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1 Executive Summary  
D2.3 is a deliverable inside pSHIELD WP2, “Scenarios, requirements and system design”, separated into 
internal intermediate deliverable D2.3.1, “Preliminary system architecture design” and public final 
deliverable D2.3.2, “System architecture design”. As denoted by its title, the main objective is to describe 
a formal and conceptual overall system architecture, to address Security, Privacy and Dependability 
(SPD) in the context of Embedded Systems (ESs) as “built in” rather than as “add-on” functionalities, 
proposing and perceiving with this strategy the first step toward SPD certification for future ESs. The 
methodology adopted concerns the gradual process and interaction with the major project topics, which 
form the framework for the architecture design, such as requirements, application scenario, metrics and 
technology development in the four layers described in the project. The latter, hierarchically ascending, 
Node, Network, Middleware and Overlay layers comprise the pSHIELD proposal, an alternative to 
classical layered OSI model structure. Therefore, the concluding complete architecture is presented 
through the definition of the four layers, the interfaces between them and the overall framework 
synthesized. 
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2 Introduction  
The main goal of pSHIELD is to ensure that security, privacy and dependability (SPD) in the context of 
integrated and interoperating heterogeneous services, applications, systems and devices. Systems and 
services must be robust in the sense that an acceptable level of services is available despite the 
occurrence of transient and permanent perturbations such as hardware faults, design faults, imprecise 
specifications, and accidental operational faults. 

The pSHIELD architecture composability relies on the so called SPD modules. Indeed the pSHIELD 
architecture is composed by a mosaic of innovative SPD functionalities, each one of the considered 
layers. The pSHIELD architecture is able to derive application instantiations of the general framework, 
selecting statically (at design time) and dynamically (at runtime) the best SPD functionalities for achieving 
the required SPD levels. In particular, referring to the abovementioned layers, the SPD modules will 
implement the following functionalities: 

• At node layer, intelligent hardware and firmware SPD 
• At network layer, secure, trusted, dependable and efficient data transfer based on self-

configuration, self-management, self-supervision and self-recovery 
• At middleware layer, secure and efficient resource management, inter-operation among 

heterogeneous networks 
• At overlay layer, composability 

 
R&D for embedded security, intended as a system issue that must be solved at all abstraction levels 
(protocols, algorithms, architecture), will lead, in the framework of this task, to a coherent, composable 
and modular architecture for a flexible distribution of SPD information and functionalities between different 
ESs while supporting security and dependability characteristics. 

 
This framework in D2.3.2 aims, at the one hand, to explore the minimum set of interdependencies 
between applications and architectures in an efficient way and to systematically classify those with 
respect to SPD. On the other hand, it aims to produce a composable architecture which will include most 
critical elements, thus covering most of the SPD requirements for all the applications. This approach is 
expected to produce a multi-layered architecture, where each layer consists of several hardware and 
software SPD modules (components), since it is imperative to take into account the need for composable 
security, privacy and dependability. 

 
The resulting architecture has to be reconfigurable, offline, meaning that mechanisms should be provided 
to the designer for enabling/disabling nodes in order to tailor the overall system to his needs. 
Furthermore, fault diagnosis and fault recovery have to be addressed both in hardware and software 
layers. 

 
Intra-layer and inter-layer interfaces should be defined in the system architecture to ensure the correct 
communication among the different SPD modules. 
 

3 Terms, Definitions and Approaches 
(1) Embedded System (ES) is a computer system designed to perform one or a few dedicated 

functions often with real-time computing constraints. It is embedded as part of a complete device 
often including hardware and mechanical parts. By contrast, a general-purpose computer, such 



 System Architecture Design  12(108) 
Document No. Security Classification Date 

/pSHIELD/D2.3.1 PP  20.10.2011 
 

as a personal computer (PC), is designed to be flexible and to meet a wide range of end-user 
needs. 

(2) An Embedded System is a microprocessor based system that is embedded as a subsystem, in a 
larger system (which may or may not be a computer system). 

 
In general, "embedded system" is not a strictly definable term, as most systems have some elements of 
extensibility or programmability. For example, handheld computers share some elements with embedded 
systems such as the operating systems and microprocessors which power them, but they allow different 
applications to be loaded and peripherals to be connected. Moreover, even systems which do not expose 
programmability as a primary feature generally need to support software updates. On a continuum from 
"general purpose" to "embedded", large application systems will have subcomponents at most points 
even if the system as a whole is "designed to perform one or a few dedicated functions", and is thus 
appropriate to call "embedded". 
 
An ES is some combination of computer hardware and software, either fixed in capability or 
programmable, that is specifically designed for a particular function. Industrial machines, automobiles, 
medical equipment, cameras, household appliances, airplanes, vending machines and toys (as well as 
the more obvious cellular phone and PDA) are among the myriad possible hosts of an embedded system. 
For example, the following figure shows the essential parts of an ES:  
 

• Microprocessor / DSP 
• Sensors 
• Converters (A-D and D-A) 
• Actuators 
• Memory (On-chip and Off chip) 
• Communication path with the interacting environment 

 
 

 
Figure 1 - A generic embedded system structure 

 
Embedded Device (ED) can be a small programmable chip that can be programmed to execute certain 
functions.  
 
Heterogeneous system is a group of interacting, interrelated, or interdependent elements forming a 
complex whole. 
 
Heterogeneous device integration designates technologies that can be integrated on one platform 
device. 
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Heterogeneous network is a network connecting computers and other devices with different operating 
systems and/or protocols.  
 
Architecture: The architecture of a system defines its basic components and important concepts and 
describes the relationships among them. 
 
Functional architecture (FA): The functional architecture can be viewed as the set of basic information 
processing capabilities available to an information processing system. The functional architecture is 
comprised of a set of primitive operations or functions. This means that these basic functions cannot be 
explained by being further decomposed into less complex ("smaller") sub-functions. 
 
The functional architecture is constructed from an analysis of different functional requirements as 
deduced from different use cases. 

Example 1:  
 
Figure 2 shows one example of NGN functional architecture. 
 

 
 

Figure 2 - Overview of the functional architecture of TISPAN NGN release 2  

 
The main scope of the above functional architecture is to identify a set of functional blocks, for example: 
Media Gateway Function (MGF); Border Gateway Function (BGF); Access Relay Function (ARF); 
Signaling Gateway Function (SGF); Media Resource Function Processor (MRFP); Layer 2 Termination 
Function (L2TF), etc. Each subsystem is specified as a set of functional entities and related interfaces. As 
a result implementers may choose to combine functional entities where this makes sense in the context of 
the business models, services and capabilities being supported. Where functional entities are combined 
the interface between them is internal, is hidden and un-testable. 
 
Example 2:  
 
The Web system architectures have a technical architecture that is divided in functional and information 
architecture. For both the information  architecture  and  the  functional  architecture,  various  abstraction  
levels  exist,  which  include  the  business  architecture, logical architecture, physical architecture and 
implementation architecture: 
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• Business Architecture: The business architecture represents business processes, policies and 
procedures, workflows and user interactions. This is used to guide the design of other more 
technical related architecture layers  

• Logical Architecture: The logical architecture defines at a high level the structure of the system to 
be developed. The elements in this layer are logical concepts, instead of concrete or physical 
software components 

• Physical Architecture: The physical architecture further defines the technical solution at a detailed 
level. Some design decisions, such as the selection of content storage product, can be 
represented in this layer  

• Implementation Architecture: The implementation architecture specifies system composition and 
interconnections 

 

pSHILED Functional Architecture (pSFA) is composed by four functional layers: node, network, 
middleware and overlay, which represent a set of four functional sub-systems that are specified by its set 
of elements, functional entities and interfaces.  
 
Node Layer (NoL) of pSFA: node layer is composed of Intelligent ES HW/SW Platform and have 
different kinds of Intelligent ES Nodes: nano node, micro/personal node, power node, and Dependable 
Self-X Crypto Technologies. This layer is composed of standalone and/or connected NoL elements like 
sensors, actuators, etc., that perform smart transmission.   
 
The NoL is a layer composed by physical nodes (i.e. hardware). Each node is a generic Embedded 
System (for example a sensor, an actuator, a transmitter etc.). The functionality of the NoL: 
 
Network Layer (NeL) of pSFA is a heterogeneous layer composed by a common set of protocols, 
procedures, algorithms and communication technologies that allow the communication between two or 
more nodes. 
 
Middleware Layer (ML) of pSFA is the software layer that provides the basic functionalities to use the 
underlying networks of embedded systems (like service discovery and composition) as well as some 
security functionalities (like accounting or access control). This layer, being software, is installed on the 
nodes. 
 
Overlay Layer (OL) of pSFA is a logical vertical layer that collects (directly or indirectly) semantic 
information coming from the Node, Network and Middleware layers and uses them to compute the 
adequate actions (if any) that ensure the desired level of SPD. It is a software routine running at 
middleware and/or application level. 
 

3.1 Cross-Layer / Cross-Overlay Architecture Definitions 
 

3.1.1 Introduction  

The purpose of this chapter is to give an overview on the cross-layer architectures (CLA) proposed 
recently by the research community and to address in details SPD issues for overall pSHIELD System 
Architecture (pSSA).  
 
In wireless and mobile networking envisioned for pSHIELD System Architecture (pSSA), difficult 
environmental conditions are a permanent challenge, resulting in a demand for cross-layer optimizations. 
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There is also a need to further increase flexibility of the network. Therefore, we believe cross-layer 
architectures should adapt themselves to these changing conditions, just as they adapt the network stack, 
devices, and applications. 
 
The network protocol stacks are logically organized in layers. These layers are strictly separated and the 
cross-layer functionality between them is restricted by determined interfaces, which in effect only allow 
passing packets up and down the stack. In principle, all these layers have been designed to fulfil their 
functionality without interaction across the layers. History shows that this works well in wired and static 
environments. Popularity and success of wireless networks and highly mobile nodes is currently 
dominating in new development and research activities. In order to adapt to the rapidly and frequently 
changing network conditions under those circumstances, a more sophisticated interaction between 
protocols than in a traditional layered architecture is desirable.  The existing solutions are not able to 
dynamically change which of these to use and how to use them, i.e., the adaptation, re-parameterization 
and addition of cross-layer optimizations during runtime. Moreover, customization of optimizations in 
existing frameworks is often cumbersome and complicated, if it can be done at all. 
 
Cross-layer architectures diverge from the existent network design approaches, where each layer of the 
protocol stack operates independently and the data between the successive layers is exchanged in a very 
strict and systematic manner. There are several advantages of a layered approach since modularity, 
robustness and ease of design are effortlessly achieved. The modularity that the layers provide allows for 
potential arbitrary combination of protocols, and the maintainability is being improved as new versions of 
a protocol can be inserted without having to alter the rest of the network stack. However the properties of 
the different layers have substantial interdependencies and a modularized design may be suboptimal with 
regards to performance especially in satellite and mobile wireless environments, where the 
communication channels and traffic patterns are more unpredictable than in wired-line networks. 
 
There has been much talk about cross-layer design for wireless communication networks lately. It has 
been argued repeatedly that layer boundaries, as specified in the layered architectures, are not suitable 
for wireless communications and performance gains can be made by giving up strict layering to do cross-
layer design [1], [2]. 
 
This chapter discusses a communication methodology involving node cooperation which, while 
demonstrating a new opportunity created by wireless networks, significantly challenges the layered 
architecture. 
 
Cross-layer design touches not just communications and networking, but is also intimately connected to 
concepts related to communications architecture. Layered architectures have served to make the protocol 
design activity systematic and modular. Potential performance gains can always motivate a designer to 
not follow the layered architectures and do cross-layer design. But cross-layer design cannot be seen as 
an end itself. 
 
This chapter presents both, a state-of-the-art (SoA) of the ongoing work, and platforms over which new 
research can be built [3]-[20]. In this project we will propose a new cross-layer design or discuss specific 
cross-layer design proposals in detail. Rather, we encourage a more holistic treatment of cross-layer 
design itself. 
 
We therefore propose a Cross-Layer pSHIELD System Architecture (CLA-pSSA) with the following 
properties: 
 

• Signalling between an arbitrary amount of layers and system components 
• Extensibility of the architecture and adaptability of optimizations at runtime 
• High usability for cross-layer developers via an abstract description language for optimization 

rules 
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There also exist several cross-layer architectures facilitating signalling across all layers, i.e. any-to-any 
layer signalling. For example, Cross-Layer Signalling Shortcuts (CLASS) enables direct signalling 
between all layers by message passing [8]. 
 

3.1.2 Description of Cross-Layer Architecture 

 

3.1.2.1 A definition for Cross-Layer Design (CLD) 

A layered architecture, like the seven layer Open Systems Interconnect (OSI) model [3], defines a 
hierarchy of services to be provided by the individual layers. The services at the layers are realized by 
designing protocols for the individual layers, which can be implemented on the target platform to obtain a 
complete system. 
 
At the protocol design phase, the designer has two choices. Protocols can be designed by respecting the 
rules of the original architecture. In the case of the layered OSI reference model, this would mean 
designing protocols such that they only make use of the services at the lower layers and not be 
concerned about the details of how the service is being provided. It also implies that the protocols would 
not need any interfaces that are not present in the reference architecture. 
 
Alternatively, protocols can be designed by violating the reference architecture. Since the reference 
architectures in communication and networking have traditionally been layered, its violation is generally 
termed as cross-layer design. 
 

3.1.2.2 A taxonomy of CLD 

In the recent times, a large number of cross-layer designs have been proposed. A classification based on 
the layers that are coupled by the different proposals can be found in [4]. In this section, we classify the 
existing cross-layer design proposals according to the kind of architectural violations they represent. Two 
points should be mentioned here. Firstly, our coverage of the cross-layer design proposals is meant to be 
representative and not exhaustive. Secondly, the reference architecture we assume is motivated from the 
“best of both worlds” five-layer model proposed in [5]. Thus, we assume that the reference architecture 
has the application layer, the transport layer, the network layer, the link layer which comprises the data-
link control (DLC) and medium access control (MAC) sub-layers [3], and the physical layer—with all the 
layers performing their generally understood functionalities. 

 

We identify the following architectural violations: 

 

1) Creation of new interfaces (Figure 3:  A, B, C) 
2) Merging of adjacent layers (Figure 3: D) 
3) Design coupling without new interfaces (Figure 3: E) 
4) Vertical calibration across layers (Figure 3: F) 

 

A. Creation of new interfaces 

Several cross-layer designs require creation of new interfaces between the layers. These can further be 
divided into three categories depending on the direction of information flow along the new interfaces: 

1) Upwards: From lower layer(s) to a higher layer  
2) Downwards: From higher layer(s) to a lower layer 
3) Back and forth: Iterative flow between the higher and lower layer 
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We now discuss the three sub-categories in more detail and point out the relevant examples. 
 

1) Upward information flow: A higher layer protocol that requires some information from the lower 
layer(s) at runtime results in the creation of a new interface from the lower layer(s) to the higher 
layer, as shown in Figure 3 A 

2) Downward information flow: Some cross-layer design proposals rely on setting parameters on 
the lower layer of the stack at run-time using a direct interface from some higher layer, as 
illustrated in Figure 3 B. Such downward flow of information is termed as Hints in [6]. As an 
example, the applications can inform the link layer about their delay requirement, and the link 
layer can then treat packets from the delay sensitive applications with priority [7] 

3) Back and forth information flow: Two layers, performing different tasks, can collaborate with each 
other at run-time. Often, this manifests in an iterative loop between the two layers, with 
information flowing back-and-forth between the layers, as highlighted in Figure 3 C 

 
 
 

 
 

Figure 3 - Different kinds of cross-layer design proposals (boxes represent the protocol layers) 

 

3.1.2.3 Existing and new CLAs 

 

3.1.2.3.1 A classic CLA 

Cross-layer design proposals that we looked at in Section 3.1.2.2 demonstrate the violation of layered 
architectures at the protocol design phase itself. Hence, a question that naturally comes up is, “Can there 
be architectures that are general enough such that protocols for wireless networks can be designed 
without violating them?” In fact, this is a complicated question. Determining what the new architectures 
should look like requires the study of not only the performance issues from a communication or 
networking viewpoint, but also an understanding of the implementation related issues. Nevertheless, 
some preliminary proposals have been made in the literature. 
These can be put into two categories: 
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1) Allowing the layers to communicate with each other (Figure 4 2A) 
2) A shared database across the layers (Figure 4 B). 

 
A. Allowing the layers to communicate 

A straightforward way to allow information sharing between the layers is to allow them to communicate 
with each other, as depicted schematically in Figure 4 A. Practically speaking this means making the 
variables at one layer visible to the other layers at run-time. Notice that under strictly layered 
architectures, every layer manages its own variables and its variables are of no concern to other layers. 
 
There are many ways in which the layers can communicate with one another. For instance, protocol 
headers may be used to allow flow of information between the layers. Alternatively, the extra “inter-layer” 
information could be treated as internal packets. The work in [8] presents a comparative study of several 
such proposals and goes on to present another such proposal, namely, the Cross-layer signalling 
shortcuts (CLASS). 
 
CLASS allows any two layers to communicate directly with one another. Similarly, the Hints and 
Notifications proposal discussed in [6] makes network layer the hub of inter-layer communication. These 
proposals are appealing in the case where just a few cross-layer information exchanges are to be 
implemented in systems that were originally designed in conformance with the layered architectures. In 
that case, one can conceivably “punch” a few holes in the stack while still keeping it tractable. However, 
in general, when variables and internal states from the different layers are to be shared between the 
different layers as prescribed by such proposals, a number of implementation issues relating to managing 
shared memory spaces between the layers may need to be resolved.  
  

B. Shared database across the layers 
The other architecture proposal recommends a common database that can be accessed by all the layers, 
as illustrated in Figure 4 B. See for instance references [9] and [4]. In one sense, the common database 
is like a new layer, providing the service of storage/retrieval of information to all the layers. 
 
The shared database approach is particularly well suited to vertical optimizations. An optimization 
program can interface with the different layers at once through the shared database. The main issue here 
is the design of the interactions between the different layers and the shared database. 
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Figure 4 - Proposals for architectural blueprints for wireless communications 

 

3.1.2.3.2 New CLA 

 

3.1.2.3.2.1 Cross-Layer Interaction Model 

The cross-layer architectures proposed in the literature do not address all the design goals of 
interoperability, rapid prototyping, maintainability, portability, and efficiency. Starting from this 
consideration, the goal of this work is to provide a generic framework for building and organizing a cross-
layer interactions model (CLIM) which could serve as a unified and simple way to implement cross-layer 
optimizations (see Figure 5). When using CLIM, the concept of NF (Network Feature) should also be 
introduced. A NF is either a functional service that can be provided to the end-user (e.g. QoS), or a 
network component whose operations/configurations are supposed to be critical in terms of performance, 
efficiency or services, at the system level or for the user satisfaction. Basically, cross-layer interactions 
may be local to or distant within a network node. 
 
