or transformation) element that transforms high-level policies into a lower-
level constituents-specific policies. It also ensures policies’ consistency, correctness and
distribution feasibility through a validation process

4. A policy distributer/storage-retrieval element; as the name suggests, it interacts with the policy
repository (explained onwards) to store low-level policies and allow for their retrieval

An example of policy translation as described in (IETF, 2000) would be; assume a high-level policy
segment that defines "Premium Traffic between Point A and Point B". This can be translated into a low-
level policy rule: “source = 10.24.195.x, dest = 10.101.227.x, any protocol, perform Premium Service
action”. Indeed, a validation check can only be carried out in an offline manner here where the syntactic
and semantic integrity of each policy must be preserved. Some semantic validation checks are defined by
(Verma, 2002) as in:

1. Bounds checks: ensure that a given attribute value is within a predefined range

2. Relation checks: ensure that any two values assigned to interrelated policy parameters are

satisfactory to their relationship

Consistency checks: ensure a conflict-free set of policies

4. Dominance checks: ensure that all specified policies are reachable and are to be active at some
point during the system’s lifetime

w

RE D5.2
Draft B Page 27 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

5. Feasibility checks: these are domain dependent checks that need to ensure that the underlying
environment can support the specified policies

Moreover, while consistency checks need to ensure that conflicts among policy rules are avoided and
given that this is an offline stage, other checks should be carried out at runtime to avoid potentially
triggered conflicts.

4211 Policy Repository

A policy repository is mainly concerned with managing translated policies, e.g., Directory Server,
Database. It should allow for the storage, search and retrieval of policies and interface with other
elements using for instance, a Lightweight Directory Access Protocol (LDAP) protocol (see Section
LDAP).

4.2.2 Policy Decision Point

PDP is mainly a set of modules that are capable of examining applicable policies and consequently
determine the decisions required for the system to comply with that policy. PDP is responsible for
communicating policy-inferred decisions/actions to the Policy Enforcement Point (PEP) that could reside
on several physical devices. That channel of communication is governed by a protocol such as SNMP
(see Section SNMP). PDP also needs to interact, (i.e., fetch policies) with the policy repository using a
protocol such as LDAP.

4.2.3 Policy Enforcement Point

PEP is the final point in a typical IETF policy framework architecture. PEPs act as logical entities that
interface between systems’ devices/resources such as sensors, where they are likely to reside, and the
PDP by processing exchanged requests and responses. As the name suggests, PEP is responsible for
enforcing actions communicated from the PDP at the device-level. Those actions reflect the policy or
policies to be deployed at the local level.

4.2.4 Policy Types

Policies can naturally be divided into two main types, i.e., functional and on-functional policies. Functional
policies are intrinsic to the system’s operational tasks which is more of an application-specific issue. On
the other hand, non-functional policies for instance, those meant for maintaining a certain level of fault
tolerance, security and Quality of Service (QoS), tend to be less dependent on the application nature but
not completely (Robben, et al., 1999).

An adapted example inspired from (Matthys, et al., 2008) illustrates how a high-level security policy is
mapped to a more detailed policy for door monitoring data, see Figure 4.2. Detailed or lower-level policies
may sometimes comprise functional policies such as enabling/disabling access control on a gateway.

High-level policy

¥

If event=door_sensor then event.priority=1
Enable AES-encryption with key_size=128-bit on door_sensors
Enable access control on gateway

Detailed policy

Figure 4.2 Non-Functional Policy Transformation Example (Matthys, et al., 2008)

In the aforementioned example, the need to prioritize door monitoring data results in assigning a high
priority to the data originating from that door (by dedicated sensors) and that is encapsulated in a

RE D5.2
Draft B Page 28 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

door_sensor event. Moreover, in order to ensure sufficient security is applied on the exchanged
door_monitoring data, the translation to lower-level policy specifies the encryption algorithm to be used
with the adequate key size proportional to the security level requested in the high-level policy.

From a network perspective, policy-based QoS helps manage network traffic through regulating and
controlling bandwidth cost (with possible negotiation with bandwidth providers) which results in a better
end-user experience (Microsoft, 2009). For example, QoS policies can specify Differentiated Services
Code Point (DSCP) (Cisco, 2005) values and throttling rates on routers and switches in order to balance
the cost of service and the network performance. DSCP values are used to classify traffic into different
levels of importance by assigning priority values to different packets, (e.g., high priority, best effort, low
priority) where throttling can be used to set the rate of outbound traffic.

RE D5.2
Draft B Page 29 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

4.3 Policy Specification

A representative group of state-of-the-art policy specification languages/models are presented here.
Policy specification is essentially the initial phase where researched policies are concretized using a
model or language of choice. The latter can be regarded as an attempt to formalize administrators’ intents
in a machine understandable form.

431 XACML

The eXtensible Access Control Markup Language (XACML) is an XML-based declarative language
designed for specifying access control policies and follows a specific processing model. Up to date, the
most recent version is XACML 3.0 that was ratified by OASIS (OASIS) and includes several additional
features such as delegation.

< PolicySet
>
Cl._‘|7 1
[XX}
T 1 |
Policy Combining Algorithm
o
1 0.*
1 1 ObligationExpression
Target Policy
0.1 * * = I

0.7
T L AdviceExpression
1 1

Rule Rule Combining Algerithm
>
1
1 T) ¢ ¢
* 1 1 '
AlIOf Condition Effect

Figure 4.3 XACML Policy Language Model (OASIS, 2009)

XACML comprises a large set of abstracted elements. A comprehensive list of those elements is
presented in Section 5 of (OASIS, 2009). The main policy language model used in XACML is presented
in Figure 4.3 where it exhibits three essential elements/components, i.e., the policy, the policySet and the
rule. The rule is the most basic constituent of the policy that usually encapsulates a humber of rules. A
given rule is evaluated based on its composing elements that are mainly: target, effect, (i.e.,
Permit/Deny), condition, (i.e., Boolean expression - optional), obligation and advice. Besides holding a set
of rules, a policy comprises other elements such as a target, rule-combining algorithm identifier,
obligations and advice. This is similar to the policySet in terms of constituents but with the differentiation
that a policySet holds a set of policies and policy-combining algorithm identifier whereas a policy holds a
set of rules and rule-combining algorithm identifier. Therefore, target, obligations and advices are relevant
to policies in a given policySet while they are relevant to rules under a given policy. Essentially, an
XACML policySet, policy or rule element comprises a target that specifies the set of requests to which it
applies. For example, a rule target specifies the set of requests in the form of a logical expression on
some or all attributes in the request. Also, a rule/policy-combining algorithm specifies the procedure
through which an authorization decision can be reached based on the evaluation results of a set of
rules/policies.

RE D5.2
Draft B Page 30 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

aACCess obligations
2. access reguest PEP 13. chligations oAt
requasiar sarvice

3. requeast 12. regponge

4. requeat
o
notification
5. attribute
r contaxt B. resource
PoP . = oot "Tn resource
|——— 0. attributes handlar canter
11, regpanse
y context =
& 31?;['} B. attribute
— To. regaurcs
! X - atributes
e PP i Th. environmeant
attributes

Ta. subject
attributes

FPAP environment

Figure 4.4 XACML Data-Flow Diagram (OASIS, 2009)

Referring to the XACML data-flow diagram (see Figure 4.4) clarifies more the connections among the
different policy model elements. The architecture can also be seen to share some of the PBM typical
architecture defined by the IETF that was discussed earlier. The following is a description based on
(OASIS, 2009) of the entities mentioned in the XACML data-flow diagram:

e Policy Enforcement Point (PEP): perform access control by issuing decision requests and
enforcing authorization decisions
e Policy Information Point (PIP): act as a source of attribute values
e Policy Administration Point (PAP): responsible for creating a policies or policy sets
e Policy Decision Point (PDP): evaluate the applicable policy and renders an authorization decision
e Context Handler:
o Convert decision requests in the native request format to the XACML form
o Convert XACML authorization decisions to the native response format
e Environment: “The set of attributes that are relevant to an authorization decision and are
independent of a particular subject, resource or action”
e Resource: “Data, service or system component”
e Subject: “An actor whose attributes may be referenced by a predicate”
e Obligation: “An operation specified in a rule, policy or policy set that should be performed by the
PEP in conjunction with the enforcement of an authorization decision”

PAP composes policies and policy sets which are made available to the PDP. The communication
between the PAP and the PDP can be facilitated by a repository that XACML does not impose restrictions
on its location. This can also apply to the communication between the context handler and the PIP. In a
typical scenario, the access requester sends its request to the PEP which forwards it (possibly including
attributes of the subjects, resource, action, environment, etc.) to the context handler. The latter converts
the native request to an XACML format and sends it to the PDP that could request additional attributes

RE D5.2
Draft B Page 31 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

from the context handler itself. The context handler retrieves the needed attributes through the PIP and
returns them to the PDP that evaluates the policy. Consequently, the PDP returns the authorization
decision to the context handler which converts it to the native response format and sends it to the PEP.
Finally, the PEP fulfils any obligations if present and permits or denies access to the resource.

An XACML implementation (up to version 2.0) made by SUN is available online under a reasonably
flexible license (See (Sun, 2004)). Moreover, a comprehensive presentation detailing many aspects of
XACML with elaborating examples is available from Axiomatics AB in (Gebel, 2010).

4.3.2 IBM EPAL

Enterprise Privacy Authorization Language (EPAL) (IBM, 2003) is an IBM developed (proprietary) policy
specification language that is a subset of XACML and mainly aimed at the support of enterprise privacy
policies. Where EPAL is close to XACML’s structure and concept it however falls short in many aspects
against XACML. In (Anderson, 2006), a detailed comparison between EPAL v1.2 and XACML v2.0 is
presented which clearly shows how XACML is a more comprehensive and standardized access control
and privacy policy specification language. For example, EPAL does not support nested and distributed
policies besides the lack of digitally signed policies. Moreover, EPAL allows only one subject per access
request and evaluates only first applicable rule. All of this is added to EPAL’s inconsistent treatment of
attributes and limitations when it comes to (hierarchical) roles. Indeed, XACML especially v3.0 provides a
more complete privacy and access control policy specification solution than EPAL (Anderson, 2006).

4.3.3 WSPL

Web Services Policy Language (WSPL) (Anderson, 2004) is an XACML-based policy specification
language that focuses on the web services domain. WSPL is driven by the intention of standardization. It
is motivated by the several aspects the web services domain comprises that can be controlled and
described using policy rules. Those aspects could involve authorization, authentication, quality of
protection and service, messaging reliability, privacy and other service-specific options. A main feature in
WSPL is policy negotiation and its ability to merge different policies which represent the intersection of
such policies if such an intersection resulting policy is valid (see Figure 4.5 for an elaboration). Policies
in WSPL can be also based on parameter (standard data-types and functions) comparison as opposed to
pure equality matching. This allows for a more “fine-grained” choice of parameters (Anderson, 2004).

Fee< 254

Movies per
manth 2 4
Rule 1A+ 24 :

Bandwidth = Foe = 204
200 kbps
Movies per
Rule 1B+ 2B month =5
Fee= 205 Bandwidth =
Maovies per 320 kbps
manth =5
Bandwidth =
320 kbps

Figure 4.5 An Example of Policy Merging in WSPL (Anderson, 2004)

WSPL was mainly developed based on a number of use cases that were analysed and reviewed for that
purpose in a public forum. Indeed, it was henceforth formally analysed and is seen to be “good” basis for
a web services policy standard.

RE D5.2
Draft B Page 32 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

4.3.4 Ponder (2)

Ponder (Damianou, et al., 2001) is an Object-Oriented declarative policy specification language aimed at
defining management and security policies for distributed systems. The language was developed at the
Imperial College London over several years. Ponder includes essential interrelated concepts in its core,
i.e., domains, roles, relationships and management structures. Domains are used to group objects of
similarly applicable policies where roles are used to group policies for identified positions in a given
organisation. Relationships are used to specify interactions between roles where a management structure
is used to capture the configuration of roles and relationships for an organisational entity such a business
unit.

The base-class diagram used in Ponder is presented in Figure 4.6. The detailed explanation of the
diagram is out of scope but a comprehensive description can be found in (Damianou, et al., 2000).

Object

name : identifier

.

BasicPolicy Meta CompositePolicy
subject : DSE - -
Iarg‘e[: DSE . netaExp'esauo.n : OCLexpression ?gﬁg:?af;?%anslra nt
constraint : O.CL-CL‘HSTHI". raisedAction : Action constants - Constant
ef p }-L.s. policies : SinglePolicy
consirainis : Lanst metaPolicies : Meta
copelets Conear goupe oy
i . deleg mstruct
auth oblig refrain group role rel
grantee : DSE roles role
event : Event 2 3 i i N .
fion - action : RefrAction accessRights | NegAuthActio subjecl_domain : dse| [roles : role rels : rel
exception : Exception] | Lmstructs : mstruct
1.n \—‘n -
auth+ auth- deleg+ deleg-
action : PosAuthAction| | action : NegAuthAction

Figure 4.6 Ponder Base-Class Diagram (Damianou, et al., 2000)

Moreover, authorisation polices in Ponder can be implemented using available control methods such as
those in firewalls and operating systems. Also, obligation policies (event-based condition-action rules) are
supported. In addition, Ponder can be used for security management in distributed systems thus allowing
for user registration and activity logging.

Onwards, two simple examples of authorization and role polices are presented (please refer to
(Damianou, et al., 2000) for more examples). Figure 4.7Errore. L'origine riferimento non é stata
trovata. presents the authorisation policy example where members of the NetworkAdmin domain are
allowed to load, remove, enable or disable objects of type PolicyT in the Nregion/switches domain.

inst auth+ switchPolicyOps {

subject /NetworkAdmin;

target <PolicyT> /Nregion/switches;

action load(), remove(), enable(),
disable() ;

}

Figure 4.7 Ponder Authorisation Policy Example (Damianou, et al., 2001)

In Figure 4.8, a Ponder role policy example is presented. A role type is modelled for a telecommunication
service engineer. In this role, the service engineer is responsible for handling customer complaints in
addition to service requests. The role takes as input the calls database that provides information about
subscribers’ calls. In the case of a customerComplaint event, the serviceComplaint obligation is triggered
where the subject of the role follow a sequence of actions on the calls database. All policies within this
role have the same implicit subject so the obligation policy does not need to specify a subject explicitly.

RE D5.2
Draft B Page 33 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

type role ServiceEngineer (CallsDB callsDb) {
inst oblig serviceComplaint {
on customerComplaint(mobileNo) ;
do t.checkSubscriberinfo(mobileNo, userid) ->
t.checkPhoneCallList(mobileNo) ->
investigate_complaint(userld);
target t = callsDb ; // calls register }
inst oblig deactivateAccount {...}
inst auth+ serviceActionsAuth { . . .}
/Il other policies

Figure 4.8 Ponder Role Policy Example (Damianou, et al., 2001)

While having been successfully used in several applications, Ponder suffered from different
disadvantages which triggered a more recent and revised Ponder2 (Twidle, et al., 2009). Ponder2 aims
at pervasive systems where Ponder’s limitations such as the centralised infrastructure design, lack of
support for collaboration between different polices’ elements and the off-line nature of its policy
specification task, are all dealt with. Hence, Ponder2 was implemented as a self-managed cell: “A self-
managed cell is defined as a set of hardware and software components forming an administrative domain
that is able to function autonomously and is capable of self-management” (Twidle, et al., 2009). Ponder2
allows for user-written Model Objects using Java with simple annotations. A smalltalk-like language,
namely, PonderTalk is used for message communication among different Message Objects. Ponder2 is
available for download under the GNU Lesser General Public License as published by the Free Software
Foundation.

435 IBMTPL

The Trust Policy Language (TPL) (Herzberg, et al., 2000) was developed by IBM with an XML-based
syntax. The language was only meant to provide for access control to resources. Its policy rule includes a
set of certificates that are required for a given user to belong to a given group and an evaluation function
to decide on that. That function uses fields from the included certificates in the evaluation process. TPL is
limited only to defining access control for security policies. However, TPL allows policy authors to express
constraints on several levels such as on (combinations) of credentials/inter-credentials and
authentication. TPL has a definite version referred to as DTL where negative rules are not allowed. This
allows for DTL to be easily mapped to a logic programming language. Based on (Seamons, et al., 2002),
which provided a set of requirements to evaluate different policy languages for trust negotiation, TPL was
found to be fulfilling some of the requirements. However, Portfolio and Service Protection Language
(PSPL) was found to be a better policy language than TPL for trust negotiation.

4.3.6 PeerTrust

PeerTrust (Nejdl, et al., 2004) is a policy management framework based on the first order logic of Horn
rules. It is mainly aimed at specifying requirements for security and trust on the sematic web. An
elaborating example is provided in Figure 4.9 which forms a part of a more detailed informative scenario
in (Nejdl, et al., 2004).

E-Learn:

discountEnroll(Course, Party) $ Requester = Party«—
discountEnroll(Course, Party).

discountEnroll(Course, Party)«
eligibleForDiscount(Party, Course).

eligibleForDiscount(X, Course) «—preferred(X) @ “ELENA”.

preferred(X) @ “ELENA"—
signedBy [‘ELENA]
student(X) @ “UIUC”.

Figure 4.9 PeerTrust Policy Example (Nejdl, et al., 2004)

RE D5.2
Draft B Page 34 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

In Figure 4.9, an institute called E-Learn sells learning resources and provides discounts to some users.
Discount eligible users are classified as the preferred customers in the ELENA group. Given that E-Learn
was given a singed rule by ELENA specifying how to check whether a user is a preferred one or not, E-
Learn does not need to communicate with ELENA each time it needs to check for discount eligibility.
Update of PeerTrust was halted 2004-2005 and was followed by a different project called Protune which
is covered in the section to follow.

4.3.7 Protune

The PRovisional TrUst NEgotiation (Protune) (Bonatti, et al., 2005) is a framework for policy specification
and deployment that merges between distributed trust management policies, business rules and actions
required for access control. Its policy language is based on two existing languages, namely, PAPL
(concerned with trust negotiation) (Bonatti, et al., 2000) and PeerTrust. Protune also provides a meta-
language for handling critical negotiation decisions as well as integrity constraints that are meant for
monitoring the disclosure of credentials. Protune follows an ontology-based approach for easier importing
and exporting of metapolicies and also to allow for further language extension. The Protune project is
maintained online at (Proll) where an implementation is available for download including a language
editor.

4.3.8 KA0S

KAoS (Uszok, et al., 2004) is a framework for policy and domain services that is organised in a set of
components compatible with several agent platforms such as DARPA’s CoABS Grid and Cougaar agent
framework and CORBA. KAoS makes essential use of OWL which is an ontology authoring standard
based on descriptive logic. OWL is used in KAoS to represent policies and domains besides other
managed entities and affiliated elements. Also, OWL allows for the framework to be easily extended while
being consistent with advanced semantic requirements.

KA0S domain services allow for semantically describing and structuring of software components, people
and resources into groups of (sub)-domains which is believed to ease external policy administration and
collaboration. Moreover, KAoS policy services are used to specify, manage and enforce policies as well
as resolve conflicts among policies.

i Creste Edit
Use Policy FI']“[,: ')
] Tem plate A~ Admin
K PAT - -
Editor 1 Create Editor
Storef Query G et Policy Edior F
Policy T lat
Deconflict Po oy ! — { I:]ditqr :I‘Il[:l :
5 pecific LAl

Load Emvironm ent

Create Classifier

Generic L Ontology
Ontology for (RELN Directory -
Actors, Actions, Service ' Acf_las:ﬂ'ler Kk 1 Classifier
Respurces, efc Use LUl due s Fatory

Digtribute Polcy
) Get Classifier For Action Propeny

Get Enforcer For Artion Type Enfarcer
Factory
Check Performance
ActionClass 1
(W[4/ . Perform Action Class 1 Create Enforcer
Agent

| Artion Classes Availahle On Resources |

Resources f
Other Agemts

Figure 4.10 Basic KAoS Framework Elements (Uszok, et al., 2004)

RE D5.2
Draft B Page 35 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

Three types of conflicts can be detected in KAoS that are based on the positive or negative nature of an
authorisation or obligation:

e positive vs. negative authorisation
e positive vs. negative obligation
e positive obligation vs. negative authorisation

KAOS resolves these conflicts through “harmonization” which involves assigning different policies different
priorities (Bonatti, et al., 2007).

In Figure 4.10, the basic elements of the KAoS framework are presented. Two groups of functionalities
are naturally found in the framework, i.e., generic and application-specific. Generic functionalities include
ontologies creation and management as well as policies storage, querying, distribution, enforcement,
disclosing and conflict resolving. Moreover, application-specific functionalities may include defining new
ontologies and creating extension plug-ins such as policy templates, custom action property editors and
subclasses action enforcers and classifiers.

More details can be found on the project's website at (KAoS) where the policy ontology used is also
presented in details.

43.9 REI

REI (Kagal, 2002) is a policy language similar to what is used in the KAoS framework in many forms. REI
was designed to deal with security issues where heterogeneous entities exist in a dynamic environment
through policies. REI uses OWL-Lite and logic-like variables which allow for easier application-specific
extensions and different relations specification. Polices here are defined based on what entities
can/cannot do or should or should not do. REI policies follow an ontology that includes different concepts
such as permissions, obligations, actions etc. as well as the ability to import domain/application-
dependent ontologies. Analogous to KAoS’s positive/negative authorisations and obligations, REI policies
include “deontic concepts” such permissions/prohibitions and obligations/dispensations. Moreover, REI
allows for rights and obligations to be dynamically exchanged among entities through right delegation and
revocation as well as action or delegation request and cancelation. Policy conflict detection and
resolution is handled through overriding policies which is a similar technique as in prioritisation in KAoS.
The project ended in May 2005 but its website is still alive at (REI, 2005) where more details can be
sought if needed.

4.3.10 Discussion

Several reviews have already discussed and compared the aforementioned policy specification
languages and models. Based on the following studies (Olmedilla, 2008)(Duma, et al., 2007), a set of
metrics is selected to form a representative criteria for evaluating these policy languages/models in light
of pSHIELD’s characteristics. Following is a description per each:

e Well-Defined Semantics: the meaning of the policy is independent from the implementation of
the language it is written in

e Access Control: requesters with valid credentials are given access to certain data/attributes

¢ Minimal Information Disclosure: credentials or attributes sensitivity specification

e Mutual Exclusiveness: control of simultaneous release of data that could be sensitive
collectively

e Sensitive Policies Protection: control the disclosure of policies and assigning them sensitivities

e Usage Control: ability to impose restrictions and obligations on released data consumers

e Action Execution: allowing policy writers to specify actions in policies

e Delegation: passing on or transfer rights such as access rights

e Evaluation Type: distributed (able to gather policies or policy elements spread on the net for
evaluation) or local policy evaluation

e Evidences: support for the concept of user credentials

e Extensibility: ability to adapt to user needs

e Standardization: the extent to which the approach has been standardized

RE D5.2
Draft B Page 36 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
Criterion XACML v.3 | EPAL |WSPL | Ponder | TPL |PeerTrust|Protune |KAoS| REI
Well-Defined Semantics N Y N N N Y Y Y Y
Access Control Y Y Y Y Y Y Y Y Y
M|n|mgl Information v v i v i i v i N
Disclosure
Mutual Exclusiveness - - - Y - - Y - Y
Sensitive P_0I|C|es v i i v i i v) v
Protection
Usage Control E - - Y - - N - Y
Action Execution Y Y Y Y N Y Y N N
Delegation Y N N Y N Y Y N Y
Evaluation Type Dist. L Dist. L L Dist. Dist. L | Dist.
Evidences E N N - Y Y Y N -
Extensibility Y Y N Y N Y Y Y Y
Standardization A u - - - - - - -
A: Available, U:Unmaintained, Dist.: Distributed, L: Local, E: Extendable, -: Not Available/Applicable

Table 1 Policy Language/Model Evaluation Table

Table 1 presents a comparison among the described policy languages/models based on the selected
criteria. Support of privacy-centric metrics such as minimal information disclosure or usage control could
not be verified for policy languages such as KAoS, EPAL, PeerTrust, etc. It can be noticed that all
described policy languages support access control while they vary in their support to other metrics.
XACML, Ponder, Protune and Rei seem to satisfy most of the metrics with the exception of well-defined
semantics for XACML. However, XACML is the only model that is well standardised and maintained
which makes it a viable model for adoption. EPAL had some standardization efforts by W3C in 2003 but it
has not been maintained where XACML has been identified as better option in an evaluation against
EPAL (Anderson, 2006). Usage control and Evidences in XACML are supported by extension as in
(Colombo, et al., 2010) and (Ardagna, et al., 2009) respectively. Essentially, XACML is seen as a viable
choice for PBM in pSHEILD given its concrete standardization and its support for access control policies
besides other relevant features.

RE D5.2
Draft B Page 37 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

4.4 Affiliated protocols

A set of protocols that are usually affiliated with the management and propagation of policy interpretation
to the lower level of resources are presented here.

441 COPS

Common Open Policy Service (COPS) protocol governs a client/server form of communication for policy
control on QoS signalling protocols, especially between a Policy Decision Point (PDP)/server and a Policy
Enforcement Point (PEP)/client. COPS is defined by IETF’s RFC 2748 (IETF, 2000) and it supports two
modes of operation; COPS Provisional Model (COPS-PR) and COPS Outsourcing Model. The latter is
COPS’ simple form of operation where a PEP sends requests for policy decisions to a dedicated PDP.
The PDP then evaluates the request against a given policy and responds to the sending PEP with the
applicable policy decision. In the COPS-PR mode, PEPs will inform the PDP about their ability to take
policy decisions including local specifications. The PDP hence uploads the provisioned policies onto the
PEP which stores them in a local Policy Information Point/Base (PIP/B) and carries out requests for policy
decisions locally. While online, the PDP can update or remove policies on the PEP if it found that
necessary due to some external changes. Also, PEP is expected to send a request for update to the
designated PDP if its local configurations have changed where the PDP will upload any additional
provisional policies on the PEP.

COPS uses TCP in order to exchange messages between clients and servers. It can also use existing
security protocols such as IPSEC and TLS to support an authenticated and secure channel between PEP
and PDP. Moreover, COPS is stateful as a request/decision state is shared between the PDP and the
PEP as well as that pairs of requests and decisions (also referred to as events) can be interrelated.

442 SNMP

Simple Network Management Protocol (SNMP) (IETF, 1990) is a well-established protocol (approved in
1990) for monitoring entities or devices in a TCP/IP network. SNMP allows for different network
management tasks such as auditing, performance monitoring, faults detection and remote configuration.
It is designed to be simple where its deployment on several managed devices will not be resource
demanding while still being robust. Latest versions of SNMP improved security and data integrity by using
MD5 hashing and DES encryption in addition to protection against reply attacks through authentication.
As an alternative to COPS, SNMP can be used for governing the communication channel between the
PDP and PEP. For instance, SNMP was recommended in the early stages of PBM to be used in network
management as in (Boros, 2000). Also, in (Rana, et al., 2009) SNMP and COPS were recommended in
the management of home area networks through PBM.

443 LDAP

Lightweight Directory Access Protocol (LDAP) (IETF, 2006) is an application protocol that allows for
accessing distributed directory services that follow the X.500 model. LDAP is a variation of X.500
customized to provide a lightweight implementation with TCP/IP support. It is considered to be cross-
platform suitable for read-intensive operations hence allowing for directory access from different platforms
and locations with infrequent update requirements. From a PBM perspective, the repository used to
manage stored policies can serve as an LDAP server where PDP and PAP are seen as LDAP clients. In
different research concerning PBM in networks management on different aspects, LDAP is recommended
for accessing policy repository (Verma, 2002)(Sloman, et al., 2002)(Flegkas, et al., 2002). An open
source implementation, namely, OpenLDAP is available for free at (OpenLDAP, 2011).

RE D5.2
Draft B Page 38 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

4.5 Reflection on pSHIELD

In this section, a typical PBM architecture is mapped to pSHIELD’s general architecture. The latter
includes two types of nodes at the button node layer that are categorized based on their capabilities in
terms of processing power and capacity, i.e., power nodes and sensor nodes. Power nodes are described
to be more resourceful while sensor nodes are typically seen as resource constrained devices. Upper
supporting layers constitute network, middleware and application layers while agents in a vertical overlay
monitor/tune those layers. Given the aforementioned architecture, a PDPs and PEPs from a typical PBM
architecture can be mapped naturally to power and sensor nodes respectively. Figure 4.11 presents the
proposed PBM mapping.

On the lower layer, sensor nodes being the managed resources are considered as policy enforcers, i.e.,
PEPs. The latter, based on the XACML model, should enforce authorisation decisions and handle
affiliated obligations specified by applicable rules. PEPs can support local policy storage in order to
comply with COPS-PR mode of operation hence the provision of a local PIP although not compulsory.
However, this depends on the capabilities of deployed sensor nodes whether they can afford a form of
local policy storage and decision making. Moreover, power nodes are those nodes that are more
resourceful than the sensor nodes which make them natural decision making points able to
process/translate policies and deduce rules to be enforced by affiliated PEPs. The COPS protocol can
govern the communication between PDPs and affiliated PEPs but not exclusively as SNMP is an option
as well (where an LPIP is no more required).

Legend

PAP: Polley Adminktration {PA) Polnt

POP: Polloy Declslon Polnt

PEP: Polley Erforeamant Polnt PA Tools
{LIPIP: {Local]Policy Information Polnt

OH: Obligation Handing
-
Folicy
Repository/

PIP

- = = = = = -

Power Nodes
COPS/SNMP
—
LPIP Nl S I —
Sensor Nodes PEP PEP PEP
_OH OH OH

Figure 4.11 PBM Mapping

A group of PDPs can access the repository of policies, (i.e., PIP) in order to retrieve needed polices for
evaluation. This is done through LDAP that is a protocol suited for lightweight read-intensive operations
allowing for directory access from different platforms and locations. The policy repository is managed
solely by the policy administrator point (PAP). Also, PAP is responsible for providing policy authoring tools
besides management and control capabilities. These could include creation, termination, activation,
listing, amending and synchronizing policies. Commercially for instance, Cisco’s PAP (Cisco) manages,

RE D5.2
Draft B Page 39 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

administer and monitor policies in a central manner compatible with LDAP. It also provides several
features such as web-based editing and composing of policies in a drag and drop manner, policy scope
definition, delegation management and aiding functionalities for understanding the implications of policy
changes. Concerning, LDAP implementations, an open source version is available as mentioned earlier
at (OpenLDAP, 2011). However, COPS does not seem to have an open source implementation where
some commercial ones could be available. If SNMP is considered as an alternative for COPS, some open
source and free implementations are available such as in (NET11). XACML is indeed the policy
specification language to be used as argued in earlier discussion.

Concerning pSHIELD’s main scenario where a monitoring and access control system is put in place to
oversee rail-transported hazardous materials, the above PBM is considered suitable. Locking and access
control mechanism in addition to installed sensors can be seen as PEPs where the central control unit in
the train carriage can be seen as a PDP with local access to PIP. Moreover, the central command centre
overseeing the operation of the monitoring system is seen as a PAP with policy administration tools and
repository support. The PIP is expected to be distributed which allows a given PDP to access it locally
where a PAP can manage such a distributed PIP through LDAP.

45.1 Performance evaluation

As a final step, a performance evaluation of the policy execution (as PDP) is reported, with specific focus
on the computation time during policy execution.

The processing time depends on:
— Policy specification language (high level or low level)

— Type of policy execution engine
— Underlying formalisms used to describe attributes (e.g. Knowledgebase in pSHIELD)

— No. of simulteneous execution

0.8 T !
—8B— 3 queries :
) —%— 4 queries ;
T Ok . B T =
= single query |’ :
-
B
E
L= '
[-
£ ;
ik -
E :
b : 5
0 1 i
g 12 b} 18 24

Figure 4.12 N° of instances/class in Knowledge Base

Figure 4.12 shows the computation time for simultaneous policy execution with the following simulation
parameters:

* Rule-based semantic policies (SWRL-SQWRL)
— Ahigh level language

* Underlying formalism: OWL
— High level comapare to simple XML

+ Simulteneous queries from Application requir-es execution of simulteneous policies

RE D5.2
Draft B Page 40 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

* Performance measure in P4 2.0 GHz,1GB RAM windows machine

Implications for pSHIELD: Latency is one of the QoS requirements for Web services at Middleware
level; latency includes request processing time. Figure shows that even with small no. of instances
simulteneous policy execution takes increasing amount of time.