In many cases only two elementary NF are involved in the adaptation and interaction (one source NF, 
one target NF). In some other cases multiple (local or distant) entities could participate. Local 
communications between protocols of non-neighbour layers are done through a local interface that must 
be defined. 
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Figure 5 - Proposed Cross-Layer Interaction Model 

 
The cross-layer architecture and interaction module CLIM has two main components: 1) QoS and 
Resource Management and 2) Mobility Management. The QoS and Resource Management component 
includes: 
 

• SIP and MAC cross-layer interactions used to support the interworking between WiMAX and 
DVB-RCS, and multimedia QoS-aware application 

• Transport layer and MAC cross-layer interaction (i.e. the interaction between TCP PEP 
(Performance Enhancing Proxy) and DAMA (Demand Assignment Multiple Access) in the MAC) 
designed to optimize the way in which the available resources is used taking into account QoS 
mapping at the MAC layer and enabling data to be sent to the lower layers at the speed at which 
the MAC layer queues are emptied (flow-control) 

• IP and MAC scheduling interaction implemented in a way that can fully take advantage of QoS 
capabilities offered by the satellite system 

• MAC and Physical layer interaction between DRA and DAMA as information in the frame 
constitution 

The Mobility Management component utilizes a slightly modified model (CLIM-m) based on the more 
generic CLIM architecture together with ideas from [17][18] . The mobility management modules include: 

 

• Algorithms for handover prediction and decision algorithms for fast handover with handover 
preparation, handover coordination and optimization algorithms for best performance 

• Information to decide the appropriate time to initiate and execute the handover procedures 

The proposed cross-layer platform for mobility management specifies a Cross-layer Manager consisting 
of a Link Information Manager and a Handover Manager connected to Layer Agents (LA). The Handover 
Manager communicates with multiple protocol layers via the LAs which capture specified parameters in 
each layer when the respective values are changing beyond a certain threshold. These data are reported 
to the Handover Manager to collect sufficient information for the Handover Decision Unit. 
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3.1.2.3.2.2 pSHIELD CLAs 

 

3.1.2.4 Challenges 

There are additionally several open questions, some of which cannot be addressed from a performance 
viewpoint alone and require a consideration of architectural concerns too. For example: 

 
• What should be the role of the physical layer in wireless networks? 

• Is the conventional view of the network—that of a collection of point-to-point links—appropriate 
for wireless networks? 

• How do the different cross-layer design proposals co-exist with one another? 

• Will a given cross-layer design idea possibly stifle innovation in the future? 

• What are the cross-layer designs that will have the most significant impact on network 
performance, and hence should be most closely focused on? 

• Has a given design proposal been made with a thorough knowledge of the effect of the 
interactions between the parameters at different layers on network performance? 

• Under what network and environmental conditions can a particular cross-layer design proposal be 
invoked? 

• Can the mechanisms/interfaces used to share information between the layers be standardized? 

• How do we make sure that the new architectures allow innovative usage of the wireless medium 
that we are likely to see in the future? 

 
We will investigate at some of these issues in greater detail. 

 

3.1.2.5 Description of Layers 

 

3.1.2.5.1 Physical Layer 

In wired networks, the role of the physical layer has been rather small—that of sending and receiving 
packets when required to do so from the higher layers. As we have seen, advances in the signal 
processing at the physical layer can allow it to play a bigger role in wireless networks. Consider, for 
instance, multi-packet reception capability at the physical layer. 
 

3.1.2.5.2 MAC Layer 

The MAC layer’s functionality is intimately connected to the network layer (and hence to the rest of the 
stack), we see that signal processing advances at the physical layer promise to have a significant impact 
on all aspects networking protocol design. Cross-layer designs relying on advanced signal processing at 
the physical layer are an interesting research ground for the future. 
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3.1.2.5.3 Cross-Layer Principles 

The solutions for cross-layer adaptation seek to enhance the performance of the system by jointly 
optimizing the performance of single or multiple cross-layers. The uncertainty is to what extent the layered 
architecture needs to be modified in order to introduce co-operations among protocols belonging to 
different layers. At one end, solutions based on triggers between the layers implement interdependencies 
between protocols while maintaining compatibility with strict layering. A full cross-layer design represents 
the other extreme; this implies introducing stack-wide layers’ interdependencies that enable the 
optimization of each protocol’s performance by exploiting the full knowledge of the network status 
abstracted at different layers of the protocol stack. 
 
However, in a multiple-objective optimization scenario, care should be taken to avoid undesirable (and 
unpredictable) interactions across parameters in various layers, leading to conflicts or even loops 
between the layers. There also exists a design trade-off between the multiple optimization goals and the 
effect of the increased processing and interactions to achieve these goals. Unfortunately by doing cross-
layer design in an undisciplined way, it is likely to end with a poorly structured system and to greatly 
increase the complexity of an already complex system [10][11]. 
 
Figure 6 illustrates the main ideas of cross-layer adaptation and optimization in a hybrid terrestrial and 
satellite network. Cross-layer optimization may be implemented locally (intra-node) or globally (inter-
node). A number of cross-layer methods and architectures have been proposed in the literature 
[12][13][14] [15][16]. They all share some common features and diverge notably in the way the cross-
layer principle is implemented, what kind of application focus, the capacity the architecture has and where 
the actual adaptation intelligence is located. 
 

 
 

Figure 6 - Cross-layer adaptation and optimization in satellite network 
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These architectures mostly fit out into one of the two categories: direct or explicit cross-layer 
communications and indirect or implicit cross-layer communications via a common entity, see Figure 7. 

 

 
Figure 7 - Cross-layer architectures for indirect and direct communications 

 

The first category, direct communications, should be used when only a single cross layer optimization is 
planned. The second category, indirect communications, is realized with a common cross-layer entity or 
cross-layer manager, which acts as a mediator between the layers. The cross-layer entity includes a 
network status component of the stack that interfaces the different layers between themselves, and it acts 
as a database where each network layer can put or get information. This architecture should be used for 
multiple cross layer optimizations. 

 

3.1.3 The Overlay as a Cross-Layer Security Architecture for Security, Privacy 
and Dependability 

As we have seen in the previous section, a Cross-Layer Architecture is a design paradigm that could 
improve the performance of a generic system by simply allowing information exchange among the layers. 
This approach has been widely described for Telecommunication environment, however for the purpose 
of the pSHIELD project we need to adapt it to a different context by addressing two main issues: 

i) Classical Cross-Layer is applied to the seven, well known, ISO/OSI layers, while pSHIELD Cross-Layer 
is applied to three heterogeneous and complex layers named Node (the hardware), Network (the 
interconnection between them) and Middleware (the software services providing the user with the basic 
functionalities to act on the system). 

ii) Classical Cross-Layer aims at optimizing telecommunication performances like bandwidth exploitation, 
transmission delays, and so on. The pSHIELD Cross-Layer is in charge of addressing Security, Privacy 
and Dependability and to bring them to the reference desired value. With Security, Privacy and 
Dependability we refer to a wide set of functionalities relevant for the system like Energy Management, 
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Access Control, Cryptography etc.. For any possible threat, pSHIELD acts as a SPD overlay, applying a 
functional-cross-layer approach, as depicted in: 

 

 
 

Figure 8 – pSHIELD Overlay 

In order to simplify the description, in the prosecution of the document we will refer to the “pSHIELD 
Cross-Layer Architecture for Security, Privacy and Dependability” with the word “Overlay Layer” or 
pSHIELD Overlay”. 

Since there are many SPD functionalities, most of them depending on the application scenario, is it not 
possible to provide in advance a general description of each possible Cross-Layer mechanism. However 
in the following section some examples are provided to better understand the Overlay concept. 

 

3.1.3.1 Security  

The Overlay approach could improve the security of an interconnected set of Embedded Systems by 
leveraging the basic security functionalities of each hardware and/or software components. For example if 
an encryption algorithm is required to protect the output of a node, the overlay could decide to perform it 
directly at node level (by activating the adequate chip and producing an already encrypted output) as well 
as at network level (by ciphering the information while transmitting it over a secured channel) or at 
middleware level (by ciphering the information stored in memory before sending it). Of course these 
solutions are equivalent if and only if they all fit the application needs. 

 

3.1.3.2 Dependability  

An intuitive example of Dependability functionality that could be guaranteed by the pSHIELD overlay 
could be the power consumption of the system. If we consider, for example, a monitoring system with 
different nodes and technologies, the Overlay could dynamically choose the less expensive (in terms of 
energy) device or transmission protocol in order to maximize the life of the battery and consequently the 
dependability of the system itself. 
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3.2 Node Layer Definitions  
 

3.2.1 Nano and Micro/Personal Node  

The pilot demonstrator of pSHIELD uses the Sun SPOT sensor platform as micro node. Sun SPOT is a 
useful platform for developing and prototyping application for sensor network and embedded system. Sun 
SPOT is suitable for application areas such as robotics, surveillance and tracking. 
 

3.2.1.1 Technology Description 

Hardware components 

The main units are Sunspot devices with embedded sensors and base station. Each Sunspot has a so-
called eSPOT with battery, while the base station is not equipped with battery and must be powered from 
the host computer via an USB cable. The Sunspot does not need to run any operating system, it needs 
only JVM that runs on bare metal, and executes directly out of flash memory. Stack-boards are composed 
of specific sensors and actuators such as accelerometers, light sensor and temperature sensor. The 
hardware components of a sensor board are as follows: 

• 180MHz for 32-bit ARM920T core processor with 512K RAM and 4M Flash, runs on Squawk 
• 2,4GHz based IEEE 802.15.4 radio (radio ChipCon TI CC2420) which is integrated in the 

antenna 
• USB interface for connecting to a host computer 
• 3.7V battery (720 mAh), Sleep mode (32 uA) 
• 3 axis accelerometer (2G/6G) 
• tri-color LEDs, 2 push-buttons control switches 
• digital I/O pins, 6 analog inputs, 4 digital outputs 

 

Integrated sensors 

• Temperature Sensor: Chip-type is ADT7411 sensor that measures temperature with ADC. ADC is 
integrated into eDemo, and can measure temperatures between -40  to +125  

• Accelerometer sensor: 3-axis accelerometer of the type LIS3L02AQ, designed by ST Micro 
Systems and located in eDemo Board. This sensor can measure the x-axis, y-axis and z-axis in 
the direction up and down with the value either ±2G or ±6G. When the Sunspot is at rest, it 
measures x = y = 0 and z = 1G 

• Light sensor is of the type TPS851, designed by Toshiba. The sensor can measure the voltage 
between 0.1V (dark) - 4.3V (light), and converts the voltage to the brightness of Luminance (lx) 3 

 
Software components: SUN SPOT JVM 

Squawk is open source and has been written in the Java programming language. It is a virtual machine, 
and is a highly portable Java VM. The advantage of Squawk is that it can run on bare metal instead of 
being run on top of the operating system. This means that applications can be isolated and be treated as 
application objects. This allows multiple applications running on the same virtual machine. Squawk also 
supports CLDC 1.1 that facilitates connectivity to mobile phones. 
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3.2.2 Power Node 

The Power Node is a rugged embedded system, providing high computing power, optimally designed in 
terms of dimensions, weight, power consumption and capable to work in harsh environmental conditions.  
The reference application context is defence/aerospace ground mobile and airborne environments, 
addressing manned and unmanned applications where reliable high performance computing is required. 

The Power Node is a pSHIELD SPD Embedded System Device. It is a physical component that offers 
native SPD features at different abstraction levels: hardware, firmware, network and operating system. 
The native support of SPD features and the high level of standard adopted, in terms of hardware 
architecture and operating system, make it ready to host middleware and overlay services.  

The node offers low level native SPD capabilities, which are available as hardware components, 
hardware interfaces, firmware functionalities and network functionalities. 

 

 
 

Figure 9 – Power Node pSHIELD component 

 
The node hardware capabilities are focused on security, dependability and composability. These features 
are provided by the architecture of the node, by the hardware components available on it, by its hardware 
interfaces, by the firmware and by the compliancy with MIL standards. The features include: 

• components which can be reconfigured (i.e. FPGA) and interfaces that allows reconfiguration at 
system level (redundant power supply, node redundancy, spare node, etc.) 

• set of FPGA SPD core blocks 

• firmware that supports remote reconfiguration of BIOS, FPGA images, etc. 

• power supply monitoring and protection unit 

• monitoring devices that allow to control continuously the status of the node 

• programmable I/O and network interface 

• BMC embedded unit 
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• MIL standard to ensure that the node is capable to work in critical environmental conditions 

The node hardware functionalities intend to support security, privacy and dependability. These 
functionalities are based on the capabilities and features offered by the hardware available on the Power 
Node board. The functionalities include: 

• reconfigurablity functionalities for components, interfaces and firmware 

• functionalities for security monitoring (through a dedicated FPGA core logic) 

• cryptographic functionalities (through a dedicated core of the FPGA or using Intel AES-NI 
technology) 

• functionalities to monitor continuously working parameters, performance and status of node 

• composability functionalities that allow to implement networks of Power Nodes, increasing fault 
tolerance, computing power, security and dependability 

The network services are oriented to increase privacy and dependability. These services are intended 
mainly to provide some Power Node hardware functionalities remotely. The network services include: 

• services for remote reconfiguration of BIOS and FPGA 

• SNMP services 

• services for remote self-test and performance monitoring  

• privacy and login management services 

The node SPD services rely on the hardware capabilities and functionalities, on the network services and 
on the operating system, offering a set or more abstract services that can be used by the middleware and 
overlay layers. The set of services includes: 

• FPGA and BIOS reconfiguration services 

• privacy and user control services 

• composability services 

• status and performance monitoring services; 

• services for the management of the topology of Power Nodes Network   

The Power Node has been conceived to host entire parts of the pSHIELD middleware and of the 
pSHIELD overlay, in particular when the requirements in terms of computing power, hardware 
composability and reliability are important. In this context, it acts as a computing and reasoning node, 
more than a data acquisition node. The middleware and overlay services that can be hosted depend on 
the application context and the role of the parts themselves. From an operating system and application 
point of view the Power Node can be seen as a very powerful rugged personal computer therefore, any 
part of the pSHIELD middleware and overlay that runs on a PC may run also on the Power Node. 
 

3.2.3 Cryptography Technologies  

This section presents in a summarized way the most relevant cryptography technologies related terms 
and definitions used in pSHIELD project. It is divided in the following sections: attacks on cryptosystems, 
attacks on protocols, asymmetric and symmetric cryptography, message authentication codes and key 
management. 

 



 System Architecture Design  28(108) 
Document No. Security Classification Date 

/pSHIELD/D2.3.1 PP  20.10.2011 
 
3.2.3.1 Attacks on Cryptosystems 

There are a number of techniques that have been used in the past to exploit weaknesses of some 
cryptographic algorithms and are currently used as basic evaluation criteria for new algorithms. The 
common aim of these attacks is to reveal partially or entirely the information encrypted in intercepted 
messages, or to extract some information internal to the encryption process (without initially knowing any 
secrets). They include: 

 

• Brute force attack - traversing the entire encryption key space in order to learn the encryption key 

• Dictionary attack - related to the brute force attack in that a set of keywords are used as possible 
values of the encryption key (or a pass phrase) 

• Chosen cypher text attack - obtaining information about a secret decryption key by submitting a 
range of cipher texts to decrypt 

• Adaptive chosen cypher text attack - a version of chosen cypher text attack in which the attacker 
interactively selects subsequent cypher texts based on the results of decryption of the previous 
ones 

• Cypher text-only attack - the attacker has access to a limited set of cypher texts 

• Known plain text attack - the attacker has access to a number of cypher texts together with the 
corresponding plain texts 

• Chosen plain text attack - the attacker can encrypt an arbitrary set of chosen plain texts 

• Adaptive chosen plain text attack - like above, but the attacker chooses subsequent plain text for 
encryption based on the previous results 

• Related-key attack - the attacker has access to encryption of a plain text under several different 
keys whose exact values may not be known but which are somehow mathematically related 

 

In addition to these general attack methods, there is also a range of more general cryptanalytic 
techniques that may be used to study the properties of cyphers. They include frequency analysis, 
differential cryptanalysis, linear cryptanalysis, statistical cryptanalysis and mod-n cryptanalysis. Finally, 
there are also attacks on hashing functions (e.g., birthday attack) that aim at finding collisions in hash 
functions, or attacks on random number generators that exploit a generator’s statistical weaknesses to 
simplify breaking a cipher that uses it. 

 

3.2.3.2 Attacks on Protocols 

Communication and security protocols can be attacked in a number of ways by intercepting and inserting 
messages in the communication channel. These attacks are even easier to perform in wireless networks 
since there might be little difficulty in accessing the channel, unless a more sophisticated technology such 
as direct-sequence spread spectrum (DSSS) or frequency hopping is used. 

 

• Replay attack - resending of some captured messages in order to confuse the protocol or to 
exploit some of its weaknesses 

• Wormhole attack - a form of a replay attack that uses a low-latency and long-range transmission 
link to intercept communications in one part of the network and then to reproduce them in another 
network region, for example, with the goal of authenticating the attacker 
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• Man-in-the-middle attack - the attacker intercepts all communications from a node A, modifies 
them and sends to a node B in such a way that both A and B have the illusion of direct 
communication with each other 

• Bit flipping attack - selectively flipping bits in intercepted messages in order to achieve desired 
protocol behaviour, for example, to route traffic to different recipients or to change the message 
type 

• Attack on key distribution protocols - preventing or intercepting key distribution in the network 
might severely affect the entire safety infrastructure of the system 

• Routing protocol attacks - the attacker may influence the contents of routing tables of some 
network nodes or even to introduce corrupt nodes to affect communication in the network 

 

3.2.3.3 Asymmetric Cryptography 

Asymmetric cryptography, also known as public key cryptography, is based on the disposition of two 
types of keys, a public key and a private key, that are used in the cryptographic operations. Intuitively, the 
public key is made available by a given entity to potential senders while the private key is kept hidden by 
that entity. A message sent to an X receiver should be encrypted by X’s public key where X can later 
decrypt it using its private key.  

There are mainly three well-known types of asymmetric cryptography algorithms (Eisenbarth & Kumar, 
2007); Elliptic Curve Cryptography (ECC), Rivest Shamir Adleman (RSA) and EL-Gamal. Depending on 
the target application and scenario specifications, implementations of the aforementioned approaches 
can be in software, hardware or a co-design of both. 

 

3.2.3.4 Symmetric Cryptography 

Symmetric ciphers use the same key or a pair of trivially-related keys (e.g., one is a linear transformation 
of the other) for both encryption and decryption of messages. Historically, symmetric ciphers precede 
their asymmetric counterparts and, although less versatile in their applications, they continue to be widely 
used due to the fact that they are typically several orders of magnitude faster, as well as, they can be 
implemented more efficiently. The main downside of symmetric key cryptography is the need to establish 
a secure communication channel for key exchange between the communicating parties before the actual 
communications can begin. As a result, asymmetric (public key) cryptography is often used to exchange 
symmetric session keys between the two parties and then to use a symmetric cipher to encrypt all 
subsequent communications. 

Symmetric ciphers can be grouped into two broad categories: stream ciphers and block ciphers. The 
former combine a pseudo-random bit sequence with the plaintext (typically a XOR) and, thus, operate on 
individual bits or bytes of the plaintext, while the latter use fixed-size blocks of plaintext. Stream ciphers 
are typically faster and simpler to implement than block ciphers, both in software and in hardware, and 
are better suited for encryption of transmissions of streams of large amounts of data (e.g., video streams). 
However, stream ciphers have been reported to have serious security vulnerabilities when not used 
carefully. In particular, keys should never be reused otherwise the plaintext can be easily recovered.  