For that reason run-time decision support with simultaneous query processing may not be possible with
such settings.

RE D5.2
Draft B Page 41 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

4.6 Conclusions

This section presented and discussed technologies related to Policy-Based Management (PBM). This
included policy specification languages and models in addition to affiliated protocols. Based on the
discussion of available PBM technologies, a suggested PBM mapping was presented on pSHIELD’s
general architecture. XACML is recommended for policy specification given its standardized nature with
access control support. Moreover, LDAP is found to be widely used for governing communication
between PDP and PAP from one side and the repository of polices on the other side. Also, COPS or
SNMP are both widely used as protocols for communication between PEPs and PDPs.

RE D5.2
Draft B Page 42 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

5 PSHIELD Overlay and control algorithms
prototypes

51 Introduction

With reference to the pSHIELD functional view (see deliverable MO0.1) the following figure highlights the
key functionalities and interfaces involving the Overlay layer.

Application Scenario

PSHIELD Middleware Layer
pSHIELD Middleware Adapter Semantic
° Sensed Metadata Knowledge
g, Repository
% g Core SPD Services
83— and
2 s Innovative SPD Functionalities
z 3 Elaborated Metadata
©
oo
3 Rules for discovery Control algorithms
and composition
Heterogeneous SPD-relevant
/ parameters and measurements 9
it Exchanged
b Commands for composition and | —
configuration of SPD modules -] metadata
PSHIELD Node Layer PSHIELD Network Layer Other SPD Security
PSHIELD Node Adapter PSHIELD Network Adapter Agents
PSHIELD Overlay
Legacy Node Legacy Network
Capabilities Capabilities Layer

Figure 5.1 pSHIELD overlay: a functional view

The Overlay consists of a set of SPD Security Agents, each one controlling a given pSHIELD subsystem.
Subsystem identification has to be carefully performed scenario by scenario. Expandability of such
framework is obtained by enabling communication between SPD Security Agents controlling different
sub-systems. As a matter of fact, the presence of more than one SPD Security Agent is justified by the
need of solving scalability issues in the scope of system-of-systems: exponential growth of complexity
can be overcome only by adopting the policy of divide et impera (divide and rules).

Each SPD Security Agent, in order to perform its work, exchange carefully selected information with the
other SPD Security Agents, as well as with the three horizontal layers (node, network and middleware) of
the controlled pSHIELD subsystem. However, in the scope of the pilot project the interaction between
different security agent is not taken into account, since the controlled subsystem is reduced and only the
“single security agent” case is considered.

Each SPD Security Agent collects properly selected heterogeneous SPD-relevant and context
measurements and parameters coming from node, network and middleware layers of the controlled
pPSHIELD subsystem; this information is used as valuable input for the Control Algorithms (see next
paragraph). Since the SPD Security Agent is mainly a software functionality and not a physical system
itself, it needs the mediation of the pSHIELD Middleware Core SPD Services as it has been explained in
the previous section.

Summarizing, each SPD Security Agent consists of two key elements:

(i) the Semantic Knowledge Repository (i.e. a database) storing the dynamic, semantic, enriched,
ontological aggregated representation of the SPD functionalities of the pSHIELD subsystem
controlled by the SPD Security Agent;

RE D5.2
Draft B Page 43 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

(i) the Control Algorithms generating, on the grounds of the above representation, key SPD-
relevant decisions (consisting, as far as the Composability feature is concerned, in a set of
discovery, configuration and composition rules).

In deliverable D5.1 as well as in the SPD Core Services section of the current document, the first point
has been widely exposed by means of prototypes. The purpose of this section is to formalize the
behaviour of the Overlay and the SPD Security Agent with respect to the control algorithms (often
referred to as “embedded intelligence”).

RE D5.2
Draft B Page 44 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

5.2 Overlay Behaviour
The behaviour of the Overlay is provided in

Figure 5.2: thanks to the pSHIELD metrics identified in WP2, the desired SPD level can be quantified and
translated into a reference signal for a closed loop control scheme. Two potential paths can be followed to
achieve this desired level: (i) the first one is by means of a policy based management, with a set of pre-
determined actions and rules (policies); (ii) the second one is by means of the common criteria
approach enriched with Hybrid Automata control algorithms.

MIDDLEWARE

Desired Composition
Metadata ‘ SPD Policy-based Commands
translation Management

Current

Translation

System

Policy-based Management approach

Hybrid Context Information
Automata

Control

Configu-
rations

MIDDLEWARE
Desired Common Composition Current

Metadata | SPD i) Criteria Commands Metadata SPD
translation

Composition _ Translation

Overlay

System

Overlay control algorithms approach

Figure 5.2 Overlay behaviour

The first way (the Overlay acts as policy based manager) has been analyzed in the previous section with
the performances consideration already carried out.

The second way will be shown to be more efficient and to provide the best performance, but at the same
time requires a biggest effort to be developed in the real system. For that reason the implementation of
this solution, in the pilot project, will be limited to a simple (static) case and a set of simulations, while the
theory and the rationale behind it will be addressed in this section. This procedure can be summarized in
the following steps:

1) The semantic representation of the system (including the functional dependencies between the
components as well as the atomic values of SPD for each element) is discovered (measured) to
provide the metadata necessary to the Overlay.

2) This knowledge, thanks to the inferential engine described in D5.1 and in D2.2.1 as Common
Criteria approach, is used to find a list of configurations of pSHIELD components that satisfies the

RE D5.2
Draft B Page 45 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

user _requirements in terms of SPD. Since the ontology models the functional dependencies of
atomic components, all the identified configurations are feasible.

3) Then the semantic knowledge is used to create a model of the system and its evolution by
means of Hybrid Automata Theory (see next paragraph) and this model, enriched with optimization
control algorithms, is used to decide which, among the suitable configuration, is the best, with
respect to context information.

These logical flow is depicted in Figure 5.3.

Metrics CONFIGURATION SPD Level
composition CONFIGURATION 1 2

CONFIGURATION 2
CONFIGURATION 3
CONFIGURATION 4

CONFIGURATION 5
CONFIGURATION ...

Configudation
that matches
the desired

l SPD Level

1 W I S)

Figure 5.3 Overlay approach for configuration identification

The semantic representation (step 1) has been widely addressed in deliverable D5.1.

The rules and mechanism to compose metrics to measure the configuration SPD level (step 2) are
available in deliverable D2.2.2 as well as in the reasoning section of D5.1.

The configuration choice basing on context information is the objective of the following paragraph.

RE D5.2
Draft B Page 46 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

5.3 Hybrid Automata approach to model and control complexity in
ESs (by means of context information)

Modelling the composability is a challenging issue faced by different research activities both in
academic and in European Project environments. This is the case, for example, of the European project
Connect (http://connect-forever.eu) or EternalS (http://www.eternals.eu) whose aim is to develop an
abstraction framework for the “eternal” connection of evolving networked devices and/or software
functionalities.

In these context the most common methodologies to model the composition of elements (on a theoretical
point of view) are widely used: Petri-Nets, Bayesian Networks, Graphs, Markov Chains, and so on.

These methodologies have been the bases of the technological scouting performed by pSHIELD in this
field as well, to check the feasibility of these solution. However all the classical mathematical and logical
methodologies have shown not to be adequate to model the pSHIELD contex due to two peculiarities:

1) pSHIELD is an heterogeneous system, so it is necessary to find a theory able to model
“heterogeneous elements” in a single entity at a time.

2) pSHIELD is a dynamically composable system, so the modelling tool should be scalable and
composable as well (no unique information/energy flow among components)

Furthermore, this model should be ready to be integrated and implemented in analog/digital closed loop
control schemes, meaning that the resulting composition should model the evolution of the system (in
nominal condition or in presence of faults).

For all these reasons, the adopted approach will be based on Hybrid Automata: a mathematical
framework by which it is possible to model Hybrid Systems (continuous/discrete/heterogeneous domains
like Embedded Systems) compose them (parallel composition) and make them evolve (automaton).

Different models have been tailored for the pSHIELD purposes and in the following paragraphs two of
them will be presented: one static, simpler but less scalable, and one dynamic, more complex but
scalable and more expressive.

Before continuing, a short recall of what is an Hybrid Automata is provided (see [1][2])

5.3.1 Hybrid Automata

An Hybrid Automaton (HA) A = (W, X, Q.©,E, H, D, T} is an element composed by:

- A set of external variables W as well as internal variables X, disjoint 17 £ W U X

- Aset of finite states @ S val(X).

- A set, non empty, of initial states @ =

- Aset E of external actions and a set H of internal actions disjoint 4 = E U H

- Aset of discrete transitions D and a set of trajectories T
To describe the behaviour (evolution) of an automaton, it is sufficient to indicate the starting state, the
transitions (with or without resets) and the next state. Depending of the time horizon, the starting states
and the external actions, this description is done by means of: execution fragments, executions, trace
fragments e traces.
The most powerfull feature of Hybrid Automata is that they can evolve independently, but can be

composed together to exchange Input/output and to drive the evolution of each other transitions. This is
known as parallel composition.

RE D5.2
Draft B Page 47 of 158

http://connect-forever.eu/
http://www.eternals.eu/

pSHIELD SPD middleware and overlay functionalities prototype
RE

In the scope of the pSHIELD project, some Hybrid Automata have been designed to model the pSHIELD
generic component, composed together and controlled.

5.3.2 Prototype a — Static Approach with Simple Optimization
The first, simple approach, is based on the following steps.

At first we need to identify the system “state”, i.e. the set of active components (node, protocols or
applications). This will be the system identifier in a specific circumstance. A state is a screenshot of the
system in a specific condition (for example with the node E switched on) and with the dynamics
associated to this condition (for example the evolution of the node’s power consumption).

The selected dynamics considered for this model constitutes the so-called context information: since the
SPD is controlled via the common criteria approach, we need to insert into the model variables that could
be significant to control (optimize) the evolution of the system. They could be, for example, the power
consumption, the computational resources utilization, the bandwidth utilization, and so on.

The state identified in this step is depicted in Figure 5.4.

State: \

| MIDDLEWARE | [011010]
Application [A B] Continuous
) dynamics:

NETWORK Energy Consumption

State Space: [ABCDEF]

Protocol [C D] Discrete parameters

Bandwidth
[NODE] Adjacency Matrix

Node [E F] \ L] J

Figure 5.4 Single State

The second step is to concatenate the different states to obtain the universe of all the possible condition
of the system: this is an enumeration of configurations. For example in a system with two nodes, two
network protocols and two middleware services we 8 states (at least one component must be active).

Q ={[101010], [101001], [100110], [100101], [011010], [011001],[010110], [010101]3.
The result is depicted in Figure 5.5

EVENT —0_
Node E switched off
Node F switched on

4) 4)

State: State:
[01]10]10] [01]10]01]
Continuous Continuous
dynamics: dynamics:
E(t)=exp(-2t) E(t)=exp(-3t)
Discrete parameters Discrete parameters
A iy ferwi o AN

System System
Yy Node E switched on evolution
property Node F switched off

Figure 5.5 Hybrid Automata to describe all the possible configurations

RE D5.2
Draft B Page 48 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

The transition can be voluntary and expected (control action) or not (due to fault) but in any case each
event is captured and in evry moment it is possible to check the status (and evolution) of the system:

D = {switch configuration,, fault,, ..., switch configuration,, fault,}.

The third step is the indentification of the internal variables (and dynamics) to control. For the pilot project
a simple case is considered where the relevant dynamic is the power consumption of the system in a
specific configuration and the amount of bandwidth provided by the network layer. These variable have
opposite behaviours (higher bandwidth, higher power consumption) so the purpose of the control
algorithm is to choose the configuration that optimizes one of them.

This scenario has been implemented in Matlab-Simulink and is composed by two nodes with two different
dynamics for the power consumption and for bandwidth utilization. It is important to notice that both these
configurations should be valid SPD configurations (see CC approach).

A simple controller is in charge to switch to the configuration that guarantees the longest duration of the
node batteries

[OFF ON]
0 Outl N1
{\“—V In1 %battery
1 FAULT out2 [N2
[ON OFF]

Monitoring System

Energy Consumption

Figure 5.6 Simulink model
= "~ [battery <=500] T
o N
A
entry :t=0; enl(y:t: 0;
during :battery=battery -0.4%; dur!ng Eb_atlery :!Jatlery-o 2*t;
during :t=t+0.02; [battery >500] [battery <=500] during :t=t+0.02;
12— —_—
] X IN1==0]]
N1==0 y
L i N1==1] yd \
d ¢ “
Default /
Attvo NonAttivo
entry:t=0; [battery>1000] _[entry:t=0;
"7 during :battery =battery +t; g
during t=t+0.02;
N\
MNZ==1] T \
IN2==0)" _—— -
S 1 yo— . N |
b . [battery>500] [battery <=5001 . 1‘ [battery<=10]
| v)

(o}

entry :t=0;

during :battery=battery-0.4*f;
during :t=t+0.02;

entry :t=0;
during :battery =battery -0.2 *t

during :t=t+0.02;

[battery <=500]

Figure 5.7 Hybrid automata with four states

In Figure 5.8 the result of the simulation is carried out: when the power consumption is not a problem, the
system remains in the configuration ‘A’ that allows him to use all its resources: when the dotted line
(energy consumption reference) is lowered, the node switch in a saving configuration ‘B’ and starts
wasting less power, thus lasting more.

RE D5.2
Draft B Page 49 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

Since many parameters can be included in the continuous dynamic, a multi-objective optimization can be
performed to obtain optimal performance driven by context information.

On a deployment point of view, this model could be implemented in an intelligent node that can simulate
the system behaviour and adequately react to faults and evolutions.

Consuma di batteria con due nodi attivi e passaggio ad un solo nodo attivo
1000 T T T T T

00
Control of Power
Consumption by T
switching configuration

08

R

B0d

500

Carica residua

400

300

200

100

o 1 L 1 L 1
o 0.5 1 15 2 25

Fnergia Tempo di simulazione g

— — — Sogiia
Figure 5.8 Configuration switching to optimize piower consumption

Due to its simplicity, this approach suffer for a scalability problem, since when the number of component
rises, the number of possible configurations grows exponentially. A more intelligent and efficien approach
is needed.

5.3.3 Prototype b — Operating conditions approach with MPC Control

A better solution has been found starting from the analysis, in literature, of the work carried out by
Balduzzi (see [4][5]) to model manufacturing environment by means of Hybrid Automata. His idea is very
simple: in a complex production system ,where all the machines (elementary services) are connected to
produce goods, only the operating conditions of the machines influences the system behavior. Moreover
the dynamic of the machine changes only when the operating conditions change. For example a machine
could be broken, operative in linear conditions or operative and saturated. By using these conditions as
“states” of the hybrid automata, it is possible to describe in a simple but expressive way, all the relevant
dynamic of the system and the control it. A sample screenshot taken from [4] is depicted in Figure 5.9.

bfi . bngy

(ox] 1

b

bf;) big

Figure 5.9 Operating condition of a manufacturing system as modelled in [4]

RE D5.2
Draft B Page 50 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

Given an Embedded System (pSHIELD Node) it is possible to identify a set con elements (battery,
buffers, CPU) that can be associated to an operating conditions: a buffer can be saturated, full or empty;
a CPU can be idle, working or overloaded; a battery can be full or empty. All these components can also
be broken. The combination and aggregation of these conditions allows to create an exhaustive model of
a pSHIELD node, as depicted in Figure 5.10. The aggregation is possible, since some behaviours of the
components have the same effect of the system (if the CPU or the Buffer is full, the result is always the
impossibility of processing data).

Crittografia
i act btl;
5 X = Ting — Tout,
pn | Tint = Townsaxa| m'n,mof ;ﬂm [4:< Gmin]
e 7 =i
=01 inw 5 .ngix,xt OUtMAX,i

0w = 91 = qi-1 ry

11;11 F s=1

Gimin < qi <1 (A # 0]

s=1

bfs; x; =Gl
L pmy Y0y =11
Stato Iniziale Normal Scarica
u_inv act u_inv lact c_inv lact
X = Tint — Tout: i = Tini — Touti G S X = Tini — Tout,i
= Tini = Tinmax,
0= Tini = Tinmax.i Fo= Tini ~ Touti PT P [O< Tin: < Tinmax.i Q- Tini ~ Tout,i btly e [Tini — Tout,i
1= —r L —r inv ' MAX,i — ToutMAX,i
— i qll:lilliX}l?t ountaxi |y~ o1l = 0] pr— Pl qnimflt outMAX,i | [q;< qymin] _inv e qll:l)_ i~ ToutMAX.i

x=0 D sxpS G o 0<sx <G
A4=0 g=1 0<A <1 s=1 gillil s=1
=0 Qumin < 4 <1 < Gi < Qimin
s=1 s=1 s=1

bfs;

MAX bfn;
u_mv act [xl + Cl]
X; = Tini ~ Touti
s 3 3
ini = Tinstaxi i Tini — Touti btl,
=
Tinmax.i ~ ToutMAX,
x_inv @ :l:;i_l o™ ' 119:< qimin]
Xi =G
A =1 s=1
Qimin < q; =1
fi [Touti= 0]
Rottura
_inv et
Tini =0 i, =0
X_tnv 3 -
d<x<c |M g
—— =
24=0 i
0<g =<1 [s=0
s=0

Figure 5.10 Hybrid Automata representing the pSHIELD node

The same process can be done for the Network Layer, since the only relevant operating conditions for a
network (at this stage) are two: its congestion status and its connectivity (i.e. the possibility of reaching all
the nodes). A four state model is obtained (congestioned and connected, congestioned and not
connected, connected and not congestioned, not connected and not congestioned). See Figure 5.11 for
the model.

RE D5.2
Draft B Page 51 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
Rete Scarica Rete Non Connessa
UMY act u_inv act
o< < Cy, s

0= Xy = Cy Z = Z(rm.i = Tyuti) o i”a =M Z x= Z(r = Toutd)
S, =0 M] r:‘cn# — Mg My M

x_inv Xy

A; = rgMAX A; # rgMAX

Z x< Z C Z x< Z c

M My M N

cg; Zx:ZC cg; ZXZZC
My My My My
ZX < ZC Z xS Z c
M; M, neg; M My negi
Rete Congestionata Rete in Collasso
u_tnv act u_inv act
0< 2y < Cpp, 5 0< x5, < Cop, :
_M('] Mi Z x= Z(rmj = Tout) _M[i) Mi z = Z(rm,x = Tout.i)
Swy = My My nen; Smy = M M
A = rgMAX

x_inv x_inv

A = rgMAX A; # rgMAX

Y=y IO

M M M; M;

Figure 5.11 Hybrid Automata representing the pSHIELD network

At this point the composition problem is solved, since the introduction of a new node in the system
doesn’t imply an exponential increase in the model size, but a linear growth (6 states for each additional
node and 4 states for each additional network layer).

Last, but not least, interesting control algorithms can be applied to the system model due to its
formulation by means of these operating conditions (see for example the work of Bemporad [6] and [7]).
In particular for the pSHIELD purposes the framework developed in [7], based on Model Predictive
Control (MPC), has been considered to verify the effectiveness of the Hybrid Automata approach.

For the complete formulation of the MPC problem please refer to forthcoming deliverable D5.4 or [7].

For the simulations it has been used the Matlab Toolbox for Hybrid System with the default configuration
(standard MPC problem). The Objective of the control algorithm has been to maximize the amount of data
data processed by the node while preserving the battery and leaving a certain amount of “reserved”
resources for potential emergency tasks. This objective is “ambitious” but the power of MPC control is the
multi-objective optimization over a temporal horizon, and the results of Figure 5.12 demonstrate that the
system follows the desired behaviour and all the objectives are met, On a practical point of view this is
translated into a set of control commands from the overlay to the system, that decide time by time which
component should be activated to satisfy the requirement.

CPU (%) Rin (MByte/s)

Figure 5.12 System behaviour with MPC control

RE D5.2
Draft B Page 52 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

Also in this case it is important to notice that all the behaviour and the configurations are considered to be
“feasible”, so the objective of the controller is to tailor parameters or switch component, according to
context information, to perform context optimization (even not directly connected to SPD issues).

RE D5.2
Draft B Page 53 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

54 Conclusions

In this section an innovative formulation of control problems in Embedded Systems environment have
been presented. In literature there is no model for a generic ES as well as a composition of ESs, so this
analysis constitute the first step towards the formalization of a theory useful to control composability of
heterogeneous devices.

Two approached have been presented: the first one is simple but not scalable, while the second one
requires a biggest effort (mainly in the implementation) but assures a major scalability.

Both the approaches are used to model contex information of the pSHIELD system and to “simulate” its
evolution over the time, even in response to fault or unexpected events. The objective of this formulation
is to apply a control algorithm to control the value of the above mentioned context parameters, thus
optimizing the choice of the system configuration.

On a deployment point of view (that will be addressed in the nSHIELD project) these models could be
implemented in real time emulators running into the most powerfull node and could provide support to the
overlay decisions.

RE D5.2
Draft B Page 54 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

6 References

[1] Henzinger T. A., “The Theory of Hybrid Automata”, Proceedings of 11th Annual IEEE Symposium on
Logic in Computer Science (LICS96), pp. 278-292, New Brunswick, New Jersey, 27-30 July, 1996

[2] Lunze J. and Lamnabhi-Lagarrigue F., “Handbook of Hybrid Systems Control — Theory, Tools,
Applications”, Cambridge University Press, 2009

[3] Yang H., Jiang B. and Cocquempot V., “Fault Tolerant Control Design for Hybrid Systems”, Lecturer
Notes in Control and Inofrmation Sciences, Springer, 2010

[4] Balduzzi F. and Kumar R., “Hybrid Automata Model of Manufacturing Systems and its Optimal Control
Subject to Logical Constraints”, International Journal of Hybrid Systems, pp 61-80, volume 3, number 1,
2003.

[5] Balduzzi F., Giua A. and Seatzu C., “Modelling Automated Manufacturing Systems with Hybrid
Automata”, Proceedings of Workshop on Formal Methods and Manufacturing (WFMM99), Zaragoza,
Spain, pp. 33-48, 6 September, 1999.

[6] Bemporad A. and Di Cairano, S., “Optimal Control of Discrete Hybrid Stochastic Automata”,
Proceedigns of ACM International Conference on Hybrid Systems: Computation and Control (HSCCO05),
pp. 151-167, Zurich, Switzerland, 9-11 March, 2005

[7] Bemporad A. Di Cairano S. and Giorgetti N., “Model Predictive Control of Hybrid Systems with
Applications to Supply Chain Management”, Proceedings of 49th Convegno Nazionale ANIPLA, Naples,
Italy, Nov, 2005

RE D5.2
Draft B Page 55 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

Annex 1 — pSHIELD Glossary

Concept Description Source

Application Main processing unit

Processor (AP)

5.1 pSHIELD Node —-M01

Atomic pSHIELD
SPD Component

Is a generic atomic SPD Functionality
(innovative or legacy) provided by a
pPSHIELD device at node, network or
middleware level

4.4.2.2 pSHIELD SPD components
composition

Involves recognizing, recording, storing,
and analyzing information related to SPD

3.2 - The pSHIELD System:

Audit relevant activities. The resulting audit Application-Oriented Definitions- D
records can be examined to determine 2.1.1
which SPD relevant activities took place
. This task involves the automatic selection,
Automatic Web o : :
Service composition, and interoperation of Web

Composition and
Interoperation

services to perform some complex task,
given a high-level description of an
objective.

http://www.w3.0org/Submission/OWL-S/

Automatic Web
Service Discovery

Is an automated process for location of
Web services that can provide a particular
class of service capabilities, while adhering
to some client-specified constraints

http://www.w3.0org/Submission/OWL-S/

Automatic Web
Service
Invocation

Is the automatic invocation of an Web
service by a computer program or agent,
given only a declarative description of that
service, as opposed to when the agent has
been pre-programmed to be able to call that
particular service.

http://www.w3.0rg/Submission/OWL-S/

Availability

Refers to a system’s readiness to provide
correct service, whilst reliability refers to
continuity of correct service, but these two
attributes can considered as one because
both guarantee the correct service with an
error e(t) <ke.

4.6.2 Formalized conceptual model -
MO1-

Awareness

Capability of the Cognitive Radio to
understand, learn, and predict what is
happening in the radio spectrum, e.g., to
identify the transmitted waveform, to
localize the radio sources, etc.

5.3.2 Formal conceptual Model —M01-

Bridge

Is a network device that is at the link layer
of the 1ISO / OSI model and translates from
one physical media to another within the
same local network.

Cognitive Radio

Is an intelligent wireless communication
system that is aware of its surrounding
environment (i.e., outside world), and uses
the methodology of understanding-by-
building to learn from the environment and
to adapt its internal states to statistical
variations in the incoming Radio-Frequency
(RF) stimuli by making corresponding
changes in certain operating parameters
(e.g., transmit-power, carrier-frequency,
and modulation strategy) in real-time, with
two primary objectives in mind: (i) highly
Reliable and Dependable communications
whenever and wherever needed and (ii)
efficient utilization of the radio spectrum.

5.3.2 Formal conceptual model- MO1-

Draft B

RE

D5.2
Page 56 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

Concept

Description

Source

Common Criteria
Approach

Is approach based in three fondamental
part:

e Assets to protect and in particular
SPD attribute of these assets
definition

e Threats identifications (Fault
Errors Failures); in our approach
faults are grouped in HMF (FUA,
NFUA) and NHMF.

SPD functionalities (whose purpose is to
mitigate threats) are implemented to meet
pSHIELD SPD objectives.

5.7 Common Criteria Approach —MO01-

Composability

Is the possibility to compose different
(possibly heterogeneous) SPD
functionalities (also referred to as SPD
components) aiming at achieving in the
considered system of Embedded System
Devices a target SPD level which satisfies
the requirements of the considered
scenatrio.

4.4 Composability -M01-

Confidentiality

Refers to the property that information or
data are not available to unauthorized
persons or processes, or that unauthorized
access to a system’s output will be blocked
by the system’s filter.

Confidentiality faults are mainly caused by
access control problems originating in
cryptographic faults, security policy faults,
hardware faults, and software faults.

4.6.2 Formalized conceptual
modelMO01-

Contiki Operating
System

Contiki is also an open source, highly
portable, multi-tasking operating system for
memory-efficient networked ESDs and
WSNs

5.1.3.2 Nano, Micro and Personal
Node operating systems -M0O1-

Control
Algorithms

Retrieves the aggregated information on
the current SPD status of the subsystem,
as well as of the other interconnected
subsystems, by the pS-CA interface
connected to the Semantic Knowledge
Representation; such retrieved information
is used as input for the Control Algorithms.
The outputs of the Control Algorithms
consist in decisions to be enforced in the
various ESDs included in the pSHIELD
subsystem controlled by the Security Agent
in question; these decisions are sent back
via the pS-MS interface, as well as
communicated to the other Security Agents
on the Overlay, through the pS-OS
interface.

3.1.1 pShield Functional Architecture —
MO1-

Draft B

RE

D5.2
Page 57 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

Concept

Description

Source

Core SPD
Services

The core SPD services are a set of
mandatory basic SPD functionalities
provided by a pSHIELD Middleware
Adapter in terms of pSHIELD enabling
middleware services. The core SPD
services aim to provide a SPD middleware
environment to actuate the decisions taken
by the pSHIELD Overlay and to monitor the
Node, Network and Middleware SPD
functionalities of the Embedded System
Devices under the pSHIELD Middleware
Adapter control.

5.5 -M01-Core SPD services

Cryptographic
Algorithms

Algorithms to hiding the information, to
provide security and information protection
against different forms of attacks

5.2 Cryptographic algorithms —M01-

Dependability

Is a composite concept that encompasses
the following attributes: Availability,
Reliability, Safety Integrity, Maintainability

5 Reference SPD Taxonomy -pShield
System requirement Specification-D
2.1.1-

Discovery

Provide to the pSHIELD Middleware
Adapter the information, raw data,
description of available hardware resources
and services in order to allow the system
composability

5.1.1.3 pSHIELD Node SPD
components —MO01-

Discovery Engine

it is in charge to handle the queries to
search for available pSHIELD components
sent by the Composition service.

5.5.2 formalized conceptual model -
MO1-

it is in charge to securely discover all the

Discovery available SPD components description 5.5.2 formalized conceptual model -
Protocol stored in the Service Registry, using a MO1-
specific protocol
Error Is defined as the part of a system’s total 5.2-Fault Errors Failure - System
state that may lead to a failure. Requirement Specification D 2.1.1-
Failure OCCL_Jrs when an error causes the d_elivered 5.2—F<_':1ult Errors Fa_il_ure_- System
service to deviate from correct service. Requirement Specification D 2.1.1-
. 5.2-Fault Errors Failure - System
Fault Is defined as a cause of an error

Requirement Specification D 2.1.1-

Fault injection

This block has the responsibility to inject a
fault into Demodulator

2 SPD Node Internal Demonstrator
Structural Description SPDDemosv7-
EB

The class of Faults with unauthorized
access (FUA) attempts to cover traditional

Faults with security issues caused by malicious attempt | 3- Term and definition-MO0.2: Proposal
Unauthorized faults. Malicious attempt fault has the for the aggregation of SPD metrics
Access objective of damaging a system. A fault is during composition

produced when this attempt is combined

with other system faults.

it is in charge to semantically match the
Fi . guery with the descriptions of the 5.5.2 formalized conceptual model -

iiter Engine

discovered SPD components

MO1-

Flash Memory

It stores the bit-stream and system status
information

2 SPD Node Internal Demonstrator
Structural Description SPDDemosv7-
EB

Forecasting
(Fault)

Mechanism that predicts faults so that they
can be removed or their effects can be
circumvented

Draft B

RE

D5.2
Page 58 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
Concept Description Source
Describes a functional entity that, in
Functional gene'ral, does not have necessarily a 3.1.1 pSHIELD functional architecture
physical counterpart (e.g. a software
Component . : . ; —-MO01-
functionality, a middleware service, an
abstract object, etc.).
Is a network device that operates at the
network layer and above the ISO / OSI
Gateway model. Its main purpose is to transmit -
network packets outside a local area
network (LAN).Functional Component
Grounding Provides details on how to interoperate with http://www.w3.org/Submission/OWL-S/

a service, via messages.

Health Status
Monitoring (HSM)

Monitoring for checking the status of each
individual component.

5.1 Pshield Node —-M01

Hub

Is a concentrator, a network device that
acts as a routing node of a data
communications network

Human-Made
Faults

Human-made faults result from human
actions. They include absence of actions
when actions should be performed (i.e.,
omission faults). Performing wrong actions
leads to commission faults. HMF are
categorized into two basic classes: faults
with unauthorized access (FUA), and other
faults (NFUA).

3- Term and definition-M0.2: Proposal
for the aggregation of SPD metrics
during composition

Hybrid Automata

Is composed by automaton formulation
hybrid formulation that Permit to choose the
most suitable configuration rules for
components that must be composed on the
basis of the Overlay control algorithms.

5.6 Hybrid Automata —M01-

HYDRA
Middleware

Middleware for Heterogeneous Physical
Devices

5.1.3.2.3 Hydra Middleware -M01-

1/0O Interface

(I/O) to connect to any peripheral and to the
rest of the pSHIELD embedded
functionalities.

5.1 Pshield Node —M01

Innovative SPD
Functionalities

Reside in the pSHIELD Middleware,
Network and Node Adapters. They are
constituted by a variety of pSHIELD-specific
components. Each pSHIELD-specific
component. represents an innovative SPD
functionality ad hoc developed for the
pSHIELD project which is included in the
pSHIELD Node, Network or Middleware
Adapter.