Block ciphers use fixed-size blocks of plaintext, typically of 128 bits, and transform them in a sequence of 
operations, called rounds. Encryption of messages longer than the block size is done using a mode of 
operation, i.e., a technique of partitioning the plaintext into a sequence of blocks and then chaining their 
encryption to construct the cipher text of the entire message. Encryption of plaintexts smaller than the 
block size is done using a padding scheme. 
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3.2.3.5 Message Authentication Codes 

The ability to create a unique and non-forgeable digest of a message is of great practical importance. In 
particular, message authentication can be implemented by directly linking the sender's identity to the 
message's contents in form of a message authentication code (MAC). There are two general ways of 
implementing MACs: using cryptographic hash functions and running block ciphers running special 
modes such as, for example, cipher block chaining (CBC). 

 

3.2.3.6 Key Management 

A key management scheme is an integral part of any deployed security system. Whether the 
cryptographic approach followed is symmetric or asymmetric, the role of an efficient key management 
scheme is vital. Such a scheme is affected by the system's architecture, device classes, deployment 
environment, potential attacks and other factors. For example, a key management scheme for a secure 
WSN needs to deal with the limitations of such a system in terms of nodes computational, storage and 
energy constraints in addition to expensive wireless communication. Essentially, key management 
comprises key pre-distribution approaches and other schemes dependent on the nature of the network. In 
all cases, certain basic operations should be supported such as key addition, revocation, and renewal. 

 

3.3 Network Layer Definitions  
 

3.3.1 General Network Layer description 

Network Layer is responsible for delivering data packets of variable length between hosts belonging to 
different networks. Implementation depends on application environment and possible collaborative 
networks. Generally, it may include connectionless communication, hosts addressing and message 
forwarding, with IP and IP-based protocols being the most popular technology patterns. Network Layer 
design goes in accordance with MAC specification and may involve topics, such as, selection of the 
Internet Protocol Suite, Mobile IP for IPv4/IPv6 and Security Management, where IPsec is an open 
standard security scheme for authentication and encryption of IP packets. 

The pSHIELD Network Layer is charged with routing, multi-fold connectivity tasks and trusted data 
transfer among system components. Representative (for the scope of pSHIELD) topology of participating 
nodes and their homogeneous or not “islands”, form the network’s structure. The offered communication 
capabilities and overall network functions are presented. The interactions and communication with other 
layers and modules should be described through well defined interfaces. A conceptual and modular 
Network Layer architecture is designed through a methodology that encompasses all the critical features 
described already as the focus of the current study. Network Layer multi-technology architectural design 
is based on a series of “key” factors, adjusted in the view of pSHIELD networking needs. The most 
prominent of these factors (to be taken under consideration) are the following: 

 

• 6 key concepts of pSHIELD 

• Network requirements, phrased in preliminary deliverable D2.1.1 

• Selection of Nodes 

• Security, Privacy and Dependability functions and features 

• Application Scenario 
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• Software stack 

• Reference Architecture 

• Connectivity and Trusted Routing 

• Technology status 

• Metrics 

• Interactions and Interfaces, Cross Layer Architecture 

• Robustness and Composability in the general system framework 

• Commitment to the Technical Annex 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 10 - Network Layer: paradigm architecture 

 

3.3.2 Software Defined Radio 

SDR platform will be used to provide smart SPD driven transmission. It is a radio communication software 
system, implemented on software (e.g. on embedded devices), meant to replace system components, 
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such as amplifiers, filters, mixers, modulators, originally implemented in hardware. It can receive and 
transmit a variety of different radio waveforms, based on the software used. It can, also, be integrated 
easily with hardware security modules. Significant advantages can be derived from this alternative 
realization of a radio communication system: 
 

• Variable network parameters can be set straightforwardly and on-line, whereas in hardware 
implementation reconfigurations are, frequently, cumbersome or need to be conducted manually 

• The communication itself can be changed, providing the possibility of access to different networks 
(e.g. GSM and Wi-Fi) without having to switch between different devices 

• Signal processing can be managed by a general purpose processor, providing a radio that can 
receive and transmit heterogeneous waveforms (depending on the specific software used) 

• SDR is flexible in overcoming problems of limited spectrum availability 
• Addition of an SDR node in a mesh network increases its capacity and reduces energy consumed 

per node  
 
Smart transmission techniques by pSHIELD Network Layer will rely on waveform-agile implementations 
of SDR. The two basic elements which model an SDR system are a computing unit and an RF front end. 
In pSHIELD Architecture, SDR in cooperation with Cognitive Radio, will be used to derive from SPD 
modules the corresponding desired communication and security functionalities.        
 

3.3.3 Cognitive Radio  

Cognitive Radio is a radio communication standard, able to change its transmission and reception 
parameters, according to conclusions deduced from sensing the frequency spectrum. The objective is to 
detect the unused spectrum and utilize it to set up radio communication. CR scouts the environment and 
adapts to user needs, without neither involving the user in this procedure, nor interfering with the host 
network, while conforming to FCC rules. As its inspirator Joseph Mitola III described, the motive behind 
CR is to render users aware of available radio resources, in order to serve their communication needs, 
without obstructing these resources’ allocation and normal function of the whole network. CR is itself a 
network node performing (concisely) the following actions, in the procedure of setting successfully a radio 
communication: 
 

• Detection of free frequency spectrum 
• Creation of a channel to use this spectrum 
• Function without interfering with native devices 

   
And more analytically, the main functions and methods of CRs could include:  
 

• Spectrum Sensing 

 Transmitter detection: CR detect signals from specific transmitters in specific spectrum  

 Cooperative detection: information from multiple CRs is used for detection 

 Interference based detection 

• Spectrum Management 

 Spectrum Analysis 

 Spectrum Decision 

 Spectrum Pooling: allocation of resources between users 
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 Spectrum Leasing 

 Spectrum Sharing: a stack of spectrum is given to users (similar to MAC channel 
addressing) 

 Negotiated Spectrum Use 

 Opportunistic Spectrum Use 

 Dynamic Spectrum Access 
 

• Spectrum Mobility 

 A CR user exchanges its operation frequency 
 

Although primary observations concern frequency spectrum usage, other factors can be inspected also, 
such as user behaviour, channel conditions, network state and link performance. Subsequently the CR 
may decide to alter communication settings, from which the most usual are waveform, protocol, frequency 
and power, to meet the required level of QoS.    
 
CR uses unlicensed frequency bands or alternatively, fairly used licensed ones. Its success led FCC to 
consider open further bands for unlicensed use. IEEE 802.22 is a standard for CR air interface 
(PHY/MAC), belonging to WRAN communication protocols. It is developed for Cognitive Radio 
techniques, to exploit geographically unused spectrum. Additionally, IEEE P1900 is a standard committee 
and group focusing on the development of standards dealing with spectrum management.   
 
Having a brief view on the architectural schemes of SDR/CR, we can add to prerequisite blocks (apart 
from the radio front end and the computer system we saw in previous paragraph) a control unit, capable 
of making decisions following spectrum sensing and concerning methods of spectrum management. 
Variability of options appears in the computing unit selection: 
 

a) General purpose processor 

b) Application specific processors and integrated circuits 

c) FPGAs for reconfigurable computing 

d) Embedded Systems 
 
The last category shows that Embedded Systems and SDR/CR architectures fit quite well and direct us to 
pSHIELD Network Layer application techniques. Reversely, speed of ESs, together with low energy 
requirements, rather small programming effort and the specific nature of tasks they perform make 
SDR/CR schemes a suitable communication model. Also, due to the nature of ESs’ Operating Systems, 
SDR/CR devices can have, comfortably, quick reset and reconfigurability processing times, without the 
demand of lengthy off-line periods. The cost of the combination SRD/CR with ESs could be very 
reasonable, allowing us to seamlessly improve network performance in application domains. Cognitive 
Radio, for example, is an emerging radio approach in emergency communications, to face issues of vital 
importance, such as the usual network congestion during the peak of a crisis or difficulties in 
intercommunication between authorities resulting from heterogeneous communication protocols and 
systems.  
 
 In chapter 6, System Design, SPD Driven Transmission and Trusted Connectivity are examined further, 
as functions of pSHIELD Network Layer, provided by the appliance of SDR/CR architecture.  
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3.4 Middleware Layer Definitions 
The Middleware layer is seen, from a pSHIELD perspective, as a pure software-based layer playing a key 
role to interface the Node and Network layer to the Overlay layer. The Middleware layer is shown in the 
below figure highlighted in grey. 

 
Figure 11 – pSHIELD Middleware layer 

 
Given an application scenario, the pSHIELD Middleware layer is in charge to get heterogeneous SPD-
relevant parameters and measurements from the Node and Network layer adapters. This information, 
jointly with the ones gathered from the Middleware layer, are semantically enriched and sent to the 
Overlay layer as sensed metadata. Once the Overlay layer elaborates these information as inputs of 
proper control algorithms, it sends back to the Middleware layer the best rules to discover and compose 
the available SPD middleware, network and node resources. Indeed the discovery and composition 
services are part of the Core SPD Services provided by the pSHIELD Middleware layer. The Core SPD 
Services are detailed in the following section. Once activated, the Core SPD Services elaborate the 
proper commands and configuration to compose the available legacy Middleware, Network and Node 
layer capabilities as well as their innovative SPD functionalities. 

 
Given an application scenario, it is possible to identify a legacy Middleware layer (e.g. CORBA, DCOM, 
etc.), composed by several Legacy Middleware Capabilities (e.g. remote procedure call, messaging 
queues, etc.). To be pSHIELD compliant, a Middleware layer must have a pSHIELD Middleware adapter, 
providing a mandatory set of Core SPD Services (i.e. discovery, composition, orchestration) and an 
optional set of innovative SPD functionalities (e.g. identification, authentication, auditing, accounting, anti-
tampering, etc.). 
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3.4.1 SPD Driven Semantics  

In order to cope with the intrinsic Embedded Systems complexity and heterogeneity the proposed solution 
is to design and implement a proper abstract, comprehensive semantic model able to provide a 
homogeneous representation of heterogeneous SPD-related parameters and conceptual models. So the 
idea is to abstract from Embedded Systems peculiarities and focus only on their abstract SPD semantic. 
In other words, the aim is to allow that heterogeneous SPD functionalities are seen by the Overlay as if 
they were a Seamless homogeneous pool. 

 

To this purpose the technology-dependent SPD functionalities are abstracted in order to achieve a 
technological-independent framework; this task will be performed by extensively using semantic 
modelling techniques. As a consequence a uniform semantically-enriched ontological representation of 
carefully selected SPD functionalities can be achieved, which is fundamental in order to flexibly handle 
and control the considered Embedded System. 

Semantic models in pSHIELD lean on the concept of ontology, and ultimately shall enable interoperability 
at different levels in the conceptual framework of pSHIELD.  

Given that the SPD domain in Embedded Systems shall be captured by a number of ontology, automatic 
reasoning is enabled in order to support several features of the pSHIELD framework.  

Broadly speaking, a semantic engine (reasoner) shall enable interoperability within Middleware Layer and 
rule based discovery and composition within Overlay Agents, in such a way to provide the following 
essential enabling mechanisms:  

• Semantic reasoning based on ontology models may carry out a reconciliation of heterogeneous 
formats of parameters exchanged between different layers (also suitable for interaction with 
legacy agents) 

• The semantic characterization of the behavioural aspect of components makes it suitable for an 
agent to determine “what the service does” 

• The semantic characterization of the composition of functionalities and of the relations among 
them makes it suitable for an agent to reason about SPD metrics of the current configuration and 
– if needed - to carry out reconfigurations of the system at run-time, by means of rule-based 
combination / composition of components and SPD technologies, in order to achieve the new 
intended values for SPD metrics 

 

3.4.2 Core SPD Services 

The Core SPD Services are a set of mandatory basic SPD functionalities provided by a pSHIELD 
Middleware Adapter with the aim to mediate the information exchange between the Overlay vertical layer 
and the three horizontal layers. 

 
In particular, the Core SPD Services are in charge of: 
 

• discovering and keeping updated the available SPD resources, services, functionalities, data and 
contextual information coming from the Node, Network and Middleware layer, 

• translating technology-dependent heterogeneous information into technology-independent 
metadata,  

• filtering, semantically enriching and aggregating mentioned metadata which will be eventually 
stored in the Semantic Knowledge Representation database of the pSHIELD Overlay  
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• enforcing the Overlay decisions all over the three horizontal layers, i.e. from the Middleware layer 
down to the Node layer, passing through the Network layer 

 
The core SPD services are a set of mandatory basic SPD functionalities provided by a pSHIELD 
Middleware Adapter in terms of pSHIELD enabling middleware services. The core SPD services aim to 
provide a SPD middleware environment to actuate the decisions taken by the pSHIELD Overlay and to 
monitor the Node, Network and Middleware SPD functionalities of the Embedded System Devices under 
the pSHIELD Middleware Adapter control. The following core SPD services are provided: 

 

• secure service discovery 

• service composition 

• service orchestration 

 

Secure service discovery allows any pSHIELD Middleware Adapter to discover in a secure manner the 
available SPD functionalities and services over heterogeneous environment, networks and technologies 
that are achievable by the pSHIELD Embedded System Device (pS-ESD) where it is running. Indeed the 
pSHIELD secure service discovery uses a variety of discovery protocols (such as SLP1, SSDP2, NDP3, 
DNS4, SDP5, UDDI6) to harvest over the interconnected Embedded System Devices (ESDs) all the 
available SPD services, functionalities, resources and information that can be composed to improve the 
SPD level of the whole system. In order to properly work, a discovery process must tackle also a secure 
and dependable service registration, service description and service filtering. The service registration 
consists in advertising in a secure and trusted manner the available SPD services. The advertisement of 
each service is represented by its formal description and it is known in literature as service description. 
The registered services are discovered whenever their description matches with the query associated to 
the discovery process, the matching process is also known in literature as service filtering. On the light of 
the above a SPD services discovery framework is needed as a core SPD functionality of a pSHIELD 
Middleware Adapter. Once the available SPD services have been discovered, they must be prepared to 
be executed, assuring that the dependencies and all the services preconditions are validated. In order to 
manage this phase, a service composition process is needed.  

Service composition is in charge to select those atomic SPD services that, once composed, provide a 
complex and integrated SPD functionality that is essential to guarantee the required SPD level. The 
service composition is a pSHIELD Middleware Adapter functionality that cooperates with the pSHIELD 
Overlay in order to apply the configuration strategy decided by the Control Algorithms residing in the 
pSHIELD Security Agent. While the Overlay works on a technology independent fashion composing the 
best configuration of aggregated SPD functionalities, the service composition takes into account more 
technology dependent SPD functionalities at Node, Network and Middleware layers. If the Overlay 
decides that a specific SPD configuration of the SPD services must be executed, on the basis of the 
services’ description, capabilities and requirements, the service composition process ensures that all the 
dependencies, configuration and pre-conditions associated to that service are validated in order to make 
all the atomic SPD services to work properly once composed. 

When the SPD services have been discovered and a feasible service composition has been identified, 
those services must be deployed, executed and continuously monitored. This is part of the service 
orchestration pSHIELD Middleware Adapter functionality. While service composition works “off-line” 

                                                      
1 IETF Service Location Protocol V2 - http://www.ietf.org/rfc/rfc2608.txt 
2 UPnP Simple Service Discovery Protocol - http://upnp.org/sdcps-and-certification/standards/ 
3 IETF Neighbour Discovery Protocol - http://tools.ietf.org/html/rfc4861 
4 IETF Domain Name Specification - http://www.ietf.org/rfc/rfc1035.txt 
5 Bluetooth Service Discovery Protocol 
6 OASIS Universal Description Discovery and Integration - http://www.uddi.org/pubs/uddi_v3.htm 
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triggered by an event or by the pSHIELD Overlay, service orchestration works “on-line” and is 
continuously operating in background to monitor the SPD status of the running services. 

Secure service discovery, service composition and service orchestration operate at pSHIELD Middleware 
Layer and have access to the information coming from the Middleware, Network and Node layers as well 
as from the Overlay. These core SPD functionalities can take advantage from the information provided by 
the running services to “sense” the context or the situation in which the system is operating. Such a 
capability allows introducing an additional pSHIELD Middleware Adapter functionality that is context 
awareness.  The context awareness is a pervasive functionality, that is embedded in the discovery, 
composition and orchestration processes, thus it does not represent an atomic core SPD functionality but 
an additional characteristic of the pSHIELD Middlware Adapter functionalities. In pSHIELD we introduce 
the context awareness of the pSHIELD Middleware Adapter core SPD services with a semantic 
approach, extending the service description model with context aware requirements7. 

 

3.4.3 Policy-based Management 

A typical PBM architecture is defined by the IETF policy framework [21]. The architecture constitutes 
several points and elements, i.e., Policy Management Tool (including the required tools and a policy 
repository), Policy Decision Point and a Policy Enforcement Point. The following figure presents an 
illustration of the main points in a typical PBM. 

 

 
 

Figure 12 – Typical IETF PBM Architecture 

 

3.4.3.1 Policy Management Tool 

Different terminologies are used to refer to PMT such as Policy Administration Point (PAP) for instance. 
PMT is mainly used by the administrator(s) in order to specify business-level (high-level) abstractions that 
constitute polices. A number of elements are needed at this point typically [21][22]: 

                                                      
7 V. Suraci, S. Mignanti, “Context-aware Semantic Service Discovery”, 16th IST Mobile & Wireless Communications Summit 
Budapest, Hungary 1-7 July 2007. Proceedings. #273. 
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1) A user interface that could be graphical with command-line support. Used as a policy editor with 
simple validation; 

2) A resource discovery element that determines the network topology, its capabilities, constituents, 
users and running applications; 

3) A policy translation (or transformation) element that transforms high-level policies into a lower-
level constituents-specific policies. It also ensures policies’ consistency, correctness and 
distribution feasibility through a validation process; 

4) A policy distributer/storage-retrieval element; as the name suggests, it interacts with the policy 
repository (explained onward) to store low-level policies and allow for their retrieval. 

An example of policy translation as described in [21] would be; assume a high-level policy segment that 
defines "Premium Traffic between Point A and Point B". This can be translated into a low-level policy rule: 
“source = 10.24.195.x, dest = 10.101.227.x, any protocol, perform Premium Service action”. Indeed, a 
validation check can only be carried out in an offline manner here where the syntactic and semantic 
integrity of each policy must be preserved. Some semantic validation checks are defined by [22] as in: 

1) Bound checks: ensure that a given attribute value is within a predefined range; 

2) Relation checks: ensure that any two values assigned to interrelated policy parameters are 
satisfactory to their relationship; 

3) Consistency checks: ensure a conflict-free set of policies; 

4) Dominance checks: ensure that all specified policies are reachable and are to be active at some 
point during the system’s lifetime; 

5) Feasibility checks: these are domain dependent checks that need to ensure that the underlying 
environment can support the specified policies. 

Moreover, while consistency checks need to ensure that conflicts among policy rules are avoided and 
given that this is an offline stage, other checks should be carried out at runtime to avoid potentially 
triggered conflicts. 

 

3.4.3.1.1 Policy Repository 

A policy repository is mainly concerned with managing translated policies, e.g., Directory Server, 
Database. It should allow for the storage, search and retrieval of policies and interface with other 
elements using for instance, a Lightweight Directory Access Protocol (LDAP) protocol. 

 

3.4.3.2 Policy Decision Point 

PDP is mainly a set of modules that are capable of examining applicable policies and consequently 
determine the decisions required for the system to comply with that policy. PDP is responsible for 
communicating policy-inferred decisions/actions to the Policy Enforcement Point (PEP) that could reside 
on several physical devices. That channel of communication is governed by a protocol such as SNMP. 
PDP also needs to interact, (i.e., fetch policies) with the policy repository using a protocol such as LDAP. 
 

3.4.3.3 Policy Enforcement Point 

PEP is the final point in a typical IETF policy framework architecture. PEPs act as logical entities that 
interface between systems’ devices/resources such as sensors, where they are likely to reside, and the 
PDP by processing exchanged requests and responses. As the name suggests, PEP is responsible for 
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enforcing actions communicated from the PDP at the device-level. Those actions reflect the policy or 
policies to be deployed at the local level. 

 

3.5 Overlay Layer Definitions  
Overlay: is a pSHIELD-specific vertical layer which is technology-independent and interoperates with the 
three pSHIELD horizontal layers (node, network and middleware) aiming at inter-layer SPD optimization 
and composability of heterogeneous SPD technologies.  

In particular the Overlay is in charge of: 
 

• elaborating, according to specific policies, the SPD related information coming from the horizontal 
layers  

• taking consistent SPD related decisions concerning which SPD components have to be 
composed and the related configuration and composition rules 

• enforcing the taken decisions back into the selected SPD components of the three horizontal 
layers 

 
The Overlay takes its SPD composition decisions on the basis of a very "rich" information, consisting of 
dynamic, semantically enriched, multi-layer, aggregated SPD-related metadata expressed using a 
common, formal, technology-independent language. 

 
The Overlay consists of a set of SPD Security Agents, each one controlling a given pSHIELD subsystem. 
Expandability of such framework is obtained by enabling communication between SPD Security Agents 
controlling different sub-systems. 

Security Agent (SA): a security agent is an entity, hardware or software, that performs Overlay 
functionalities. Usually there is one security agent per network, so that each agent is in charge of assuring 
SPD in its segment and, if necessary, exchange information with the neighbour security agents if this is 
required to satisfy the application needs. 

Semantic Information: the semantic information is a representation of hardware or software components 
that constitute the pSHIELD system and is modelled by means of ontologies. 

 

4 SPD Considerations 
 

4.1 Fundamental Concepts  
 

4.1.1 Security and Privacy 

 

4.1.1.1 Core Security Principles 

• Confidentiality 

• Integrity 
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• Availability 

• Authentication 

• Authorization (Access Control) 

• Intrusion detection/prevention 

• Security policies 

 

4.1.1.2 Security domains 

• Systems security 

• Network security 

• Operations security 

• Physical security 

 

4.1.1.3 Concepts 

4.1.1.3.1 Cryptographic primitives 

In the context of systems and network security, the basic functional security primitives that have been 
proposed and implemented are the various cryptographic algorithms that are to be used for data and 
communications encryption and decryption as well as data integrity. The three basic classes of 
cryptographic primitives are symmetric ciphers, asymmetric ciphers and hashing algorithms. 

Symmetric ciphers perform the encryption and decryption operations using the same key that is to be 
shared among the sender and receiver of the message in hand. They are used mainly to ensure data 
confidentiality and are divided in two basic classes; block ciphers and stream ciphers. Block ciphers such 
as AES, DES, 3DES, perform the cryptographic operations on similar sized blocks of data, while stream 
ciphers such as RC4 operate on a bit by bit basis. On both cases, the cryptographic operations consist of 
a sequence of mathematical computations such as permutations and substitutions performed on the 
original or encrypted data. 

Asymmetric ciphers, or public-key algorithms, such as RSA, Diffie-Hellman, use different keys for 
encryption and decryption. Those keys are called public and private keys. They use computationally 
intensive mathematical functions such as modular exponentiation and are used primarily for generating 
and verifying digital signatures and certificates as well as exchanging the symmetric chipper keys. Due to 
their computational complexity they are not usually used for encryption and decryption of the actual 
messages, but as a means to providing a secure channel for symmetric key exchange. 

Hashing algorithms such as MD5 and SHA provide ways of mapping messages (with or without a key) 
into a fixed-length value, thereby providing “signatures” for messages. Thus, integrity checks can be 
performed on communicated messages by (a) having the sender “securely sending” the actual hash 
value of a message along with the message itself, (b) allowing the receiver to compute the hash value of 
the received message, and (c) comparing the two signatures to verify message integrity. 

4.1.1.3.2 Security Mechanisms 

Security solutions to meet the various security requirements typically rely on the aforementioned 
cryptographic primitives, or on security mechanisms that use a combination of these primitives in a 
specific manner (e.g., security protocols). Various security technologies and mechanisms have been 
designed around these cryptographic algorithms in order to provide specific security services. 
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Security protocols provide ways of ensuring secure communication channels to and from the embedded 
system. IPSec [IPSec] and SSL [SSL] are popular examples of security protocols, widely used for Virtual 
Private Networks (VPNs) and secure web transactions, respectively. 

Digital certificates provide ways of associating identity with an entity, while biometric technologies [Reid 
2003] such as fingerprint recognition and voice recognition aid in end-user authentication. Digital 
signatures, which function as the electronic equivalent of handwritten signatures, can be used to 
authenticate the source of data as well as verify its identity. 

Digital Rights Management (DRM) protocols, such as OpenIPMP [OpenIPMP], MPEG [MPEG], ISMA 
[ISMA], and MOSES [MOSES], provide secure frameworks for protecting application content against 
unauthorized use. 

Secure storage and secure execution require that the architecture of the system be tailored for security 
considerations. Simple examples include the use of hardware to monitor bus transactions and block 
illegal accesses to protected areas in the memory, authentication of firmware that executes on the 
system, application isolation to preserve the privacy and integrity of code and data associated with a 
given application or process, HW/SW techniques to preserve the privacy and integrity of data throughout, 
the memory hierarchy, execution of encrypted code, and so on. 

4.1.1.3.3 Design Challenges 

Designers of a large and increasing number of embedded systems need to support various security 
solutions in order to deal with one or more of the security requirements described earlier. These 
requirements present significant bottlenecks during the embedded system design process. 

Processing Gap: Existing embedded system architectures are not capable of keeping up with the 
computational demands of security processing, due to increasing data rates and complexity of security 
protocols. These shortcomings are most felt in systems that need to process very high data rates or a 
large number of transactions (e.g., network routers, firewalls, and web servers), and in systems with 
modest processing and memory resources (e.g., PDAs, wireless handsets, and smartcards). In this 
paper, we will examine the two sides of the processing gap issue (requirements and availability) and 
study various solutions proposed to address this mismatch. 

Battery Gap: The energy consumption overheads of supporting security on battery-constrained 
embedded systems are very high. Slow growth rates in battery capacities (5–8% per year) are easily 
outpaced by the increasing energy requirements of security processing, leading to a battery gap. Various 
studies [Carman et al. 2000; Perrig et al. 2002; Potlapally et al. 2003] show that the widening battery gap 
would require designers to make energy-aware design choices (such as optimized security protocols, 
custom security hardware, and so on) for security. 

Flexibility: An embedded system is often required to execute multiple and diverse security protocols and 
standards in order to support (i) multiple security objectives (e.g., secure communications, DRM, and so 
on), (ii) interoperability in different environments (e.g., a handset that needs to work in both 3G cellular 
and wireless LAN environments), and (iii) security processing in different layers of the network protocol 
stack (e.g., a wireless LAN enabled PDA that needs to connect to a virtual private network, and support 
secure web browsing may need to execute WEP, IPSec, and SSL). Furthermore, with security protocols 
being constantly targeted by hackers, it is not surprising that they keep continuously evolving. It is, 
therefore, desirable to allow the security architecture to be flexible (programmable) enough to adapt 
easily to changing requirements. However, flexibility may also make it more difficult to gain assurance of a 
design’s security. 

Tamper Resistance: Attacks due to malicious software such as viruses and trojan horses are the most 
common threats to any embedded system that is capable of executing downloaded applications [Howard 
and LeBlanc 2002; Hoglund and McGraw 2004; Ravi et al. 2004]. These attacks can exploit vulnerabilities 
in the operating system (OS) or application software, procure access to system internals, and disrupt its 
normal functioning. Because these attacks manipulate sensitive data or processes (integrity attacks), 
disclose confidential information (privacy attacks), and/or deny access to system resources (availability 
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attacks), it is necessary to develop and deploy various HW/SW countermeasures against these attacks. 
In many embedded systems such as smartcards, new and sophisticated attack techniques, such as bus 
probing, timing analysis, fault induction, power analysis, electromagnetic analysis, and so on, have been 
demonstrated to be successful in easily breaking their security [Ravi et al. 2004; Anderson and Kuhn 
1996, 1997; Kommerling and Kuhn 1999; Rankl and Effing; Hess et al. 2000; Quisquater and Samyde 
2002; Kelsey et al. 1998]. Tamper resistance measures must, therefore, secure the system 
implementation when it is subject to various physical and side-channel attacks. Later in this paper (see 
Section 6), we will discuss some examples of embedded system attacks and related countermeasures. 

Assurance Gap: It is well known that truly reliable systems are much more difficult to build than those that 
merely work most of the time. Reliable systems must be able to handle the wide range of situations that 
may occur by chance. Secure systems face an even greater challenge: they must continue to operate 
reliably despite attacks from intelligent adversaries who intentionally seek out undesirable failure modes. 
As systems become more complicated, there are inevitably more possible failure modes that need to be 
addressed. Increases in embedded system complexity are making it more and more difficult for 
embedded system designers to be confident that they have not overlooked a serious weakness. 

Cost: One of the fundamental factors that influence the security architecture of an embedded system is 
cost. To understand the implications of a security related design choice on the overall system cost, 
consider the decision of incorporating physical security mechanisms in a single-chip cryptographic 
module. The Federal Information Processing Standard (FIPS 140-2) [FIPS] specifies four increasing 
levels of physical (as well as other) security requirements that can be satisfied by a secure system. 
Security Level 1 requires minimum physical protection, Level 2 requires the addition of tamper-evident 
mechanisms such as a seal or enclosure, while Level 3 specifies stronger detection and response 
mechanisms. Finally, Level 4 mandates environmental failure protection and testing (EFP and EFT), as 
well as highly rigorous design processes. Thus, we can choose to provide increasing levels of security 
using increasingly advanced measures, albeit at higher system costs, design effort, and design time. It is 
the designer’s responsibility to balance the security requirements of an embedded system against the 
cost of implementing the corresponding security measures. 

 

4.1.2 Dependability 

The protection and survival of networked systems and services that are running on those systems is the 
main concern of an SPD driven architecture. In different circumstances, different properties of such 
services are the ones that we focus on sustaining. These are, per example, the average response time of 
the service, the capability to prevent intrusions, the ability to produce the required output and the ability to 
survive a catastrophic failure. 

Dependability sums up those concerns under a common framework. We can identify three main parts to 
the concept of dependability. 

• The threats 

• The attributes 

• The means 
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Figure 13– Dependability concept 

 

The five fundamental properties of a computing system are 

• Functionality 

• Usability 

• Performance 

• Cost 

• Dependability 

 

Dependability is the ability of the system to deliver a service in a justifiable trusted way. The function of 
the system is the intended output of the system and is described in the functional specifications of the 
system. Correct service is delivered when the system is providing the intended function as per 
specification. System failure is the incorrect service provisioning. Dependability can also be described as 
the ability of a system to avoid failures that are more frequent, more severe and last longer than the 
user’s expectations. 

 

4.1.2.1 The threats 

A system failure can occur when either the system does not comply with the functional specification or the 
specification does not describe adequately its function. An error is the part of the system state that can 
introduce a failure. The actual failure occurs when the error reaches the system’s interface. The fault is 
the cause of an error. The ways in which a system can fail are its failure modes and can be ranked 
according to severities. 

A system is the whole of interacting components; therefore a system state is the set of its component 
states. A fault causes an error on one or more system components. A system failure occurs only when 
those errors reach the service interface of the system. 

We identify three major fault classes 

• Design faults 

• Physical faults 
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• Interaction faults 

The semantics of the terms fault, error and failure reflect the current usage 

• Fault prevention, tolerance, diagnosis 

• Error detection, correction 

• Failure rate, failure mode 

 

4.1.2.2 The attributes 

Dependability is a concept composed by the following basic attributes 

• Availability 

• Reliability 

• Safety 

• Confidentiality 

• Integrity 

• Maintainability 

The description of the required goals of those attributes in terms of frequency, severity and duration of 
failure modes for a specific set of failure modes in a specific environment, is the dependability 
requirement of the system.  

Depending on the indented application of the system, those attributes contribute in different weights to the 
dependability requirement. Availability is always a prerequisite, but reliability, safety and confidentiality 
may be required to a limited degree in certain applications. 

Integrity is a prerequisite for availability, reliability and safety but not always for confidentiality. Per 
example, attacks via passive listening can lead to loss of confidentiality without threatening integrity. 

Security, although not included as a single attribute of dependability, can be described as the combination 
of confidentiality, integrity and availability.  

There are also some secondary attributes, especially relevant to security, which can be defined when we 
distinguish amongst various types of information 

• Accountability: availability and integrity of the identity of the person that performs an operation 

• Authenticity: integrity of the source and content of a message and other attributes of the message 
such as time of emission 

• Non-repudiation: availability and integrity of the identity of the sender and receiver of a message 

The different weights that are put on those attributes directly affect the means that are to be used in order 
to make the resulting system dependable. Most of the times, those attributes are also conflicting with 
each other and several design trade-offs are required. 

 

4.1.2.3 The means 

The four main techniques utilized for the development of a dependable computing system are the 
following 

• Fault prevention: It is attained by employing quality control during the design and implementation 
phases. For software, these include structured programming and modularization and for 
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hardware, rigorous design rules. Physical faults are prevented through shielding, radiation 
hardening etc. Interaction faults are prevented through training and rigorous procedures. 
Malicious faults are prevented through the use of firewalls, intrusion detection systems and 
similar defences 

• Fault tolerance: Is the notion of delivering the correct service even during the presence of active 
faults. This is achieved by error detection and system recovery in the forms of rollback, 
compensation or roll forward. Fault tolerance is not restricted to accidental faults. Malicious faults 
are also the target of the error detection mechanisms 

• Fault removal: This is preformed during both development and operational phases. During the 
development life cycle, fault removal is consisting of three steps; verification, diagnosis, 
correction. During the normal operational phase, fault removal is performed via corrective and 
pre-emptive maintenance. Pre-emptive maintenance aims on removing faults before they cause 
errors during operation 

• Fault forecasting: Is the outcome of the evaluation of the system behaviour with respect to fault 
occurrence. The main metric used in this process is failure intensity. The alteration of correct-
incorrect service delivery is quantified to define reliability, availability and maintainability as 
measures of dependability. 

 

4.2 Embedded Systems 
 

4.2.1 Introduction 

In addition to the typical requirements for responsiveness, reliability, availability, robustness and 
extensibility, many conventional embedded systems and applications have significant security 
requirements. However, security is a resource-demanding function that needs special attention in 
embedded computing. Furthermore, the wide deployment of small devices which are used in critical 
applications has triggered the development of new, strong attacks that exploit more systemic 
characteristics, in contrast to traditional attacks that focused on algorithmic characteristics, due to the 
inability of attackers to experiment with the physical devices used in secure applications. Thus, design of 
secure embedded systems requires special attention. 
 

4.2.2 Design of Secure Embedded Systems 

Secure embedded systems must provide basic security properties, such as data integrity, as well as 
mechanisms and support for more complex security functions, such as authentication and confidentiality. 
Furthermore, they have to support the security requirements of applications, which are implemented, in 
turn, using the security mechanisms offered by the system. 
 

4.2.2.1 System Design Issues 

Design of secure embedded systems needs to address several issues and parameters ranging from the 
employed hardware technology to software development methodologies. Although several techniques 
used in general-purpose systems can be effectively used in embedded system development as well, 
there are specific design issues that need to be addressed separately, because they are unique or 
weaker in embedded systems, due to the high volume of available low cost systems that can be used for 
development of attacks by malicious users. The major of these design issues are tamper-resistance 
properties, memory protection, Intellectual Property (IP) protection, management of processing power, 
communication security and embedded software design. 
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Modern secure embedded systems must be able to operate in various environmental conditions, without 
loss of performance and deviation from their primary goals. In many cases they must survive various 
physical attacks and have tamper resistance mechanisms. Tamper resistance is the property that enables 
systems to prevent the distortion of physical parts. Additionally to tamper resistance mechanisms, there 
exist tamper evidence mechanisms, which allow users or technical stuff to identify tampering attacks and 
take countermeasures.  

IP protection of manufacturers is an important issue addressed in secure embedded systems. 
Complicated systems tend to be partitioned in smaller independent modules leading to module reusability 
and cost reduction. These modules include IP of the manufacturers, which needs to be protected from 
third–party users, who might claim and use these modules. The illegal users of an IP block do not 
necessarily need to have full, detailed knowledge of the IP component, since IP blocks are independent 
modules which can very easily incorporated and integrated with the rest of the system components 

Implementation of security techniques for tamper resistance, tamper prevention and IP protection may 
require additional processing power, which is limited in embedded systems. The “processing gap” 
between the computational requirements of security and the available processing power of embedded 
processors requires special consideration. Available technologies include use of cryptographic co-
processors and accelerators, embedded security processors and programmable security protocols. One 
other approach is to develop enhancements in the Instruction Set Architecture (ISA) of embedded 
processors, in order to efficiently calculate various cryptographic primitives, such us permutations, bit 
rotations, fast substitutions and modular arithmetic or even build dedicated cryptographic embedded co-
processors with their own ISA.  

Even if the “processing gap” is bridged and security functions are provided, embedded systems are 
required to support secure communications as well, considering that, often, embedded applications are 
implemented in a distributed environment where communicating systems may exchange (possibly) 
sensitive data over an untrusted network –wired, wireless or mobile- like Internet, a Virtual Private 
Network, the Public Telephone network, etc. In order to fulfil the basic security requirements for secure 
communications, embedded systems must be able to use strong cryptographic algorithms and to support 
various protocols. One of the fundamental requirements regarding secure protocols is interoperability, 
leading to the requirement for system flexibility and adaptability.  Since an embedded system can operate 
in several environments, e.g. a mobile phone may provide 3G cellular services or connect to a wireless 
LAN, it is necessary for the system to operate securely in all environments without loss of performance. 
Furthermore, as security protocols are developed for various layers of the OSI reference model, 
embedded systems must be adaptable to different security requirements at each layer of the architecture. 

Embedded software, such as the operating system or application-specific code, constitutes a crucial 
factor in secure embedded system design. There are three basic factors that make embedded software 
development a challenging area of security: (a) complexity of the system, (b) system extensibility and (c) 
connectivity. Embedded systems serve critical, complex, hard to implement applications with many 
parameters that need to be considered, which, in turn, leads to “buggy” and vulnerable software. 
Furthermore, the required extensibility of conventional embedded systems makes the exploitation of 
vulnerabilities relatively easy. Finally, as modern embedded systems are designed with network 
connectivity, the higher the connectivity degree of the system, the higher the risk for a software breach to 
expand as time goes by. Many attacks can be implemented by malicious users that exploit software 
glitches and lead to system unavailability, which can have a disastrous impact, e.g. a Denial-of-Service 
attack on a military embedded system. 
 