4.5 Innovative SPD functionalities —
MO1-

Integrity

Refers to the absence of improper
alteration of information. An integrity
problem can arise if, for instance, internal
data are tampered with and the produced
output relies on the correctness of the data.

4.6.2 Formalized conceptual model -
MO1-

Legacy Device

i.e. the SPD functionalities already present
in the legacy devices which can be
accessed through the pSHIELD Adapters;
they can be classified in Node, Network
and Middleware Component according to

4.4.2 Formalized Conceptual model -

Component whether they are included in a legacy MO1-
Node/Network/Middleware which can be
accessed through the corresponding
pSHIELD Adapter.
RE D5.2
Draft B Page 59 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
Concept Description Source
Legacy It represents an individual, atomic physical
Embedded Embedded System device characterized by | 3.1.1 pShield Functional Architecture —
System Device legacy Node, Network and Middleware MO1-
(L-ESD) functionalities.
Is a functionality partitioned into three
subsets:
- Node layer functionalities: hardware
functionalities such as processors, memory,
battery, I/O interfaces, peripherals, etc.
Legacy

Functionalities of
L-ESD

- Network layer functionalities:
communication functionalities such as
connectivity, protocols stack, etc.

- Middleware layer functionalities: firmware
and software functionalities such as
services, functionalities, interfaces,
protocols, etc.

3.1.1 pShield Functional Architecture —
MO1-

Legacy
Middleware
Services

Includes all the legacy middleware services
(i.e. messaging, remote procedure calls,
objects/content requests, etc.) provided by
the Legacy Embedded System Device
which are not pSHIELD-compliant.

Par 3.1 pShield functional architecture
-MO01-

Legacy Network
Services

Includes all the legacy network services
(protocol stacks, routing, scheduling,
Quality of Service, admission control, traffic
shaping, etc.) provided by the Legacy
Embedded System Device which are not
pSHIELD-compliant.

Par 3.1 pShield functional architecture
— MO1-

Legacy Node
Capabilities

Component includes all the legacy node
capabilities (i.e. battery, CPU, memory, I/O
ports, IRQ, etc.) provided by the Legacy
Embedded System Device which are not
pSHIELD compliant.

3.1.1 pShield Functional Architecture —
MO1-

Maintainability:

Ability to undergo modifications and repairs.

4.6.2 Formalized conceptual model -
MO1-

All the mechanisms that break the chains of

Mean errors and thereby increase the -

dependability of a system
Memory Memory RAM, SRAM, DRAM, 5.1 Pshield Node —M01
Metadata Information that describe set of data -

Micro/Personal
nodes

Are richer of nanonode in terms of
hardware and software resources, network
access capabilities, mobility, interfaces,
sensing capabilities, etc.

5.1 Pshield Node —M01

Middleware Layer

Includes the software functionalities that
enable the discovery, composition and
execution of the basic services necessary
to guarantee SPD as well as to perform the
tasks assigned to the system (for example,
in the railway scenario, the monitoring
functionality)

3.1 The pSHIELD System: General
Definitions - System Requirement
Specification D 2.1.1-

Are typically small ESD with limited

Nano Nodes hardware and software resources, such as 5.1 Pshield Node —MO01-
wireless sensors.
Net Device Components used to connect computers or |

other electronic devices

Network CAN

Control Area Network

Network LAN

Local Area Network

Draft B

RE

D5.2
Page 60 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

Concept

Description

Source

Network Layer

Includes the communication technologies
(specific for the rail transportation
scenarios) that allow the data exchange
among pSHIELD components, as well as
the external world. These communication
technologies, as well as the networks to
which pSHIELD is interconnected can be
(and usually are) heterogeneous.

3.1 The pSHIELD System: General
Definitions - System Requirement
Specification D 2.1.1-

Network MAN

Metropolitan Area Network

Network VPN Virtual Private Network -
Network WAN Wide Area Network -

3.1 The pSHIELD System: General
Node Layer Includes the hardware components that Definitions - System Requirement

constitute the physical part of the system.

Specification D 2.1.1-

Node Metrics /
Health Status

It receives periodic health messages and
metrics from the other blocks. This block
contains the information about the full node
configuration, metrics and health status. If
e.g. the “Assertions” block detects some
erroneous output, “Node Metrics / Health
Status” block receives this information and
must act accordingly.

2 SPD Node Internal Demonstrator
Structural Description SPDDemosv7-
EB

NonHuman-Made
Faults

NHMF refers to faults caused by natural
phenomena without human participation.
These are physical faults caused by a
system’s internal natural processes (e.g.,
physical deterioration of cables or circuitry),
or by external natural processes. They can
also be caused by natural phenomena

3- Term and definition-M0.2: Proposal
for the aggregation of SPD metrics
during composition

Non-Volatile
Memory (NVM)

Memory ROM, EEPROM, FLASH, Hard
Disk

5.1 Pshield Node —M01

Not Faults with
Unauthorized

Human-made faults that do not belong to
FUA. Most of such faults are introduced by
error, such as configuration problems,

3- Term and definition- M02--M0.2:
Proposal for the aggregation of SPD

Access incompetence issues, accidents, and so on. metrics during composition
Consists of a set of SPD Security Agents,
Overlay each one controlling a given pSHIELD 4.2 Overlay —MO01-

subsystem.

Overlay Layer

The “embedded intelligence” that drives the
composition of the pSHIELD components in
order to meet the desired level of SPD. This
is a software layer as well.

3.1 The pSHIELD System: General
Definitions - System Requirement
Specification D 2.1.1-

Describes an entity that can be mapped

Physical ; . . 3.1.1 pSHIELD functional architecture
into a physical object (e.g. a hardware

Component —-MO1-
component).

Power Module for managing power sources

Management o ging p . ' 5.1 Pshield Node —M01

(PM) monitoring power consumption, etc.

Power nodes

Is a node that Offer high performance
computing in one self-contained board
offering data storage, networking, memory
and (multi-)processing.

5.1 Pshield Node —M01

Prevention (Fault)

Mechanism that deals with preventing faults
incorporated into a system

Privacy

It is a information that must be accessed
only by authorized users, for confidentiality
reasons.

Draft B

RE

D5.2
Page 61 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

Concept

Description

Source

PSHIELD Adapter

Is a technology dependent component in
charge of interfacing with the legacy Node,
Network and Middleware functionalities
(through the MS, NS and NC interfaces).
The legacy functionalities can be enhanced
by the pSHIELD Adapter in order to make
them pSHIELD-compliant, i.e. they become
SDP legacy device components. In
addition, the pSHIELD Adapter includes
Innovative SPD functionalities which are
SPD pSHIELD-specific components, which
can be composed with other SPD
components. The pSHIELD Adapter
exposes the technology independent
pSHIELD Middleware layer functionalities
that are used by the Security Agent
component.

3.1.1 pShield Functional Architecture —
MO1-

pSHIELD
Communication

This block interfaces SPD Node to pShield
Network. It is composed by: Ethernet
interface: it allows a communication data
interface based on a TCP/IP protocol
Message encoding/decoding: it receives
the commands from pShield network,
decodes them, and acts accordingly. It also
sends messages to the network.

2 SPD Node Internal Demonstrator
Structural Description SPDDemosv7-
EB

pSHIELD
Demonstrator

Demonstrator for the project that Have the
task

To monitor on-carriage environment;

To integrate the sensors at the wagon with
the M2M platform;

To allow secure interoperability of sensor
information (between railway infrastructure
and third

party service provider).

5.8 pShield Demonstrator -M01-

pSHIELD
Embedded
System Device
(pS-ESD)

It is a L-ESD equipped at least with the
minimal set of

pSHIELD functionalities at Middleware
Layer. The

pS-ESD exposes the same functionalities
as the L-ESD plus an additional interface:
the pSHIELD

Middleware layer services.

3.1.1 pShield Functional Architecture —
MO1-

PSHIELD
Middleware
Adapter

Is a component partitioned in the Core SPD
services and in the Innovative SPD
functionalities. These two components are
linked through the pS-MS interface.

The pSHIELD Middleware Adapter should
also carry into operation the decisions
taken by the Overlay and communicated via
the pS-MS interface by actually composing
the discovered SPD functionalities. The
pSHIELD Middleware Adapter includes a
set of Innovative SPD functionalities
interoperating with the legacy ESD
middleware services (through the MS
interface) in order to make them
discoverable and composable SPD
functionalities.

3.1.1 pShield Functional Architecture —
MO1-

Draft B

RE

D5.2
Page 62 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

Concept Description Source

The pSHIELD multi-layered approach

considers the partition of a given

Embedded System into three

. technology-dependent horizontal layers: the

E:TE&D Mult node layer (meaning the hardware 4.1 pSHIELD multi-layered approach —
Ap);/)roach functionalities), the MO1-

network layer (meaning the communication
functionalities) and the middleware layer
(meaning the

software functionalities).

pSHIELD Network
Adapter

Includes a set of Innovative SPD
functionalities interoperating with the legacy
ESD network services (through the NS
interface) and the pSHIELD Node Adapter
(through the pS-NC interface) in order to
enhance them with the pSHIELD Network
layer SPD enabling technologies (such as
Smart Transmission). This adapter is also
in charge to provide (through the pS-NS
interface) all the needed information to the
pSHIELD Middleware adapter to enable the
SPD composability of the Network layer
legacy and Network pSHIELD-specific
functionalities. Moreover, the pSHIELD
Network Adapter translates the technology
independent commands, configurations and
decisions coming from the pS-NS interface
into technology dependent ones and
enforce them also to the legacy Network
functionalities through the NS interface.

3.1.1 pShield Functional Architecture —
MO1-

pSHIELD Node

Is an Embedded System Device (ESD)
equipped with several legacy Node
Capabilities

and with a pSHIELD Node Adapter. A
pSHIELD Node is deployed as a
hardware/software platform,
encompassing intrinsic, Innovative SPD
functionalities, providing proper services to
the other pSHIELD

Network and Middleware Adapters to
enable the pSHIELD Composability and
consequently the desired

system SPD

5.1 pshied Node —MO01-

Draft B

RE

D5.2
Page 63 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

Concept

Description

Source

pSHIELD Node
Adapter

Includes a set of Innovative SPD
functionalities interoperating with the legacy
ESD node capabilities (using the NC
interface) in order to enhance them with the
pPSHIELD Node layer SPD enabling
technologies (such as FPGA Firmware and
Lightweight Asymmetric Cryptography).
This adapter is in charge to provide
(through the pS-NC interface) all the
needed information to the pSHIELD
Middleware adapter to enable the SPD
composability of the Node layer legacy and
Node pSHIELD-specific functionalities.
Moreover, the pSHIELD Node Adapter
translates the technology independent
commands, configurations and decisions
coming from the pS-NC interface into
technology dependent ones and enforce
them also to the legacy Node functionalities
through the NC interface.

3.1.1 pShield Functional Architecture —
MO1-

pPSHIELD Proxy
(PS-P)

Is a technology dependent component of a
pS-SPD-ESD that, interacting with

the available legacy Node, Network and
Middleware capabilities and functionalities
(through the NC, NS

and MS interfaces, respectively), provides
all the needed pSHIELD enhanced SPD
functionalities.

3.1.1 pShield Functional Architecture —
MO1-

pSHIELD SPD
Embedded
System Device
(pS-SPD-ESD):

Itis a pS-ESD equipped at least with the
minimal set of pSHIELD Overlay
functionalities. The pS-SPD-ESD exposes
the same functionalities as the pS-ESD plus
an additional interface: the

pSHIELD Overlay layer SPD services
provided by a so-called Service Agent
operating in that ESD.

3.1.1 pShield Functional Architecture —
MO1-

pSHIELD
Subsystem (pS-S)

Is an architecture of a set of Embedded
System Devices

including several L-ESD, connected to
several pS-ESD and one and only one pS-
SPD-ESD. Connections

between two generic ESDs (L-ESD, pS-
ESD or pS-SPD-ESD) can be performed,
by means of legacy

functionalities at Node, Network and/or
Middleware layer, through the so-called NC,
NS and MS

functionalities, respectively.

3.1.1 pShield Functional Architecture —
MO1-

Draft B

RE

D5.2
Page 64 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

Concept

Description

Source

pSHIELD-Specific
Components

Itis i.e. the innovative SPD functionalities
ad hoc developed for the

pSHIELD project which are included in the
pSHIELD Adapters. They can be classified
in Node Network and Middleware
pSHIELD-specific

components according to whether they are
included in the pSHIELD Node, Network or
Middleware

Adapter. They can be directly accessed by
pSHIELD Middleware Core SPD Services
through the pSNC,

pS-NS and pS-MS interfaces.

4.4.2 Formalized Conceptual model -
MO1-

Query
Preprocessor

it is in charge to enrich the query sent by
the Composition service with

semantic information related to the peculiar
context.

5.5.2 formalized conceptual model -
MO1-

Reconfigurability

Provide self-configuration of some internal
parameters according to the observed radio
spectrum.

5.3.2 Formal Conceptual Model
-MO01-

Reconfiguration /
Recovery

This block runs at the PPC static core. It
must receive periodically health status
information, otherwise it restarts the system

2 SPD Node Internal Demonstrator
Structural Description
SPDDemosv7-EB

Reconfiguration/R
ecovery Controller

This is a hard processor or microcontroller,
responsible for either reconfiguring the
node or recovering in case of an error. It

5.1.1.2 —Detailded Module description
—-MO01-

Recovery
Watchdog Timer
(RWDT)

Timer for restarting recovery if no activity is
detected from the SHSM.

5.1 Pshield Node —M01

Reliability

Continuity of correct service.

4.6.2 Formalized conceptual model-
MO1-

Removal (Fault)

mechanism that permits to the system to
record failures and remove them via a
maintenance cycle

Repeater

A digital device that amplifies, reshapes,
retimes, or performs a combination of any
of these functions on a digital input signal
for retransmission

Router

Is a device that forwards data packets
between telecommunications networks,
creating an overlay internetwork. A router is
connected to two or more data lines from
different networks.

Rules for
Discovery,
Configuration and
Composition of

Design and implementation of the Control
Algorithms which, on the basis of the
sensed metadata

(i.e) on the basis of the ontological
description (possibly semantically enriched)
of the SPD

4.4 Composability

the SPD : .
Components. Com_ponents provide Rule_s_ for discovery,
configuration and composition of the SPD
components.
RE D5.2
Draft B Page 65 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
Concept Description Source
Refers to absence of catastrophic
consequence on System users end
e”"'roﬂm?”t- A'safety fault . 4.6.2 Formalized conceptual
Safety can arise if, for instance, an unauthorized

system access can cause the possibility of
human lives being
endangered.

modelMO01-

SDP Network

Is a Network implementable and
interoperable with standard networks to
comply the main business cases of the
application scenarios.

5.1.3 Nano, Micro and Personal nodes
—-MO01-

Seamless
Approach

Common approach which leaves out of
consideration the specificity of the
underlying technologies providing enriched
SPD functionalities to heterogeneous
Embedded Systems

4.3 Seamless Approach -M01-

Secure Service
Discovery

Allows any pSHIELD Middleware Adapter
to discover in a secure manner the
available SPD functionalities and services
over heterogeneous environment, networks
and technologies that are achievable by the
pSHIELD Embedded System Device (pS-
ESD) where it is running.

5.5 Core SPD Service —-M01-

Secure/Privacy
(SP)

Module to perform security and privacy
actions, such as encryption, decryption, key
generation, etc.

5.1 Pshield Node —M01

Security

Is a composite of the attributes of
confidentiality, integrity (in the security
context, “improper” means “unauthorized"),
and availability (for

authorized actions only),

5 Reference SPD Taxonomy -pShield
System requirement Specification-D
2.1.1-

Security Agent

Is a technology-independent component in
charge of aggregating the information
coming from the pSHIELD Middleware
Services provided by the internal pSHIELD
Adapter or by other

pSHIELD Proxies located in the same
subsystem. The Security Agent is also in
charge of gathering the

information coming from other Security
Agents connected on the same Overlay
(through the pS-0S

interface). The Security Agent includes
proper control algorithms working on the
basis of the available

information; the decisions taken by these
Control Algorithms are enforced through the
pS-MS and the pS-

-OS interfaces.

3.1.1 pShield Functional Architecture —
MO1-

Semantic
Database

It holds any semantic information related to
the pSHIELD components

(interface, contract, SPD status, context,
etc.).

5.5.2 formalized conceptual model -
MO1-

Semantic Engine
(Reasoner)

Enable interoperability within Middleware
Layer and rule based discovery and
composition within Overlay Agents.

5.4 Semantic Model -MO01-

Draft B

RE

D5.2
Page 66 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
Concept Description Source
Is (i.e. a database) that storing the dynamic,
. semantic, enriched,
Semantic ontological aggregated representation of
Knowledge the SPD functionalities of the pSHIELD 4.2 Overlay -M01-
Repository
subsystem
controlled by the SPD Security Agent;
Is in charge of bi-directionally exchanging
technology independent
Semantic (and semantic enriched) information from
the pS-MS and the pS-0OS interfaces. It is 3.1.1 pShield Functional Architecture —
Knowledge :
. also in MO1-
Representation

charge to provide such information via the
pS-SKR interface to the Control Algorithms
component.

Semantic Model

It is a conceptual model in which semantic
information is included.

Sensor/Actuator

Are represented by the Core SPD Services
lying at the pSHIELD Middleware
layer.

4.2.2 Formalized concept Model —
MO1-

Sensors/Actuator
S

Represent the Core SPD Services lying at
the pSHIELD Middleware
layer.

4.2.2 Formalized conceptual Model-
MO1-

Service
Composition

Is in charge to select atomic SPD services
that, once composed, provide a complex
and integrated SPD functionality that is
essential to guarantee the required SPD
level. The service composition is a
pSHIELD Middleware Adapter functionality
that cooperates with the pSHIELD Overlay
in order to apply the configuration strategy
decided by the Control Algorithms residing
in the pSHIELD Security Agent.

5.5 Core SPD Services —M01-

Service
Grounding

Specifies the details of how an agent can
access a service-details having mainly to
do with protocol and message formats,
serialization, transport, and addressing

http://www.w3.0org/Submission/OWL-S/

Service
Orchestration

Deploy, execute and monitoring SPD
services.

5.5 Core SPD Services —M01-

Service Profile

Tells "what the service does", in a way that
is suitable for a service-seeking agent (or
matchmaking agent acting on behalf of a
service-seeking agent) to determine
whether the service meets its needs.

http://www.w3.0rg/Submission/OWL-S/

Services Model

Tells a client how to use the service, by
detailing the semantic content of requests,
the conditions under which particular
outcomes will occur, and, where necessary,
the step by step processes leading to those
outcomes.

http://www.w3.0rg/Submission/OWL-S/

Services Registry

It acts as a database to store the service
entries

5.5.2 formalized conceptual model -
MO1-

Smart SPD
Driven
Transmission

New advances signal processing
techniques.

5.3 Smart SPD Driven Transmission —
MO1-

SOA

Service-oriented architecture

Software Agent

Permit a computer-interpretable description
of the service.

http://www.w3.org/Submission/OWL-S/

Software Defined
Radio (SDR)

Software programmable
Components

5.3 Smart SPD driven transmission-
MO1-

Draft B

RE

D5.2
Page 67 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

Concept

Description

Source

Software Wireless
Sensor Networks

(WSN)

Software part that can be layered into three
levels: sensor software, node software and
sensor network software.

5.1.1.3 Specific SPD Considerations
for Wireless Sensor Networks

SPD

Security Privacy Dependability

SPD Component

Is defined as a functionality which (i) offers
a given SPD service through an interface
which can be semantically described
according to the provided SPD Metrics, (ii)
can be accessed through

the pSHIELD Middleware Core SPD
Services for being configured (if necessary)
and activated (or

deactivated).

4.4 Composability -M01-

Is the possibility to identify and quantify the
SPD properties of each component, as well
as the SPD properties of

the overall system.

SPD Metrics allow (i) users to define in an
univocal way the requirements for the

SPD Metrics o - - 4.6 SPD Metrics-M01

specific application, (ii) to

describe the SPD level provided by the

components, and (iii) to compute the SPD

level achieved by the

system through the Composability

mechanism.

It is composed by the following sub- blocks:

FM Signal Acquisition: this blocks

principally handles the receiving of data

samples from “FM Signal Generator” and

P re-processes the data_ to ”feed o the: 2 SPD Node Internal Demonstrator
SPD Node Demodulation Processing” block. This Structural Description

block provides also periodic status &
metrics information to the “Node
Metrics/Health Status” block.

Demodulation Processing: it is responsible
for the demodulation processing of the data
coming from the “FM Signal Acquisition®

SPDDemosv7-EB

SPD Security
Agent

Consists of two key elements:

(i) the Semantic Knowledge Repository (i.e.
a database) storing the dynamic, semantic,
enriched,

ontological aggregated representation of
the SPD functionalities of the pSHIELD
subsystem

(i) the Control Algorithms generating, on
the grounds of the above representation,
key SPD-relevant

decisions (consisting, as far as the
Composability feature is concerned, in a set
of

discovery, configuration and composition
rules).

SPD Status

It represents the current SPD level
associated to the function.

4.4.2 Formalized Conceptual Model —
MO1-

Special Purpose
Processor

(SPP) module for any pre- or post-
processing, such as
compression/decompression, conversion,
etc.

5.1 Pshield Node —M01

Draft B

RE

D5.2
Page 68 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

Concept

Description

Source

Stable Storage

Used for storing the status of the system, a
bit stream to program an FPGA, and/or the
software for system start-up, operating
system and application. it receives from
each block check-pointing data. It is able to
perform a stable write with this data (write
on a circular buffer on flash memory, and
then validate the just written data). On
system restart, this module is able to
recover the last valid data.

5.1 Pshield Node —MO01

Switch

Is a computer networking device that
connects network segments.

System Health
Status Monitoring
(SHSM)

Monitoring for checking the status of the
whole system.

5.1 Pshield Node —-M01

Consists of one or more modules able to

The perform different security-related . -
Security/Privacy functionalities, such as Data Encryption, 5.1.1.2 —Detailded Module description
i ; —-MO01-
controller Data Decryption, Generation of
Cryptographic Keys, etc
Incl_ude faults, errors and failures, as well as 5.2-Fault Errors Failure - System
Threat their causes, consequences and X A
e Requirement Specification D 2.1.1-
characteristics.
. This operating SVS“?”‘ (OS)is afree and 5.1.3.2 Nano, Micro and Personal
TinyOS open source operating system and platform

that is designed for WSNSs.

Node operating systems -M0O1-

Tolerance (Fault)

System architecture that deals with putting
mechanisms in place that will allow a
system to still deliver the required service in
the presence of faults, although that service
may be at a degraded level

WSDL Web Services Description Language -
Table 2 pSHIELD Glossary
RE D5.2
Draft B Page 69 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

Annex 2 - Core SPD Services implementation: OSGi
Source Code

package eu.artemis.shield.composition.compositionmanager.ICompositionManager.html

package eu.artemis.shield.composition.compositionmanager;

import java.util.HashMap;
import java.util.Hashtable;

/**
* This it the main interface to manage the User Agent service discovery.
* This interface supplies a method to retreive the XML files describing the service composition

<a>Davide Migliacci

@todo
/

R

public interface ICompositionManager ({

public void runBundle (Hashtable bundle properties, int level, HashMap ht);

RE D5.2
Draft B Page 70 of 158

pSHIELD

RE

SPD middleware and overlay functionalities prototype

package eu.artemis.shield.composition.compositionmanager.impl.Activator.html

*

PSHIELD
Service Discovery

Vincenzo Suraci
Department of System and Computer Science (DIS)
University of Rome "Sapienza"
Via Ariosto, 25
00184, Rome, IT

phone: +39 340 156 22 58
email: vincenzo.suraci@dis.uniromal.it

Created on 16-May-2007
Version 1.0

P T T T T S T T S S S

~

package eu.artemis.shield.composition.compositionmanager.impl;

import org.osgi.framework.BundleContext;
import org.osgi.framework.BundleActivator;

import eu.artemis.shield.composition.compositionmanager.ICompositionManager;

public class Activator implements BundleActivator

{

private static BundleContext bc = null;
private CM cm = null;

public void start (BundleContext bc) throws Exception
{

Activator.bc = bc;
cm = new CM(Activator.bc);

bc.registerService (ICompositionManager.class.getName (), cm,null) ;

System.out.println ("Composition Manager Started");

}

public void stop (BundleContext bc) throws Exception
{

Activator.bc = null;
cm.exit () ;

System.out.println ("Composition Manager Stopped");
}

RE

Draft B

D5.2
Page 71 of 158

pSHIELD

RE

SPD middleware and overlay functionalities prototype

package eu.artemis.shield.composition.compositionmanager.impl.CM.html

package eu.artemis.shield.composition.compositionmanager.impl;

P T T T T S S S S A

~

*

PSHIELD
Service Composition

@authors Davide Migliacci, Vincenzo Suraci
Department of System and Computer Science (DIS)
University of Rome "Sapienza"

Via Ariosto, 25

00184, Rome, IT

Updated on 19-May-2011
Version 1.0

/~k~k

*

A

The present class shows how a pSHIELD OSGi component
could use the potentiality offered by the pSHIELD
Service Discovery Framework. It interfaces with the
Generic Discovery Manager to discover the services
available in the (pSHIELD) network.

/

import java.util.Dictionary;
import java.util.HashMap;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Vector;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;

import eu.artemis.shield.composition.compositionmanager.ICompositionManager;
import eu.artemis.shield.discovery.gdm.interfaces.IGenericDiscovery;

import eu.artemis.shield.discovery.pdm.IService;
import eu.artemis.shield.discovery.pdm.IServicelist;
import eu.artemis.shield.discovery.pdm.IServiceProperty;

import eu.artemis.shield.discovery.pdm.IServicePropertyList;

public class CM implements ICompositionManager

{

private BundleContext bc;
private CMGUI gui = null;

private final int API TYPE = 1;
private final int IMPL_TYPE = 2;

int SPD 1vl;

private Vector impl bundles_to_start = new Vector();
private IGenericDiscovery gd = null;

public CM(BundleContext bc)

{

this.bc = bc;

gui = new CMGUI (bc, this);
gui.setVisible (true) ;

* This function takes an Api Bundle symbolic name and create its Impl Bundle symbolic name.

/**

* (@param bundleApiName Symbolic API name
* @return Symbolic IMPL name

*/

private String getBundleImplName (String bundleApiName)
{

int indexStart = bundleApiName.lastIndexOf(".");
int indexEnd = bundleApiName.lastIndexOf ("-");

if (indexEnd > 0) {

RE

Draft B

D5.2
Page 72 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

String bundleImplName = bundleApiName.substring(indexStart+l, indexEnd) + "-IMPL";
return bundleImplName;

}
else

// SLP Bundle
return bundleApiName.substring(l, bundleApiName.length()-1)+"-IMPL";

}

private Bundle installApi(Hashtable ht, String bundle type, HashMap security) {
Vector implBundleNames = new Vector () ;

String initial impl bundle = ((String) ((Vector) ht.get ("Project Name")).elementAt (0))+"-
IMPL";

// Display counter
int 7 = 1;

// Get the imported api
Vector imp packages = (Vector) ht.get("Import");

gui.append ("\n") ;
gui.appendts ("Installing Import Api of " + initial impl bundle);

boolean found = false;
Iterator it = imp packages.iterator();

// For each import bundle
while (it.hasNext ()) {

found = false;

String imp package = (String) it.next();

gui.append("\n") ;

gui.appendts ("API : " + j++ + "/" + imp packages.size() + "

looking for : " + imp package);

// Get all installed bundles in the framework
Bundle[] installed bundles = bc.getBundles();

if (installed bundles != null) {

// For each installed bundle
for (int 1 = 0; i < installed bundles.length; i++) {

Bundle temp = (Bundle) installed bundles[i];
Dictionary bundle manifest = temp.getHeaders();

// Check the exported bundles of the only API Bundles

if (bundle manifest.get("Bundle-Category") != null && bundle manifest.get("Bundle-
Category").equals("API")) {
String imported packages = (String) bundle manifest.get("Export-Package");

// If there is an installed bundle that export the requested package, we can procede
whit the other requested packages

if (imported packages.contains(imp package)) {
gui.appendts ("The installed bundle [" + bundle manifest.get("Bundle-
Name") +"] exports the requested package.");
String name bundle found = getBundleImplName((String) bundle manifest.get("Bund

le-Symbolicname"));
if (!name_bundle found.equals(initial impl bundle)) {
// Add the IMPL bundle Symbolic Name into the vector if security level is satisfi
ed

implBundleNames.add(name bundle found);

}

found = true;

RE D5.2
Draft B Page 73 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

break;

}

// If there aren't installed bundle that export the requested package, we need to search
one in the SLP

if (!found) {

gui.appendts ("There aren't installed bundles that export the requested package : " + im
p_package);

gui.appendts ("Trying to search the package into the SLP...");
Vector bundles = getBundleByExportedPackage(imp package, bundle type, API TYPE);
if (bundles != null && !bundles.isEmpty()) {

Iterator it2 = bundles.iterator();

// Use the first package founded

if (it2.hasNext ()) {
Hashtable ht tmp = (Hashtable) it2.next();
gui.appendts ("Found : " + ht tmp.get("Service Name").toString());
gui.appendts ("> It exports : " + ht tmp.get("Export").toString() + "\n");

Bundle tmp = installBundle(ht tmp);

if (tmp !'= null){

gui.appendts (tmp.getSymbolicName() + " : Installation completed.™);

String name bundle found = getBundleImplName (ht tmp.get("Project Name").toSt
ring());

String service name = ht tmp.get ("Project Name").toString().substring(l,ht tmp.

get ("Project Name") .toString().length()-1);

if (!name_bundle found.equals(initial impl bundle)) {
// Add the IMPL bundle Symbolic Name into the vector

if (security.containsKey (service name)) {

gui.appendts ("Security Level" + security.get ("Cryptography") + " " + securi
ty.get ("Accounting") + "\n");

gui.appendts ("Security Level" + (Integer)ht tmp.get ("SPD Level"));
}

implBundleNames.add (name bundle found);

}

} else {
gui.appendts ("ERR: Installation aborted !!!"™);
}
}
} else {
gui.appendts ("ERR: There aren't available bundles in SLP that export the " + imp pa

ckage + " package");

}

if (installImpl(implBundleNames, bundle type, security)){

RE D5.2
Draft B Page 74 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

gui.appendts (initial impl bundle + " import installation completed.\n");
}
else(
gui.appendts (initial impl bundle + " import installation aborted.\n");
return null;

}
Bundle bundle inst = installBundle(ht);

if (bundle inst != null){

gui.appendts ("IMPL installed : " + ht.get("Service Name"));
} else {
gui.appendts ("IMPL installation ABORTED : " + ht.get("Service Name"));

return null;

}

return bundle inst;
}
/**

* This function installs
* @ am bundles name
aram bundle type
* @return a
*/'
private boolean installImpl(Vector bundles name, String bundle type, HashMap parameter) {

*

d

Bundle tmp = null;
Iterator it = bundles name.iterator();
int v = 1;

// For each import bundle
while (it.hasNext()) {

boolean found = false;

String impl bundle = (String) it.next();
gui.appendts ("IMPL : " + y++ + "/" + bundles name.size() + " -
looking for : " + impl bundle);

// Get all installed bundles in the framework
Bundle[] installed bundles = bc.getBundles();

if (installed bundles != null) {

// For each installed bundle
for (int 1 = 0; i < installed bundles.length; i++) {

tmp = (Bundle) installed bundles[i];
Dictionary bundle manifest = tmp.getHeaders();

// Check the IMPL bundles
if (bundle manifest.get("Bundle-Category") == null) {

String imp bundles = (String) bundle manifest.get("Bundle-Symbolicname");

// If there is an installed bundle that export the requested package, we can procede
whit the other requested packages

if (imp bundles != null && imp bundles.contains(impl bundle)) {
gui.appendts ("The installed bundle [" + bundle manifest.get("Bundle-
Name") +"] implements the requested bundle.");

impl bundles to start.add(tmp);

}

else found = false;

RE D5.2
Draft B Page 75 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

}
// If there aren't installed bundle that implements the requested package, we need to searc

h one in the SLP
if (!found) {

"

gui.appendts ("There aren't installed bundles that implements the requested package
+ impl bundle);

gui.appendts ("Trying to search the package into the SLP...\n");
Vector bundles = getBundleByExportedPackage(impl bundle, bundle type, IMPL TYPE);
if (bundles != null && !bundles.isEmpty()) {

Iterator it2 = bundles.iterator():;

// Use the first package founded

if (it2.hasNext ()) {
Hashtable ht = (Hashtable) it2.next();
gui.appendts ("Found : " + ht.get("Service Name").toString());
gui.appendts ("> It implements : " + impl bundle + "\n");

tmp = installApi(ht, bundle type, parameter);
if (tmp !'= null){

gui.appendts ("Installation completed.™);
impl bundles to start.add(tmp);

} else {
gui.appendts ("ERR: Installation aborted !!!"™);

return false;

}
} else {

gui.appendts ("ERR: There aren't available bundles in SLP that implement the " + impl
bundle);

return false;

}
return true;
}
/**
* This function try to install and run a bundle from its jar url
*/

public void runBundle (Hashtable bundle properties, int level, HashMap bundles) {

String bundle name = (String) ((Vector) bundle properties.get("Service Name")).elemen
tAt (0) ;
String bundle jar url = (String) ((Vector) bundle properties.get("Jar Url")).elementA
t(0) ;
String bundle type = (String) ((Vector) bundle properties.get("Type")).elementAt (0);
Integer bundle security = (Integer) ((Vector) bundle properties.get ("SPD Level")) .elementAt (0)
RE D5.2

Draft B Page 76 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

Bundle initial bundle

Iterator it

int vy 1;

while (it.hasNext ()) {
Bundle tmp
gui.append (
try/{

=

wn

Bundle)
+ y++ o+

tmp.start () ;
} catch (Exception e) {

gui.appendts (
System.out.println

}

}

if (initial bundle != null) {

Dictionary bundle manifest

Integer parameter (Integer)

String s

gui.appendts (

gui.appendts ("Running

try
{
initial bundle.start();
} catch (Exception e) {
gui.appendts (
System.out.println
}

} else {

gui.appendts (

}
/**

installApi

"ERR: Run command aborted
(e.getMessage ()

"ERR: Run command aborted
(e.getMessage ()

"ERR: Run command aborted

impl bundles to start.iterator();

it.next () ;

wpnoy

tremy;

) i

initial bundle.getHeaders();

((Vector) bundle properties.get("SPD Level"

(String) bundle manifest.get ("Bundle-Name");

"Initial bundle installed.");
" + bundle properties.get("Service Name")

trim oy

) i

Lermy ;g

* This function install the bundle using its JAR URL

*
*

*/

@returr

private Bundle installBundle (

Hashtable bundle

@param hashtable of the bundle to be installed
the bundle if the installation is completed,

null if the

) {

// Try to install the selected bundle from its jar url

try{

gui.appendts ("Trying to install "+ bundle.get (

Bundle b = bc.installBundle (
))i
return b;
}catch (Exception e) {

System.out.println(e.getCause()

return null;

"Service Name")

((String) ((Vector) bundle.get(

) i

(bundle properties, bundle type, bundles);

) .elementAt

)

installation crashed

+" from its JAR URL...");

"Jar Url"™)).elementAt (0)

Draft B

RE

D5.2
Page 77 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

/**

* @authors Davide Migliacci, Vincenzo Suraci

*

* This function try to discover a bundle that exports the requested package
*

* (@param package name : The name of the requested package

* -am service type : The service type

* am bundle type : The bundle type (API or IMPL) to find

* @return : A vector of Hashtables. One Hashtable for each founded bundle that exports the req

uested package. Return null if there are not bundles
*/

private Vector getBundleByExportedPackage (String package name, String service type, int bundle
_type)
{
Vector services = serviceDiscovery(service type, null, false);
Vector services discovered = new Vector();
if (services != null && !services.isEmpty()) {

Iterator it = services.iterator():;

// For each API bundles available into the SLP
while (it.hasNext ()) {

Hashtable ht = (Hashtable) it.next():;

switch (bundle type) {
case API_TYPE

if (ht.containsKey("Export") && ht.containsKey("Api") && ht.containsKey("Im
pl™)
// Search only into the simple API Bundles and the API&IMPL Bundles
&& ((Boolean) ((Vector) ht.get("Api")).elementAt(0)) .booleanValue ()
) {
String exported packages = (String) ((Vector) ht.get("Export")).elementAt
(0) 5
if (exported packages.contains(package name)) {
services discovered.add(ht);
}
}
break;
case IMPL TYPE
if (ht.containsKey("Export") && ht.containsKey("Api") && ht.containsKey("Im
pl")
// Search only into the simple API Bundles and the API&IMPL Bundles
&& ((Boolean) ((Vector) ht.get("Impl")).elementAt(0)).booleanValue (
)
) {
if (ht.get("Project Name") != null) {
String implement packages = (String) ((Vector) ht.get("Project Name")
) .elementAt (0) ;
if (implement packages.equals(package name.substring(0, package name.leng
th()-5))) {
services discovered.add(ht);
}
}
}
break;

}

return services discovered;

RE D5.2
Draft B Page 78 of 158

pSHIELD

RE

SPD middleware and overlay functionalities prototype

/) **

* This function find the service available for a specified service type and an array of keywor

ds to do

*

a better filter
ra : the service type to search
an array of keywords to search

he APi bundles

* @return a vector of found services (with no API bundles)

*/
private Vector serviceDiscovery(String type, String[] kw, boolean filter api)
{

Vector discovered services = new Vector();

try

{
gui.append("- Service discovery with a specified service type\n");

ServiceReference[] gdmList = findGenericDiscoveryModuleImplementations();

if
{

(gdmList != null)

/*

* We ignore the possbility to have more than one GDM implementation.
* JUST USE THE FIRST ONE...
*/

gd = (IGenericDiscovery) bc.getService (gdmList[0]);

/*
* We are ready to start the discovery process!

*/

/*
* Set an array of keywords, useful to better filter
* the services
*/
if (kw == null)
kw = new Stringl[0];
//kw[0]="gui=false";

for(int i = 0; i<kw.length; i++)
{

gui.append ("KEYWORDS "™ + i + "--> " + kw[i].toString() + "\n");
}
/*

* LET pSHIELD DISCOVER THE SERVICES

*/
gui.append("- Looking for Services ...");

// LinkedList 11 = gd.findServices(vid, type, kw);
String CDQL =
"SELECT default" +
"FROM default" +
"SERVICETYPE " + type +
"LANGUAGE en_gb" +
"WHERE " +
"USING slp";
String SPARQL = "";
LinkedList query output = null;
IServicelList sl = gd.findServices (CDQL, SPARQL, query output);

if (sl != null)
{
if (sl.isEmpty())
{
// NO SERVICES HAVE BEEN DISCOVERED

gui.append("- No services found !");
}
else
{
//Iterator it = sl.iterator();
//while (it.hasNext())
for (int i = 0; 1 < sl.size(); i++)
{
try

am filter api : set false if you need all the available bundles, true if you want only t

Draft B

RE

D5.2
Page 79 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
{
IService s = sl.getService(i);
String url = s.getOWLSURL() ;
System.out.println("service URL #" + i + " = " + url);

IServicePropertyList spl = s.getProperties();
Hashtable ht = new Hashtable();
for (int j=0; j<spl.size(); J++)
{
try
{
IServiceProperty sp = spl.getServiceProperty(J);
System.out.print ("> attribute #" + J + " -=> " + sp.getName() + "=");
Vector values = sp.getValues();
if (values != null)
{
for (int k=0; k<values.size(); k++)
{
Object obj = values.get (k) ;
if (obj != null)
{
if (k > 0) System.out.print(",");
System.out.print (obj.toString());
}
}
}
ht.put (sp.getName (), values);
System.out.println("");
}
catch (IndexOutOfBoundsException ioobe)
{
ioobe.printStackTrace () ;
}
}
if (ht.containsKey ("Impl") && ht.containsKey ("Api"))
{
if (filter api)
{
boolean has impl = ((Boolean) ((Vector)ht.get ("Impl")) .elementAt (0)) .boolean
Value () ;
if (has_impl) discovered services.add(ht);

}
else
{
// Insert an HashTable for each discovered service
discovered services.add(ht);
}
}
}
catch (IndexOutOfBoundsException ioobe)
{
ioobe.printStackTrace () ;

}

}

}

else

{
//NO SERVICES HAVE BEEN DISCOVERED
gui.append ("NO SERVICE FOUND!"™);

}

}
else
{
/*
* It was not possible to find a suitable implementation of IGenericDiscovery
*/
gui.append ("No Bundles implement the IGenericDiscovery interface!\n");
}
}
catch (Exception e)
{
/*
* Something went wrong!
* It was not possible to find a suitable implementation of IGenericDiscovery
*/
gui.append(e.getMessage()) ;

RE D5.2
Draft B Page 80 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

e.printStackTrace();
}
return discovered services;

}
/*k*k

* Vincenzo Suraci
*
* This function uses the internal OSGi service discovery to find a suitable implementation

* of the IGenericDiscovery interface.

*/
private ServiceReference[] findGenericDiscoveryModuleImplementations () throws Exception
{

ServiceReference[] gdmi = null;

try

{
gdmi = bc.getServiceReferences ("eu.artemis.shield.discovery.gdm.interfaces.IGenericDiscover
y", null);
}
catch (Exception e)
{
throw e;
}
return gdmi;

}

public void exit ()
{
/*
* Close GUI
*/
gui.setVisible (false) ;
gui.dispose () ;

RE D5.2
Draft B Page 81 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

package eu.artemis.shield.composition.compositionmanager.impl.CMGUIl.html

/~k~k

* PSHIELD

* Service Discovery

*

* @author Davide Migliacci

* Department of System and Computer Science
* University of Rome "Sapienza"
* Via Ariosto, 25

* 00184, Rome, IT

*

*

* Created on 16-May-2007

* Version 1.0

*

*

~

(DIS)

package eu.artemis.shield.composition.compositionmanager.impl;

import java.awt.BorderLayout;

import java.awt.Button;

import java.awt.Color;

import java.awt.Dimension;

import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.Toolkit;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.awt.Frame;

import java.awt.TextArea;

import java.net.URL;
import javax.swing.BorderFactory;

import javax.swing.JPanel;

import org.osgi.framework.BundleContext;
import org.osgi.framework.BundleException;

public class CMGUI extends Frame implements ActionListener

{

0;
1;

private static final int MAJOR
private static final int MINOR

private static final int width = 440;
private static final int height = 440;

private boolean working = true;

private BundleContext bc = null;
private CM cm = null;

private TextArea ta = null;
private JPanel main panel = null;
private JPanel textarea panel = null;

private JPanel buttons_panel = null;

private static final int intNumBtn = 3;

private static String[] strBtn = new String[intNumBtn];

public CMGUI (BundleContext bc, CM cm)
{

super ("pSHIELD - Composition Engine v" + MAJOR + "." + MINOR);
strBtn[0] = "Start/Stop";
strBtn[l] = "Clear Log";
strBtn[2] = "Hide Me";
RE D5.2
Draft B Page 82 of 158

pSHIELD

SPD middleware and overlay functionalities prototype
RE

this.bc = bc;
this.cm = cm;

addWindowListener (windowExit) ;
createGUI () ;

setSize (width, height) ;
setForeground (Color.black) ;
setBackground (Color.lightGray) ;

/~k

* ENABLE / DISABLE THE GUI...
*/

setVisible (true) ;

A

// EVENT HANDLER

/]

WindowAdapter windowExit = new WindowAdapter ()

{

public void windowClosing (WindowEvent e)

{
actionExit () ;
}
}i

public void actionExit ()
{
// Exiting...
if (bc != null)
{
try
{
bc.getBundle () .stop () ;
}
catch (BundleException BE)
{
BE.printStackTrace () ;
}

public void actionPerformed (ActionEvent e)

{

if (e.getActionCommand () .equals (strBtn[0]))

{
if (working) {
append ("\n") ;
appendts ("STOP \n") ;
working = false;
}
else {
append ("\n") ;
appendts ("START \n");
working = true;
}
}

else if (e.getActionCommand() .equals (strBtn[1]))

{
ta.setText ("- Bundle ready\n");

}

else if (e.getActionCommand() .equals (strBtn[1l]))

{
setVisible (false) ;

}

else

{

//Unknown Command
}
}

private void createGUI ()

Draft B

RE D5.2

Page 83 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

// Initialize the main Panel
main_panel = new JPanel ();
main panel.setLayout (new BorderLayout ());
main panel.setBorder (BorderFactory.createCompoundBorder (BorderFactory.createRaisedBevelBorde
r (), BorderFactory.createLoweredBevelBorder()));

// Initialize the Combo Panel
textarea panel = new JPanel();

GridBaglayout gridbag = new GridBagLayout () ;
GridBagConstraints ¢ = new GridBagConstraints();
c.fill = GridBagConstraints.BOTH;

textarea panel.setLayout(gridbag);

c.gridwidth = 1; // The cell occupies 1 column
c.gridheight = 1; // The cell occupies 1 row
c.gridx = 0; // The cell is located in 1 column

c.gridy = 0; // The cell is located in 1 row
c.weightx = 0.1; // The cell occupies the minimum row length
c.weighty = 0.1; // The cell occupies the entire column length

ta = new TextAreal();

ta.setEditable (false) ;
gridbag.setConstraints(ta, c);
textarea panel.add(ta);

// Initialize the Buttons Panel
buttons panel = new JPanel();

for (int 1 = 0; i < intNumBtn; i++)
{

/*
* ADD BUTTONS TO START SEVERAL TEST
*/
c.gridx = 1i; // The cell is located in (i+1l) column

Button b = new Button (strBtn[i]):;
b.addActionListener (this) ;
buttons_panel.add(b) ;

// Add the subpanels to the main panel

main panel.add(textarea panel, BorderLayout.CENTER);
main panel.add(buttons panel, BorderLayout.PAGE END);

// Add the main panel to the Frame
add(main panel);

/*
* CENTER FRAME ON THE SCREEN
*/
Dimension dialogSize = getSize();
Dimension screenSize = Toolkit.getDefaultToolkit ().getScreenSize();
setLocation (screenSize.width/2 - dialogSize.width/2, screenSize.height/2 -

dialogSize.height/2);

/*
* pSHIELD ICON
*/
try
{
/*
* Check if we are in a JAR file...
*/
URL url = this.getClass () .getResource ("logo pSHIELD 16x16.3pg");
if (url != null)
{
this.setIconImage (Toolkit.getDefaultToolkit () .createImage (url));
}
else

{
/*

* We are not in a JAR file...

RE D5.2
Draft B Page 84 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

*/
}
}

catch (Exception e)
{
e.printStackTrace () ;

}

appendts ("Bundle started");

}

public void appendts (String str)
{
append ("- " + str + "\n");

}

public void append(String str)
{
/*
* Add text to the textArea
*/
ta.setForeground (Color.BLACK) ;
ta.append(str);
}

RE D5.2
Draft B Page 85 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

package
eu.artemis.shield.composition.middlewareadapter.impl.AuthenticationServiceAppRegistration.ht
ml

package eu.artemis.shield.composition.middlewareadapter.impl;

import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;

import eu.artemis.shield.discovery.gdm.interfaces.IGenericDiscovery;

import java.util.Hashtable;
import java.util.Vector;

public class AuthenticationServiceAppRegistration extends AppRegistration {

public AuthenticationServiceAppRegistration (BundleContext bc)
{

super (bc) ;

String project name = "Authentication";

String service name = "Authentication";

String service description = "Authentication API";

String vid = null;

String type = "service:eu.artemis.shield:http";

String url = "http://localhost:8080/applications/jars/Authentication/Authentication api-
0.0.1.jar";

String export = "eu.artemis.shield.functionalities.authentication";

long lifetime = 43200; // 1 day

registerAPI (url, vid, type, lifetime, export, "", project name, service name, service descrip
tion);

String Import = "eu.artemis.shield.functionalities.cryptography,eu.artemis.shield.functionali
ties.authentication";

url = "http://localhost:8080/applications/jars/EAPAuthentication/EAPAuthentication-
0.0.1.jar";

String SPD = "1";

String owl = "resources/data/data_ 7 Pilota.owl";

service description = "Authentication mechanism based on EAP";

register (url, vid, type, lifetime, export, Import, project name, service name, service descri
ption, SPD, owl);

url = "http://localhost:8080/applications/jars/PAPAuthentication/PAPAuthentication-
0.0.1.jar";

SPD = "1";

owl = "resources/data/data 8 Pilota.owl";

service description = "Authentication mechanism based on PAP";

register(url, vid, type, lifetime, export, Import, project name, service name, service descri
ption, SPD, owl);

url = "http://localhost:8080/applications/jars/CHAPAuthentication/CHAPAuthentication-
0.0.1.jar";

SPD = "8";

owl = "resources/data/data 9 Pilota.owl";

service description = "Authentication mechanism based on CHAP";

register(url, vid, type, lifetime, export, Import, project name, service name, service descri
ption, SPD, owl);

RE D5.2
Draft B Page 86 of 158

pSHIEL

D

SPD middleware and overlay functionalities prototype

RE

package eu.artemis.shield.discovery.gdm.impl.CServiceDiscoveryGDM.html

*

0018

phon
emai

R S A A S T S S S S S

*

*/

o
Department of System and Computer Science (DIS)
University of Rome "Sapienza"
Via Ariosto, 25

4,

e:
1:

PSHIELD
Service Discovery

(rd.2)

Silvano Mignanti

Rome, IT

+39 329 11 38

610

silvano.mignanti@dis.uniromal.it

Created on 16-May-2007
Version 1.0

package eu.artemis.shield.discovery.gdm.impl;

import
import
import
import
import

import
import

import
import

import
import
import
import
import
import
import
import
import
import

public

/*

java.util.ArrayList;
java.util.LinkedList;
java.util.Vector;
java.util.Hashtable;
java.util.Enumeration;

java.

java.net.URL;

net.MalformedURLException;

org.osgi.framework.BundleContext;
org.osgi.framework.ServiceReference;

eu.
eu.
eu.

eu

eu.

eu

eu.

eu

eu.
eu.

artemis.shield.discovery.
artemis.shield.discovery.
artemis.shield.discovery.
.artemis.shield.discovery.
artemis.shield.discovery.
.artemis.shield.discovery.
artemis.shield.discovery.
.artemis.shield.discovery.
artemis.shield.discovery.
artemis.shield.discovery.

filter.IServicesFilter;

gdm.
gdm.
pdm.
pdm.
pdm.
pdm.
pdm.
pdm.

impl.Const;
interfaces.IGenericDiscovery;
ISDParameter;

IService;

IServiceDiscovery;
IServicelist;

IServiceType;
IServiceTypelist;

gp.interfaces.IQueryPreprocessor;

class CServiceDiscoveryGDM implements IGenericDiscovery {

* PARAMTERS

*/

private BundleContext bc;

/*

* CONSTRUCTORS

*/

public CServiceDiscoveryGDM (BundleContext bc) {

this.bc = bc;

}

/*

* IGENERICDISCOVERY METHODS

*/

public LinkedList findServiceTypes (String VID)

{

if (Const.DEBUG_ENABLED)

) i

//ServiceReference|]

ServiceReference|]

LinkedList result =

srgpp = null;

srSD = null;

new LinkedList ();

System.out.println("findServices Method of Generic Discovery Module"

try
{
/*
* FIND ALL THE PDMs
*/
srSD = findPDMs () ;
RE D5.2
Draft B Page 87 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

for (int k = 0; k < srSD.length; k++)
{
/*
* FOR EACH PDM
* FIND THE SERVICES USING THE CDQL QUERY
*/
Object o = bc.getService (srSDI[k]);
//1if (DEBUG) System.out.println(o2.getClass().getName() + srSD.length

// + " " + k + "SDCDQL length: "™ + sdpcdgl.length);
IServiceDiscovery isDiscovery = (IServiceDiscovery) o;
try

{
IServiceTypelist temp = isDiscovery.findServiceTypes (new ISDParameter[0]);
if (temp!=null)
{

if (Const.DEBUG_ENABLED) System.out.println("TEMP SIZE: " + temp.size());
for(int j = 0; j<temp.size(); j++)
{

IServiceType sType = (IServiceType)temp.get (j);

result.add (sType.toString());
}
}
}
catch (Exception e)
{
System.out.println ("PDM Exception!");
e.printStackTrace () ;
}
}
}
catch (Exception e)
{
System.out.println("No PDMs found");
//e.printStackTrace () ;
}

return result;

public LinkedList findServices (String VID, String type, String[] keywords)
{
if (Const.DEBUG_ENABLED) System.out.println("findServices Method of Generic Discovery Module"
)
ServiceReference[] srgpp = null;
ServiceReference[] srSD = null;
LinkedList owluri = new LinkedList();
LinkedList result = new LinkedList();
ISDParameter[] sdpcdgl = null;

try
{
/*
* FIND ALL THE QUERY PREPROCESSORS
*/
srgpp = findQueryPreprocessors();
String UserProfileQuery = "SELECT * WHERE{?x ?y ?z.}";
String UserOWLQuery = "SELECT * WHERE{?x ?y ?z.}";
String UserRequirementsOnServiceContext = getPreferencesOnUserRequirementsOnServiceContext (
VID, type);

for (int 1 = 0; i < srgpp.length; i++)
{
/*
* FOR EACH QUERY PREPROCESSOR
* CREATE A QUERY
*/
Object o = bc.getService (srgppli]):;
Class[] ifs=o.getClass () .getInterfaces();
if (Const.DEBUGiENABLED)
{
for (int k =0; k<ifs.length; k++)
{
System.out.println ("Name="+ifs[k].getName () +"\tCanName="+1ifs[k].getName ()+"\tHash"+if
s[k] .hashCode ()) ;
}
}

Class igpp = IQueryPreprocessor.class;

RE D5.2
Draft B Page 88 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

if (Const.DEBUG ENABLED) System.out.println ("Name="+igpp.getName ()+"\tCanName="+igpp.getN
ame () +"\tHash"+igpp.hashCode ()) ;
IQueryPreprocessor iQPP = (IQueryPreprocessor) o;
try
{
/~k
* CREATE A QUERY
*/
sdpcdgl = iQPP.createQuery(VID, type, keywords);
if (Const.DEBUG ENABLED) System.out.println("CServiceDiscoveryGDM::findservices --
> Query created");

try
{
/*
* FIND ALL THE PDMs
*/
srSD = findPDMs () ;
if (Const.DEBUG_ENABLED) System.out.println("CServiceDiscoveryGDM::findservices --
> " + srSD.length + " PDM found!");
for (int k = 0; k < srSD.length; k++)
{
/*
* FOR EACH PDM
* FIND THE SERVICES USING THE CDQL QUERY

*/
IServiceDiscovery isDiscovery = (IServiceDiscovery) bc.getService (srSD[k]);
if (Const.DEBUG_ENABLED) System.out.println("CServiceDiscoveryGDM::findservices --
> PDM #" + k + " --> java type = " + isDiscovery.getClass () .getSimpleName ());
try

{
if (Const.DEBUG_ENABLED) System.out.println("CServiceDiscoveryGDM::findservices -
-> PDM #" + k + " --> service discovering...");
IServicelList temp = isDiscovery.findServices (sdpcdqgl) ;
if (temp!=null)
{
if (Const.DEBUG_ENABLED) System.out.println("CServiceDiscoveryGDM::findservices

--> PDM #" + k + " --> discovered " + temp.size() + " services!");
for(int j = 0; j<temp.size(); J++)
{
IService serv = (IService)temp.get(j);

String owlurl = serv.getOWLSURL() ;
owluri.add (owlurl);

}
}
catch (Exception e)
{
System.out.println ("PDM Exception!");
e.printStackTrace();
}
}
}
catch (Exception e)
{
System.out.println ("No PDMs found");
//e.printStackTrace () ;
}
}
catch (Exception e)
{
System.out.println ("QPPException: " + e.getLocalizedMessage());
e.printStackTrace();

}

—

/*

* FILTER THE DISCOVERED OWL URLs

* USING THE FILTER

*

* NOTE: THIS IS JUST A WORKAROUND TO SOLVE ASAP THE FILTERING ISSUES
* WE USED A MODIFIED INTERFACE INVENTED BY SILVANO WHICH IS NOT THE
* STANDARD ONE!!!!!!!l!

*/

if (Const.SEMANTIC FILTER ENABLED)

{
try

RE D5.2
Draft B Page 89 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

// DISCOVER ALL THE LOCAL FILTERS
ServiceReference[] filterSR = findFilters():;

// DISCOVER TAKE THE FIRST ONE
IServicesFilter iSF = (IServicesFilter) bc.getService (filterSR[0]);

// LET FILTER SEMANTICALLY THE ALREADY DISCOVERED SERVICES
result = iSF.filterServices(owluri, VID, UserProfileQuery, UserOWLQuery, UserRequiremen
tsOnServiceContext) ;
}
catch (Exception e)
{
System.out.println("Filter Exception: ");
e.printStackTrace () ;
}
}
else
{
result = owluri; // We pass all the discovered services...
}
}
catch (Exception e)
{
e.printStackTrace () ;

}

return result;

/~k~k
* (@param CDQL the query expressed in CDQL sintax used for the first step of the discovery proc
ess
* @param SPARQL the query expressed in SPQRQL syntax used for the second step(filtering) of di
scovery process
* @param query output a linkedlist of values,if any, returned by the execution of the filterin
g step.
* @return a list of service discovered and filtered on the besis of the two query submitted.
*/
public IServicelList findServices (String CDQL, String SPARQL, LinkedList query output) {
/*
* FIND ALL THE PDMs
*/

LinkedList owluri = new LinkedList();
LinkedList query result = new LinkedList();
IServicelList temp = null;

ServiceReference[] srSD;
try |
srSD = findPDMs () ;
for (int k = 0; k < srSD.length; k++)
{
/*
* FOR EACH PDM
* FIND THE SERVICES USING THE CDQL QUERY
*/
//sdpcdgl = createQuery (CDQL) ;

Object 02 = bc.getService(srSD[k]);

if (Const.DEBUG ENABLED) System.out.println(o2.getClass().getName () + srSD.length
+ o " + k + "CDQL length: " + CDQL.length());

IServiceDiscovery isDiscovery = (IServiceDiscovery) o02;

temp = isDiscovery.findServices (CDQL) ;
if (temp!=null)
{
if (Const.DEBUG_ENABLED) System.out.println("TEMP SIZE: " + temp.size());
//1il loop seguente should be eliminato
for(int j = 0; j<temp.size(); Jj++)
{
IService serv = (IService)temp.get(j);
String owlurl = serv.getOWLSURL() ;
owluri.add (owlurl) ;

RE D5.2
Draft B Page 90 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
}
catch (Exception e)
{
System.out.println ("PDM Exception!");
e.printStackTrace () ;
}
if (Const.SEMANTIC FILTER ENABLED)
{
try
{
// DISCOVER ALL THE LOCAL FILTERS
ServiceReference[] filterSR = findFilters();

if (Const.DEBUG ENABLED)

// DISCOVER TAKE THE FIRST ONE
IServicesFilter iSF =
if (Const.DEBUG ENABLED)

(IServicesFilter)

System.out.println ("Filters found:

" + filterSR.length);

bc.getService (filterSR[0]) ;
System.out.println ("First filter selected");

// LET FILTER SEMANTICALLY THE ALREADY DISCOVERED SERVICES

//result =

}

catch (Exception e)
{

System.out.println("Filter Exception:

e.printStackTrace () ;

}

}
if (query output!=null)
query output.addAll (query result);
if (Const.DEBUG ENABLED && temp!=null)
.size());
return temp;

}

public boolean registerService (String VID,

iSF.filterServices (owluri,
query result=iSF.filterServices (temp, null,

null, SPARQL,

SPARQL,

")

System.out.println ("TEMP AFTER FILTER SIZE:

String description,

LA
7

nwy

" + temp

Hashtable parameters, long timeo

ut, String type)
{
/*
* We use SLPTool...
* > We ignore the VIDID
* > We use the parameters hashtable to register the SLP parameters
*/
if (Const.DEBUG_ENABLED)
{
System.out.println("CServiceDiscoveryGDM --> registerService");
System.out.println("CServiceDiscoveryGDM --> URL description " + description);
System.out.println ("CServiceDiscoveryGDM --> String type " + type);
}
String[] args = new String[4];
int index = 0;
/*
* REGISTER COMMAND
*/
/*args[index] = "-debug";
index++;
*/
args[index] = "register";
index++;
/*
* SERVICE TYPE
*/
if (type != null)
{
int 1 = type.lastIndexOf(":");
if (1 >= 0)
{
try
RE D5.2
Draft B Page 91 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

{
if (new URL (description) .getProtocol () .equalsIgnoreCase (type.substring(i+l)))

{

//args[index] = type + "://" + description.toString() .substring(description.getProtoc
ol () .length());
args[index] = type + description.toString() .substring(new URL (description).getProtoco
1().length());
}
else
{
/*
* Service type is not compliant with the URL... Different protocols!?!
* Register them separately...
*/
args[index] = type;

}
}catch (MalformedURLException ex) {
ex.printStackTrace () ;
}
}
else
{
try
{
if (new URL (description) .getProtocol () .equalsIgnoreCase (type))
{

args[index] = description.toString();
}
else
{
/*
* Service type is not compliant with the URL... Different protocols!?!
* Register them separately...
*/
args[index] = type;

}
}catch (MalformedURLException ex) {

ex.printStackTrace () ;
}
}

}
if (Const.DEBUG_ENABLED) System.out.println("CServiceDiscoveryGDM--

> serviceURL " + args[index]);

index++;
/*
* ATTRIBUTES
*
* Modified by Vincenzo Suraci on 08/09/2011
* The OntologyURI parameter was automatically inserted in each service registration.
* Now the OntologyURI paramter is no longer automatically added.
*/
//args[index] = " (OntologyURI="+description.toString()+")";

args[index] = "";

if (parameters != null)

{
Enumeration enukey = parameters.keys();
while (enukey.hasMoreElements())

{

String attr_tag = (String)enukey.nextElement () ;
if (args[index].length() > 0)
args[index] += ", (" + attr tag;
else
args[index] += " (" + attr tag;
Vector attr values = (Vector)parameters.get (attr tag);
if (attrivafues !'= null) -
{
if (attr_values.size() > 0)

{
args[index] += "=";
for (int i = 0; i < attr values.size(); i++)
{
if (1 > 0) args[index] += ",";
Object o = attr values.elementAt (i);
if (o.getClass () .getName () .equals("java.lang.String"))

RE D5.2
Draft B Page 92 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

{
args[index] += (String)o;
}
else if (o.getClass () .getName () .equals("java.lang.Integer")
{
args[index] += (Integer)o;
}

else if (o.getClass() .getName () .equals("java.lang.Boolean"))
{

Boolean b = (Boolean)o;
if (b.booleanvValue()) args[index] += "true"; else args[2] += "false";
}
else
{
/~k
* CONSIDER THIS VALUE AS A STRING...
*/

args[index] += o.toString();

}

}
}
args[index] += ")";
}

}
if (Const.DEBUG ENABLED) System.out.println("CServiceDiscoveryGDM--

> attributes " + args[index]);
index++;

/*

* TIMEOUT

*/
int to = (int)timeout;
args[index] = "" + to;

/*
* FIND ALL THE PDMs
*/
try
{
ServiceReference[] srSD = findPDMs () ;
for (int k = 0; k < srSD.length; k++)
{
/*
* FOR EACH PDM
* REGISTER THE SERVICES USING THE REGISTERSERVICE METHOD
*/
Object 02 = bc.getService (srSD[k]);
if (Const.DEBUGiENABLED){
System.out.print (02.getClass () .getName()) ;
System.out.print (srSD.length);

System.out.println (" "+ k);
//System.out.println ("SDCDQL length: " + sdpcdgl.length);
}
IServiceDiscovery isDiscovery = (IServiceDiscovery) o02;
try
{
/*

* If the service is registered at least with one PDM, than the
* method exits successfully.
*/

if (isDiscovery.registerService (null, args)) return true;

}

catch (Exception e)
{
System.out.println ("PDM Exception!");
e.printStackTrace();
}
}
}
catch (Exception e)

{

System.out.println("CServiceDiscoveryGDM: :registerService ERROR!!!");
e.printStackTrace () ;

}

return false;

RE D5.2
Draft B Page 93 of 158

pSHIE

LD SPD middleware and overlay functionalities prototype
RE

}
publ

/*

ic boolean registerService (Hashtable parameters, long timeout, String type) {

* We use SLPTool...