4.2.2.2 Application Design Issues 

Embedded system applications present significant challenges to system designers, in order to achieve 
efficient and secure systems. A key issue in secure embedded design is user identification and access 
control. User identification includes the necessary mechanisms that guarantee that only legitimate users 
have access to system resources and can also verify, whenever requested, the identity of the user who 
has access to the system. A solution to this problem may come from an emerging new technology for 
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user identification which is based on biometric recognition, for both user identification and verification. 
Biometrics are based on pattern recognition in acquired biological data taken from a user who wants to 
gain access to a system, i.e. palm prints, finger prints, iris scan, etc., and comparing them with the data 
that have been stored in databases identifying the legitimate users of the system. A secure smart card 
which uses biometrics capabilities is less vulnerable to attacks when compared to software based 
solutions and that the combination of smartcard and fingerprint recognition is much more robust than PIN-
based identification. 

As mentioned previously, an embedded system must store information that enables it to identify and 
validate users that have access to the system. But, how does an embedded system store this 
information? Embedded systems use several types of memory to store different types of data: (i) ROM 
EPROM to store programming data used to serve generic applications, (ii) RAM to store temporary data, 
and (iii) EEPROM and FLASH memories to store mobile downloadable code. In an embedded device 
such as a PDA or a mobile phone several pieces of sensitive information like PINs, credit card numbers, 
personal data, keys and certificates for authorization purposes, may be permanently stored in secondary 
storage media. The requirement to protect this information as well as the rapid growth of communications 
capabilities of embedded devices, which make embedded systems vulnerable to network attacks as well, 
lead to increasing demands for secure storage space. The use of hard cryptographic algorithms to ensure 
data integrity and confidentiality is not feasible in most embedded systems, mainly due to their limited 
computational resources.  

Significant attention has to be paid to protect against possible attacks through malicious downloadable 
software, like viruses, Trojans, logic bombs, etc. The wide deployment of distributed embedded systems 
and the Internet have resulted to the requirement for ability of portable embedded systems, e.g. mobile 
phones and PDAs, to download and execute various software applications. This ability may be new to the 
world of portable, highly constrained embedded systems, but it is not new in the world of general–purpose 
systems, which have had the ability to download and execute files from the Internet or from other network 
resources for a long time. One major problem in this service is that users cannot be certain about the 
content of the software that is downloaded and executed on their system(s), about who the creator is and 
what its origin is.  An additional important consideration is the robustness of the downloadable code: once 
the mobile code is considered secure, downloaded and executed, it must not affect preinstalled system 
software. 
 

4.2.3 Cryptography and Embedded Systems 

Secure embedded systems should support the basic security functions for (a) confidentiality, (b) integrity, 
and (c) authentication. Cryptography provides a mechanism that ensures that the previous three 
requirements are met. However, implementation of cryptography in embedded systems can be a 
challenging task. The requirement of high performance has to be achieved in a resource-limited 
environment; this task is even more challenging when low power constraints exist. Performance usually 
dictates an increased cost, which is not always desirable or possible. Cryptography can protect digital 
assets provided that the secret keys of the algorithms are stored and accessed in a secure manner. For 
this, the use of specialized hardware devices to store the secret keys and to implement cryptographic 
algorithms is preferred over the use of general-purpose computers. However, this also increases the 
implementation cost and results in reduced flexibility. On the other hand, flexibility is required, because 
modern cryptographic protocols do not rely on a specific cryptographic algorithm but rather allow use of a 
wide range of algorithms for increased security and adaptability to advances on cryptanalysis. For 
example, both the SSL and IPSec network protocols support numerous cryptographic algorithms to 
perform the same function, such as encryption. The protocol enables negotiation of the algorithms to be 
used, in order to ensure that both parties use the desirable level of protection dictated by their security 
policies. 
 
Apart from the performance issues, a correct cryptographic implementation requires expertise that is not 
always available or affordable during the lifecycle of a system. Insecure implementations of theoretically 
secure algorithms have made their way to headline news quite often in the past. The cryptographic 
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community has focused on proving the theoretical security of various cryptographic algorithms and has 
paid little attention to actual implementations on specific hardware platforms. In fact, many algorithms are 
designed with portability in mind and efficient implementation on a specific platform meeting specific 
requirements can be quite tricky. This communication gap between vendors and cryptographers 
intensifies in the case of embedded systems, which can have many design choices and constraints that 
are not easily comprehensible. 

In the late 1990s, side-channel attacks were introduced. Side-channels attacks are a method of 
cryptanalysis that focuses on the implementation characteristics of a cryptographic algorithm in order to 
derive its secret keys. This advancement bridged the gap between embedded systems, a common target 
of such attacks, and cryptographers. Vendors became aware and concerned by this new form of attacks, 
while cryptographers focused on the specifics of the implementations, in order to advance their 
cryptanalysis techniques. 
 

4.2.3.1 Physical Security 

Secrecy is always a desirable property. In the case of cryptographic algorithms, the secret keys of the 
algorithm must be stored, accessed, used and destroyed in a secure manner, in order to provide the 
required security functions. This statement is often overlooked and design or implementation flaws result 
to insecure cryptographic implementations. It is well-known that general purpose computing systems and 
operating systems cannot provide enough protection mechanisms for cryptographic keys. 
Embedded systems are commonly used for implementing security functions. Since they are complete 
systems, they can perform the necessary cryptographic operations in a sealed and controlled 
environment. Tamper resistance refers to the ability of a system to resist to tampering attacks, i.e., 
attempts to bypass its attack prevention mechanisms. Smart cards are a well-known example of tamper 
resistant embedded systems that are used for financial transactions and subscription-based service 
provision. 

In many cases, embedded systems used for security-critical operations do not implement any tamper 
resistance mechanisms. Rather, a thin layer of obscurity is preferred, both for simplicity and performance 
issues. However, as users become more interested in bypassing the security mechanisms of the system, 
the thin layer of obscurity is easily broken and the cryptographic keys are publicly exposed. 

Finally, an often neglected issue is a lifecycle-wide management of cryptographic systems. While a 
device may be withdrawn from operation, the data it has stored or processed over time may still need to 
be protected. The security of keys that relies on the fact that only authorized personnel has access to the 
system may not be sufficient for the recycled device. 
 

4.2.3.2 Side-channel cryptanalysis 

Until the middle 1990s, academic research on cryptography focused on the mathematical properties of 
the cryptographic algorithms. Paul Kocher was the first to present cryptanalysis attacks on 
implementations of cryptographic algorithms, which were based on the implementation properties of a 
system. Kocher observed that a cryptographic implementation of the RSA algorithm required varying 
amounts of time to encrypt a block of data depending on the secret key used. Careful analysis of the 
timing differences, allowed him to derive the secret key and he extended this method to other algorithms 
as well. This result came as a surprise, since the RSA algorithm has withstood years of mathematical 
cryptanalysis and was considered secure. These findings revealed a new class of attacks on 
cryptographic algorithms. The term side-channel attacks (SCA), has been widely used to refer to this type 
of cryptanalysis, while the terms fault-based cryptanalysis, implementation cryptanalysis, active/passive 
hardware attacks, leakage attacks and others have been used also. Cryptographic algorithms acquired a 
new security dimension, that of their exact implementation. Cryptographers had previously focused on 
understanding the underlying mathematical problems and prove or conjecture for the security of a 
cryptographic algorithm based on the abstract mathematical symbols. Now, in spite of the hard underlying 
mathematical problems to be solved, an implementation may be vulnerable and allow the extraction of 
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secret keys or other sensitive material. Implementation vulnerabilities are of course not a new security 
concept. The new concept of SCA is that even cryptographic algorithms that are otherwise considered 
secure can be also vulnerable to such faults. This observation is of significant importance, since 
cryptography is widely used as a major building block for security; if cryptographic algorithms can be 
driven insecure, the whole construction collapses. 

In the following, we present the classes of side-channel attacks and countermeasures that have been 
developed. Embedded system vendors must study the attacks carefully, evaluate the associated risks for 
their environment, and ensure that appropriate countermeasures are implemented in their systems; 
furthermore, they must be prepared to adapt promptly to new techniques for deriving secrets from their 
systems. 
 

4.2.3.3 Side channel implementations 

A side channel is any physical channel that can carry information from the operation of a device while 
implementing a cryptographic operation; such channels are not captured by the existing abstract 
mathematical models. The definition is quite broad and the inventiveness of attackers is noticeable. 
Timing differences, power consumption, electromagnetic emissions, acoustic noise, and faults have been 
currently exploited for leaking information out of cryptographic systems. The channel realization can be 
categorized in three broad classes: physical or probing attacks, fault-induction or glitch attacks, and 
emission attacks, like TEMPEST. We shortly review the first two classes: 

The side channels may seem unavoidable and a frightening threat. However, it should be strongly 
emphasized that in most cases, reported attacks, both theoretical and practical, rely for their success on 
the detailed knowledge of the platform under attack and the specific implementation of the cryptographic 
algorithm. 
 

4.2.3.3.1 Fault induction techniques 

Devices are always susceptible to erroneous computations or other kinds of faults for several reasons. 
Faulty computations are a known issue from space systems, because, in deep space, devices are 
exposed to radiation which can cause temporary or permanent bit flips, gate destruction, or other 
problems. Incomplete testing during manufacturing may allow imperfect designs from reaching the market 
or in the case of device operation in conditions out of their specifications. Careful manipulation of the 
power supply or the clock oscillator can also cause glitches in code execution by tricking the processor for 
example to execute unknown instructions or bypass a control statement. Some researchers have 
questioned the feasibility of fault-injection attacks on real systems. While fault injection may seem as an 
approach that requires expensive and specialized equipment, there have been reports that fault injection 
can be achieved with low cost and readily available equipment. 

The combined time-space isolation problem is of significant importance in fault-induction attacks. The 
space isolation problem refers to isolation of the appropriate space (area) of the chip in which to introduce 
the fault. The space isolation problem has four parameters: 

• Macroscopic: the part of the chip where the fault can be injected. Possible answers can be one or 
more of the following: main memory, address bus, system bus, register file 

• Bandwidth: the number of bits that can be affected. It may be possible to change just one bit or 
multiple bits at once. The exact number of changed bits can be controllable (e.g., one) or follow a 
random distribution 

• Granularity: the area where can the error occur. The attacker may drive the fault injection position 
at a bit level or a wider area, such as a byte or a multi-byte area. The fault injected area can be 
covered by a single error or by multiple errors. How are these errors distributed with respect to 
the area? They may focus around the mark or evenly distributed 
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• Lifetime: the time duration of the fault. It may be a transient fault or a permanent fault. For 
example, a power glitch may cause a transient fault at a memory location, since the next time the 
location will be written, a new value will be correctly written. In contrast, a cell or gate destruction 
will result in a permanent error, since the output bit will be stuck at 0 or 1, independently of the 
input 

The time isolation problem refers to the time at which a fault is injected. An attacker may be able to 
synchronize exactly with the clock of the chip or may introduce the error in a random fashion. This 
granularity is the only parameter of the time isolation problem. Clearly, the ability to inject a fault in a clock 
period granularity is desirable, but impractical in real world applications. 
  

4.2.3.3.2 Passive side channels 

Passive side channels are not a new concept in cryptography and security. The information available 
from the now partially declassified TEMPEST project reveals helpful insights in how electromagnetic 
emissions occur and can be used to reconstruct signals for surveillance purposes. The new concept in 
this area is the fact that such emissions can be also used to derive secret information from an otherwise 
secure device.  
 
Researchers have been quite creative and have used many types of emissions or other physical 
interactions of the device with the environment it operates.  A basic idea is the monitoring of execution 
time of a cryptographic algorithm and tries to identify the secret keys used. The key concept in this 
approach is that an implementation of an algorithm may contain branches and other conditional execution 
or the implementation may follow different execution paths. If these variances are based on the bit values 
of a secret key, then a statistical analysis can reveal the secret key bit by bit. Power consumption can be 
also correlated with key bits. 
 

4.3 Applications  
Nowadays railway is considered as one of the most important critical infrastructures due to its importance 
not only in mass transport systems but also its usability in material and goods transport. In pSHIELD 
railway infrastructures and operations had been chosen as the potential areas where the results of 
pSHIELD can contribute to ensure its secure, dependable and reliable operations. More specifically, 
pSHIELD focuses on hazardous material transport scenario by railways system. Within this specific 
scenario, the following applications are planned which focus at pSHIELD core features such as 
embedded systems, SPD considerations, sensor integration and composability. 

Monitoring  

In hazardous material transport, due to the nature of goods, continuous monitoring is crucial for safe and 
dependable operations of such transport scenario. For example, the following situations may threat safety 
of the goods: 

• Some materials must not be collocated with inflammable substances 

• The on-carriage temperature should not rise above a certain level 

• The speed of the passing train should not be more than a certain limit as excess speed may 
cause higher vibration  

• Only authorized personnel should get access to the carriage 

To monitor these situations, the carriage is expected to be equipped with various types of sensors to 
collect e.g. temperature, pressure, vibration information. Besides, the carriage contains recoding camera 
and position sensors. All the information can be stored on-board and can be transmitted to the control 
centre of the railway systems on-demand. In order to facilitate remote communication, the carriage is 



 System Architecture Design  51(108) 
Document No. Security Classification Date 

/pSHIELD/D2.3.1 PP  20.10.2011 
 
equipped with multiple communication systems. Above all, as contingency, such carriage carries extra 
power source in case of un-availability of power from the grid.   

Interoperable Railway Information System  

In such hazardous material transport scenario, different stakeholders are involved. For safety of their 
infrastructures or goods, the stakeholders are willing to get access to the data being transmitted from the 
carriage. However, while sharing the monitored data among them privacy of some critical data needs to 
be ensured. The following scenario will further exemplify the privacy concerns: 

DHL Norway receives a booking from a chemical plant to transport hazardous material from its industrial 
plant. DHL then rents a cargo from a railway operator and puts the cargo into its carriage. Here the 
following stakeholder are involved: a) the railway administration (operating the whole railway network), b) 
train operators (runs trains and freights), c) first party consumer (e.g. DHL Norway), and d) second party 
consumer (e.g. chemical plant).  

Due to nature of the cargo each of these stakeholders may want to monitor cargo being transported. Now 
the question is to what extent the data will be delivered to the concerned parties preserving privacy of the 
freight and its owner information. For example, it is not necessary to inform the railway administration 
about the owner of the goods whereas the administration must know the content of the freight being 
transported.  

This application goes beyond the on-carriage monitoring situation and extends towards preservation of 
privacy of various information, within the hazardous material transport scenario. 

 

4.4 Preliminary Concept of pSHIELD Demonstrator Architecture  
 

4.4.1 System architecture for monitoring 

The pSHIELD scenario is addressing rail transportation of dangerous goods by a wagon. The pSHIELD 
demonstrator will exhibit the typical monitoring application such as monitoring of on-carriage temperature 
remotely. This section introduces the preliminary system architecture of such monitoring applications 
using the following figure where the prototypical railway wagon is called Intelligent Wagon (IW). 
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Figure 14 – Intelligent Wagon Infrastructure 

 

The railway freight cars would be filled with sensors & intrusion detection devices, gateway node for 
sensors, control unit featuring embedded CPU and OS, GPS and communication interfaces such as 
GSM. The sensors will sense the physical environment and send the data to the control unit through 
internal network of IW. The control unit based on predefined logic will detect abnormal events. The control 
unit then initiates the transmission of warning message and event data to the railway control center. The 
detection of abnormal operating or environmental conditions on board of vehicles as well as threats of 
burglary represents an example application of great interest for the freight train monitoring. Thus both 
natural and malicious faults can have an impact on system availability and indirectly on safety. The 
monitoring system of pSHIELD demonstrator is aimed to the detection of abnormal operating or 
environmental conditions on board of vehicles as well as threats of burglary. For these two cases, the 
basic working logic of the system is as follows: 

 

• Case of abnormal environmental or operational conditions: whenever an abnormal event (e.g. 
very high temperature or out of range vibrations) is detected by sensor/sensors, its transmission 
unit is activated and data is received by gateway node. Central unit having CPU and OS validates 
data and - if the anomaly is confirmed - it activates GPS to achieve the current position and 
communication interfaces to send an appropriate warning message to the control center. 

• Case of intrusions: whenever intrusion detection device detects an opening, central unit activates 
GPS to achieve the current position and communication interface to send an appropriate alarm 
message to the control center. 
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4.4.2 System architecture for Integration and Interoperation for IRIS 

One of the objectives of pSHIELD is to achieve Integration and Interoperation of heterogeneous services, 
systems and devices. The pSHIELD demonstrator will address the interoperability of information from 
Railway Infrastructure domain to third party service providers through an M2M platform provided by 
Telenor Objects, Norway. The demonstrator will make the information coming from the sensors at the 
Intelligent Wagon Infrastructure (IWI) accessible from anywhere at any time. However it is assumed that 
only authorized services providers can access them. pSHIELD demonstrator will address the integration 
of sensor data with the M2M platform. The figure below illustrates the concept of Integration and 
Interoperation of heterogeneous services, systems and devices in pSHIELD demonstrator. 

 

 
Figure 15 – Integration & Interoperation concept of heterogeneous services  

 

Shepherd platform provided by Telenor Objects acts as M2M platform. Shepherd allows any pluggable 
objects (here micro and power nodes) to be connected to the platform through devices APIs and makes 
the sensor information securely and reliably available to the service providers or users through application 
interface. 

 

4.5 System Architecture SPD functionalities 
Following are the core SPD functionalities pSHIELD envisioned: 
 

• Identification: Identification process ascertains the identity of an entity. For example, the process 
validates that the individual or process presenting the identity is indeed the owner of the identity. 
pSHIELD system includes the identification process of several of its components such as nodes, 
applications, processes and individuals. A simple identification process in the middleware layer 
can validate the authorized nodes of the system.   

• Authentication: An entity usually makes claims about itself for identification towards a system. 
Then the system needs to verify the claims. A part of the entity’s identity attribute is used to verify 
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that the claims made by it about itself are true. Authentication is the process of identifying an 
individual who wants to access a system. Access is granted when the presented claims is equal 
to the information stored in the system. An entity can be a node, an application, process or an 
individual.  

• Security accounting and audit: Accounting functionality tracks security events such as 
authentication and authorization failures. It mainly monitors the system from security point of 
views and keeps record of the events. Accounting includes the audit functionality. Security audit 
refers to systematic and measurable assessment of security of system or application. It includes 
mainly security vulnerability analysis of system. A system may generate audit reports using 
software. Security audit can also be manual.  

• Integrity: The pSHIELD railway freight transportation scenario mainly aims at monitoring 
hazardous materials transported by trains in carriages equipped with a wireless sensor network, 
devices for intrusion detection and access control, and a location-aware communication 
transceiver. Having a wireless monitoring system installed per train carriage increases the need 
for security. It is essential, given the hazardous nature of the transported materials, to eliminate 
any risk of harming human lives or the environment through malicious attacks. Cryptographic 
functionality will be adopted to counter these  malicious attacks. Cryptography has been an 
established means for many years to provide security and information protection against different 
forms of attacks. It is seen as the basis for the provision of different systems security, 
fundamentally by seeking to achieve a number of goals, that are; confidentiality, authenticity, data 
integrity and non-repudiation. 

   

5 SPD Requirements  
 

5.1 System Architecture Security Requirements 
 

5.2 System Architecture Privacy Requirements 
 

5.3 System Architecture Dependability Requirements 
 

6 System Design  
 

6.1 Node Layer    
The pSHIELD Node Layer concerns the creation of an Intelligent ES HW/SW Platform encompassing 
intrinsic, innovative SPD functionalities, providing proper services to the pSHIELD Middleware Adapters 
enabling the pSHIELD Composability and consequently the desired system SPD. 