> We ignore the VIDID

* > We use the parameters hashtable to register the SLP parameters

*

if
{
}
St
in
/*

*

*

/

(Const.DEBUG_ENABLED)
System.out.println ("CServiceDiscoveryGDM --> registerService");
System.out.println ("CServiceDiscoveryGDM --> String type " + type);
ring[] args = new Stringl[4];
t index = 0;

REGISTER COMMAND
/

/*args[index] = "-debug";
index++;

*/

args[index] = "register";
index++;

/*

*

SERVICE TYPE
/

if (type !'= null)
{
args[index] = type;
}
if (Const.DEBUG ENABLED)
System.out.println ("CServiceDiscoveryGDM--> serviceURL " + args[index]);
index++;
/*
* ATTRIBUTES
*/
if (parameters != null)

{

Enumeration enukey

parameters.keys () ;

while (enukey.hasMoreElements())

{

String attr_tag = (String)enukey.nextElement();
if (args[index]!= null)
args[index] += ", (" + attr tag;
else
args[index] = " (" + attr_ tag;
Vector attr values = (Vector)parameters.get (attr tag);
if (attr_values != null)
{
if (attr_values.size() > 0)

{
args[index] += "=";
for (int i = 0; i < attr values.size(); i++)
{
if (i > 0) args[index] += ",";
Object o = attr values.elementAt (i);
if (o.getClass () .getName () .equals("java.lang.String"))
{
args[index] += (String)o;
}
else if (o.getClass () .getName () .equals("java.lang.Integer")
{
args[index] += (Integer)o;
}
else if (o.getClass () .getName ().equals("java.lang.Boolean"))
{
Boolean b = (Boolean)o;
if (b.booleanValue()) args[index] += "true"; else args[2] += "false";

Draft B

RE D5.2
Page 94 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
else
{
/~k
* CONSIDER THIS VALUE AS A STRING...
*/

args[index] += o.toString();

}

}
}
args[index] += ")";
}
}
if (Const.DEBUG ENABLED)
System.out.println("CServiceDiscoveryGDM--> attributes

+ args[index]);

index++;
/*
* TIMEOUT
*/
int to = (int)timeout;
args[index] = "" + to;
/*
* FIND ALL THE PDMs
*/
try

{
ServiceReference[] srSD = findPDMs () ;
for (int k = 0; k < srSD.length; k++)
{
/*
* FOR EACH PDM
* REGISTER THE SERVICES USING THE REGISTERSERVICE METHOD
*/
Object 02 = bc.getService(srSD[k]);
if (Const.DEBUG_ENABLED){
System.out.print (o2.getClass () .getName());
System.out.print (srSD.length);

System.out.println (" "+ k);
//System.out.println ("SDCDQL length: " + sdpcdgl.length);
}
IServiceDiscovery isDiscovery = (IServiceDiscovery) o02;
try
{
/*

* If the service is registered at least with one PDM, than the
* method exits successfully.
*/

if (isDiscovery.registerService(null, args)) return true;

}
catch (Exception e)
{
System.out.println ("PDM Exception!");
e.printStackTrace();
}
}
}
catch (Exception e)
{
System.out.println("CServiceDiscoveryGDM: :registerService ERROR!!!");
e.printStackTrace () ;

}

return false;

}

public boolean registerService (String description, Hashtable parameters, long timeout, String t

ype)
{

return registerService(null, description, parameters, timeout, type);

}

/*
* ADDITIONAL METHODS
*/

RE D5.2
Draft B Page 95 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
public ServiceReference[] findQueryPreprocessors () throws Exception{
ServiceReference[] srgpp = null;
try {

srgpp = bc.getServiceReferences ("eu.artemis.shield.discovery.gp.interfaces.IQueryPreprocess
or", null);
} catch (Exception e) {
throw e;
}
return srqgpp;

}

public ServiceReference[] findPDMs () throws Exception{
ServiceReference[] srpdms = new ServiceReference[0];
try {
srpdms= bc.getServiceReferences ("eu.artemis.shield.discovery.pdm.IServiceDiscovery", null);
} catch (Exception e) {
throw e;
}
return srpdms;

}

public ServiceReference[] findFilters() throws Exception({
ServiceReference[] srfilters = null;
try {
srfilters= bc.getServiceReferences ("eu.artemis.shield.discovery.filter.interfaces.IServices
Filter", null);
} catch (Exception e) {
throw e;
}

return srfilters;

private String getPreferencesOnUserRequirementsOnServiceContext (String VID, String type)
{

/*

* This function takes the VID and the Service Type to look for the User Preferences

* on the Service Context, regarding that specific Service Type.

*/
/*

* The service type is in the form:

* service:x.y.z:protocol

*

* The pSHIELD preference manager wants only simple types
* so we take the "z" from the String type

*/
if (Const.DEBUG_ENABLED) System.out.println("CServiceDiscvoeryGDM::getPreferencesOnUserRequir
ementsOnServiceContext --> Service Type = " + type);
if (type.indexOf ("service:") >= 0)

{
// Delete "service:"
type = type.substring(8);
}
int index = type.indexOf(":");
if (index >= 0)
{
// Delete the protocol
type = type.substring(0,index) ;
}
index = type.indexOf(".");
while (index >= 0)
{
type = type.substring (index+1);
index = type.indexOf (".");
}
if (Const.DEBUG_ENABLED) System.out.println("CServiceDiscvoeryGDM::getPreferencesOnUserRequir

ementsOnServiceContext --> Service Type = " + type);
/*
* TEMPORARLY DISABLED
*/

ArrayList ar = new ArrayList();

ar.add ("maxdistance") ;

ar.add ("maxqueuetime") ;

//requestOutcomes (VID, "servicediscovery42", type, ar, null);

return "";

RE D5.2
Draft B Page 96 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

RE D5.2
Draft B Page 97 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

package eu.artemis.shield.discovery.slpdaemon.impl.Database.html

/~k~k

* SLPv2 DA Database Management

*

* We implemented the database function within Java2. We didn't use
* a standard DBMS for simplicity and efficiency. The whole database
* is organized as red-black tree (provided by Java)

*

* (1) the key is ltag+URL, assume each service has a unique URL,

* and the same service can be registered using different

* languaage (ltag)

* (2) the value at each node is an Entry class, which keeps all the
* information about the service.

*

*

~

package eu.artemis.shield.discovery.slpdaemon.impl;

import java.io.*;
import java.util.*;
import java.security.interfaces.*;

public class Database {

public static final int DELETED = O;

public static final int LANGUAGE TAG = 1;
public static final int NAMING AUTHORITY =2;
public static final int TYPE = 3;

public static final int URL = 4;

public static final int LIFE TIME = 5;
public static final int SCOPE = 6;
public static final int VERSION TS

public static final int ATTRIBUTES = 11;

da daf;
TreeMap table;
slpMsgComposer composer;
Vector matchedEntry;
ByteArrayOutputStream b;
DataOutputStream d;
int totalMatch,i=0;

public Database(da daf) {
this.daf = daf;
table = new TreeMap () ;
composer = new slpMsgComposer () ;
matchedEntry = new Vector (10);
b = new ByteArrayOutputStream() ;
d = new DataOutputStream(b) ;
}

// return the number of entries in the database
public int size() {
return table.size();

}

public TreeMap table() {
return table;

public void saveDatabase (BufferedWriter o)
{
Iterator values = table.values() .iterator();
while (values.hasNext ())
{
Entry e = (Entry) values.next();
e.prtEntry(/*daf, */o);

7; // version TS from the SA for an update
public static final int ARRIVAL TS = 8; // arrival TS at the DA for an update
public static final int ACCEPT DA = 9; // the accept DA for the update

public static final int ACCEPT TS = 10; // the accept TS for the update

D5.2
Page 98 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

// return the database as Vector of Vector

public Vector getDatabase ()
{
Vector db = new Vector();
Vector row;
Iterator values = table.values () .iterator();
while (values.hasNext())
{
row = new Vector();
Entry e = (Entry) values.next();
row.add (new String("" + e.getDeleted()));
row.add (e.getLtag());
row.add (e.getType ());
row.add (e.getNA()) ;
row.add (e.getURL()) ;

row.add (new Long(e.getLifetime())); //int
row.add (e.getScope()) ;

row.add (new Long(e.getVersionTS())); //long
row.add (new Long(e.getArrivalTS())); //long
row.add (e.getAcceptDA()) ;

row.add (new Long(e.getAcceptTS())); //long
row.add (e.getAttr (""));

db.add (row) ;

}

return db;

public void loadDatabase (String dbase) {

String line, ltag, type, url, scope, acceptDA, attr = "";

int lifetime;
long versionTS, arrivalTS, acceptTS;
boolean deleted = false;
try {
BufferedReader in =
new BufferedReader (new FileReader (dbase)) ;
while ((line = in.readLine()) != null) {

StringTokenizer st = new StringTokenizer (line);
deleted = Boolean.valueOf (st.nextToken()) .booleanValue() ;

ltag = st.nextToken();
type = st.nextToken();

url = st.nextToken();

lifetime = Integer.parselnt (st.nextToken());
scope = st.nextToken();

versionTS = Long.parselong(st.nextToken());
arrivalTS = Long.parselong (st.nextToken());
acceptDA = st.nextToken();

acceptTS = Long.parselong (st.nextToken());

// Now the DA registers all the values of a given attribute

st.nextToken (", ") ;
StringBuffer SB = new StringBuffer (2048);
while (st.hasMoreTokens ()) {
SB.append (st.nextToken (",")) ;
SB.append (",") ;
}
attr = SB.toString();

addEntry(deleted, ltag, type, url, lifetime,

Const.fresh flag, versionTS, arrivalTs,

acceptDA, acceptTS);
}
in.close();
} catch (Exception e) {
da.appendDebug ("Database: :loadDatabase") ;
da.appendDebug (e) ;
}
daf.refreshDatabaseTable () ;

[/
// check lifetime and remove expired entries
=
public void rmExpiredEntries () {

boolean dbChanged = false;

RE
Draft B

D5.2
Page 99 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

long currtime = System.currentTimeMillis();
Iterator keys = table.keySet () .iterator();
while (keys.hasNext()) {
String k = (String) keys.next();
Entry e = (Entry) table.get (k);
int 1if = e.getLifetime() *1000;
if ((1if>0) && (currtime > (e.getArrivalTS() + e.getLifetime()*1000))) {
dbChanged = true;
keys.remove () ;
}

if (dbChanged) daf.refreshDatabaseTable();

// for "SrvReg"
// add a new entry of service registration to the database
// or replace/update its previous registration

public int addEntry(boolean deleted, String ltag, String type,
String url, int lifetime, String scope, String attr, int reg flag,
long versionTS, long arrivalTS, String acceptDA, long acceptTS) {
if (Const.DEBUG_MATCHING ENABLED)
{
da.appendDebug ("Database: :addEntry") ;
da.appendDebug ("\t"+deleted+"\t"+1ltag+"\t"+type+"\t"+url) ;
da.appendDebug ("\t"+lifetime+"\t"+scope+"\t"+attr+"\t"+reg flag+"\n\n");
}
if (!table.containsKey(ltag+url)) {
if ((reg flag & Const.fresh flag) == 0) { // incremental SrvReg
return Const.INVALID UPDATE;
}
Entry ent = new Entry();
table.put (ltag+url, ent);
}
Entry e = (Entry) table.get(ltagturl);
int result = e.update(deleted, ltag, url, type, lifetime, scope, attr,
reg flag, versionTS, arrivalTS, acceptDA, acceptTs);
daf.refreshDatabaseTable () ;
return result;

// for "SrvDeReg"
// remove the entry with the key: ltag+url (tag=="")
// or delete some attributes of this entry (tag!="")

public int rmEntry(String ltag, String url, String scope, String tag, long versionTS, String
acceptDA, long acceptTS)
{
if (table.containsKey(ltag+turl))
{
Entry e = (Entry) table.get(ltagturl);
if (!scope.equalsIgnoreCase (e.getScope()))
{
return Const.SCOPE _NOT SUPPORTED;
}
e.deletion(tag, versionTS, acceptDA, acceptTS);
}
daf.refreshDatabaseTable () ;
return Const.OK;

// for "SrvTypeRgst"
// get the list of service types for specified scope & naming authority

public String getServiceTypelist (String na, String scope)
{
if (Const.DEBUG MATCHING ENABLED) da.appendDebug (
"\nSrvTypeRgst" +

" \n ___________ " +
"\nDatabase: :getServiceTypelist (Naming Authority, Scope)" +
"\n- Naming Authority = "+ na +
"\n- Scope = "+ scope);

Vector typelist = new Vector();
Iterator values = table.values().iterator();
while (values.hasNext ())

RE D5.2
Draft B Page 100 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

Entry e = (Entry) values.next();
if (Const.DEBUG MATCHING ENABLED) da.appendDebug("Analysing database service --
> " 4+ e.getURL());

if (l!e.getDeleted()) // entry not deleted
{ if (scope.equalsIgnoreCase (e.getScope())) // match scope
{ if (na.equals("*") || na.equals("") || na.equalsIgnoreCase(e.getNA())
{ if (!typelist.contains(e.getType())) // has not been already listed

{
if (Const.DEBUG MATCHING ENABLED) da.appendDebug ("> OKAY --

> Service type " + e.getType() + " added to the list\n");
typelist.addElement (e.getType());
}
else
{
if (Const.DEBUG _MATCHING ENABLED) da.appendDebug ("> DISCARDED --
> This service type has been already added to the list\n");
}
}
else
{
if (Const.DEBUG MATCHING ENABLED) da.appendDebug ("> DISCARDED --
> Different naming authority (" + e.getNA() + " vs " + na + ")\n");
}
}
else
{
if (Const.DEBUG_MATCHING ENABLED) da.appendDebug ("> DISCARDED --
> Different scope (" + e.getScope() + " vs " + scope + ")\n");
}
}
else
{
if (Const.DEBUG_MATCHING ENABLED) da.appendDebug ("> DISCARDED --
> Service has been deleted\n");
}

}
StringBuffer tl = new StringBuffer();

for (int i=0; i<typelist.size(); i++)
{
String s = (String)typelist.elementAt (i);
if (tl.length() > 0) tl.append(",");
tl.append(s);
}
if (Const.DEBUG_MATCHING ENABLED) da.appendDebug ("\n-
Returned Service Type List = " + tl.toString() + "\n");
return tl.toString();

// for "SrvRgst"
// find the matched URLs with (type, scope, predicate, ltag)
// return: error code (short)

// number of matched URLs (short)
// URL blocks (decided by previous #URL)
/e

public int getTotalMatch() {
return totalMatch;

}

public Vector getMatchedEntry () {
return matchedEntry;

}

public byte[] getMatchedURL (String type, String scope,

String pred, String ltag, Vector ssExtList, int ecode,int ID, RSAPublicKey public

Key) {

if (Const.DEBUG MATCHING ENABLED) da.appendDebug ("\n*** SrvRgst ***" +
"\nDatabase: :getMatchedURL (Type, Scope, Predicate, Ltag)" +

"\n- Type = "+ type +

"\n- Scope = "+ scope +
"\n- Predicate = "+ pred +
"\n- Ltag = "+ ltag+"\n");

RE

D5.2

Draft B Page 101 of 158

pSHIELD

SPD middleware and overlay functionalities prototype
RE

byte[] buf null;

nn

// if scope ==
if (scope == "")

scope

if
{

('Util.shareString(daf.getScope(),

ecode Const.SCOPE_NOT_SUPPORTED;
if (Const.DEBUG MATCHING ENABLED)
NOT SUPPORTED!") ;
}

> SCOPE

// obtain matched entries
matchedEntry.clear();
Iterator values

while

{

(values.hasNext ())

Entry e (Entry) values.next();
if (e.match(type, scope, pred, ltag,
nst.AUTHENTICATION_FAILED)&& ID!=Const.SrvRgst))
{
if (Const.DEBUG MATCHING ENABLED)
> Service " + e.getURL() + " ADDED\n"
matchedEntry.addElement (
}
else
{
if (Const.DEBUG_MATCHING_ENABLED)
> Service " + e.getURL() + " FILTERED\n");
}

)i
e);

}

totalMatch = matchedEntry.size();
if (Const.DEBUG MATCHING ENABLED)

{

da.appendDebug ("Database: :getMatchedURL ()
da.appendDebug ("Database: :getMatchedURL ()

}

// filter matched entries
for (int i1=0; i<ssExtList.size();
SelectSortExt ss
if (ss.getID() == Const.SelectExt)
int bound ss.getBound () ;
if (bound < matchedEntry.size())
} else if (ss.getID() == Const.SortE
sortFilter (ss.getKey());

i++)
(SelectSortExt)

{

S

{

}
}

// write matched URLs to buffer
b.reset ();
try {
d.writeShort (ecode) ;
d.writeShort (matchedEntry.size());
// fill in matched URLs
(int i=0; i<matchedEntry.siz
Entry e = (Entry) matchedEnt
d.writeByte (0);
d.writeShort (e.getLifetime ()
if (ID==Const.SrvRgstAuth)
{
d.writeShort (e.getCryptoUR
d.write (e.getCryptoURL (pub
}
else
{
d.writeShort (e.getURL() .le
d.writeBytes (e.getURL()

for

d.writeByte (0);

buf b.toByteArray () ;

scope,

da.appendDebug ("Database

it means it's the default scope.
Const.defaultScope;

"oy

::getMatchedURL ()

table.values () .iterator () ;

(ecode!=Const.AUTHENTICATION ABSENT) && (ecode!=Co

da.appendDebug ("Database: :getMatchedURL ()

da.appendDebug ("Database: :getMatchedURL ()

-> Filtering Process Terminated.");
-> " + totalMatch + " services found.");

sExtList.elementAt (i) ;

matchedEntry.setSize (bound) ;
xt) |

// error code
// URL count

e(); i++) {
ry.elementAt (i) ;

) 7

L (publicKey) .length);
licKey));

ngth ()) ;
) i

RE

Draft B

D5.2
Page 102 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

} catch (Exception ex) {
da.appendDebug ("Databse: :getMatchedURL") ;
da.appendDebug (ex) ;

}

return buf;

}

private void sortFilter (String key) {
int size = matchedEntry.size();
if (size <= 1) return; // no need to sort
StringTokenizer st = new StringTokenizer (key, ",");
int nkey = st.countTokens();

Stringl[] keys = new String[nkey];
int[] types = new int[nkey];
int[] orders = new int[nkey];
Integer[] vals = new Integer[nkey];

for (int i=0; i<nkey; i++) {
String unit = st.nextToken();
StringTokenizer stl = new StringTokenizer (unit, ":");
if (stl.countTokens () < 3) {
da.append ("Incorrect sort key list");

}

keys[i] = stl.nextToken().trim(); // key
String s = stl.nextToken().trim(); // type
if (s.equalsIgnoreCase("s")) {
types[i] = Const.StringSort;
} else {
types[i] = Const.IntegerSort;
}
s = stl.nextToken().trim(); // order
if (s.equals("+")) {
orders[i] = Const.IncreasingOrder;
} else {
orders[i] = Const.DecreasingOrder;
}
if (stl.hasMoreTokens()) { // reference value
vals[i] = new Integer (stl.nextToken().trim());
} else {
vals[i] = null;

}
}
Vector se = new Vector (size);
for (int i=0; i<size; i++) {
Entry e = (Entry)matchedEntry.elementAt (i) ;
se.addElement (new SortEntry (e, keys, types, orders, vals));
}
Collections.sort (se);
matchedEntry.clear () ;
for (int i=0; i<size; i++) {
SortEntry s = (SortEntry) se.elementAt (i);
matchedEntry.addElement (s.getEntry());

/= e s
/**

* @author Vincenzo Suraci

*

* am URLorType: is a ServiceURL or a Service Type

* am scope: is a comma separated scope list

* ram tag: is a comma separated attribute tag list

* @param ltag: is a language tag

*

*

@return a String containing all the attribute tags that match with the Service URL or Type

* with the scope list, with the attribute tag list and with the language tag
*/

public String getAttrList (String URLOrType, String scope, String tag, String ltag)
{
if (Const.DEBUG MATCHING ENABLED) da.appendDebug("\n\nDatabase::getAttrList (url, scope, tag
, ltag)" +

"\n- URL or Service Type = "+ URLOrType +
"\n- Scope List = "+ scope +
"\n- Attribute Tag List = " + tag +
"\n- Language Tag = " + ltag + "\n");
/*
RE D5.2

Draft B Page 103 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

* Check if we have a ServiceURL or a ServiceTpye
*/
String url = URLOrType;
if (table.containsKey(ltag+turl))
{
//if (Const.DEBUG MATCHING ENABLED) da.appendDebug ("Database::getAttrList() -
> We have a URL!");
Entry e = (Entry) table.get(ltag+url);
if (e.getDeleted())
{
if (Const.DEBUG_MATCHING ENABLED) da.appendDebug("Database::getAttrList() -
> Service " + e.getURL() + " has been DELETED");
return "";
}
else if (e.isExpired())
{
if (Const.DEBUG MATCHING ENABLED) da.appendDebug("Database::getAttrList () -
> Service " + e.getURL() + " is EXPIRED");
return "";
}
else if (!Util.containsString(scope, e.getScope(), ","))
{
if (Const.DEBUG MATCHING ENABLED) da.appendDebug("Database::getAttrList() -
> Service " + e.getURL() + " has a different scope (" + e.getScope() + " is not contined in " + s
cope + ")");
return "";
}
return e.getAttr (tag);
}
String result = "";
String type = URLOrType;
if (Const.DEBUG MATCHING ENABLED) da.appendDebug("Database::getAttrList() -
> We have a TYPE!");
/*
* FROM RFC 2614
* For the type and scope, return a Vector of all ServicelLocationAttribute objects whose id
s match the String
* patterns in the attributelds Vector regardless of the Locator's locale. The request is m
ade independent of
* language locale. If no attributes are found, an empty vector is returned.
*/
Iterator it = table.keySet () .iterator();
while (it.hasNext())
{
Entry e = (Entry)table.get(it.next());
if (Const.DEBUG_MATCHING ENABLED) da.appendDebug("Database::getAttrList() -
> Evaluating Service " + e.getURL());
if (e.getDeleted())
{
if (Const.DEBUG_MATCHING ENABLED) da.appendDebug("Database::getAttrList() -
> Service " + e.getURL() + " has been DELETED");
return "";
}
else if (e.isExpired())
{
if (Const.DEBUG MATCHING ENABLED) da.appendDebug ("Database::getAttrList () -
> Service " + e.getURL() + " is EXPIRED");
return "";
}
else if (type.equalsIgnoreCase (e.getType()))
{
if (!Util.containsString(scope, e.getScope(), ",™))
{
if (Const.DEBUG_MATCHING ENABLED) da.appendDebug("Database::getAttrList() -

> Service " + e.getURL() + " has a different scope (" + e.getScope() + " is not contined in " + s
cope + ")");
return "";
}
if (result.equals("")) result = e.getAttr(tag);
else result += "," + e.getAttr(tag);
if (Const.DEBUG_MATCHING ENABLED) da.appendDebug("Database::getAttrList() -
> adding these attributes: " + e.getAttr(tag)):
}
else

{
if (Const.DEBUG MATCHING ENABLED) da.appendDebug ("Database::getAttrList () -

RE D5.2
Draft B Page 104 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
> Service " + e.getURL() + " has different type (\"" + e.getType() + "\" differes from \"" + type
+ ll\ll)ll);
}
}
return result;
}
/*

private String typeAttrList (String type, String scope,
String tag, String ltag) {
StringBuffer attrList = new StringBuffer();
Iterator values = table.values().iterator();
while (values.hasNext()) {
Entry e = (Entry) values.next();

if (Const. DEBUG_ENABLED)

{
da.append ("DEBUG->Database: :typeAttrList (...) Found a entry:");

da.append("entry.type="+e.getType () +"2=2"+type) ;

da.append ("entry.scope="+e.getScope () +"?=2"+scope) ;
da.append ("entry.ltag="+e.getLtag()+"?=2"+1tag);
da.append ("entry:deleted="+e.getDeleted()) ;
da.append ("entry:attrs="+e.getAttr (tag));

if (!'e.getDeleted() &&
type.equalsIgnoreCase (e.getType()) &&
scope.equalsIgnoreCase (e.getScope()) &&
ltag.equalsIgnoreCase (e.getLtag())) {
String s = e.getAttr(tag);
if (attrlList.length() > 0) attrList.append(",");
attrList.append(s) ;
}
}
return attrList.toString();

// find new states based on selective/complete & (rdalList, rtsList)
// sort new states on their accept IDs and return in TreeMap

public Vector findNewStates (String rscope,
Vector rdalist, Vector rtsList, int etrpType) {

Vector tmp = new Vector();
Iterator values = table.values () .iterator();

while (values.hasNext ()) {
Entry e = (Entry) values.next();
String ada = e.getAcceptDA() ;
long ats = e.getAcceptTS () ;
int index = rdalList.indexOf (ada); // a requested subset?
long rts = 0;
if (index != -1) { // it is a requested subset, find rts
rts = ((Long) rtsList.get (index)).longValue();
}
if (Util.shareString(rscope, e.getScope(), ",")) {
if (index != -1 && ats > rts ||
index == -1 && etrpType == Const.complete) {

tmp.addElement (e) ;

}
}
Collections.sort (tmp) ;
return tmp;

}

public String toString () {

String t ="\n\n----- Database Contents ----- \n\n";

Iterator i = table.values().iterator();

int n =1;

while (i.hasNext()) {

t += "\nEntry "+n+")\n"+ ((Entry)i.next()).toString();
}
return t;
RE D5.2

Draft B Page 105 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

RE D5.2
Draft B Page 106 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

package eu.artemis.shield.discovery.slpdaemon.impl.slpdaemon.html

package eu.artemis.shield.discovery.slpdaemon.impl;

import java.net.InetAddress;
public class slpdaemon {

public static String version

private static SlpDaemonCommandLine sdcm =

Const.MAJOR + "."

null;

private static da f = null;

static int width = 600;

static int height = 350;

//static String scope = "default";

public static void main(String argsl[])

{
init ()
if (parse (args))
{
//Start the SLP Daemon
startDaemon () ;
}
else
{
printInfo();
}
}

public static void stop ()

{
f.actionExit () ;

+ Const.MINOR;

da.append ("SLP Service Registry v" + version + " stopped");

}

private static void init()
{
/*
* STANDARD CONFIGURATION
*/

/*
Const.DEBUG ENABLED =
Const.
Const.
Const.
Const.

IP LINKLOCAL = true;
IP SITELOCAL = true;
IP_LOOPBACK = false;
IP_GLOBAL = false;

//Const.IPv6_ENABLED =
Const.GUI_ENABLED = true;
Const.0SGI_BUNDLE =

Const.SERVLET ENABLED =

Const.USE JDBC =
*/

false;

Const.FEDERATION ENABLED =
}

false;

false;
false;

//
//
//
//

false;

private static void printInfo()

{

169.254.0.0/16

127.0.0.0/8
all the others

false;

System.out.println ("\npSHIELD Project - slpdeamon v" + version);
System.out.println ("Author: Vincenzo Suraci\n");

System.out.println ("USAGE:
nomcast] [-nomesh]
sum summary] [-etrp typel\n");

System.out.println ("debug

System.out.println ("nogui

System.out.println("silent

System.out.println ("secure

System.out.println("ipv4
System.out.println("ipvé

slpdeamon
[-port port number]

[-1load] [-save]
[-global/site/link/10]

[-debug]

[-gui]
[-scope scope]

enables debug information");

disables slpdaemon gui");

[-servlet]

10.0.0.0/8 or 172.10.0.0/16 or 192.168.0.0/15

[-ipv4] [-

[-dbase database] [-

disables the slpdaemon messages on the console");
- enables authentication and authorization");

//System.out.println("servlet- enables slpdaemon servlet");
- forces the slpdaemon to bind an ipv4 address");
- forces the slpdaemon to bind an ipv6 address");

Draft B

RE

D5.2
Page 107 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
System.out.println ("port -
forces the slpdaemon to use the specified port number");
System.out.println("global - forces the slpdaemon to use a global address");
System.out.println("site - (default) slpdaemon uses a site local address");
System.out.println("link - forces the slpdaemon to use a link local address");
System.out.println("lo - forces the slpdaemon to use a loopback address");
System.out.println ("jdbc -
enables the slpdaemon to use a SQL database to store services");
System.out.println ("scope - forces the slpdaemon to use the specified scope");
System.out.println ("dbase - forces the slpdaemon to use the specified database");
System.out.println ("sum - forces the slpdaemon to use the specified summary");
System.out.println("nomcast - forces the slpdaemon to not use multicast messages");
System.out.println("nomesh - forces the slpdaemon to not use mesh capabilities");
System.out.println ("load - forces the slpdaemon to load previously saved services");
System.out.println ("save -
forces the slpdaemon to save registered services when exiting");

System.
forces the

}

private static boolean parse(String|]

{

for
{

(int 1 = 0;

out.println ("etrp -
slpdaemon to used the specified type of anti entropy algorithm");

i < args.length;

args)

i++)

if (args[i].toLowerCase () .equals ("-debug"))

{

Const

}

else if

{

Const

Const.
Const.
Const.

}

else if
{

Const.
Const.
Const.
Const.

}

else if

{

Const.
Const.
Const.
Const.

}

else if

{

Const.
Const.
Const.
Const.

}

else if

{

Const.

}

else if

{

Const.

}

else if

{

Const.

}

else if

{

Const.

}

else if

{

Const.

Const

.DEBUG_ENABLED = true;

(args[i].toLowerCase ()

.IP_LINKLOCAL =
IP SITELOCAL = false;
IP LOOPBACK = false;
IP_GLOBAL = false;

true;

(args[i].toLowerCase ()

IP LINKLOCAL
IP SITELOCAL = false;
IP _LOOPBACK = false;
IP_GLOBAL = true;

false;

(args[i] .toLowerCase ()

IP LINKLOCAL = false;

IP_SITELOCAL = true;
IP LOOPBACK = false;
IP GLOBAL = false;
(args[i].toLowerCase ()
IP_LINKLOCAL = false;
IP_SITELOCAL = false;
IP_LOOPBACK = true;

IP GLOBAL = false;

(args[i] .toLowerCase ()
IPV6_ENABLED = false;
(args[i] .toLowerCase ()
IPV6_ENABLED = true;

(args[i] .toLowerCase ()
GUI_ENABLED = false;

(args[i] .toLowerCase ()

CONSOLE_ENABLED =

(args[i] .toLowerCase ()

SERVICE_REGISTRATION AUTH REQUIRED =

.equals ("-1ink")

.equals ("-global"))

.equals ("-site"))
.equals ("-1o"))
.equals ("-ipv4"))

.equals ("-ipve"))

.equals ("-nogui"))

.equals ("-silent"))

false;

.equals ("-secure"))

.USER_AUTH REQUIRED = true;

true;

Draft B

RE

D5.2

Page 108 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

else if (args([i].toLowerCase () .equals("-servlet"))
{ Const.SERVLET ENABLED = true;
;lse if (args[i].toLowerCase () .equals ("-jdbc"))
{ Const.USE_JDBC = true;
;lse if (args[i].toLowerCase () .equals ("-scope"))
{ Const.SCOPE = args[++i];
;lse if (args[i].toLowerCase () .equals ("-dbase"))
{ Const.DBASE = args[++i];
;lse if (args[i].toLowerCase () .equals ("-summary"))
{ Const.SUMMARY = args[++i];
;lse if (args[i].toLowerCase () .equals ("-nomesh"))
{ Const.MESH ENHANCED ENABLED = false;
;lse if (args[i].toLowerCase () .equals ("-nomcast"))
{ Const .MULTICAST ENABLED = false;
;lse if (args[i].toLowerCase () .equals("-load"))
{ Const.LOAD DATA ENABLED = true;
;lse if (args[i].toLowerCase () .equals("-save"))
{ Const.SAVE DATA ENABLED = true;
;lse if (args[i].toLowerCase () .equals ("-port"))
{

try

{ .

it++;
Const.port = Integer.parselnt(argslil]);
iatch (Exception e)

{

return false;

}

telse if (args[i].toLowerCase () .equals ("-etrp"))

{
try
{

i++;

Const.ETRP_TYPE = Integer.parselnt(args[i]);

}

catch

{

(Exception e)

return false;

}
}

else

{

return false;

}
}

return true;

}

private static void startDaemon ()

{

try
{
/*boolean mcast = true;
boolean mesh enhanced = true;
boolean loaddata = false;
boolean savedata = false;
int etrpType; */
RE D5.2
Draft B Page 109 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

}

// set InetAddress for this DA
InetAddress ia = Util.getLocalInetAddress();

/*1f (ia == null) {
ia = InetAddress.getLocalHost();
System.out.println ("Bound to localhost");
}x/
// set scope for this DA
/*String scope = System.getProperty("eu.artemis.shield.discovery.slpdaemon.scope") ;
if (scope == null) scope = Const.defaultScope;

// database file
String dbase = System.getProperty("eu.artemis.shield.discovery.slpdaemon.dbase") ;
if (dbase == null) dbase = Const.defaultDbase;

// summary file
String summary = System.getProperty("eu.artemis.shield.discovery.slpdaemon.summary") ;
if (summary == null) summary = Const.defaultSummary;

// multicast DAAdvert or not?
String s = System.getProperty("eu.artemis.shield.discovery.slpdaemon.mcast") ;
if (s != null && s.equalsIgnoreCase("no")) mcast = false;

// carry "mesh-enhnaced" attribute keyword in DAAdvert or not?
s = System.getProperty("eu.artemis.shield.discovery.slpdaemon.mesh") ;

if (s != null && s.equalsIgnoreCase("no")) mesh enhanced = false;

// use selective or complete anti-entropy

String s = System.getProperty("eu.artemis.shield.discovery.slpdaemon.mode") ;
if (s != null && s.equalsIgnoreCase ("complete")) {
etrpType = Const.complete;
} else {
etrpType = Const.selective;
}x/
// load data or not?
/*s = System.getProperty ("eu.artemis.shield.discovery.slpdaemon.load") ;
if (s != null && s.equalsIgnoreCase("yes")) loaddata = Const.LOAD DATA ENABLED;

// save data or not?

s = System.getProperty("eu.artemis.shield.discovery.slpdaemon.save") ;

if (s != null && s.equalsIgnoreCase("yes")) savedata = Const.SAVE DATA ENABLED; */
f = new da(ia);

sdcm = new SlpDaemonCommandLine (f);
sdcm.start () ;

da.append ("SLP Service Registry v" + version + " started");

catch (Exception e)

{

da.append (e) ;

}

Draft B

RE D5.2
Page 110 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

package eu.artemis.shield.discovery.slpdaemon.impl.slpMsgComposer.html

/~k~k
* Compose various SLPv2 messages (protocol stack)

* Return the message in a byte array
*

*/
package eu.artemis.shield.discovery.slpdaemon.impl;

import java.io.*;
import java.util.*;

public class slpMsgComposer {

DataOutputStream d;
ByteArrayOutputStream b;

slpMsgComposer () {
b = new ByteArrayOutputStream() ;
d = new DataOutputStream(b) ;

/**
* Compose SLP common message header, flags may be set, there
* may exist extensions, language tag is NOT included here

Kpm oo o B it +
*| Version | Function-ID | Length
Kpm oo B R o o +
*| Length cont. |O|F|R]| Reserved | Next Ext. Offset
e B e R e Fom e B +
* | Next Ext. Offset Cont. | XID
K B it +
*/
private void Header (int type, int len, int flag, int xid) {
try {

b.reset ();

d.writeByte (Const.version); // SLP version

d.writeByte (type); // Function type

d.writeByte (0); // len

d.writeShort (len) ; // length

d.writeShort (flag) ; // flag bits

d.writeByte (0); // next ext. offset

d.writeShort (0); // next ext. offset

d.writeShort (xid) ; // XID

} catch (Exception e) {
da.append (e) ;
}

/**

Put a string in the byte[], precede with its length.
* The string could be empty, with a length of 0.

If the string is null, then no action is taken.

*/
private void putString(String s) {
if (s == null) return;
try {
d.writeShort (s.length());
if (s.length() > 0) {
d.writeBytes(s);
}
} catch (Exception e) {
da.append (e) ;
}
}
/**
* put an integer as a byte (normally zero) in the bytel[]
*/
private void putByte (int z) {

try {
d.writeByte(z);
} catch (Exception e) {
da.append(e.toString());
}

RE D5.2
Draft B Page 111 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
/**
* put an integer as a short (normally as error code) in the bytel]
*/
private void putShort (int z) {
try {
d.writeShort (z);
} catch (Exception e) {
da.append(e.toString());
}
}
/**
* put an integer as an integer in the byte[]
*/

private void putInt (int z) {
try {
d.writeInt(z);
} catch (Exception e) {
da.appendDebug ("slpMsgComposer: :putInt () ") ;
da.appendDebug (e) ;
}
}

private void putlong(long z) {
try {
d.writelong(z);
} catch (Exception e) {
da.appendDebug ("slpMsgComposer: :putLong () ") ;
da.appendDebug (e) ;
}

/**
* put URL entry in the byte[], assume "# of URL auths" is zero
e o o +
*| Reserved | Lifetime | URL length
Ko m e e o +
*|] URL len cont. | URL (variable length) \
e o - +
*| # of URL auths| Auth. blocks (if any) \
K +
*/
private void putURL(String url, int lifetime) {
try {
d.writeByte (0); // reserved
d.writeShort (lifetime) ; // lifetime
d.writeShort (url.length()); // len of URL
d.writeBytes (url); // URL string
d.writeByte (0); // # of authenticate
} catch (Exception e) {
da.append(e.toString());
}
}
/**
* calculate string length, precede with a short integer length field
*/
private int strlen(String s)
{
if (s != null)
{
return (2 + s.length());
}
return 2;
}
/**
* calculate URL-entry length, assume "# of url auths" is zero
*/
private int urllen(String url) {
return (6 + url.length());
}
/**
* service request <#1>
B et o +
*| Length of <PRList> | <PRList> string \
K o +
RE D5.2

Draft B Page 112 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

*| Length of <service-type> | <service-type> string \
B et o +
*| Length of <scope-list> | <scope-list> string \
H o +
*| Length of predicate string | service request predicate \
R e L T e et ettt +
*| Length of <SLP SPI> string | <SLP SPI> string \
H o +
*/

public byte[] SrvRgst(int xid, int flag, String ltag, String pr,
String type, String scope, String pred, String spi) {
Const.header len + strlen(ltag) + strlen(pr) +
strlen(type) + strlen(scope) + strlen(pred) + strlen(spi);
Header (Const.SrvRgst, len, flag, xid);

int len

putString(ltag); // language tag
putString (pr); // PRList
putString (type) ; // service type
putString (scope) ; // scope list
putString (pred) ; // predicate
putString (spi); // SPI

if (Const.MESSAGE LOG ENABLED) da.append("\nOUTGOING SRVRQST MESSAGE" +
"\n- Xid = "+ xid +

"\n- Ltag = "+ ltag +

"\n- PRList = "+ pr +

"\n- Type = " + type +

"\n- Scope = " + scope +

"\n- Predicate = " + pred +

"\n- SPI = " + spi +

"\n");

return b.toByteArray();

/**

* service reply (reply for service request) <#2>
A e +
*| Error Code | URL entry count

K o +
* | <UR1l entry 1> . <URL entry N> \
A e +
*/

public byte[] SrvReply(int xid, String ltag, byte[] buf) {
int len = Const.header len + strlen(ltag) + buf.length;
Header (Const.SrvRply, len, Const.normal flag, xid);

putString(ltag); // language tag
try {
d.write (buf, 0, buf.length); // ErrCode + #URL + each entry

} catch (Exception e) {
da.append(e.toString());
}
if (Const.MESSAGE_LOG_ENABLED) da.append ("\nOUTGOING SRVREPLY MESSAGE" +

"\n- Xid = "+ xid +
"\n- Ltag = "+ ltag +
ll\n") ;

// if (Const.0OSGI BUNDLE) daOSGi.visual log(" (PSM): SLP SERVICE DISCOVERY RESPONSE");
return b.toByteArray();

}

/**

* secure service reply (reply for secure service request) <#14>
H o +

*| Error Code | URL entry count

K e B et +

* | <UR1l entry 1> e <URL entry N> \

H o +

*/

public byte[] SrvReplyAuth (int xid, String ltag, byte[] buf) {
int len = Const.header len + strlen(ltag) + buf.length;
int ecode=0;
Header (Const.SrvRplyAuth, len, Const.normal flag, xid);

putString(ltag) ; // language tag
try {
d.write(buf, 0, buf.length); // ErrCode + #URL + each entry

for (int 1=0; i<2; i++) {
ecode <<= 8§;
ecode += buf[i] & Oxff;
}
} catch (Exception e) {

RE D5.2
Draft B Page 113 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

da.appendDebug (e) ;
}
if (ecode==Const.AUTHENTICATION FAILED) da.displayMessage ("Authentication Failed", C
onst.EXCLAMATION, "Authentication check");
if (ecode==Const.AUTHENTICATION ABSENT) da.displayMessage ("Authentication Absent", C
onst.EXCLAMATION, "Authentication check");

if (Const.MESSAGE LOG ENABLED) da.append("\nOUTGOING SRVREPLYAUTH MESSAGE" +

"\n- Xid = "+ xid +

"\n- Ltag = "+ ltag +

"\n- Ecode= "+ ecode +
ll\n") ,.

// if (Const.0SGI BUNDLE) daOSGi.visual log(" (PSM): SLP SERVICE DISCOVERY RESPONSE");
return b.toByteArray();

/**

* service registration <#3>

K +
x| <URL-Entry> \
o B e +
*| Length of service type string | <service-type> \
K e +
*| Length of <scope-list> | <scope-list> \
K B e it e +
*|] Length of attr-list string | <attr-list> \
Ko e o B +
*| # of AttrAuths | (if present) Attribute Authentication Blocks \
o B e +
*/

public byte[] SrvReg(int xid, int flag, String ltag, String url,
int lifetime, String type, String scope, String attr) {
int len = Const.header_ len + strlen(ltag) + urllen(url) +
strlen(type) + strlen(scope) + strlen(attr) + 1;
Header (Const.SrvReg, len, flag, xid);
putString(ltag); // language tag
putURL (url, lifetime);
putString (type) ; // service type
putString (scope) ; // scope list
putString (attr); // attr list
putByte (0) ; // num of attrAuths
if (Const.MESSAGE_LOG_ENABLED) da.append ("\nOUTGOING SRVREG MESSAGE"+
"\n- Xid = "+ xid +
"\n- Ltag = "+ ltag +
"\n- Type = " + type +
"\n- Scope = " + scope +
"\n- Url = " + url +
"\n- Lifetime = " + lifetime +
"\n- Attribute List = " + attr +
"\n");
return b.toByteArray();

/**

* service De-registration <#4>

K e e +
*| Length of <scope-list> | <scope-list> \
K e e +
* | <URL-entry> \
H o +
*| Length of <tag-list> [<tag-list> \
K e B et +
*/

public byte[] SrvDeReg(int xid, String ltag, String scope, String url,
int ltime, String tag) {
int len = Const.header len + strlen(ltag) + strlen(scope) +
urllen(url) + strlen(tag);
Header (Const.SrvDeReg, len, Const.normal flag, xid);

putString(ltag); // language tag
putString (scope) ; // scope list
PutURL (url, ltime); // URL
putString (tag) ; // tag list
if (Const.MESSAGE LOG ENABLED) da.append("\nOUTGOING SRVDEREG MESSAGE" +
"\n- Xid = "+ xid +
"\n- Ltag = "+ ltag +
"\n- Scope = " + scope +
"\n- Url = " + url +
"\n- Tag List = " + tag +
RE D5.2

Draft B Page 114 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
"\n") ;
return b.toByteArray();
}
/**
* service ack (reply for SrvReg & SrvDeReg) <#5>
K +
*| Error Code
o +
*/
public byte[] SrvAck(int xid, String ltag, int errcode) {
int len = Const.header len + strlen(ltag) + 2;
Header (Const.SrvAck, len, Const.normal flag, xid);
putString(ltag) ; // language tag
putShort (errcode) ; // ErrCode
if (Const.MESSAGE LOG ENABLED) da.append ("\nOUTGOING SRVACK MESSAGE" +
"\n- Xid = "+ xid +
"\n- Ltag = "+ ltag +
"\n- Error = " + errcode +
"\n") ;
// if (Const.0OSGI_ BUNDLE) daOSGi.Visualilog("(PSM): SLP SERVICE REGISTRATION ACK");
return b.toByteArray();
}
/**
* attribute request <#6>
K e +
*| Length of PRList | <PRList> string
K B et +
* Length of URL | URL
K e +
*| Length of <scope-list> | <scope-list> string
K B et +
*|] Length of <tag-list> string | <tag-list> string
K B et +
*| Length of <SLP SPI> string | <SLP SPI> string
K o +
*/
public byte[] AttrRgst (int xid, String ltag, String pr, String url,
String scope, String tag, String spi) {
int len = Const.header len + strlen(ltag) + strlen(pr) +
strlen(url) + strlen(scope) + strlen(tag) + strlen(spi);
Header (Const.AttrRgst, len, Const.normal flag, xid);
putString(ltag);
putString (pr) ;
putString(url) ;
putString (scope);
putString (tag) ;
putString (spi) ;
if (Const.MESSAGE_LOG_ENABLED) da.append ("\nOUTGOING ATTRRQST MESSAGE"+
"\n- Xid = "+ xid +
"\n- Ltag = "+ ltag +
"\n- PRLIst = " + pr +
"\n- Url = " + url +
"\n- Scope = " + scope +
"\n- Tag List = " + tag +
"\n- SPI = " + spi +
"\n");
return b.toByteArray();
}
/**
* attribute reply (reply for attribute request) <#7>
B e B it E T +
* | Error Code | Length of <attr-list>
K e e +
* | <attr-list> \
M o +
*| # of AttrAuths | Attribute authentication block (if present) \
O R B e ittt +
*/

public byte[] AttrReply(int xid, String ltag, int ecode, String buf) {
int len = Const.header len + strlen(ltag) + 3 + strlen(buf);
Header (Const.AttrRply, len, Const.normal flag, xid);

putString(ltag); // language tag
putShort (ecode) ; // ErrCode
putString (buf) ; // attr-list
putByte (0) ; // # of AttrAuths
RE D5.2

Draft B Page 115 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

if (Const.MESSAGE LOG ENABLED) {
if (Const.FORMAT MESSAGE LOG ENABLED) ({

int i = 0;
StringTokenizer st = new StringTokenizer (buf,™)");
while (st.hasMoreTokens()) {
if (i!=0)
temp += st.nextToken () .substring(2) + "\n
else
temp += st.nextToken () .substring(l) + "\n
i++;
}
buf = temp;
}
da.append ("\nOUTGOING ATTRREPLY MESSAGE"+
"\n- Xid = "+ xid +
"\n- Ltag = "+ ltag +
"\n- Error = " + ecode +
"\n- Attribute List = " + buf +
"\n");
}
return b.toByteArray();
}
/**
* directory agent advertisement <#8>
K e B et +
* | Error Code | DA Stateless Boot Timestamp
H e B et et T +
*|] DA Stateless Boot Time cont. | Length of URL
K e B et +
* | URL
H e +

e o o +
*| # Auth Blocks | Authentication blocl (if any)
Ko m e o o +
*/
public byte[] DAAdvert (int xid, int flag, String ltag, int ts,
String url, String scope, String attr, String spi)
int len = Const.header len + 7 + strlen(ltag) + strlen(url)
strlen(scope) + strlen(attr) + strlen(spi);

String temp

— un.
= ’

Length of SLP <SPI>

Header (Const.DAAdvert, 1

en, flag

SLP <SPI> string

’

//

xid)

’

putString(ltag) ;

putShort (0) ;
putInt (ts);

putString (ur
putString (sc
putString (at
putString (sp
putByte (0) ;

if (Const.MESSAGE LOG ENABLED && Const.DAAdvert LOG ENABLED)

RT MESSAGE"+

1);
ope) ;
tr);
i);

//
//
//
//
//
//
//

language tag
ErrCode

boot timestamp

URL

scope list
attribute 1i
SLP SPI

st

Auth blocks

+

da.append ("\nOUTGOING DAADVE

"\n- Xid = "+ xid +
"\n- Ltag = "+ ltag +
"\n- Boot TS = "+ ts +
"\n- Url = " + url +
"\n- Scope = " + scope +
"\n- Attribute List = " + attr +
"\n- SPI = " + spi +
"\n");
return b.toByteArray();
/**
* service type request <#9>
H o +
* | Length of PRList | <PRList> string
K e e R e L L L L L et +
*| Length of Naming Authority | <Naming Authority String> |
H o +
*| Length of <scope-list> | <scope-list> string
K e B et +
*/
RE D5.2
Draft B Page 116 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

public byte[] SrvTypeRgst (int xid,

String ltag, String pr, String na,

String scope) {

int len;
if (na.equals("-1")) {

len = Const.header len + strlen(ltag) + strlen(pr) +
2 + strlen(scope);

} else {

len = Const.header len + strlen(ltag) + strlen(pr) +
strlen(na) + strlen(scope);

}

Header (Const.SrvTypeRgst, len,

putString(ltag) ;
putString(pr);

if (na.equals("-1")) {
putShort (OxXFFFF) ;
} else {

putString(na);
}
putString (scope) ;
if (Const.MESSAGE LOG ENABLED)

Const.normal flag, xid);
// language tag
// PRList
// Naming Authority
// -1 for all

// scope list
da.append ("\nOUTGOING SRVTYPERQST MESSAGE"+

"\n- Xid = "+ xid +

"\n- Ltag = "+ ltag +

"\n- PRList = " + pr +

"\n- Naming Authority = " + na +
"\n- Scope = " + scope +

ll\nll) ;
return b.toByteArray();

/**

* service type reply (reply for service type request) <#10>

K e B ettt T +
* | Error Code | Length of <srvType-list>
Ottt o +
* | <srvType-list> \
K e +
*/

public byte[] SrvTypeReply (int xid, String ltag, int ecode, String buf) {
int len = Const.header len + strlen(ltag) + 2 + strlen(buf);

Header (Const.SrvTypeRply, len,
putString(ltag) ;

putShort (ecode) ;

putString (buf) ;

if (Const.MESSAGE LOG ENABLED)

"\n- Xid = "+ xid +

"\n- Ltag = "+ ltag +

"\n- Error = " + ecode +
"\n- Type List = " + buf +
ll\nll) ,.

return b.toByteArray();

/~k~k

Const.normal flag, xid);
// language tag
// ErrCode
// srvtype-list
da.append ("\nOUTGOING SRVTYPEREPLY MESSAGE"+

* DataRgst <#12> and DataRplyCmpl <#13> message

e 4=

* | Anti-entropy type ID |

R R

* | Accept ID Entry 1

*/

____________________________ +
Number of Accept ID entries |
____________________________ +

Accept ID Entry k \
____________________________ +

public byte[] AntiEtrpRgst (int xid, String ltag, int type,

Vector
int size = 0;
for (int i1=0; i<adalist.size()

adalList, Vector atsList) {

; o1++) |

size += 10 + ((String)adalist.elementAt(i)) .length();

}

int len = Const.header len + strlen(ltag) + 4 + size;
Header (Const.AntiEtrpRgst, len, Const.normal flag, xid);

putString (ltag);

putShort (type) ;

putShort (adalist.size());

for (int i1=0; i<adalist.size()

// language tag

; o1++) |

putLong (((Long)atsList.elementAt (i)) .longValue());
putString ((String)adalist.elementAt (1)) ;

}

if (Const.MESSAGE LOG ENABLED)
"\n- Xid = "+ xid +

"\n- Ltag = "+ ltag +

da.append ("\nOUTGOING ANTIETRPRQST MESSAGE"+

Draft B

RE

D5.2

Page 117 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
"\n- Entropy Type = " + type +
"\n- ATS List = " + atsList.toString() +
"\n- ADA List = " + adalist.toString() +
"\n");
return b.toByteArray();
}
/**
* append MeshFwd extension & adjust original message
K e B it +
*| MeshFwd Extension ID = 0x0006 | Next Extension Offset (NEO) |
Afmm e o e +
*| NEO Contd. | Fwd-ID | Version Timestamp
o R et o B it +
* | Version Timestamp, contd.
O e ittt e +
* Version Timestamp, contd. | Accept ID \
K e B it +
*/
public byte[] MeshFwdExt (byte[] buf, int id, long versionTS,
String ada, long ats) {
if (ada == null) {
//da.appendDebug ("Null acceptDA!");
return buf;
}
int len = Util.parselnt (buf, 2, 3);
int alen = 14 + 10 + ada.length();
adjustMesg (buf, alen);
try {
b.reset();
d.write(buf, 0, len);
d.writeShort (Const.MeshFwdExt) ; // mesh-forwarding extension
d.writeShort (0) ; // next ext. offset
d.writeByte (0); // next ext. offset cont.
d.writeByte (id) ; // Fwd-ID
d.writeLong (versionTS) ; // version timestamp
d.writeLong (ats); // accept TS
d.writeShort (ada.length()); // length of accept DA URL
d.writeBytes (ada) ; // accept DA URL
} catch (Exception e) {
da.append(e.toString());
}
return b.toByteArray();
}
/**
* append Select extension & adjust original message
A e +
*| Select Extension ID = 0x4002 | Next Extension Offset (NEO)
Ko fom e o o +
*| NEO Contd. | Number of URL Entries
Ao m e e +
*/

public byte[] SelectExt (byte[] buf, int num) {
int len = Util.parselnt (buf, 2, 3);

int alen = 7;

adjustMesg (buf, alen);

try {
b.reset () ;
d.write(buf, 0, len);
d.writeShort (Const.SelectExt) ; // selection extension
d.writeShort (0); // next ext. offset
d.writeByte (0); // next ext. offset cont.
d.writeShort (num) ; // number of URL entries

} catch (Exception e) {
da.append(e.toString()) ;

}
return b.toByteArray () ;

/‘k‘k

* append Sort extension & adjust original message

R e L L L L e L e B e L L L P L L L L Pt +
* | Sort Extension ID = 0x4003 | Next Extension Offset (NEO)
o R e Fom e Fomm - Fom +
*| NEO Contd. | Length of sort key list | sort key list \
e e e L L e R e L L L e e e et B T +
*/
RE D5.2

Draft B Page 118 of 158

pSHIELD
RE

SPD middleware and overlay functionalities prototype

public byte[] SortExt (byte[] buf, String key) {
int len = Util.parselnt (buf, 2, 3);
int alen = 7 + key.length();
adjustMesqg (buf, alen);

try {
b.reset();
d.write (buf, 0, len);
d.writeShort (Const.SortExt) ;
d.writeShort (0); //
d.writeByte (0); //
d.writeShort (key.length()) ; //
d.writeBytes (key) ; //

} catch (Exception e) {
da.append(e.toString()) ;

}

return b.toByteArray();

/~k~k
* AttrList extension
*/

// selection extension

next ext. offset

next ext. offset cont.
length of key

key string

public byte[] AttrListExt (byte[] buf, Entry entry) {

int len = Util.parselnt (buf, 2, 3);
int alen = 10;
String url =
String attr = "";
if (entry != null) {

url = entry.getURL();

attr = entry.getAttr("");

alen += url.length() + attr.length();

wn o,
’

}
adjustMesg (buf, alen);
try {
.reset ();
.write(buf, 0, len);
.writeShort (Const.AttrListExt) ; //
.writeShort (0); //
.writeByte (0); //
putString(url) ;
putString(attr);
d.writeByte (0); //
} catch (Exception e) {
da.append(e.toString());

Q.0 0 00

}
return b.toByteArray();
}
/**
* adjust source message for the adding extension,
* (1) packet length (add new length)
* (2) last extension's NEO links to new one
*/
private void adjustMesg (byte[] buf, int alen) {
int plen = Util.parselnt (buf, 2, 3);
int nextExt = Util.parselnt (buf, 7, 3);
int lastExtAddr = 7;
while (nextExt != Const.EndOfExt) {
lastExtAddr = nextExt+2;

AttrList extension
next ext. offset
next ext. offset cont.

num auths

need to change:

nextExt = Util.parselInt (buf, lastExtAddr, 3);

}
Util.writeInt (buf, lastExtAddr, plen, 3); /
Util.writeInt (buf, 2, plen+alen, 3); /

/ new ext. starting point
/ adjust message length

package eu.artemis.shield.discovery.slpdaemon.impl.slpMsgParser.html

/**

* SLPv2 message parser (protocol stack)

* Use separate get-methods to obtain each field after parsing

*

*/
package eu.artemis.shield.discovery.slpdaemon.impl;

import java.io.*;

import java.security.KeyFactory;

import java.security.NoSuchAlgorithmException;
import java.security.Signature;

RE
Draft B

D5.2
Page 119 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

import java.security.interfaces.*;

import java.security.spec.InvalidKeySpecException;
import java.security.spec.X509EncodedKeySpec;
import java.util.*;

import java.net.InetAddress;

import java.security.InvalidKeyException;

import java.security.SignatureException;

//import eu.artemis.shield.discovery.pdm slp.sdc.slpapi.ServiceLocationAttribute;

public class slpMsgParser {

private static boolean WRITE LOG ON FILE = false;

da daf;

Database database;

int version, func id, packet len, slp flag, ext offset, xid,
ecode, lifetime,attrlength;

String ltag, scope, attr, pred, spi, tag, type, prlist, url, attrl;

String attrList, typelist, urllList;

int daBootTS; // DA boot timestamp

int meshFwdID; // in MeshFwd ext.

long versionTS; // version TS from the SA for the update
long arrivalTs; // arrival TS at the DA for the update
String acceptDA; // the accept DA for the update

long acceptTS; // the accept TS for the update

Vector atsList, adalist; // used in DataRgst

Vector ssExtList; // used in SrvRgst

boolean hasSelectExt; // whether has Select extensions
Vector urlVector, attrVector; // used in AttrList extension

boolean hasAttrListExt; // whether has AttrList extensions

int totalMatch; // number of matches before selection
Vector matchedEntry; // matched entries in database

int etrpType;

PrintStream ps;

long after, before;
InetAddress daTCPServeria;
RSAPublicKey publicKey;

/*

slpMsgParser (da daf) throws Exception { // for DA
init (daf);

}

*/

slpMsgParser (da daf, InetAddress ia) throws Exception { // for DA
init (daf);
daTCPServeria = ia;

url = ia.getHostAddress();

da.appendDebug ("slpMsgParser: :slpMsgParser->ia.hostAdrr ="+ ia.getHostAddress());

}

public InetAddress getTCPServerInetAddress ()
{
return daTCPServeria;

}

private void init(da daf) throws Exception { // for DA
this.daf = daf;
database = daf.getDatabase();
atsList = new Vector (10);
adaList = new Vector (10);
ssExtList = new Vector (10);
urlVector = new Vector (10);
attrVector = new Vector (10);
if (WRITE_LOG_ON_FILE) ({
File £ = new File(".","logTest.txt");
FileOutputStream fos = new FileOutputStream(f) ;
ps = new PrintStream(fos);

}

slpMsgParser () { // for UA/SA
ssExtList = new Vector (10);
urlVector = new Vector (10);
RE D5.2
Draft B Page 120 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

attrVector = new Vector (10);

/**
* SLP common message header, not including language tag
Afmm e o e +
*| Version \ Function-ID | Length
Koo B e o o +
*|] Length cont. |O|F|R] Reserved | Next Ext. Offset
Koo B e o o +
* | Next Ext. Offset Cont. | XID
O et ettt P e +
*/
public void Header (byte[] buf) { // parse header
int([] ia = { 0 };
version = Util.parselnt (buf, ia, 1); // index=0
func_id = Util.parselInt (buf, ia, 1); // index=1
packet len = Util.parselnt (buf, ia, 3); // index=2
slp flag = Util.parselnt (buf, ia, 2); // index=5
ext offset = Util.parselnt (buf, ia, 3); // index=7
xid = Util.parselInt (buf, ia, 2); // index=10

}

public void LangTag (byte[] buf,
ltag = Util.parseString(buf,

}

public int getPacketLen ()
return packet len;

}

public int getFuncID() {
return func id;

}

public int getFlag() {
return slp flag;
}

public int getXID() {
return xid;

}

public String getLtag() {

return ltag;

}

public String getURL() {
return url;

}

public String getScope ()
return scope;

}

public String getAttr() {

return attr;

}

int ial]) {
ia);

{

{

public String getAttrList() {

return attrList;

}

public String getTypelList () {

return typelist;

}

public String getUrlList () {

return urlList;

}

public int
return

}

public int
return

}

getEcode () {
ecode;

getDaBootTS () {
daBootTS;

// parse language tag

Draft B

RE

D5.2
Page 121 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

public int getMeshFwdID() {
return meshFwdID;

}

public long getVersionTS() {
return versionTS;

}

public String getAcceptDA() {
return acceptDA;

}

public long getAcceptTS () {
return acceptTS;

}

public Vector getAtsList () { // be careful Object CANNOT be
return (Vector) atsList.clone(); // shared between two threads

}

public Vector getAdaList() { // CANNOT be shared!
return (Vector) adalList.clone();

}

public int findTotalMatch() {

}

if

}

(ssExtList.size() > 0) {
SelectSortExt ss = (SelectSortExt) ssExtList.elementAt (0);
if (ss.getID() == Const.SelectExt) return ss.getBound();

return 0;

public int getTotalMatch() {
return totalMatch;

}

public int getEtrpType () {
return etrpType;

}

public boolean hasSelectExt () {
return hasSelectExt;

}

public boolean hasAttrListExt () {
return hasAttrListExt;

}

public Vector getMatchedEntry () {
return matchedEntry;

}

public Vector getUrlVector () {
return urlVector;

}

public Vector getAttrVector() {
return attrVector;

}

/**
* parse URL entry, to get the lifetime & URL string
B e ittt o Fom e +
* | Reserved | Lifetime | URL length
Apmm e o o +
*| URL len cont. | URL (variable length) \
B e ittt B et T it T et +
*| # of URL auths| Auth. blocks (if any) \
K +
*/
public String parseURL (byte[] buf, int[] ia) {
da.appendDebug ("slpMsgParser: :parseURL") ;
ia[0] += 1; // skip one byte for reserved
lifetime = Util.parselnt (buf, ia, 2); // lifetime
url = Util.parseString (buf, ia); // URL
if (Util.parselInt (buf, ia, 1) != 0) {
RE D5.2

Draft B

Page 122 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

da.appendDebug ("slpMsgParser: :parseURL —-> URL authentication blocks are present");
}

return url;

/**

* service request <#1>

A o +

*| length of <PRList> | <PRList> string \

A o +

*| length of <service-type> | <service-type> string \

B e e T et ettt +

*| length of <scope-list> | <scope-list> string \

A o +

*| length of predicate string | service request predicate \

R e L T e et ettt +

*|] length of <SLP SPI> string | <SLP SPI> string \

A o +

*/

public byte[] SrvRgst (byte[] buf, int[] ia) {

prlist = Util.parseString(buf, ia); // PRList
type = Util.parseString (buf, ia); // service type
scope = Util.parseString(buf, ia); // scope list
pred = Util.parseString(buf, ia); // predicate
spi = Util.parseString (buf, ia); // SLP SPI string

if (type.equalsIgnoreCase (Const.DAAdvert Rgst)) return null;
byte[] tmp = database.getMatchedURL (type, scope, pred, ltag, ssExtList, ecode, getFuncID(
), null);

totalMatch = database.getTotalMatch() ;

matchedEntry = database.getMatchedEntry() ;

if (Const.MESSAGE LOG_ENABLED && Const.SrvRgst LOG ENABLED) da.append ("\nINCOMING SRVRQST
MESSAGE" +