Three different kinds of Intelligent ES Nodes are expected: 
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• nano nodes 

• micro/personal nodes 

• power nodes 

  
These three node types (which can be considered three node levels of increasing complexity) represent 
the basic components of the lower part of the SPD Pervasive System, and cover the possible 
requirements of several market areas.  

Each of these node types provides different levels of capabilities to the remaining pSHIELD layers. 
 
This section covers the specifications of the pSHIELD SPD Node Layer, and provides a high level 
description of the major components and interfaces that make up SPD Nodes. It then describes a general 
architecture for building-up pSHIELD SPD Nodes, and some examples of specific architecture decisions 
for different kinds of Nodes. 

6.1.1 Formal conceptual model 

The figure below provides a conceptual model of a pSHIELD Node Layer. This is a generic model for all 
the pSHIELD Node types, which can be implemented in different architectures, providing different 
functionalities, different SPD compliance levels and different capabilities, depending on the type of node 
and application field.  

 
SPD Node architecture is composed of different functional blocks and each one can implement several 
features of different complexity and performance. The choice of which features to implement depends on 
the application scenario and SPD Compliance Level required for the system. 
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 Figure 16 - Formal conceptual model of pSHIELD SPD Node Layer 

 

The formal conceptual model of a generic pSHIELD Node Layer can be derived from the pSHIELD 
functional component architecture. The pSHIELD Node Layer is an Embedded System Device (ESD) 
equipped with several Legacy8 Node Capabilities and a pSHIELD Node Adapter. The pSHIELD Node 
Layer is deployed as a hardware/software platform, encompassing intrinsic, innovative SPD 
functionalities, providing proper services and capabilities to the pSHIELD Middleware Adapters to enable 
the pSHIELD Composability and consequently the desired system SPD.  

The pSHIELD SPD Node Layer has two interfaces, one providing pSHIELD Node Capabilities (pS-NC) 
to the pSHIELD Middleware Layer, and another with legacy, technology-dependent, Node Capabilities 
(NC). 

The pSHIELD SPD Node is composed of Legacy Node Capabilities, which consist of one or more 
Legacy Device Components, such as CPU, I/O Interfaces, Memory, Battery, etc., and a pSHIELD Node 
Adapter, interacting with the legacy ESDs and providing SPD functionalities. 
                                                      
8 Legacy means any third-party or of-the-shelf device component 
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The pSHIELD Node Adapter includes a set of Innovative SPD functionalities interoperating with the 
legacy node capabilities in order to enhance them with the pSHIELD Node Layer SPD enabling 
technologies. This adapter is in charge of providing (through the pS-NC interface) all the needed 
information to the pSHIELD Middleware adapter to enable the SPD composability of the Node layer 
legacy and Node pSHIELD-specific functionalities. Moreover, the pSHIELD Node Adapter translates the 
technology independent commands, configurations and decisions coming from the pS-NC interface into 
technology dependent ones and enforce them also to the legacy Node functionalities through the NC 
interface. 

In order to show a generic model valid both for the pSHIELD Nano, Micro, Personal and Power Nodes, 
the different Node Layer Innovative SPD Functionalities (i.e. SPD components) are grouped into proper 
modules containing functional subsets of the Innovative SPD capabilities provided by the pSHIELD 
Node. In brief, the main modules of a generic pSHIELD Node Adapter are: 

• pSHIELD Interface, which provides a proper interface to the pSHIELD Network. 

• SPD Node Status, responsible for collecting the status of each individual component, and 
providing SPD-relevant parameters and measurements to the Middleware Layer. It also checks 
on system health status for self-recovery, self-reconfiguration and self-adaptation. 

• Reconfiguration, which performs module or system reconfiguration by demand of the system 
SPD Node Status or the Middleware.  

• Dependability, responsible for applying self-dependability at node layer, by detecting problems 
related to system health status, and starting recovery. It is also responsible for collecting 
checkpoints from the remaining pSHIELD Node Adapter modules, and retrieving this information 
during system recovery.  

• Security and Privacy, enforcing system security and privacy at node level, by providing 
hardware or software encryption, decryption, key generation, firmware protection, etc. 

• Power Management, module for managing power sources, providing protection against 
blackouts, etc. 

• Node pSHIELD Specific Components, which are the innovative SPD functionalities provided to 
each of the Legacy Device Components, such as status and metrics, checkpoint-recovery, etc. 
 

Depending on the type of node, application, technology, etc. each of these modules may be implemented 
with different pSHIELD SPD functionalities or even be not implemented. More information on each of 
these modules is provided in Section 6.1.1.4.2. 
 
The pSHIELD Node may be supported by generic hard boards with CPUs or PICs and FLASH memory, 
special designed boards, boards with FPGA (partially dynamically reconfigurable or not), etc. 
Section 6.1.1.4.1 describes some different configuration possibilities for these boards, depending on node 
types. 
 

6.1.1.1 Description of pSHIELD SPD Node Layer Blocks 

 

6.1.1.1.1 Node Legacy Device Component 

This may be any legacy, third-party, or of-the-shelf component. Examples are: single or multi-core CPU, 
network adapter, Input/Output device, sensor, actuator, memory, power device, etc. By themselves, these 
components are not SPD compliant, meaning that they don’t expose any capability to the Middleware, 
and need the corresponding Node pSHIELD Specific Components to do so. 
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6.1.1.1.2 Node pSHIELD Specific Component 

Each Node Legacy Device Component must have a corresponding Node pSHIELD Specific Component 
that provides SPD capabilities. This component is mandatory for each legacy device. However, 
depending on node level, some of these capabilities may be optional. The list of capabilities that must or 
can be provided to each legacy device component is: 
 

• Proxy – providing an interface between the device and the middleware layer, by providing the 
necessary elements, such as its functionality, an ID, composability information, etc. 

• Status – providing the device status to the SPD Node Status through a periodic heartbeat. If an 
error is detected in the device, depending on its severity, this Specific Component may either 
send the error data inside the status information, or stop sending the heartbeat. If possible, any 
actions from this Specific Component and Device are disabled, preventing error propagation 

• Checkpoint – the internal status of both the Legacy Device and Specific components are also 
sent to the Dependability block for checkpointing 

• Rollback-recovery – on system recovery, the Specific Component should be able to recover the 
component status, sored at stable storage, and restart it 

• Self-test – the Specific Component may also perform its own monitoring activities, such as 
performing a Power-On Self-Test on the Legacy Device Component 

 
All the other modules of the pSHIELD Node Adapter expose the same capabilities.  
 

6.1.1.1.3 SPD Node Status 

This block supervises all other blocks at Node level, by collecting their periodic status information. A 
Heartbeat containing the global layer status is sent to the Dependability block. If one of the blocks fails 
the periodic heartbeat with status information, or receives an error, the SPD Node Status block also stops 
its own heartbeat, and the Dependability Block starts recovery (e.g. by resetting the system). 

This global status information may also be sent to the overlay layer. 

The SPD Node Status may also send extended status information to dependability block, for a possible 
post-mortem analysis. 

All the other blocks at Node layer must send periodic status information to this one. Invalid or inexistent 
status information is considered as block failure. 

This block may also perform its own monitoring activities, such as performing a Power-On Self-Test.  
 

6.1.1.1.4 Dependability 

This block supervises all other blocks at Node level, by collecting their periodic status information. A 
Heartbeat containing the global layer status is sent to the Dependability block. If one of the blocks fails 
the periodic heartbeat with status information, or receives an error, the SPD Node Status block also stops 
its own heartbeat, and the Dependability Block starts recovery (e.g. by resetting the system). 

This global status information may also be sent to the overlay layer. 

The SPD Node Status may also send extended status information to dependability block, for a possible 
post-mortem analysis. 

All the other blocks at Node layer must send periodic status information to this one. Invalid or inexistent 
status information is considered as block failure. 
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This block also maintains a stable storage for storing checkpoint information from every other block, or 
from the middleware layer. This data is retrieved on request, for system recovery. Stable Storage9 is a 
memory whose contents survive system malfunctions. It must resist to external and internal failures, and 
guarantee atomic reads and writes. It is usually implemented using two memory banks, and when data is 
send to this memory, it is first written in bank1, then internally into bank2 and, only when both operations 
are completed, the stable write is considered done. Some error detection codes are also added, i.e. ECC, 
EOS, Parity algorithms. A stable read consists of checking parity bits and comparing both banks. Only 
when both banks are corrupted, or are different from each other, but both with valid codes, the read fails. 
A simpler version could be simply the addition of error detection and correction codes. The control of 
stable writes and stable reads may be performed by hardware or software. Depending of the stable 
storage control, the HSM may consist of hardware, software, or both. Every detected error (tolerated or 
not) should be stored for informing the SHSM. These features are necessary to implement the rollback 
recovery strategy. 

 

6.1.1.1.5 Reconfiguration 

This block is responsible for node reconfiguration. The reconfiguration of the system is made by request, 
usually from middleware, or may also be requested by the SPD Node Status block, as a self-
reconfiguration capability (e.g., a certain threshold of a block’s health has been reached). 

Reconfiguration may consist on connecting/disconnecting some devices, or reprogramming the FPGA, 
either totally or partially. 
 

6.1.1.1.6 Security and Privacy 

This block is responsible for providing security and privacy related capabilities, such as Data Encryption, 
Data Decryption, Generation of Cryptographic Keys, etc. 
These capabilities may be used both by other modules (such as dependability, for encrypting stable 
storage data) or by the middleware layer. 
  

6.1.1.1.7 pSHIELD Interface 

This block provides a proper physical interface to the pSHIELD network. It also provides the necessary 
drivers and capabilities to the upper levels. 
 

6.1.1.1.8 Power Management 

The Power Management module is responsible for managing power supply, such as switching to 
redundant power sources, or checking the level of power consumption. 
 

6.1.1.2 pSHIELD Node Layer Capabilities and Functionalities 

A pSHIELD Node must provide to the other layers of the pSHIELD framework a set of Node Layer 
Innovative SPD Functionalities that comply with the pSHIELD conceptual model. 

                                                      
9 “Software-Implemented Stable Storage in Main Memory”, João Carlos Cunha, Dep. Engenharia Informática e de Sistemas, 
Instituto Superior de Engenharia de Coimbra; Centro de Informática e de Sistemas da Universidade de Coimbra Coimbra, Portugal; 
João Gabriel Silva, Dep. Engenharia Informática, Universidade de Coimbra, Centro de Informática e de Sistemas da Universidade 
de Coimbra Coimbra, Portugal IX Brazilian Symposium on Fault-Tolerant Computing (SCTF), Florianópolis/SC, Brazil, March 2001 
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The Node Layer capabilities and functionalities are provided by the hardware, firmware or software, in the 
form of device drivers or other interfacing modules. The legacy node capabilities are always provided 
through the pSHIELD Node Adapter, in the form of pSHIELD Node Capabilities. 

This section describes the pSHIELD SPD functionalities and capabilities provided by the pSHIELD Node 
Layer. 
 

6.1.1.2.1 Security and Privacy SPD functionalities 

• Encrypt/Decrypt data – allows the encryption and decryption of data for local storage, 
transmission over the network or even communication with other peripherals. 

• Secure Firmware Upgrade – allows secure firmware upgraded either locally or remotely, for 
system configuration 

• Cryptographic Keys generation – allows the generation and storing of cryptographic keys for 
security and privacy operations. 

• Login/Logout – allows a user to login or logout either locally or remotely   
 

6.1.1.2.2 Dependability SPD functionalities 

• Stable read/stable write – reads and writes data, e.g. a checkpoint, in stable storage 

• Reconfigure – requests reconfiguration of the system. This reconfiguration may be the 
connection or disconnection of a device, the reconfiguration of an FPGA, etc. 

• Recover – Requests recovery of the system from failure. This recovery may be partial (a module, 
a block from the FPGA, only software, etc.) or total (e.g. write full bit-stream in the FPGA and 
restart system) 

• Fail safe – requests system to go to a safe state and stop 

• Self-test – requests for a partial or full self-test of the system 

• Degrade functionality – requests a system reconfiguration to function in a degraded mode, e.g. 
for power saving 

• Degrade dependability – requests a system reconfiguration to decrease dependability, e.g. after 
failure of a redundant module 
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6.1.1.2.3 Performance/Metrics SPD functionalities 

• Get performance/metrics – gets performance and metrics information from the whole system 

Following, the list of the metrics provided by the node: 

1. System and components health status 

2. System and components configuration; 

3. Power consumption; 

4. Power supply status; 

5. Number of detected errors per type and component; 

6. Number of recoveries per types and component 

7. Failed components; 

8. Number of intrusion attacks; 

6.1.1.2.4 Discovery/Composability SPD functionalities 

• Discovery – provide to the pSHIELD Middleware Adapter the information, raw data, description 
of  available hardware resources and services in order to allow the system composability 

• Connect/Disconnect – connects or disconnects specific SPD functionalities for system 
composability; 

6.1.1.2.5 Miscellaneous SPD functionalities 

Depending on the application field, other services are provided, mainly related to the Special Purpose 
Processor modules: 
 

• Compress/decompress – requests data compression or decompression for local storage or 
exchange over the network or with peripherals 

• Configure/calibrate – requests the configuration or calibration of a device attached to the node 
• Digital Signal Processing –  digital signal acquisition and conversion (ADC/DAC) 

 

6.1.1.2.6 Node Status 

• Node Layer Status – provide to the pSHIELD Middleware Adapter the status information from 
each of the modules in Node Layer 
 

6.1.1.2.7 Legacy SPD functionalities 

Legacy devices provide SPD functionalities or capabilities through the pSHIELD specific components. 
Some examples are: 
 

• Compress/decompress – requests data compression or decompression for local storage or 
exchange over the network or with peripherals 

• Configure/calibrate – requests the configuration or calibration of a device attached to the node 

Digital Signal Processing – digital signal acquisition and conversion (ADC/DAC) 
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6.1.1.3 Intrinsic SPD capabilities 

To comply with SPD requirements, the pSHIELD Node has some Node Layer intrinsic, architectural 
characteristics specially designed to provide dependability, security and privacy exclusively at Node layer. 
This intrinsic SPD capabilities can be configured by the pSHIELD Overlay and composed by the 
pSHIELD Middleware Core SPD Services, however they apply autonomously and continuously in the 
pSHIELD Node. 

6.1.1.3.1 Dependability 

Dependability is mainly assured by the Dependability block, the SPD Node Status block and by all the 
functionalities embedded in the other blocks, such as those described in the Node pSHIELD Specific 
Component, providing the status of the module, checkpointing information, self-test and rollback-
recovery. 

If any error is detected by any of the modules, the Dependability block triggers system recovery. The 
Dependability block itself must be able to detect a self-failure, by having a redundant component, such as 
a watchdog timer, to starts system recovery. 

Other modules also provide other aspects of dependability, such as the Power Management (power 
failures). 

There are thus several levels of dependability: 
 

• Each module of the pSHIELD Node Adapter has an internal Health Status Module (HSM) that 
monitors its health and periodically sends health status information to the SPD Node Status. The 
SPD Node Status sends a periodic Heartbeat containing the global layer status to the 
Dependability module 

• On error, the HSM may inhibit the monitored module, performing a fail-fast operation. If the SPD 
Node Status stops receiving status information from one of the HSM, or receives error 
information, or even the information itself is erroneous, it stops the Heartbit. On timeout, the 
Dependability module starts a recovery procedure 

• The SPD Node Status may also perform other health status monitoring operations, such as 
performing a Power-On Self-Test. 

• Dependability module itself sends a health status information to the SPD Node Status  

• If the Dependability module fails, the SPD Node Status halts the system 

• On permanent failure of one of the modules, the Dependability module may halt the system 

• The Power Management assures system availability by managing redundant power sources or 
triggering a low-power mode if power level is low 

• The Dependability module contains a Stable Storage, assuring data survivability for rollback-
recovery 
 

The pSHIELD power node may exhibit advanced recovery and reconfigurability capabilities through 
partial FPGA reconfiguration10. Recent advances in FPGA technology offer the possibility of repairing a 

                                                      
10 “In-Circuit Partial Reconfiguration of RocketIO™ Attributes”, 
http://www.xilinx.com/support/documentation/application_notes/xapp662.pdf 
“Two flows for Partial Reconfiguration: Module Based or Difference Based”, 
http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf 
“Dynamic Reconfiguration of RocketIO MGT Attributes”, 
http://www.xilinx.com/support/documentation/application_notes/xapp660.pdf 
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failed module by reloading the bit stream in the FPGA frames that contained this module11. Furthermore, 
this FPGA reconfiguration may be used for changing the device functionality during runtime. 
Also depending on application criticality, other forms of fault-tolerance may be used, such as static 
redundancy (e.g. Triple Modular Redundancy - TMR)12 or dynamic redundancy, such as stand-by spare. 
This redundancy may be applied for each one of the modules that constitute the pSHIELD Node, even 
Nano Node. 

 

6.1.1.3.2 Security and Privacy 

Security and privacy are assured by the Security/Privacy module. The level of security and privacy 
depends on the modules that are implemented, which may assure, for example, Data Encryption, Data 
Decryption, Generation of Cryptographic Keys, etc.  

 
 
 
  

                                                      
11 Cheatham (portal.acm.org/citation.cfm?id=1142167) 
12 “On the Reliability of Cascaded TMR Systems”, Masashi Hamamatsu, Nomura Research Institute, Ltd., Yokohama-City, Japan, 
Tatsuhiro Tsuchiya Tohru Kikuno, Osaka University, Suita-City, Japan, 2010 Pacific Rim International Symposium on Dependable 
Computing 
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6.1.1.4 Requirements for pSHIELD Power Node, Micro/Personal Node and Nano node 

6.1.1.4.1 HW/SW Implementation 

A pSHIELD Node is deployed as a hardware/software platform, encompassing intrinsic, innovative SPD 
functionalities, providing proper services to the other pSHIELD Network and Middleware Adapters to 
enable the pSHIELD Composability and consequently the desired system SPD13. 

The three kinds of pSHIELD SPD Node each deploy a different configuration of Node Layer SPD 
functionalities of the pSHIELD framework, and comprise a different type of complexity: Nano nodes, 
Micro/Personal nodes and Power nodes. Nano nodes are typically small ESD with limited hardware 
and software resources, such as wireless sensors. Micro/Personal nodes are richer in terms of hardware 
and software resources, network access capabilities, mobility, interfaces, sensing capabilities, etc. Power 
nodes offer high performance computing in one self-contained board offering data storage, networking, 
memory and (multi-)processing.  

The table below presents typical hardware deployed in each node type for every module of the pSHIELD 
SPD Node conceptual model. 

pSHIELD SPD node block Power node Micro/Personal 
node Nano node 

Application Processor (Legacy Device 
Component) 

Multi-core processor 
(hw and/or sw core) 

Microcontroller (hw 
and/or sw core) Microcontroller 

Non-volatile memory (Legacy Device 
Component) 

ROM, EEPROM, 
FLASH, Hard Disk or 
other forms of non-

volatile memory 

ROM, EEPROM, 
FLASH 

ROM, EEPROM, 
FLASH 

Volatile memory (Legacy Device 
Component) RAM, SRAM, DRAM RAM, SRAM, DRAM RAM 

Special-Purpose Processor (Legacy 
Device Component) 

Hardware digital 
signal  processing 
(DSP) and/or glue 

logic blocks 

ADC ADC 

Node pSHIELD Specific Component Hardware or 
Software 

Hardware or 
Software 

Hardware or 
Software 

Stable Storage (Dependability Block) 
Flash-based, 2 

memory banks, w/ 
hw or sw control 

Flash-based, single 
memory bank N.A. 