"\n- Xid = "+ xid +
"\n- PRList = "+ prlist +
"\n- Type = " + type +
"\n- Scope = " + scope +
"\n- Predicate = " + pred +
"\n- SPI = " + spi +
ll\nll) ,.
return tmp;
}
/**
* secure service request <#13>
K e e +
*| length of <PRList> | <PRList> string \
H o +
*| length of <service-type> | <service-type> string \
K e e +
*| length of <scope-list> | <scope-list> string \
H o +
*| length of predicate string | service request predicate \
K e e +
*| length of <SLP SPI> string | <SLP SPI> string \
o R it Fomm - o +
*| # of AttrAuths | Attribute Authentication Blocks \
Ko o +
*/
public byte[] SrvRgstAuth (byte[] buf, int[] ia) {
prlist = Util.parseString(buf, ia); // PRList
type = Util.parseString (buf, ia); // service type
scope = Util.parseString(buf, ia); // scope list
pred = Util.parseString(buf, ia); // predicate
spi = Util.parseString (buf, ia); // SLP SPI string

int authBlockNum = Util.parselnt (buf, ia, 1);
da.appendDebug ("slpMsgParser: :SrvRgstAuth -
> " + authBlockNum + " Attribute Authentication Block(s) found");
if (authBlockNum!=0) {
AuthBlock (buf, ia,authBlockNum) ;
}
else ecode=Const.AUTHENTICATION ABSENT;
if (type.equalsIgnoreCase (Const.DAAdvert Rgst)) return null;
byte[] tmp = database.getMatchedURL (type, scope, pred, ltag, ssExtList, ecode,getFun
cID(), _publicKey);

totalMatch = database.getTotalMatch() ;
matchedEntry = database.getMatchedEntry() ;
if (Const.MESSAGE LOG_ENABLED && Const.SrvRgstAuth LOG ENABLED) da.append ("\nINCOMING

RE D5.2
Draft B Page 123 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
SECURESRVRQST MESSAGE" +
"\n- Xid = "+ xid +
"\n- PRList = "+ prlist +
"\n- Type = " + type +
"\n- Scope = " + scope +
"\n- Predicate = " + pred +
"\n- SPI = " + spi +
"\n") ;
return tmp;
}
/**
* service reply (reply for service request) <#2>
o o +
* Error Code | URL entry count
B e i o +
x| <URL entry 1> . <URL entry N> \
o o +
*/

public void SrvReply (byte[] buf, int[] ia) {
ecode = Util.parselnt (buf, ia, 2);
if (Const.MESSAGE_LOG_ENABLED && Const.Srvaly_LOG_ENABLED) da.append ("\nINCOMING SRVREPL
Y MESSAGE" +

"\n- Xid = "+ xid +
"\n- Error Code = " + ecode);
int n = Util.parselInt (buf, ia, 2);
if (Const.MESSAGE LOG ENABLED && Const.SrvRply LOG ENABLED) da.append ("\n- URLs = " + n);

StringBuffer tl = new StringBuffer();
for (int i=0; i<n; i++) {
if (tl.length() > 0) tl.append(","):
String strurl = parseURL (buf, ia);
if (Const.MESSAGE LOG ENABLED && Const.SrvRply LOG ENABLED) da.append ("\n "+ (i+1) +"
> " + strurl);
tl.append (url) ; // URL only, no lifetime
}
urllist = tl.toString();
if (Const.MESSAGE LOG _ENABLED && Const.SrvRply LOG ENABLED) da.append ("\n") ;

/~k~k

* gervice registration <#3>

K o +
* | <URL-Entry> \
K e B b +
*| length of service type string | <service-type> \
H e o +
* | length of <scope-list> | <scope-list> \
K e B b +
*| length of attr-list string | <attr-list> \
Koo o o +
*| # of AttrAuths (1f present) Attribute Authentication Blocks \
Ko e +

* Need to set error code (ecode)
* Extensions have been parsed, so versionTS/acceptDA/acceptTS are known
*/

public void SrvReg (byte[] buf, int[] ia)

{

parseURL (buf, ia); // URL

type = Util.parseString(buf, ia); // service type

scope = Util.parseString(buf, ia); // scope list
attrlength=Util.parselnt (buf, ia, 2); // length of attr-list
ia[0]=1ial0]-2;

attr = Util.parseString(buf, ia); // attribute list
_attrl=attr;

int authBlockNum = Util.parselnt (buf, ia, 1);
da.appendDebug ("slpMsgParser: :SrvReg -
> " + authBlockNum + " Attribute Authentication Block(s) found");

if (authBlockNum!=0)

{ AuthBlock (buf, ia,authBlockNum) ;

;lse if (authBlockNum==0)

{ if (Const.SERVICE REGISTRATION AUTH REQUIRED)

{
da.appendDebug ("> Error: Authentication Absent");

RE D5.2
Draft B Page 124 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

ecode=ConSt.AUTHENTICATIONiABSENT;
da.displayMessage ("Authentication Block NOT found", Const.EXCLAMATION, "Authentica
tion check");
}
}

if (lifetime < 0) //Lifetime == 0 will be considered VALID and as a service with an INFIN
ITE Lifetime
{
ecode = Const.INVALID REGISTRATION;
}
else if (!Util.shareString(daf.getScope(), scope, ","))
{
ecode = Const.SCOPE_NOT_SUPPORTED;
}
else
{
if (acceptDA.equalsIgnoreCase (daf.getFQDN()))
{

arrivalTS = acceptTS;
}
else
{
arrivalTS = System.currentTimeMillis();
}
if (ecode==0)

{
ecode = database.addEntry(false, ltag, type, url, lifetime, scope,
attr, slp flag, versionTS, arrivalTS, acceptDA, acceptTs);

}

if (Const.MESSAGE LOG ENABLED && Const.SrvReg LOG_ENABLED)
{
String token = null;
String attribute = null;
StringTokenizer st = new StringTokenizer (attr,",");
attr = "";
while (st.hasMoreTokens())
{
token = st.nextToken () ;
if (token.startsWith (" ("))
{
if (token.endsWith(")"))
{
/*
* We have a valid attribute in token, with one value
* (attr tag=attr values)
*/ B B
attr += "\n " + token.substring(l,token.length() -

}
else
{
/*
* We have the first part of a valid attribute in token, with more than one value
* (attr tag=attr values)
*/ B B
attribute = token.substring(l);
}
}
else
{
if (attribute != null)
{
if (token.endsWith(")"))
{
/*
* We have the last part of a valid attribute in token, with more than one valu

* (attr tag=attr values)
*/ - -
attr += "\n " + attribute + "," + token.substring(0,token.leng
th()-1);
attribute = null;
}

else

RE D5.2
Draft B Page 125 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
{
/*
* We have the N part of a valid attribute in token, with more than one value
* (attr tag=attr values)
*/
attribute 4= "," + token;
}
}
else
{
/*
* We have an attribute in token with no values
* attr tag
*/
//da.appendDebug ("Attribute Name = " + token);
attr += "\n " + token;
}
}
}
da.append ("\nINCOMING SRVREG MESSAGE"+
"\n- Xid = "+ xid +
"\n- Type = " + type +
"\n- Scope = " + scope +
"\n- Url = " + url +
"\n- Lifetime = " + lifetime +
"\n- Attribute List = " + attr +
" \n") ,.
}
}
/~k *
* Authentication Block
K e e +
*] Block Structure Descriptor | Authentication Block Length \
K e +
* | Timestamp \
K e e +
* SPI Length | SPI \
K e +
* | SIGNATURE \
K +
*/
public void AuthBlock(byte[] buf,int[] ia,int authblocknum) {

for

{

da.appendDebug ("slpMsgParser::SrvReg -> Parsing Authentication Block

(int 1 = 1;

i <= authblocknum; i++)

int BSD = Util.parselnt (buf, ia, 2);
da.appendDebug (" > BSD = " + BSD);
int blockLength = Util.parselnt (buf, ia, 2);
da.appendDebug (" > Block Length = " + blockLength) ;
int timeStamp Util.parselnt (buf, ia, 4);

[+ i + "y ;

da.appendDebug ("

> Time Stamp = +

(new Date ((long)timeStamp*1000)).toString());

/*Estrazione chiave Pubblica*/
ia[0]=1al[0]1+2;
byte[] _spi=new byte[162];
for (int k=0; k < 162; k++)
{
_spil[k] = buf[ia[0]+k];
}
ia[0]=1al[0]1+162;
try{
X509EncodedKeySpec pubKeySpec =
KeyFactory keyFactory =
_publicKey =(RSAPublicKey)

da.append (" > SPI = "+ publicKey.toString());
}catch (NoSuchAlgorithmException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}catch (InvalidKeySpecException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;

new X509EncodedKeySpec(spi);
KeyFactory.getInstance ("RSA");
keyFactory.generatePublic (pubKeySpec) ;

Draft B

RE

D5.2
Page 126 of 158

pSHIELD

SPD middleware and overlay functionalities prototype
RE

/*Signature*/
int signLength = blockLength - 10 - _spi.length;

byte[] _sign

for (int j

{

new byte[signLength];

0; j < signLength; j++)

sign[j] = buf[ia[0]+]];

}

da.append (" > SIGN = "+ sign);

/*Sign Verify*/
if (func_id==Const.SrvReg)

{

try{
ByteArrayOutputStream bos = new ByteArrayOutputStream() ;
DataOutputStream dos

new DataOutputStream (bos) ;

dos.writeShort (_spi.length);
dos.write(_spi);

dos.writeShort ((short)

String tokenl = null;

attrlength);

StringTokenizer stl = new StringTokenizer(attrl,",");
_attrl="";
while (stl.hasMoreTokens ())

{

tokenl = stl.nextToken();
if (tokenl.startsWith (" ("))

{

if

{

}
}

else

{

(tokenl.endsWith(")"))

int indexuguale= tokenl.indexOf ("=");

dos.write (" (".getBytes());
dos.write (tokenl.substring(l, indexuguale) .getBytes());
dos.write ("=".getBytes());
dos.write (tokenl.substring(indexuguale+l,tokenl.length()-1) .getBytes());
dos.write(")".getBytes());

dos.write (tokenl.getBytes());

}

dos.writeInt (timeStamp) ;
dos.write (getURL () .getBytes());

byte[]
Signature signature

data=bos.toByteArray() ;
Signature.getInstance ("SHAlwithRSA") ;

signature.initVerify(publicKey);
signature.update (data) ;

boolean verify=signature.verify(sign);

if (verify) {

da.append ("> Athentication Executed Correctly");

}

else(
da.append ("> Error:

da.displayMessage

Authentication Failed");
("Authentication Failed", Const.CRITICAL, "Authentication check")

ecode=Const .AUTHENTICATION FAILED;

}

}catch (IOException el) {
//DO nothing???

}

catch

(NoSuchAlgorithmException e2) {

da.appendDebug ("Algorithm not supported");

da.displayMessage

entication check");

}

("Encryption Algorithm NOT supported", Const.EXCLAMATION, "Auth

Draft B

RE D5.2
Page 127 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

catch (InvalidKeyException e3) {
da.appendDebug ("Invalid public key");
da.displayMessage ("Invalid public key", Const.EXCLAMATION, "Authentication check

}
catch (SignatureException e4d) {
da.appendDebug ("Invalid signature");
da.displayMessage ("Invalid signature", Const.EXCLAMATION, "Authentication check"

}
}
else if (func id==Const.SrvRgstAuth)
{
try{
ByteArrayOutputStream bos = new ByteArrayOutputStream() ;
DataOutputStream dos = new DataOutputStream(bos);

dos.writeShort (_spi.length);
dos.write(_spi);

dos.writeShort (type.getBytes () .length);
dos.write (type.getBytes());
dos.writeShort (scope.getBytes () .length) ;
dos.write (scope.getBytes());
dos.writeShort (pred.getBytes () .length);
dos.write (pred.getBytes());

dos.writeInt (timeStamp) ;

byte[] data=bos.toByteArray();

Signature signature = Signature.getlInstance ("SHAlwithRSA");
signature.initVerify(publicKey);

signature.update (data) ;

boolean verify=signature.verify(sign);
if (verify) {
da.append ("> Athentication Executed Correctly");

}
else(
da.append ("> Error: Authentication Failed");
ecode=Const .AUTHENTICATION FAILED;
}

}catch (IOException el) {
//DO nothing???
}
catch (NoSuchAlgorithmException e2) {
da.appendDebug ("Encryption Algorithm not supported");
da.displayMessage ("Encryption Algorithm NOT supported", Const.EXCLAMATION, "
Authentication check");

}

catch (InvalidKeyException e3) {
da.appendDebug ("Invalid public key");
da.displayMessage ("Invalid public key", Const.EXCLAMATION, "Authentication c

heck") ;
}
catch (SignatureException ed) {
da.appendDebug ("Invalid signature");
da.displayMessage ("Invalid signature", Const.EXCLAMATION, "Authentication ch
eck");
}
}
}
}
/**
* service De-registration <#4>
K e B et +
*| Length of <scope-list> | <scope-list> \
B et et o +
* | <URL-entry> \
K e B et +
*| Length of <tag-list> | <tag-list> \

RE D5.2
Draft B Page 128 of 158

pSHIELD

SPD middleware and overlay functionalities prototype
RE

*

*/

e B e L e L L L Lt +
Need to set error code, 0 is for OK
public void SrvDeReg (byte[] buf, int[] ia) {
scope = Util.parseString(buf, ia); // scope list
parseURL (buf, ia); // URL
tag = Util.parseString (buf, ia); // tag list
if (Util.shareString(daf.getScope(), scope, ",")) {
ecode = database.rmEntry(ltag, url, scope, tag, versionTsS,
acceptDA, acceptTS);
} else {
ecode = Const.SCOPE_NOT SUPPORTED;

}
if (Const.MESSAGE LOG ENABLED && Const.

SrvDeReg LOG ENABLED) da.append ("\nINCOMING SRVDER

EG MESSAGE" +
"\n- Xid = "+ xid +
"\n- Scope = " + scope +
"\n- Url = " + url +
"\n- Tag List = " + tag +
"\n");
}
/~k~k
* gservice ack (reply for SrvReg & SrvDeReg) <#5>
H +
x| Error Code
B et it +
* return the error code
*/
public void SrvAck(byte[] buf, int[] ia) {
ecode = Util.parselnt (buf, ia, 2);
if (Const.MESSAGE LOG ENABLED && Const.SrvAck LOG ENABLED) da.append ("\nINCOMING SRVACK M
ESSAGE" +
"\n-Xid = "+ xid +
"\n- Error = " + ecode +
ll\n");
}
/**
* attribute request <#6>
K e e +
* | length of PRList | <PRList> string \
H B e e e T e T +
*| length of URL | URL \
K e e +
*| length of <scope-list> | <scope-list> string \
H B e e e T e T +
*| length of <tag-list> string | <tag-list> string \
K e e +
*| length of <SLP SPI> string | <SLP SPI> string \
H B e e e T e T +
*/
public void AttrRgst (byte[] buf, int[] ia) {
da.appendDebug ("slpMsgParser: :AttrRgst") ;
prlist = Util.parseString(buf, ia); // PRList
url = Util.parseString (buf, ia); // URL or Service type
scope = Util.parseString(buf, ia); // scope list
tag = Util.parseString(buf, ia); // tag list
spi = Util.parseString (buf, ia); // SLP SPI string
/*
* Check if at least one scope is in the list of the DA
*/
if (!Util.shareString(daf.getScope(), scope, ","))

{
// NO SCOPES...
ecode Const.SCOPE_NOT_SUPPORTED;
attrList "

}
else

{

ecode
attrlList

Const.OK;
database.getAttrList (url

}

if (Const.MESSAGE LOG_ENABLED && Const.AttrRgst LOG ENABLED)

’

scope, tag, ltag);

{

da.append ("\nINCOMING ATTRRQST MESSAGE"+

"\n- Xid = "+ xid +

Draft B

RE D5.2

Page 129 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
"\n- Scope = " + scope +
"\n- Attribute List = " + tag +
"\n- Service URL or Type = " + url +
"\n- Prlist = " + prlist +
"\n- Spi = " + spi +
ll\nll) ,.

}

/**

* attribute reply (reply for attribute request) <#7>

B et et T e +
* | Error Code | length of <attr-list>

H e R e T +
* | <attr-list> \
Ko B e e L T T e e e +
*| # of AttrAuths | Attribute authentication block (if present) \
o R B et +
*/

/**

public void AttrReply(byte[] buf,

int[] ia) {

ecode = Util.parselnt (buf, ia, 2);

attrlList = Util.parseString(buf, ia);

if (Const.MESSAGE LOG ENABLED && Const.AttrRply LOG ENABLED) {
da.append ("\nINCOMING ATTRREPLY MESSAGE"+

"\n- Xid = "+ xid +

"\n- Error = " + ecode +

"\n- Attribute List = " + attrList +
ll\nll) ;

}

* directory agent advertisement <#8>

[———

* |

[——

K e —

———————————————————————————— B e e
Error Code | DA Stateless Boot Timestamp |
———————————————————————————— e
DA Stateless Boot Time cont. | length of URL
———————————————————————————— B e e
URL \
———————————————————————————— e
length of <scope-list> [<scope-list> \
———————————————————————————— o
length of <attr-list> | <attr-list> \
———————————————————————————— e
length of SLP <SPI> | SLP <SPI> string \
———————————— B e et e it T
Auth Blocks | Authentication block (if any) \
———————————— e
public void DAAdvert (byte[] buf, int[] ia) {
/*da.appendDebug ("\n\n\n\nslpMsgPrs: : DAADVERT\n\n\n\n") ;
for (int i=0; i<buf.length;i++) {
da.appendDebug (buf[i]) ;
yx/
ecode = Util.parselnt (buf, ia, 2);
daBootTS = Util.parselnt (buf, ia, 4); // boot times
url = Util.parseString(buf, ia); // URL
scope = Util.parseString(buf, ia); // scope-list
attr = Util.parseString(buf, ia); // attr-list

da.appendDebug ("slpMsgParser: :DAAdvert-URL ="+4url) ;

if (Const.MESSAGE LOG ENABLED && Const.DAAdvert LOG ENABLED)

RT MESSAGE"+

tamp

da.append ("\nINCOMING DAADVE

"\n- Xid = "+ xid +
"\n- Url = " + url +
"\n- Scope = " + scope +
"\n- Attribute List = " + attr +
ll\n") ;
/‘k‘k
* service type request <#9>
e R +
* | length of PRList | <PRList> string
H o +
*| length of Naming Authority | <Naming Authority String> |
e R +
RE D5.2
Draft B Page 130 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
*| length of <scope-list> | <scope-list> string
B et et T e e B et +
*/
public void SrvTypeRgst (byte[] buf, int[] ia) {
prlist = Util.parseString(buf, ia); // PRList
String na = Util.parseString (buf, ia); // Naming authority
scope = Util.parseString(buf, ia); // scope list
if (!Util.shareString(daf.getScope(), scope, ","))
{
ecode = Const.SCOPE_NOT_SUPPORTED;
typelist = "";
}
else
{
ecode = Const.OK;
typelist = database.getServiceTypelist (na, scope);
}
if (Const.MESSAGE LOG_ENABLED && Const.SrvTypeRgst LOG_ENABLED)
{
da.append ("\nINCOMING SRVTYPERQST MESSAGE"+
"\n- Xid = "+ xid +
"\n- PRList = " + prlist +
"\n- Naming Authority = " + na +
"\n- Scope = " + scope +
"\n") ;
}
}
/**
* service type reply (reply for service type request) <#10>
K e B ettt T +
* Error Code | length of <srvType-list>
H e o +
* | <srvType-list>
K e - +
*/

public void SrvTypeReply(byte[] buf, int[] ia) {
ecode = Util.parselnt (buf, ia, 2);
typelist = Util.parseString(buf, ia);
if (Const.MESSAGE LOG ENABLED && Const.SrvTypeRply LOG ENABLED)
{
da.append ("\nINCOMING SRVTYPEREPLY MESSAGE"+

"\n- Xid = "+ xid +

"\n- Type List = " + typelist +

"\n") ;

}

}

/**
* AntiEtrpRgst <#12> message
K e +
* | Anti-entropy type ID | Number of Accept ID entries |
B e it e e e R +
* | Accept ID Entry 1 .. Accept ID Entry k \
K +
*/

public void AntiEtrpRgst (byte[] buf, int[] ia) {

etrpType = Util.parselnt (buf, ia, 2);

int k = Util.parselnt (buf, ia, 2);

atsList.clear();

adalList.clear();

for (int 1=0; i<k; i++) {
atsList.addElement (new Long (Util.parselLong (buf, ia))):;
adalist.addElement (Util.parseString (buf, ia));

}

if (Const.MESSAGE LOG ENABLED && Const.AntiEtrpRgst LOG ENABLED) da.append("\nINCOMING AN

TIETRPRQST MESSAGE"+

"\n- Xid = "+ xid +

"\n- Entropy Type = " + etrpType +

"\n- ATS List = " + atsList.toString() +
"\n- ADA List = " + adalist.toString() +

"\n") ;

/**

* Mesh Forwarding extension parser:

RE D5.2
Draft B Page 131 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
* (1) initialize (turn off previous value)
* (2) if MeshFwdExt,
* get Fwd-ID & versionTS
* if Fwd-ID == Const.RgstFwd, change it to Const.Fwded
* if Fwd-ID == Const.Fwded, get acceptDA & acceptTS
O e ittt e +
*| MeshFwd Extension ID = 0x0006 | Next Extension Offset (NEO) |
Apmmmmm B ettt e +
*| NEO Contd. | Fwd-ID | Version Timestamp
Apmmmmm B ettt e +
* | Version Timestamp, contd.
O et ettt P e +
* Version Timestamp, contd. | Accept ID \
O ittt e +
*/
public void MeshFwdExt (byte[] buf, String fromPeer) { // buf: whole msg
meshFwdID = -1; // no MeshFwdExt
acceptDA = daf.getFQDN() ;
acceptTS = System.currentTimeMillis();
versionTS = acceptTS;
int[] ia = { ext offset }; // initial extension offset
while (ia[0] != Const.EndOfExt) { // while has more extensions
int extID = Util.parselnt (buf, ia, 2); // extension ID
int nextExt = Util.parselnt (buf, ia, 3); // next extension
if (extID == Const.MeshFwdExt) { // mesh-forwarding extension
int idAddr = ial[O0]; // may need to MeshFwdID
meshFwdID = Util.parselnt (buf, ia, 1);
versionTS = Util.parselong(buf, ia);
if (meshFwdID == Const.Fwded) {

acceptTS = Util.parseLong(buf, ia);
acceptDA = Util.parseString(buf, ia);
daf.setSummary (acceptDA, acceptTS, fromPeer);
} else if (meshFwdID == Const.RgstFwd) {
Util.writeInt (buf, idAddr, Const.Fwded, 1);
Util.writeLong(buf, idAddr+9, acceptTs);
}
break; // at most one MeshFwd extension
}
ia[0] = nextExt;
}
if (meshFwdID != Const.Fwded) { // accepted by local host
daf.setSummary (acceptDA, acceptTS, acceptDA);

}

public void SelectSortExt (byte[] buf) { // buf: whole message
ssExtList.clear();
hasSelectExt = false;
int[] ia = { ext offset }; // initial extension offset
while (ia[0] != Const.EndOfExt) { // while has more extensions
int extID = Util.parselnt (buf, ia, 2); // extension ID
int nextExt = Util.parselnt (buf, ia, 3); // next extension
if (extID == Const.SelectExt) { // selection extension
hasSelectExt = true;
int num = Util.parselnt (buf, ia, 2);
ssExtList.addElement (new SelectSortExt (Const.SelectExt, num));
} else if (extID == Const.SortExt) { // sort extension
String key = Util.parseString(buf, ia);
ssExtList.addElement (new SelectSortExt (Const.SortExt, key));

ia[0] = nextExt;
}
public void AttrListExt (byte[] buf) { // buf: whole message
urlVector.clear();

attrVector.clear();
hasAttrListExt = false;

int[] ia = { ext offset }; // initial extension offset
while (ia[0] != Const.EndOfExt) { // while has more extensions
int extID = Util.parselInt (buf, ia, 2); // extension ID
int nextExt = Util.parselnt (buf, ia, 3); // next extension
if (extID == Const.AttrListExt) { // AttrList extension
hasAttrListExt = true;
urlVector.addElement (Util.parseString (buf, ia)); // url
attrVector.addElement (Util.parseString (buf, ia)); // attr
}
ia[0] = nextExt;
RE D5.2

Draft B Page 132 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

RE D5.2
Draft B Page 133 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

package eu.artemis.shield.overlay.securityagent.impl.DiscoveryServiet.html

package eu.artemis.shield.overlay.securityagent.impl;

import
import
import
import

import
import
import
import
import

import

public

java
java.
java.
java.

javax.
javax.
javax.
javax.

org.o

eu.ar

class

.awt.event.ActionEvent;

io.IOException;
io.PrintWriter;
util.LinkedList;

servlet.ServletException;
servlet.http.HttpServlet;
servlet.http.HttpServletRequest;
servlet.http.HttpServletResponse;
sgi.framework.ServiceReference;

temis.shield.discovery.gdm.interfaces.IGenericDiscovery;

DiscoveryServlet extends HttpServlet(

private static final long serialVersionUID = 3472683797378538L;

// DiscoveryServlet

IGenericDiscovery GDM;

ServiceReference httpSR;

boolean print = false;

public DiscoveryServlet (ServiceReference httpSR, IGenericDiscovery GDM)
this.httpSR = httpSR;
this.GDM

}

public void doPost (HttpServletRequest request,

= GDM;

throws ServletException, IOException {

doGet (request, response);

}

public void doGet (HttpServletRequest request,

throws ServletException, IOException {
PrintWriter out = response.getWriter();

response.setContentType ("text/html") ;

printHeader (out) ;

try {
if (re

&&
Stri
Stri
Stri
Stri
Stri
if (

se
}
if (

la
if

"</h4>") ;

}

}
Stri

quest.getParameter ("GO") != null
request.getParameter ("GO") .equals ("GO")) {

ng VID = null;

ng type = "";

ng serviceType = "servicetype=";

ng languageTag = "language=";

ng gui = "gui=";

request.getParameter ("servicetype") != null) {
rviceType += request.getParameter ("servicetype");

request.getParameter ("languagetag") != null) {

nguageTag += request.getParameter ("languagetag");
(languageTag.equals ("language=")) {

out

HttpServletResponse response)

HttpServletResponse response)

.println ("

<h4>You haven't specified the Language Tag, Default is \"en GB\

ng[] keywords = new String[3];

keywords[2] = null;

if (!
{
gu
ke
}

request.getParameter ("gui") .equals (""))

i += request.getParameter ("gui");
ywords[2] = gui;

keywords[0] = serviceType;
keywords[1] = languageTag;

LinkedList result = GDM.findServices(VID, type, keywords);

// U

RL image =

Draft B

RE

D5.2
Page 134 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
// ClassLoader.getSystemClassLoader () .getResource ("./provalIMG.jpg") ;
if (result != null) {
out
.println("<h2> This is the URL list for OWL Description </h2>");
out

.println("<table style=\"border-
collapse: collapse\" BORDERCOLORDARK = #9999CC BORDERCOLORLIGHT = #9999CC BORDER = 1 CELLPADDING
= 5 CELLSPACING = 0>");

for (int 1 = 0; i < result.size(); i++) {
int j = i+1;
out
.println ("\t<tr BORDERCOLOR = #0000FF BACKGROUND = #0000FF>");
out
.println("\t\t<td BGCOLOR = #9999CC BORDERCOLOR = #FFFFFF><p align = center>"
+ J 4+ "</p></td>");
out.println ("\t\t<td BGCOLOR = #" + "FOFOFE"
+ " BORDERCOLOR = #FFFFFF>" + "<a href=\""
+ result.get (i) .toString() + "\">"
+ result.get(i).toString() + "</td>"
+ "</tr>");

out.println("<table><tr><td><a href=\"" +
* result.get (i) .toString() + "\">" +
* result.get (i) .toString() + "</td>" + "<td></td></tr></table>");
*/
}
out.println("</table>");
}
}

} catch (Exception e) {
out.println ("<pre>");
e.printStackTrace (out) ;
out.println("</pre>");

}

}

public void actionPerformed(ActionEvent evt) ({
print = true;

}

void printHeader (PrintWriter out) throws IOException {
out.println ("<html>");
out.println ("<head>");
out.println ("<title>pSHIELD - Security Agent</title>");
out.println("<table><tr><td></t
d><td>") ;
out.println("<hl>University of Rome - pSHIELD </hl>");
out.println ("<hl>User Agent</hl>");
out.println ("<h2>Service Discovery Form</h2>");
out.println ("</td></tr><table>");

out
.println ("<LINK href=\"/knopflerfish.css\" rel=\"stylesheet\" type=\"text/css\">");
out.println ("</head>");
out.println ("<body>") ;
out.println ("<form method=\"POST\">");

out
.println ("Insert keywords to perform service discovery and then click \"GO\"</str
ong>

") ;
out.println ("<table>");
out

.println ("<tr><td>ServiceType </td><td><input t
ype=\"text\" name=\"servicetype\" value=\"\" size=\"50\" /></td></tr>");
out
.println("<tr><td>LanguageTag </td><td><input t
ype=\"text\" name=\"languagetag\" value=\"\" size=\"50\" /></td></tr>");
out
.println ("<tr><td>GUI </td><td><input type=\"te
xt\" name=\"gui\" value=\"\" size=\"50\" /></td></tr>");
out.println ("</table>");
out
.println ("
<input type=submit value=\"GO\" name=\"GO\" id=\"GO\">");

RE D5.2
Draft B Page 135 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE

package eu.artemis.shield.overlay.securityagent.impl.SA.html

*

PSHIELD
Service Discovery

@author Vincenzo Suraci

@author Silvano Mignanti

Department of System and Computer Science (DIS)
University of Rome "Sapienza"

Via Ariosto, 25

00184, Rome, IT

phone: +39 340 156 22 58 / +39 329 11 38 610

Created on 16-May-2007
Version 1.0

P T T T T T T T S S S

~

package eu.artemis.shield.overlay.securityagent.impl;

/**

The present class shows how a pSHIELD 2 0OSGi component
could use the potentiality offered by the pSHIELD 2
Service Discovery Framework. It interfaces with the
Generic Discovery Manager to discover the services
available in the (pSHIELD 2) network.

ok ok ok ok ok ok

import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;

import eu.artemis.shield.discovery.gdm.interfaces.IGenericDiscovery;

import eu.artemis.shield.discovery.pdm.IService;

import eu.artemis.shield.discovery.pdm.IServicelist;

import eu.artemis.shield.discovery.pdm.IServiceProperty;
import eu.artemis.shield.discovery.pdm.IServicePropertyList;

import eu.artemis.shield.overlay.securityagent.ISecurityAgent;
import eu.artemis.shield.overlay.securityagent.impl.SAGUI;
import eu.artemis.shield.overlay.semanticknowledge.ISemanticKnowledge;

import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Vector;
import java.util.Hashtable;

public class SA implements ISecurityAgent

{
private BundleContext bc;
private IGenericDiscovery gd = null;
private SAGUI gui = null;
public List fileOWL = new LinkedList();
public ISemanticKnowledge sk;
public Hashtable h bundle = new Hashtable();

public SA (BundleContext bc)

{
this.bc = bc;

gui = new SAGUI (bc, this);
gui.setVisible (true);

}

public Vector serviceTypeDiscovery ()
{
Vector types vector = new Vector();
try

email: vincenzo.suraci@dis.uniromal.it / silvano.mignanti@dis.uniromal.

it

RE
Draft B

D5.2
Page 136 of 158

pSHIELD SPD middleware and overlay functionalities prototype

—

RE
{
gui.append("Discovering Service Types ...");
ServiceReference[] gdmList = findGenericDiscoveryModuleImplementations();
if (gdmList != null)
{
/*

* We ignore the possibility to have more than one GDM implementation.
* JUST USE THE FIRST ONE...