Reconfiguration and Recovery 
Controller (Dependability Block) IP Core IP Core, ASIC or 

VLSI N.A. 

I/O Interface 
USB, ETHERNET, 

UART, CAN, RS232, 
RS485, GPIO 

GPIO,ETHERNET, 
RS232, CAN 

SERIAL; Wi-fi; RF-
ID;BT; Zigbee; 

Power Management UPS, Power 
Monitoring Device 

Power Monitoring 
Device N.A. 

Security and Privacy 
AES Encryption 

TPM Module 

TPM module 
OTP (one time) 

Password 
N.A. 

 

Table 1  - pSHIELD enabling technologies by node types 

                                                      
13 “Security and Dependability of Embedded Systems: A Computer Architects’ Perspective” Jörg Henkel, University of Karlsruhe, 
Karlsruhe, Germany; Vijaykrishnan Narayanan, Pennsylvania State University, USA; Sri Parameswaran, University of New South 
Wales, Australia; Roshan Ragel, University of Peradeniya, Sri Lanka VLSID '09 Proceedings of the 2009 22nd International 
Conference on VLSI Design EEE Computer Society Washington, DC, USA ©2009 
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6.1.1.4.2 Capabilities and Functionalities 

As previously stated, different pSHIELD node types are enabled by different technologies and provide 
different functionalities. 

Depending on the Node Type, different capabilities and functionalities, such as those described in Section 
6.1.1, may be Available [A], Not Available [N.A.] or Optional [O.], such as presented, as example, in the 
following table:  

 
 

 pSHIELD Node Type 

pSHIELD Node SPD functionalities Power node Micro/Person
al node Nano node 

Security/Privacy functionalities    

Encrypt/Decrypt data [A] [A] [N.A.] 
Secure Firmware Upgrade [A] [A] [O] 
Cryptographic Keys generation [A] [A] [N.A.] 
Login/Logout [A] [A] [A] 

Dependability functionalities    

Stable read/stable write [A] [O] [N.A.] 
Reconfigure [A] [N.A.] [N.A.] 
Recover [A] [A] [N.A.] 
Fail safe [A] [O] [N.A.] 
Self-test [A] [O] [O] 
Degrade functionality [A] [O] [N.A.] 
Degrade dependability [A] [O] [N.A.] 

Power Management    

Change power [A] [O] [N.A.] 
Performance/Metrics SPD functionalities    

Get Performance/Metrics services [A] [A] [N.A.] 
Discovery & Composability functionalities    

Discovery [A] [A] [A] 
Connect/Disconnect [A] [A] [A] 

Node Status    

Node Layer status [A] [O] [N.A.] 
Legacy SPD functionalities    

Compress/decompress [A] [O] [N.A.] 
Configure/calibrate [A] [O] [A] 
Digital Signal Processing [A] [N.A.] [N.A.] 

 

Table 2  - pSHIELD services by node types 
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6.1.2 Nano and Micro/Personal node HW/SW  

The technology advancements in computing hardware and software enables a new generation of small 
Embedded System Devices (ESDs) to perform complex computing tasks. Extremely small sensor devices 
provide advanced sensing and networking capabilities. In parallel, many operating systems targeting 
these types of devices have been developed to increase their performance. The way for designing 
pSHIELD Nano, Micro/Personal Nodes is two fold:  
 

1. To design completely new nano, micro/personal nodes that are complaint with the pSHIELD 
system design as described in Section 6.1.1.  

2. To keep legacy technologies as they are, developed for many applications including those that 
are targeted in pSHIELD, which means to assume a heterogeneous infrastructure of networked 
ESDs like IEEE 802.15.4, IEEE 802.11, etc. An ordinary sensor technology (not all, since we 
need those that are designed for ES) permits to consider an augmentation of SPD functionalities 
at different levels of the hardware and firmware modules. This means an enhanced nano, 
micro/personal node with physical layer and protocol stack composed of existing and new SPD 
technologies. As result of this integration new types of networked SPD ESDs will be created. 
This new SPD ESDs will compose a heterogeneous SPD network infrastructure too.   

Developing a nano, micro/personal node equipped with some Legacy functionalities and with the 
pSHIELD Node Adapter, we obtain a composable pSHIELD Node. It means that it has all desired SPD 
functionalities and services for the pSHIELD application scenario selected. Additionally to that, the 
pSHIELD Node keeps almost all desired functionalities of a standardised sensor technology with 
additional SPD features that make it composable into the pSHIELD framework. The architectural design 
of the pSHIELD Nodes will relay on the ISO/IEC 9126 standard that has 6 top level characteristics: 
functionality, reliability, usability, efficiency, maintainability and portability. 

The architectural design of the pSHIELD Nodes is not an easy architectural task since it requires facing 
many different constrains in the same times. Some of these constraints can converge in the same 
direction but some of them will be divergent and in the opposite directions. To cope with this challenge 
architectural design, as shown in section 5, the pSHIELD ESD use two approaches: (i) a Network 
approach and a (ii) Functional approach. The network approach constrains the architectural system 
design from network point of view. This approach should guarantee that all pSHIELD Nodes are part of a 
SPD Network that can be easily integrated with standard IP-based network like GSM, UMTS, etc. In other 
words it means that an SPD network is implementable and interoperable with standard networks to 
comply the main business cases of the application scenarios. The Functional approach constrains 
architectural design from the SPD requirements related to the node, network and middleware layers. The 
real innovation of pSHIELD is the introduction of the Overlay that makes the double approach to 
converge. 
 

6.1.2.1 Nano, Micro and Personal node description  

The following figure provides a general view of the pSHIELD Nano, Micro/personal Node architecture. 
This is a generic model, which can be implemented in different architectures, providing different 
functionalities and different services, depending on the tasks to be accomplished by the node and the 
application field. 
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Figure 17 - Schematic view of SPD modules of a generic pSHIELD Nano, Micro and Personal Node 

 
Health Status Monitoring and Controllers take care for different control functionalities. The hardware 
interface will cover the specification of the cryptographic hardware security blocks, high demanding level 
security performance, for example secure boot, secure time-stamping,  and all necessary security 
management functionality such us device administration, key creation, and key import-export. 
Additionally, it defines the hardware interpreted data structures and direct interdependencies.  
 
 

 High 
Security Level 

Medium  
Security Level 

Low  
Security Level 

MEM 64 kByte 64 kByte Optional 
NVM 512 kByte 512 kByte Optional 
SPP 
Cryptography 

AES-128 CCM, 
GCM, ECC 

AES-128 CCM, 
GCM , ECC 

AES-128 CCM, 
GCM, ECC 

SP AES-PRNG 
with TRNG seed 

AES-PRNG 
with TRNG seed Optional 

AP ARM Cortex-M3 32 
bit, 50– 250 MHz 

ARM Cortex-M3 32 
bit, 50– 250 MHz No 

I/O Interface Yes Yes Yes 
Table 3 - An example of the personal node SPD components 

 
From the above figure we can see that sensor, memory, radio and interface units are more or less 
standard modules for any standardized sensor technology. The multi-core processor will play a key role 
of the ES design with SPD features. For example, the memory can be realized by ROM, RAM, and 
FLASH, the radio can be 802.15.4, 802.11, RFID, UWB, etc., and the interfaces can be ADC and DAC, 
Timer, UART, I2C, etc. Finally, the multi-core processor can be realized as single microcontroller for nano 

pSHIELD Micro / Personal Node

pSHIELD Nano Node



 System Architecture Design  68(108) 
Document No. Security Classification Date 

/pSHIELD/D2.3.1 PP  20.10.2011 
 
and micro nodes, or more than one core microcontroller for personal nodes, and multi-core processor for 
power node (SPD & HSM, Application and Specific processors).  

Today 3D integration nano-technology offers a new perspective for extremely complex heterogeneous 
System On Chip (SoC) design. The following figure shows hardware architecture of SoC design. 
 

 
Figure 18 - Hardware architecture and nano node chip partitioning 

 
To address the innovative issues and challenges in pSHIELD following solutions and long-term 
objectives are proposed for the development of pSHIELD Nano Nodes: 

• A new hardware architecture described in above figure is proposed based on two Innovative SPD 
components: 
−  an intelligent low power smart sensor with on chip detection capability 
−  a digital image processing and communication chip based on optimized signal processor 

• Low power nano node with a target of less than 1mW by defining and implementing a multi-level 
power management strategy 

• Miniaturization through 3D Integration with special care for thermal study and electrical 
interactions between analogue, digital and RF  

• Autonomous system working on a battery and communicating an optimized dataflow through 
wireless RF link 
  

For a typical multi-tasks software application running on a mono-processor architecture, (MIPS32 
processor core with separated data and instruction caches). The ultra-low power processor chip can be 
designed by using VHDL (Very high speed integrated circuits Hardware Description Language). It 
contains also many digital peripherals like timers, watchdogs, interrupt controllers, HSM controller, UART 
(Universal Asynchronous Receiver/Transmitter), SPI (Serial Peripheral Interface), DMA (Direct Memory 
Access) controllers and interfaces/controllers to memories and cache memories. The design will also be 
performed taking into account the constraints of 3D integration. 

 



 System Architecture Design  69(108) 
Document No. Security Classification Date 

/pSHIELD/D2.3.1 PP  20.10.2011 
 
6.1.2.2 Nano, Micro and Personal Node operating systems 

Selection of the operating system for the demonstrator is an important design constrain, since we need to 
decide in which sensor platform SPD functionalities will be realized. The only requirement that we posed 
for this operating system is related to the possibility to be designed for embedded devices. There are two 
candidates for that: TinyOS and Contiki. Additionally, Hydra platform is a new concept that is realized in 
such a way that between physical and application layer is only a middleware.   
 

6.1.2.2.1 TinyOS 

This operating system (OS) is a free and open source operating system and platform that is designed for 
WSNs. It is an embedded operating system, written in the nesC programming language as a set of 
cooperating tasks and processes. nesC is actually a dialect of the C programming language that is 
optimized for the memory limitation of sensor networks. TinyOS features in summary:  

• No Kernel: Direct hardware manipulation 

• No Process Management: only one process on the fly 

• no Virtual Memory: Single linear physical address space 

• No S/w Signal or Exception: Function call instead 

• No User Interface, power constrained 

• Unusually application specific H/w and S/w 

• Multiple flows, concurrency intensive bursts 

• Extremely passive vigilance (power saving) 

• Tightly coupled with the application 

• Simulator: TOSSIM, PowerTOSSIM 

• Written in “nesC” Language, a dialect of the ‘C’ language 

 

6.1.2.2.2 Contiki Operating System  

Contiki is also an open source, highly portable, multi-tasking operating system for memory-efficient 
networked ESDs and WSNs. It is mainly designed for a microcontroller with small amount of memory. The 
key advantage of Contiki OS is its IP communications (both IPv4 and IPv6). It is flexible for a choice 
between full IP networking and low-power radio communication mechanisms. Contiki is written in the C 
programming language and consists of an event-driven kernel, on top of which application programs can 
be dynamically loaded and unloaded at run time. Contiki has been ported to different hardware platforms, 
such as MSP430, AVR, HC 12, and Z80. Contiki features in summary:  
 

• Event-driven Kernel: reduce the size of the system 
• Preemptive multi-threading support: an application library that runs on top of the event-driven 

kernel is optionally linked with applications that explicitly require a multithreaded model of 
computation 

• Simulator: COOJA 
• Written in ‘C’ Language 
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6.1.2.2.3 HYDRA middleware 

The European Hydra project developed a "Middleware for Heterogeneous Physical Devices" with the aim 
to help manufacturers and systems integrators to build devices that can be networked easily and flexibly 
to create cost-effective high performance solutions. For the heterogeneous devices, sensors and 
actuators envisioned in the pSHIELD project, the large number of manufacturers and Universities are 
involved and the differences in their speed of innovation become an obstacle for the overall system 
design. Therefore, there is an urgent need for technologies and tools that make it easier to reap the 
benefits of networked systems. The complexity to build new technologies and tools grows exponentially 
with the number of devices, manufacturers and protocols involved. The Hydra middleware is a core 
technology that has a transparent communication layer, equally supporting centralized and distributed 
architectures. The Hydra middleware takes security and trust into account and allows building model-
guided web services. It runs on wired or wireless networks of distributed devices with limited resources. 
The embedded and mobile service-oriented architecture will provide fully compatible data access across 
heterogeneous platforms, allowing to create true ambient intelligence for networked ESDs. Adding 
extended security, privacy, trust and new dependability modules may satisfy requirements for having a 
middleware that will be SPD composable with the rest of the pSHIELD system architecture and network. 
The Hydra middleware consists of large number of software components – or managers – that handle 
various tasks needed to support cost-effective development of intelligent applications for networked 
embedded devices.  

The biggest advantage of the Hydra middleware relies on the fact that allows developers to incorporate 
heterogeneous ESDs into their applications. This middleware can be incorporated in new and existing 
networks of distributed ESDs, which operate with limited resources: computing power, energy and 
memory. Additionally, Hydra-middleware provides easy-to-use web service interfaces for controlling any 
type of physical device irrespective of its network interface technology. Additionally, this middleware is 
based on a semantic Model Driven Architecture for easy programming and incorporates service 
discovery, P2P communications and diagnostic. In Hydra framework any physical devices, sensors, 
actuators or subsystems can be considered as a unique web service. 

What we will need from HYDRA middleware for the pSHIELD SPD nodes? A lightweight version of this 
middleware, to be the Legacy Middleware Layer on top of which the pSHIELD middleware Adapter can 
host a set of Innovative SPD Functionalities: proper software modules must be added. This solution is in 
line with the recent IP stacks that are lightweight enough to run on tiny, battery operated ESDs. This is 
also in line with emerging application space of smart objects that require scalable and interoperable 
communication mechanisms that support future innovations as the application space grows. This strategy 
is also aligned with the future application scenarios “the Internet of Human and Things” (ITH). Smart 
objects are small computers with a sensor and actuator and a communication device, embedded in 
objects. To support the large number of emerging applications for smart objects, the underlying 
networking technology must be inherently scalable, interoperable, and have solid standardization base to 
support future innovation.   

 

6.1.2.3 Specific SPD Considerations for Wireless Sensor Networks   

The Wireless Sensor Networks (WSN) applications are used in many critical tasks, like aerospace, 
automation, monitoring environment, etc. Nowadays, these applications include new properties, such as 
security, dependability, privacy and trust. For WSNs applications to make security and dependability 
satisfaction is more and more important. In general WSNs are layered in 5 layers, but there are also other 
cases like Hydra network where we have three layers. In the pSHIELD project we follow the concept of 
four functional layers and based on that we are constructing a new type of network that we simple call it 
SPD network. Heterogeneity of this SPD network is an extremely important feature of the pSHIELD 
network, since it allows existence of different type of Embedded System Devices on the Node Layer.  
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In general, the software part of WSNs can be layered into three levels: sensor software, node software 
and sensor network software. Sensor software has full access to sensor hardware. The output of a 
function of sensor software is used by sensor node software. This level includes system software for 
network maintenance and for some specific applications. For example, middleware resides over the 
operating system. Application programs use this middleware according to their own specific requirements.  
So, bottom layer consists of sensor, CPU and radio, on top we have operating system and on top of them 
Services and applications.  
There are two approaches for sensor applications: (i) Service-oriented architecture (SOA) and (ii) Agent- 
oriented architecture (AOA). SOA is a design approach that defines the interaction among architectural 
elements in terms of services that can be accessed without knowledge of the underlying platform 
implementation. AOA proposes an infrastructure that applies active agent technology to WSNs, because 
the network must be dynamically configurable and adaptive in order to respond actively to events where 
security and dependability must be built into WSNs at the early design stage. The pSHIELD solution 
leverages this two approaches investigating a hybrid solution where the SOA is applied by the pSHIELD 
Middleware Adapter and AOA is applied by the Security Agents operating in the pSHIELD Overlay. 
 

6.1.2.4 SPD models for Nano, Micro and Personal nodes 

Triverdi et al. presents a classification of dependability and security model types: combinatorial models, 
state-space models, hierarchical models, fixed point iterative model, simulation, analytic and simulation, 
and hybrid model, that can be applied for the presentation of dependability and security models (below 
figure). For extremely difficult models analytic and simulation can be used in combination with hybrid 
models.  Development of new SPD Embedded System Devices requires careful approach and 
consideration of a variety of aspects that are influencing our design methodology. Dependability and 
security models are developed almost independently in the area of small networked sensors. Based on 
the recent paper publish by Triverdi et all, called Dependability and Security Models14 we have a solid 
background for modelling security and dependability for SPD ESDs.  
 

 
Figure 19 - Concept model for security and dependability15. 

                                                      
14 Kishor S. Triverdi et all, “Dependability and Security Models,” 7th International Workshop on the design of Reliable 
Communication Networks, DRCN 2009, Washington Dc, October 2009.  
15 John Murdoch, “Security measurements,” White paper, 2006.  
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Security is a property of a system or service. Software-intensive systems are complex, meaning that they 
are composed of many components of different types which interact with each other to create properties 
not exhibited by the individual components. The purpose of the system is implemented as the service; the 
system, acting as a provider, delivers to another system, the user system. A particular service can fail in a 
variety of ways, resulting in dependability being a composite property, covering the following more 
specific properties (more of the property is indicative of fewer or absence of the corresponding failures). 
Dependability and security overlap in the sense that some types of failure fall under both properties. 
 
The definition of dependability and security as the ability to avoid failures raises the question of how a 
system or service can be measured with regard to such ability. Before addressing this question, we need 
to define a model of how a service failure is caused. 
 
Many types of fault of concern to security system solution are similar to safety faults. For example, events 
in the natural environment, accidental, non-malicious actions during development etc. However, security 
has an additional type of fault arising from the presence of malicious threat agents in the operational and 
development environment. Such agents can learn and adapt, resulting in evolving external faults. Attack 
trees can be used to map the objectives of a threat agent onto vulnerabilities of the system. Alternative 
attack sequences represent the possible ways the agent might achieve his/her goal. Development and 
operational policies can be adjusted to prioritize defensive actions. Measurement can support the 
decision making involved, for example in the estimation of the cost to a threat agent of different attack 
sequences. Under certain assumptions, an increase in attack cost would imply a lowering of the likelihood 
of the attack sequence occurring and an increase in security with regard to the associated service failure. 
 

6.1.3 Power node HW/SW  

Power Node will be a rugged embedded system, optimally designed in terms of dimensions, weight, 
power consumption and capable to work in harsh environmental conditions.  The reference application 
context is defence/aerospace, ground mobile and airborne environments, addressing manned and 
unmanned applications where reliable high performance computing is required. 

The Power Node will be based on a powerful computing architecture: a dual Intel Xeon 5500/5680 series 
(Quad core CPU) motherboard, with at least 6GB of on-board soldered DDR3 memory and a high data 
retention 80GB SSD drive. A high speed, high density FPGA device will also be present, providing easy 
adaptability and implementation of dedicated functions and special algorithms. It will offer a maximum 
processing power of 80GFlops.  