*/
gd = (IGenericDiscovery) bc.getService (gdmList[0]);
/~k

* We are ready to start the discovery process!

*/

// Obatin in the proper way the user agent VIDID
String vid = null;

/*
* LET pSHIELD DISCOVER THE TYPES OF SERVICES
*/

LinkedList 11 = gd.findServiceTypes (vid);

if (11 != null)
{
if (1l.isEmpty())
{
// NO SERVICES HAVE BEEN DISCOVERED
gui.append("No Service Types Found !");
}
else
{

Iterator it = ll.iterator();

while (it.hasNext())

{
String types = (String)it.next();
types _vector.add(types);

}

}

else
{
// NO SERVICE TYPES HAVE BEEN DISCOVERED
gui.append("No Service Types Found !");
}
}
else
{
/*
* It was not possible to find a suitable implementation of IGenericDiscovery
*/

gui.append("No Bundles implement the IGenericDiscovery interface!\n");

gui.append("Done.") ;
return types vector;

}
catch (Exception e)
{
/*
* Something went wrong!
* It was not possible to find a suitable implementation of IGenericDiscovery
*/
gui.append (e.getMessage ()) ;
return types_vector;

This function takes a URL and a service Type and create the Service URL

@param url URL

*
*
*
* (@param type service type
*
* @return Service URL

*

RE D5.2

Draft B Page 137 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

private String serviceurl (String type, String url)

{

int index = type.lastIndexOf(":");
if (index > 0)
{
String protocol = type.substring(index+1l);
if (url.startsWith(protocol))
{
String serviceurl = type + url.substring(protocol.length());
return serviceurl;
}
else
{
gui.append("SA.java::serviceurl -
> Trying to merge different protocols:\nurl = " + url + "\ntype = " + type);
}
}

return null;

—-—

/**
* This function find the service available for a specified service type
* (@param type : the service type to search
* a vector of found services (with no API bundles)
* PShieldEngineException
s Exception
public Vector serviceDiscovery(String type) {

return serviceDiscovery(type, null);

/~k~k
* This function find the service available for a specified service type and an array of keywor
ds to do a better filter
* (@param type : the service type to search
* (@param kw : an array of keywords to search
* a vector of found services (with no API bundles)
* PShieldEngineException
*/
public Vector serviceDiscovery(String type, Stringl[] kw) {
return serviceDiscovery (type, kw, true);

}

/**
* This function find the service available for a specified service type and an array of keywor
ds to do a better filter

* @param type : the service type to search

* (@param kw : an array of keywords to search

* @param filter api : set false if you need all the available bundles, true if you want only t
he API bundles

* @return a vector of found services (with no API bundles)

* @throws PShieldEngineException

* @thr Exception

*/

public Vector serviceDiscovery(String type, String[] kw, boolean filter api)

{

Vector discovered services = new Vector();
try
{

gui.append("Service discovery with a specified service type");
ServiceReference[] gdmList = findGenericDiscoveryModuleImplementations() ;

if (gdmList != null)

{
/*
* We ignore the possbility to have more than one GDM implementation.
* JUST USE THE FIRST ONE...

*/
gd = (IGenericDiscovery) bc.getService (gdmList[0]);
/*

* We are ready to start the discovery process!

RE D5.2
Draft B Page 138 of 158

pSHIELD

SPD middleware and overlay functionalities prototype
RE

*/

// Obatin in the proper way the user agent VIDID
String vid = null;

/*
* Set an array of keywords, useful to better filter
* the services
*/

if (kw == null)

kw = new Stringl[0];

for(int i = 0; i<kw.length; i++)
{

gui.append ("KEYWORDS " + i + "--> " + kw[i].toString() + "\n");
}
/*
* LET pSHIELD DISCOVER THE SERVICES
*/

gui.append ("Looking for Services ...");

String CDQL =
"SELECT default" +
"FROM default" +
"SERVICETYPE " + type +
"LANGUAGE en_gb" +
"WHERE " +
"USING slp";
String SPARQL = "";
LinkedList query output = null;
IServicelList sl = gd.findServices (CDQL, SPARQL, query output);

if (sl != null)
{
if (sl.isEmpty())
{
// NO SERVICES HAVE BEEN DISCOVERED
gui.append("No services found !");

else
{
for (int i = 0; i < sl.size(); i++)
{
try
{
IService s = sl.getService(i);
String url = s.getOWLSURL() ;
System.out.println("service URL #" + 1 + " = " + url);
IServicePropertylList spl = s.getProperties();

Hashtable ht = new Hashtable();
String owl = null;
for (int j=0; Jj<spl.size(); j++)
{

try

{

Object obj = null;
IServiceProperty sp = spl.getServiceProperty(J);
System.out.print ("> attribute #" + j + " --> " + sp.getName() + "=");

//sp.getName () --> attribute's name

Vector values = sp.getValues();
if (values != null)

{

for (int k=0; k<values.size(); k++)
{
obj = values.get (k) ;
if (sp.getName () .equals ("ontologyURI")) {
System.out.println ("Ottengo le chiavi" + obj + "™ " + sp.getName() +

" " + values.toString());

owl = obj.toString();

Draft B

RE D5.2
Page 139 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

}
ht.put (sp.getName (), values);

System.out.println("Valore attributo" + values);

}

catch (IndexOutOfBoundsException ioobe)
{

ioobe.printStackTrace () ;
}
}

if (owl != null && ht != null){

h bundle.put (owl, ht);
System.out.println("Numero Bundle" + h bundle.size() + " " + ht.get("Serv
ice Name") + " " + owl);

}

if (ht.containsKey("Impl") && ht.containsKey ("Api"))
{

if (filter api)

{

boolean has impl = ((Boolean) ((Vector)ht.get ("Impl")) .elementAt (0)) .boole
anValue () ;
if (has_impl) discovered services.add (ht);
}
else
{
// Insert an HashTable for each discovered service
discovered services.add(ht);
}
}
}
catch (IndexOutOfBoundsException ioobe)
{
ioobe.printStackTrace () ;
}
}
}
}
else
{
//NO SERVICES HAVE BEEN DISCOVERED
gui.append ("NO SERVICE FOUND!") ;
}
}
else
{
/*
* It was not possible to find a suitable implementation of IGenericDiscovery
*/

gui.append("No Bundles implement the IGenericDiscovery interface!\n");
}
}
catch (Exception e)
{
/*
* Something went wrong!
* It was not possible to find a suitable implementation of IGenericDiscovery
*/
gui.append (e.getMessage ()) ;
e.printStackTrace();

}

List 1 = getServices(1l1l);
System.out.println ("Numero bundle da avviare" + l.size());
Hashtable prova = getBundle(l);

try
{

RE D5.2
Draft B Page 140 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

ServiceReference[] skList = findSemanticKnoledgeImplementations();
if (skList != null)
{

sk = (ISemanticKnowledge) bc.getService (skList[0]);

return discovered services;

}

}
catch (Exception e)
{
/*
* Something went wrong!
* It was not possible to find a suitable implementation of ISemanticKnowledge
*/
gui.append(e.getMessage ());
}

return discovered services;

/**

*

* (@param type

* arar kw

* -am filter api

* @return The list of OWLfiles of bundles with a SPD level
*/

public List getList(String type, String[] kw, boolean filter api)
{

ServiceReference[] gdmList;

try {
gdmList = findGenericDiscoveryModuleImplementations();
if (gdmList != null)
{
gd = (IGenericDiscovery) bc.getService (gdmList[0]);

String CDQL =
"SELECT default" +
"FROM default" +
"SERVICETYPE " + type +
"LANGUAGE en_gb" +
"WHERE " +
"USING slp";
String SPARQL = "";
LinkedList query_ output = null;

IServicelList sl = gd.findServices (CDQL, SPARQL, query output);

if (sl != null)
{
if (sl.isEmpty())
{
// NO SERVICES HAVE BEEN DISCOVERED
gui.append("No services found !");
}
else
{
for (int 1 = 0; 1 < sl.size(); i++)
{
IService s = sl.getService(i);
String url = s.getOWLSURL() ;
IServicePropertylList spl = s.getProperties();
for (int j=0; Jj<spl.size(); j++)
{
IServiceProperty sp = spl.getServiceProperty(J);

Vector values = sp.getValues();
if (values != null)

{

for (int k=0; k<values.size(); k++)

{
Object obj = values.get (k) ;

RE D5.2
Draft B Page 141 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

if (obj != null)
{
if (k > 0) System.out.print(",");

if (sp.getName () .equals ("OntologyURI") && !obj.toString() .equals (null))
{

System.out.println(sp.getName()) ;

System.out.print (obj.toString());

System.out.println("Added" + " " + obj.toString());

fileOWL.add (obj.toString()) ;

}

}
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace () ;

}

return fileOWL;
}

/**

* This function returns the list of OWL files belonging to the bundles to start

* ram i = security level

* @return List of ontologies belonging to the bundles that have an SPD Level that respect securi
ty level i

*/

public List getServices(int i)
{

List services = new LinkedList();

services.add ("http://www.owl-ontologies.com/Ontologyl300273978.0owl#CHAP") ;
services.add ("http://www.owl-ontologies.com/Ontologyl300273978.0owl#AES") ;
services.add ("http://www.owl-ontologies.com/Ontologyl300273978.0owl#PIN") ;

return services;

}
/‘k‘k

* This function returns an HashMap with type of service and its security level
* @param 1 List of ontologies
* @return HashMap with type of service and its security level

*/
public HashMap getParameters (List 1) {
HashMap ht = new HashMap /() ;

ht.put ("Authentication”, 8);
ht.put ("Accounting", 2);
ht.put ("Cryptography", 1);

return ht;

* @author Vincenzo Suraci

* This function uses the internal OSGi service discovery to find a suitable implementation
* of the IGenericDiscovery interface.
*/
public ServiceReference[] findGenericDiscoveryModuleImplementations () throws Exception
{
ServiceReference[] gdmi = null;
try

RE D5.2
Draft B Page 142 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

{

gdmi = bc.getServiceReferences ("eu.artemis.shield.discovery.gdm.interfaces.IGenericDiscover
y", null);
}
catch (Exception e)
{
throw e;
}
return gdmi;

}

/*k*k
* @author Vincenzo Suraci
*

* This function uses the internal OSGi service discovery to find a suitable implementation
* of the ISemanticKnoledge interface.
*/
public ServiceReference[] findSemanticKnoledgeImplementations () throws Exception
{
ServiceReference[] gdmi = null;
try
{

gdmi = bc.getServiceReferences ("eu.artemis.shield.overlay.semanticknowledge.ISemanticKnowle
dge", null);
}
catch (Exception e)
{
throw e;
}

return gdmi;

}

public void exit ()
{
/*
* Close GUI
*/
gui.setVisible (false) ;
gui.dispose();

RE D5.2
Draft B Page 143 of 158

pSHIE

LD

SPD middleware and overlay functionalities prototype

RE

package eu.artemis.shield.overlay.securityagent.impl.SAGUL.html

package eu.artemis.shield.overlay.securityagent.impl;

import
import
import
import

import
import
import
import
import
import

import
import

java.
java.
java.
java.

awt.*;
awt.event.*;
util.*;
util.List;

javax.swing.*;

javax.swing.table.*;

java.

net.URL;

org.osgi.framework.BundleContext;
org.osgi.framework.BundleException;
org.osgi.framework.ServiceReference;

eu.artemis.shield.composition.compositionmanager.ICompositionManager;
eu.artemis.shield.overlay.securityagent.impl.SA;

public class SAGUI extends Frame implements ActionListener

{

private static final long serialVersionUID = 82484L;

priv
priv

priv
priv

priv
priv
priv

priv

priv
priv

priv
priv
priv
priv
priv
priv
priv

priv

priv
priv

// UAGUI

ate static final int MAJOR = 1;
ate static final int MINOR = O;

ate static final int width = 440;
ate static final int height = 440;

ate BundleContext bc = null;
ate SA sa = null;
ate HashMap ht = null;

ate ICompositionManager cm = null;

ate Vector types vector = null;
ate Vector services discovered = null;

ate JComboBox cb = null;

ate JScrollPane table panel = null;
ate JPanel services panel = null;
ate JPanel combo panel = null;

ate JPanel buttons_panel = null;

ate JTable services table = null;

ate DefaultTableModel table model = null;

ate Vector columnNames = null;

ate static final int intNumBtn = 3;
ate static String[] strBtn = new String[intNumBtn];

public SAGUI (BundleContext bc, SA sa)

{

super ("pSHIELD - Security Agent MOD v" + MAJOR + "." + MINOR);
strBtn[0] = "Types Discovery";

strBtn[l] = "Services Discovery";

strBtn[2] = "Hide Me";

columnNames = new Vector();

columnNames.add ("Icon") ;
columnNames.add ("Name") ;
columnNames.add ("Run") ;

this.bc = bc;
this.sa = sa;

Draft B

RE

D5.2
Page 144 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

addWindowListener (windowExit) ;
createGUI () ;

setSize (width, height) ;
setForeground (Color.black) ;
setBackground (Color.lightGray) ;

/*
* ENABLE / DISABLE THE GUI...
*/

// this.pack();
setVisible (true) ;

WindowAdapter windowExit = new WindowAdapter ()

public void windowClosing (WindowEvent e)
{
actionExit () ;
}
}i

public void actionExit ()
{
// Exiting...
if (bc != null)
{
try
{
bc.getBundle () .stop () ;
}
catch (BundleException BE)
{
BE.printStackTrace () ;
}

public void actionPerformed (ActionEvent e)

{
if (e.getActionCommand() .equals (strBtn[0]))
{

try{
int i = 0;

types vector = sa.serviceTypeDiscovery();
cb.removeAllItems () ;
if (sa != null){

Iterator it = types vector.iterator();

while (it.hasNext ()) {
cb.insertItemAt((String) it.next(), 1);
i++;

}
}
}catch (Exception ex) {
ex.printStackTrace ()

’

}

cb.setEditable (false) ;
cb.setEnabled (true) ;

}

else if (e.getActionCommand () .equals (strBtn[1l]))

{
String type selected = (String) cb.getSelectedItem();
if (type selected != null) {

try {
services discovered = sa.serviceDiscovery(type selected);
} catch (Exception el) {

RE D5.2
Draft B Page 145 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE
// TODO Auto-generated catch block
el.printStackTrace();
}
}
else JOptionPane.showMessageDialog(null , "Select a Service Type");

}
el

{

}

List 1 = sa.getServices(1l1l);
ht = sa.getParameters(l);

// Initialize the services table with the services discovered
initializeServicesTable(services discovered);
se if (e.getActionCommand () .equals (strBtn[2]))

setVisible (false) ;

else

{

}
}

/*

//Unknown Command

*

* Function that initialize and the services table with a data vector
@param data the data vector (if it is null, the table will be empty)

*

*

/

private void initializeServicesTable(Vector data) {

table model = new DefaultTableModel();

table model.addColumn ("Name") ;
table model.addColumn ("Description");
table model.addColumn ("") ;

if (data != null && !data.isEmpty ()) {

Iterator it = data.iterator();

while (it.hasNext()) {

Hashtable ht = (Hashtable) it.next():;
if (ht.containsKey("Service Name") && ht.containsKey("Service Description")) {
String serv_name = (String) ((Vector)ht.get("Service Name")) .elementAt (0);
String description = (String) ((Vector)ht.get ("Service Description")) .elementAt (0);
if (serv_name != null && description != null) {
table model.addRow(new Object[] { serv_name, description, "Run"});
}
}
}
}
services table = new JTable (table model) {

// Returning the Class of each column will allow different
// renderers to be used based on Class
public Class getColumnClass (int column)
{
if (getValueAt (0, column) == null)
return null;
else
return getValueAt (0, column).getClass();
}
public boolean isCellEditable (int row, int col) {
if (col ==)
return true;
else
return false;

}

public String getToolTipText (MouseEvent e) {
String tip = null;
java.awt.Point p = e.getPoint();
int rowIndex = rowAtPoint (p);
int colIndex = columnAtPoint (p);

RE

Draft B

D5.2
Page 146 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

int realColumnIndex = convertColumnIndexToModel (colIndex) ;

if (services discovered != null) {
Hashtable tmp = (Hashtable) services discovered.elementAt(rowIndex);
String description = (String) ((Vector) tmp.get("Service Description"))
.elementAt (0) ;
if (realColumnIndex < 2) {

tip = description;
}
}

return tip;

}i

// Create the button column
ButtonColumn buttonColumn = new ButtonColumn (services table, 2);

services table.setPreferredScrollableViewportSize (new Dimension (500, 70));
services table.setSelectionMode (ListSelectionModel.SINGLE SELECTION) ;
services_table.setColumnSelectionAllowed (false) ;
services table.setRowSelectionAllowed (true);

table panel = new JScrollPane(services table);

services panel.removeAll () ;

services panel.add(combo panel, BorderLayout.PAGE START);

services panel.add(table panel, BorderLayout.CENTER);
services panel.add(buttons panel, BorderLayout.PAGE END) ;

services panel.validate();

}

// DESIGN GRAPHICS

private void createGUI ()

{

// Initialize the main Panel
services panel = new JPanel ();
services panel.setLayout (new BorderLayout());
services panel.setBorder (BorderFactory.createCompoundBorder (BorderFactory.createRaisedBevelB
order (), BorderFactory.createlLoweredBevelBorder()));

// Initialize the Combo Panel
combo_panel = new JPanel () ;

GridBagLayout gridbag = new GridBagLayout () ;
GridBagConstraints c¢ = new GridBagConstraints();

c.fill = GridBagConstraints.BOTH;

combo_panel.setLayout (gridbag);

c.gridwidth = 1; // The cell occupies 1 column
c.gridheight = 1; // The cell occupies 1 row
c.gridx = 0; // The cell is located in 1 column

c.gridy = 0; // The cell is located in 1 row
c.weightx = 0.0; // The cell occupies the minimum row length
c.weighty = 0.1; // The cell occupies the entire column length

JLabel lab = new JLabel ("Choose a Service Type :");
gridbag.setConstraints(lab, c);
combo_panel.add(lab);
types vector = new Vector();

cb = new JComboBox (types vector);

cb.setEditable (false) ;
cb.setEnabled (true) ;

RE D5.2
Draft B Page 147 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
c.gridwidth = 3; // The cell occupies 1 column
c.gridheight = 1; // The cell occupies 1 row
c.gridx = 1; // The cell is located in 1 column

0; // The cell is located in 1 row
= 0.1; // The cell occupies the entire row length
1; // The cell occupies the entire column length

c.gridy =
c.weightx
c.weighty = 0.

gridbag.setConstraints(cb, c);
combo_panel.add(cb) ;

// Initialize the Buttons Panel
buttons panel = new JPanel();

for (int 1 = 0; i < intNumBtn; i++)

{

/*
* ADD BUTTONS TO START SEVERAL TEST
*/
Button b new Button (strBtn[i]);

//gridbag.setConstraints (b, c);
b.addActionListener (this) ;
buttons panel.add(b) ;

}

// Create an empty table
initializeServicesTable(null);

// Add the subpanels to the main panel
services panel.add(combo panel, BorderLayout.PAGE START) ;

services panel.add(table panel, BorderLayout.CENTER);
services panel.add(buttons panel, BorderLayout.PAGE END) ;

// Add the main panel to the Frame
add(services panel);

/*
* CENTER FRAME ON THE SCREEN
*/
Dimension dialogSize = getSize();
Dimension screenSize = Toolkit.getDefaultToolkit () .getScreenSize();
setLocation (screenSize.width/2 - dialogSize.width/2, screenSize.height/2 -

dialogSize.height/2);

/*
* pSHIELD ICON
*/
try
{
/*
* Check if we are in a JAR file...
*/
URL url = this.getClass () .getResource("logo pSHIELD 16x16.jpg");
if (url != null)
{
this.setIconImage (Toolkit.getDefaultToolkit () .createImage (url));
}
else

{
/*
* We are not in a JAR file...
*/
}
}
catch (Exception e)
{
e.printStackTrace();
}
}

class ButtonColumn extends AbstractCellEditor implements TableCellRenderer, TableCellEditor,
ActionListener {
JTable table;
JButton renderButton;
JButton editButton;
String text;

RE D5.2
Draft B Page 148 of 158

pSHIE

LD SPD middleware and overlay functionalities prototype

RE

public ButtonColumn (JTable table, int column) {

super () ;
this.table = table;
renderButton = new JButton();

editButton = new JButton () ;
editButton.setFocusPainted(false);
editButton.addActionListener (this);

TableColumnModel columnModel = table.getColumnModel () ;
columnModel.getColumn (column) .setCellRenderer (this);
columnModel .getColumn (column) .setCellEditor (this);

}

public Component getTableCellRendererComponent (

JTable table, Object value, boolean isSelected, boolean hasFocus, int row, int column)

{

if (hasFocus)

{
renderButton.setForeground (table.getForeground()) ;
renderButton.setBackground (UIManager.getColor ("Button.background")) ;

}

else if (isSelected)

{

’

renderButton.setForeground (table.getSelectionForeground()) ;
renderButton.setBackground (table.getSelectionBackground())

}

else
{

renderButton.setForeground (table.getForeground()) ;
renderButton.setBackground (UIManager.getColor ("Button.background")) ;

}

renderButton.setText ((value == null) ? "" : value.toString());
return renderButton;

}

public Component getTableCellEditorComponent (

JTable table, Object value, boolean isSelected, int row, int column)
{

text = (value == null) ? "" : value.toString();

editButton.setText (text);

return editButton;

}

public Object getCellEditorValue ()
{

return text;

}

public void actionPerformed (ActionEvent e)

{
fireEditingStopped() ;

try

{
ServiceReference[] sr = findCompositionManagerImplementations();
Object o = bc.getService(sr[0]);
cm = (ICompositionManager) o;

//Devo avviare i servizi restituiti dall'hashtable

if (services discovered != null) {
cm.runBundle ((Hashtable) services discovered.elementAt(table.getSelectedRow()),11,
ht);
}
}
catch (Exception er)
{
er.printStackTrace();
}
}
}
/* *
* Davide Migliacci
RE D5.2
Draft B Page 149 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

*

* This function uses the internal 0SGi service discovery to find a suitable implementation
* of the IComunicationManager interface.

*/
private ServiceReference[] findCompositionManagerImplementations() throws Exception
{

ServiceReference[] cmi = null;

try

{
cmi = bc.getServiceReferences (ICompositionManager.class.getName (), null);
}
catch (Exception e)
{
throw e;

}

return cmi;

public void appendts (String str)
{

append ("[" + new String((new Date ((new Long(System.currentTimeMillis())) .longValue())) .toSt
ring()) + "]1\n" + str + "\n");
}

public void append(String str)
{

System.out.println(str);
}

RE D5.2
Draft B Page 150 of 158

pSHIE

LD SPD middleware and overlay functionalities prototype

RE

package eu.artemis.shield.overlay.semanticknowledge.impl.SemanticKknowledge.html

packag

import
import
import
import
import

import
import
import
import
import
import
import
public

publ

}

publ
{

Sy

PS
tr
{

e eu.artemis.shield.overlay.semanticknowledge.impl;

it.trs.rd.pshield.data.response.CompositionData;
it.trs.rd.pshield.data.response.CompositionResponse;
it.trs.rd.pshield.engine.PShieldApplicationContex;
it.trs.rd.pshield.engine.PShieldEngineException;
it.trs.rd.pshield.engine.PShieldService;

java.util.LinkedList;
java.util.List;
java.io.BufferedReader;
java.io.FileReader;

java.io.IOException;
java.util.HashMap;

eu.artemis.shield.overlay.semanticknowledge.ISemanticKnowledge;
class SemanticKnowledge implements ISemanticKnowledge {

ic SemanticKnowledge () {

ic List semanticComposition(List list)

stem.out.println("1");

hieldApplicationContex ctx;
Yy

System.out.println(System.getProperty ("user.dir"));
ctx = PShieldApplicationContex.getContex();
System.out.println("2");

PShieldService service = ctx.getPShieldService();
System.out.println("3");

for (int i = 0; 1 < list.size(); i++)
{
try {
service.addElement (readFileAsString ((String)list.get(i)));
System.out.println (i) ;
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}

System.out.println("4");
/*HashMap services = new HashMap () ;

for (int 1 = 1; 1i<10; i++) {
String alfa = url("resources/data/data7"+i+"7Pilota.owl");
String beta = sdeevel("resources/data/data7"+i+"7Pilota.owl");
services.put (alfa, beta);

}*/

CompositionResponse response = null;
try {

response = service.getComposition();
} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}
for (CompositionData composition : response.getCompositions()) {
System.out.println("------ ") ;
for (String elem : composition.getFuncionalities()) {

System.out.println(elem) ;

RE

Draft B

D5.2
Page 151 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

}

return response.getCompositions();
}
catch (PShieldEngineException el)
{
// TODO Auto-generated catch block
el.printStackTrace();
}

return null;

private static String readFileAsString(String filePath) throws java.io.IOException {
StringBuffer fileData = new StringBuffer (1000);
BufferedReader reader = new BufferedReader (new FileReader (filePath));
char[] buf = new char[1024];
int numRead = 0;
while ((numRead = reader.read(buf)) != -1) {
String readData = String.valueOf (buf, 0, numRead);
fileData.append (readData) ;
buf = new char[1024];
}
reader.close();
return fileData.toString();

* This function return the spdLevel associated to that owl file
* (@param path
turn spdLevel
* @throws IOException
*/
/* private static String spdLevel (String path) throws IOException({
String file = "";

dr

BufferedReader in = new BufferedReader (new FileReader (path));
String control = " <SPDStatus rdf:datatype=\"é&xsd;int\">";
while((file = in.readLine()) !=null) {
if (file.startsWith (control)) {
file = file.substring(control.length(), control.length()+2);
String a = file.substring(1l);
if (a.equals ("<")) {

file = file.substring(0,1);
}
System.out.println ("Found" + file);
return file;
}
else {
System.out.println ("Not Found");
}

return file;

y*/
/‘k‘k

* This function returns the url associated to that owl file
* @param path
* @Qreturn url
* @thr IOException
*/
/* private static String url (String path) throws IOException({
String file = "";

BufferedReader in = new BufferedReader (new FileReader (path));
String control = "<rdf:RDF xmlns=\"";
while((file = in.readLine()) !=null) {
if (file.startsWith (control)) {
file = file.substring(control.length(), file.length()-1);

System.out.println ("Found" + file);
return file;

}

else {

System.out.println ("Not Found");

}

return file;

RE D5.2
Draft B Page 152 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

RE D5.2
Draft B Page 153 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

Annex 3 — Overlay control algorithms — Matlab Source
Code prototype

Prototype A

[OFF ON] (\
outl —P» N1
0
{\ﬂ—b In1 %%battery _
1 FAULT out2 P N2
[ON OFF] \)

Monitoring System

Energy Consumption

) — [battery<=500] o
e N
‘/ \\
3 Y
A B
entry.t=0; ennjy:t:O;
during:battery=battery-0.4*; du ring ‘battery=battery-0.2*t;
during:t=t+0.02; [battery>500] lbattery<=500] |during +t+0.02;
5 14:,727 — — &
1 [Nl__oj/l 2 [battery<=10]
[N1==0 y \
J. N1==1] y w
3 { ‘u
Default
Attivo </
P entry.t=0; [battery>1000]
¢ during:battery=battery-+t; -
during:t=t+0.02; .
N\
\\
7 TTNZ=T] 7
[N2==0],/ —— J - H ‘
e /] 12— I f
Y9 [battery>500] batery<=500] | ™\ | battery<=10]
c \ A)
entry:t=0; [N2==0] 2-(D
during:battery=battery-0.4*t; entryt=0;
during:t=t+0.02; during:battery=bafttery-0.2*t
during:t=t+0.02;
>

[Bg ttery<:§6 6]

RE D5.2
Draft B Page 154 of 158

pSHIELD SPD middleware and overlay functionalities prototype
RE

Prototype B

sensormodel_full.hys

SYSTEM sensor {

INTERFACE {
STATE { REAL B [0,100];
REAL P [0,100];
REAL BT [0,100];
BOOL S;
}
INPUT { REAL rIN [0,120];
}
OUTPUT {REAL yl,y2,y3;
BOOL y4;
}
PARAMETER {

REAL Ts, rOUTmax, bMAX, btLOW,pMAX, rINmax;

}
IMPLEMENTATION {
AUX { REAL rOUT, rOUT2, rOUT3, R, R2;
BOOL max, maxB, LOWbt, IDLE, FINbt, EMPb, maxP;
}
AD { max = rIN>=rOUTmax ;
maxB = B>=bMAX;
LOWbt = BT<=btLOW;
IDLE = P<=0;
FINbt = BT<=1;

EMPb

B>=0;

maxP = P>=pMAX;

RE D5.2
Draft B Page 155 of 158

pSHIELD

SPD middleware and overlay functionalities prototype

RE

AUTOMATA {S = FINbt;

}

DA { rOUT = {IF (max | maxB) & !'LOWbt THEN rOUTmax ELSE rOUT2};
rOUT2 ={IF S | IDLE THEN O ELSE rOUT3};
rOUT3 ={IF EMPb THEN B ELSE rIN};
R = {IF (maxB | maxP) & !'LOWbt THEN 2 ELSE R2};

R2 = {(IF IDLE | S THEN O ELSE 1 };

CONTINUOUS {
B = B+Ts* (rIN-rOUT) ;

P

100* (Ts) * (rIN+rOUT) / (rINmax+rOUTmax) ;

BT = BT-Ts*R;

OUTPUT {yl=B;
y2=P;
y3=BT;
y4=S;

}

Draft B

RE

D5.2

Page 156 of 158

pSHIELD

SPD middleware and overlay functionalities prototype
RE

MPC_optimization.m

clear all; close all; clc;

%$load sensor.hys
Ts=0.5;

bMAX=80;
rOUTmax=100;
rINmax=120;

btLOW=10;
PMAX=90;
clc

o
°

S

Generate the MLD model
=mld('sensormodel full',Ts):;

% Generate the equivalent PWA model
P=pwa (S) ;

o

]

Design MPC controller
clear Q refs limits

o\

refs.x=1;
0.x=1;
Q.rho=Inf;
%Q.norm=2;
Q.norm=Inf;
N=2;

only state x(2) is weigh
weight on state x(2)
hard constraints

use quadratic costs

use infinity norm

o\

o°

o

°
o)

]

limits.xmin=[0;0;0;01];

C=hybcon (S,Q,N,limits, refs);
C.mipsolver="glpk'; used for MILP
%C.mipsolver="cplex"'; used for MIQP
Tstop=100;
x0=[0;0;40;0];
clear r
TS=[0:Ts:99.5]"
U=zeros (length (
for i=1l:1length/(

o

o
[

o

o

°

initial state

)y
)

TS),1)
TS

U(i)=85* (TS (1)>=0)* (TS (1)<=20);
end
r.x=U;

% Simulate Hybrid MPC loop using from
[XX,UU,DD, 2%Z,TT]=sim(C,S,r,x0,Tstop) ;
figure

subplot (311) ;

plot (TT,2*XX(:,2),TT,UU);

axis ([0 30 0 1301);

grid

title ('CPU (%),
subplot (312) ;
plot (TT,XX(:,1),TT,r.x);
axis ([0 30 0 1001);

grid

Rin (MB/s) ")

ted

command line

Draft B

RE D5.2

Page 157 of 158

pSHIELD SPD middleware and overlay functionalities prototype

RE
title('Buffer (MB) ')
subplot (313);
plot (TT,XX(:,3));
axis ([0 30 0 50]);
grid
title('Battery (%) ")
set (gcf, '"position', [360 55 385 623]);
RE D5.2

Draft B Page 158 of 158