In the following images the concept of the Power Node is described. The first image illustrates the form 
factor of the Power Node board and the positioning of the components on the board itself. The second 
image represents the board covered by a cold-plate that can be air or liquid cooled. The shape of this 
cold-plate is intended, at this stage of the project, only for descriptive purposes. The final version could be 
different. 
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Figure 20 - Power Node board concept, with and without cooling heat sinks 

 

6.1.3.1 Power Node software (OS, Protocol stack, Interfaces) 

The software development for the Power Node will be mainly devoted to the adaptation of a commonly 
available Linux Distribution, in order to benefit from the richness of the features of a widely adopted 
operating system. 

 

Regarding the OS the first choice will be “RedHat Enterprise Linux OS Verison 5.5 x86_64” which needs 
a license but is very well supported. Alternatively, if an open-source Linux distribution is required, the 
Power Node can support Linux distribution derived from RedHat, which are available for free but don’t 
have usually an excellent support. In this case, the operating system could be one of the following: 

• CentOS 

• Scientific Linux 

 

In addition to the OS the porting of device drivers for the Infiniband networking interface and for the IBMC 
Board Management Controller will be provided. 
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The design of the FPGA firmware and software is intended to be implemented by the user of Power Node 
using ALTERA development tools: 

 

• QUARTUS II (http://www.altera.com/products/software/quartus-ii/subscription-edition/qts-se-
index.html) 

• USB-JTAG programming/debugging tool 
(http://www.buyaltera.com/scripts/partsearch.dll?Detail&name=544-1775-ND) 

 

As a starting point, many reference designs, optimized for the same FPGA used in the Power Node, can 
be downloaded from Altera website. They reduce time to implement complex interface such as PCIe by 
means of pre-compiled building block. 

To develop end-user applications, the final software development kit will contain the following additional 
tools: 

• Infiniband OFED driver Stack supplied by Mellanox (basically standard OFED stack 1.5.1 pre-
compiled). The package contains drivers and libraries for the InfiniBand interface and for the 
10Gb Ethernet interface 
(http://www.mellanox.com/content/pages.php?pg=products_dyn&product_family=26&menu_secti
on=34#tab-three) 

• IPMI tools 

• Scientific Computation Libraries from EPEL Repository (they need separate free licensing) 

• Intel C/C++ and Fortran Compilers 

• Intel Math Kernel Libraries (All the Mathematic primitives:  FFT, Matrix calculations etc) 

• Intel Integrated Performance Primitives (these are basically computational accelerators) 

• Other Intel Libraries (these are proprietary libraries for example:  treading building block) 

 

6.1.3.2 Power Node hardware (Radio, Power, CPU, Interfaces, Sensing, extras (FPGA etc.)) 

The Power Node is a High Performance Platform based on Nehalem/Wesmare Xeon Intel dual-processor 
board with Tylesburg chipset; it is equipped with a high density FPGA and a high speed Infiniband 
controller, moreover there is an Ethernet Gigabit interface. Every component is supervised by a Power 
Management Controller Unit (IBMC). 

 
The Power Node core architecture will consist of two Intel Xeon X5680 or X5570 CPUs, connected via 
Quick Path Interconnect (QPI), a dedicated low latency and high bandwidth bus capable of up to 6.4GT/s. 
Three channels of DDR3 memory are connected to each CPU, which integrates a high performance 
memory controller. The system hub (I/O Bridge) will be an Intel 5520 (Tylersburg) chipset and provides 
connectivity between the CPUs and the rest of the system; each CPU is connected to its Tylersburg with 
a QPI link. A Mellanox QDR ConnectX2 adapter is connected to the Tylersburg via one x8 PCIe 2.0 link: it 
provides a high Infiniband compliant connection. The hardware programmable part of the Power Node is 
represented by an Altera Stratix IV FPGA, which is connected to the Tylersburg with 2 x8 PCIe 2.0 links. 
Finally, the peripheral hub (Intel ICH10) is connected to the Tylersburg and provides the following 
additional peripherals: 
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• one optional SATA SSD, used to provide local fast and permanent storage 

• one Zoar Gigabit Ethernet adapter 

• 2x external accessible USB ports 

• one Output Video Port 

• one UART for low level debug 

 

The independent, embedded controller for the Power Management (IBMC) allows the monitoring of each 
performance parameters, such as temperatures, voltages, etc. Access to these parameters can be done 
by the Power Node applications, locally and remotely over the network. The IBMC provides an SNMP 
interface to the Power Node and allows setting traps for specific events. It can also trigger and monitor 
the Power-On-Self-Test. In terms of remote control, the embedded IBMC permits the remote configuration 
of the Power Node through the network and additional remote configurability can be done through the 
FPGA. 

The overall architecture of the Power Node is represented in the next figure. 

 
 

 
 

Figure 21 - Power Node architecture: high level description 

 
The FPGA Processor is responsible for some security aspects. It includes a core logic that monitors the 
security of the Power Node. Tampering with the node triggers a protection mechanism in the security 
node that: 
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• physically disconnects any I/O and network 

• deletes any data resident on the node 

• initiates the physical destruction of the device itself by driving the power supply 

• provides security features such as cryptographic capabilities through a dedicated core embedded 
in the FPGA 

• more in general, the hardware supports the Intel AES-NI technology 

 

The Power Node architecture has been conceived thinking also “composability”, in order to provide the 
possibility to build network of Power Nodes depending on the specific requirements of the specific 
application context. The Infiniband interface allows creating virtual 3D torus networks of Power Nodes, 
which are very efficient in terms of bandwidth and latency, and are capable of scaling up with no 
performance penalty. The torus network is managed by a network processor implemented in the FPGA of 
each Power Node, which interfaces to the system hub through two x8 PCI Express Gen 2 connections, 
for a total internal bandwidth of 80Gbs. Thanks to the FPGA implementation, the torus network processor 
permits standard, ad-hoc and application-dependent collective communications. Finally, the I-O and 
network interfaces are programmable, in order to permit interfacing the system to multiple network and 
bus technologies and protocols, increasing in this way the potential scalability of the network. 

 

The possibility to aggregate multiple identical units has an impact also on dependability, providing 
redundancy. The execution segregation through hardware virtualization allows for protection, monitoring, 
disabling and replacement of malfunctioning or compromised nodes. Moreover, in case of a fault, 
redundant hardware provides dependable operations. This is accomplished at the hardware level through 
duplication of the resource and at a functional level through aggregation of resources (spare Power 
Nodes). 

 

6.1.3.3 Power Node Reconfigurability 

The capability of the Power Node to reconfigure itself, at runtime, is offered by the use of “in-system 
programmable” devices such as an FPGA. This means that according to an environmental request, not 
only the software libraries can be dynamically loaded, but also the hardware accelerator configuration can 
be modified at any time. With configuration we intend the hardware logic previously programmed in the 
FPGA. 

As shown in the following image, hardware silicon internal part of the FPGA are based on SRAM Logic 
Elements which consist of combinational logic attached to memory elements and they can be combined 
to implement any type of hardware function. 
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Figure 22 – Internal structure of an FPGA logic element 

 
Complex hardware functionalities can be designed with high level hardware description languages such 
as VHDL or Verilog or through schematic entry tools provided by development IDE. 

Once the design has been completed and synthesized, the development tools provide a binary file which 
can be written to the target device (FPGA) to update the configuration to the newer one. 

The standard interface to access configuration registers of the FPGA is the JTAG port and it is used to 
write on it the binary file produced by the compiler. 

The Power Node uses a USB-JTAG converter to grant OS the access to HW reconfiguration. The 
converter is integrated on the Power Node board. This solution has been adopted on both release of the 
prototype to simplify and improve the development and debug process. A second solution, that doesn’t 
require the USB-JTAG converter, could be adopted in future versions of the prototype that will be closer 
to a final product. The current hardware already allows the implementation of this solution that, in terms of 
functionalities, is perfectly equivalent to the one adopted. This second solution is based on the direct 
reconfiguration of the FPGA through the PCi Express bus. A software application is capable to store the 
FPGA binary images into the Flash memory connected to the FPGA, and chooses the most suitable 
image depending on the threat identified. In this case, a specific operating system driver must be 
implemented to control the PCi Express bus and an engine, that acts as a bridge between the bus itself 
and the flash memory, must be implemented into the FPGA and added to the FPGA application specific 
logic.  

The reconfigurability features offered by the Power Node can be used in a real application scenario as 
follows: 

 

1. A threat is identified by proper application logic 

2. The application, depending on the threat, decides if a reconfiguration of the FPGA is required 

3. The operating system stops processes that use the current hardware configuration 

4. The application chooses the new configuration capable to face the threat 

5. The selected configuration is written via JTAG to the FPGA 

 

The operating system starts new processes associated with the new HW configuration. 
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6.1.3.4 Technical Specifications 

In terms of technical specifications, the Power Node will feature: 

 

• 2 Intel Xeon  5570/5680 CPUs at 2.93/3.33GHz  

• At least 6GB RAM 1333MHz DDR3  

• Optional FPGA device, which allows implementation of: 

 Hardware accelerator features (on board co-processing) 

 Synchronization network for multi node mode 

• Custom processing units 

• Optional 80GB 1.8” SATA SSD 

• Independent sensor network and monitoring system 

• Connectivity via two additional debugging board that will bring the signal on standard connectors 
for an easier access by the user 

• QDR Infiniband port 

• LAN 10/100/1000 Interface  

• VGA Analog  Video output 

• 2x USB 2.0  host interface  

 

Physical Specifications: 
 

• Physical dimensions: 166mm h x 25,4mm w x 500mm d 
• Weight: 2.2 Kg (with cooling system) 

 

Power Specifications:  
 

• Power consumption:  350W typical (420W Max) 
• Power Supply Voltage 12V 

 

6.2 Network Layer HW/SW  
 

6.2.1 pSHIELD Network Layer and pSHIELD Network Adapter 

In section 3.3, the terms and definitions of Network Layer were defined, along with the specific 
implementation features, which constitute the targeting core networking capabilities of a pSHIELD  
system. Also, throughout section 6.5, the stepped procedure of defining a conceptual architecture is 
described. Based on and “modifying” OSI model pSHIELD adopts the four layered approach, thoroughly 
described previously. Abstracting the network layer component, from the general conceptual architectural 
Figure 50:  
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Figure 23 - pSHIELD Network Layer: Adapter and Legacy 

 
It can be deduced, that the pSHIELD Network Layer is constituted from a general sum of Legacy Network 
Services and the pSHIELD Network Adapter, responsible for adding innovative SPD functionalities in the 
system and being, practically, the main component implementing this Layer in the overall architecture. 

Repeating from the reference architecture: 

The pSHIELD Network Adapter includes a set of Innovative SPD functionalities interoperating with the 
legacy ESD network services (through the NS interface) and the pSHIELD Node Adapter (through the pS-
NC interface) in order to enhance them with the pSHIELD Network layer SPD enabling technologies 
(such as Smart Transmission). This adapter is also in charge to provide (through the pS-NS interface) 
all the needed information to the pSHIELD Middleware adapter to enable the SPD composability of the 
Network layer legacy and Network pSHIELD-specific functionalities. Moreover, the pSHIELD Network 
Adapter translates the technology independent commands, configurations and decisions coming from the 
pS-NS interface into technology dependent ones and enforce them also to the legacy Network 
functionalities through the NS interface. The exact list of functionalities and services has to be determined 
in the process of this study. 

The Legacy Network Services includes all the legacy network services (protocol stacks, routing, 
scheduling, Quality of Service, admission control, traffic shaping, etc.) provided by the Legacy Embedded 
System Device which are not pSHIELD-compliant. In order to be pSHIELD compliant, these services 
should be enriched with pSHIELD SPD functionalities. This task is in charge of the pSHIELD Network 
Adapter. The exact list of functionalities and services has to be determined in the process of this study. 
The following tables contain an example of Legacy Network Services, regarding the protocol stack of two 
popular LAN networking technologies: 
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Upper Layers 

Transport 

Network 

Data Link 

Physical 

 
Table 4  - Legacy Network Stack (802.11a) 

 
 

Layer Protocol 

Application HTTP 

Transport TCP 

Network IP 

Data Link Ethernet 

Physical IEEE 802.3u 

 
Table 5  - Legacy Network Stack (Ethernet) 

 

The macroscopic overall layered view of pSHIELD system, is depicted below. The Network Layer’s 
relative position and its interfacing points with other layers (mainly Middleware) are clearly shown. The 
basic element of pSHIELD Proxy (constituted by the Adapter and the Security Agent) hosts the SPD 
functionalities distributed in each of the four layers: (i) the pSHIELD Security Agent acts at Overlay; (ii) the 
pSHIELD Middleware Adapter acts at Middleware Layer; (iii) the pSHIELD Network Adapter acts at 
Network Layer and (iv) the pSHIELD Node Adapter acts at Node Layer. The logic is compositional, 
meaning that the Proxy could include some of the Adapters (not necessarily all) and inversely, a subset of 
the Adapters could form a Proxy, fitting specific application needs. 

 

TCP 

IP 

802.2 LLC 

802.11a MAC 

802.11a PHY 
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Figure 24 - ESD and pSHIELD System layered view 

 

  

6.2.2 Components and Devices 

The actual nodes and their combinations in different types of sub-network or in a unified network, that will 
provide the users with the overall pSHIELD system solution, is the subject of this section. The 
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components’ selection leans on the monitoring of freight trains scenario, as sensing units of Intelligent 
Wagon concept implementation. 

 

 
Figure 25 - Intelligent Wagon internal Network 

 

• A: Access control device powered on-demand (e.g. numeric keypad featuring “ON” button) 

• B: Long lasting battery pack 

• C: Magnetic contact or other very-low consumption intrusion detection device 

• F: Central control unit featuring embedded CPU and OS 

• G: Low size power generator (e.g. eolic, solar panel, piezoelectric pad) – optional 

• M: Self-powered smart wireless sensor measuring vibrations, temperature, humidity, light, sound 

• N: Gateway node for the wireless sensor network 

• S: Satellite positioning antenna 

• T: Wide area wireless transceiver (GSM, GPRS, UMTS, EDGE) 

 

Regarding the implementation of the above scheme, three technologies have been, so far, foreseen: 

 

• Micro Node – Sun SPOT Sensor Platform 
They are platform integrated sensors. The processor board contains: temperature sensor, accelerometer 
sensor, light sensor. The supporting software is SUN SPOT Java Virtual Machine with OS functionality  
 

• Personal Node - VIA Embedded Board 
VIA EPIA N700 is a compact, low heat, power-efficient Nano-ITX board. The supporting software is 
Ubuntu Linux Kernel 2.6.32-24-generic and Java runtime environment (JRE) 1.6 for development  
 

• M2M Platform – Telenor Shepherd Platform 
A platform (named Shepherd) used for interoperability and integration that supports communication 
between connected devices (nano and micro nodes) and makes them accessible from anywhere at 
anytime. The supporting software, providing connectivity, is HTTP API, Connected Object Operating 
System (COOS) 
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The aim of Shepherd platform is to provide a highly usable and abstract presentation of services to users, 
networking the components in a way similar to the following: 

 

 
Figure 26 – Network of connected devices (M2M platform) 

 

6.2.3 Functions and Services  

 

6.2.3.1 Smart SPD Driven Transmission 

Smart SPD information transmission is a feature of pSHIELD system, based on a Network Layer Service, 
usually called Software Defined Radio (SDR). An SDR platform will be used to provide smart 
transmission. It concerns a radio communication software system, implemented on embedded devices. It 
can receive and transmit a variety of different radio waveforms, based on the software used. It can, also, 
be integrated easily with hardware security modules. It allows to accommodate new standards and new 
Network Layer services as they emerge upgrading the terminal software without requiring to develop a 
new dedicated Embedded System Device. 
 
The research activities on Network Layer functionalities of Embedded System Devices are focusing on 
the development of intelligent Cognitive Radio systems capable to understand and to be aware of the 
surrounding environment, allowing the exploitation of all the available wireless network services by using 
a single Embedded System Device. As an example, a Cognitive Radio (CR) could learn services 
available in a locally accessible wireless computer networks, and could interact with those networks by 
using its preferred protocols, so the users would not have confusion in finding the most suitable 
connection for, as an example, a video download or a printout. Additionally, a Cognitive Radio could 
select the carrier frequency and choose the transmitted waveforms according to the perceived 
environment and to reach a given goal, e.g. to avoid interference with existing wireless networks or to 
maximize the throughput while guaranteeing an acceptable Quality of Service (QoS). 
 
The following picture shows the evolution of the radio network technologies for Embedded System 
Devices from traditional systems to Cognitive Radios. 
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Figure 27 – SDR evolution 

 
 

6.2.3.2 Trusted and Dependable Connectivity 

According to Haykin's definition16, a Cognitive Radio is an intelligent wireless communication system that 
is aware of its surrounding environment (i.e., outside world), and uses the methodology of understanding-
by-building to learn from the environment and to adapt its internal states to statistical variations in the 
incoming Radio-Frequency (RF) stimuli by making corresponding changes in certain operating 
parameters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time, with two 
primary objectives in mind: (i) highly Reliable and Dependable communications whenever and wherever 
needed and (ii) efficient utilization of the radio spectrum. As it is clear from this definition, the common 
keywords for an efficient Cognitive Radio are Awareness and Reconfigurability.  

In a radio environment, Awareness means the capability of the Cognitive Radio to understand, learn, and 
predict what is happening in the radio spectrum, e.g., to identify the transmitted waveform, to localize the 
radio sources, etc. Reconfigurability is necessary to provide self-configuration of some internal 
parameters according to the observed radio spectrum. It is enormously important for both civilian and 
military applications especially when unforeseen situations happen and some Network Layers services 
are not available, guaranteeing trusted connectivity. It is now abundantly clear that the cognitive radios 
and their capabilities of dynamically maintaining a reliable and efficient communication can be 
significantly relevant in Security, Privacy and Dependability (SPD) driven applications where it is 
necessary to dynamically guarantee a high level of trustworthiness. 

 

                                                      
16 Simon Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications”. IEEE Journal on Selected Areas in 
Communications, vol. 23, no. 2, February 2005  
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Figure 28 – pSHIELD NETWORK ADAPTER conceptual model 

 
As depicted in the above figure and according to the pSHIELD functional component architecture, the 
Smart SPD driven transmission is obtained applying a Cognitive Radio paradigm based on two main 
functional components: the Awareness Engine and the Reconfigurability Engine. 

In particular, some Node Layer capabilities (e.g., antennas, cameras) and Network Layer services (e.g. 
available network resources, radio spectrum, number of active users, transmission protocols and 
standards, localization, etc.) can be used by the Awareness Engine to acquire a context awareness of the 
current radio environment. Then, some reasoning capabilities of the Cognitive Radio provided by the 
Reconfigurability Engine can be used to select the most appropriate configuration parameters useful to 
guarantee the needed SPD transmission. 

It is important to note that, the Cognitive Radio capabilities are enormously attractive in a wide set of 
applications for both civilian (e.g., reliable communications, increased data-rate) and military (e.g., detect 
and decode enemy transmissions) scenarios. Although some encouraging preliminary results have been 
obtained in some practical environments, some open issues still remain and to obtain a general and multi-
purposes cognitive radio is an open research problem. In general the main research challenges in this 
domain can be reduced to the following: 

• Obtain a precise and concise representation of the radio environment (e.g., available resources, 
number of active users, transmission standard used, source localization) by using some Node 
Layer and Network Layer information; 

• Define the optimal configuration of the Network Layer according to a given goal (e.g., SPD 
metrics) and the perceived radio environment; 

• Develop algorithms and techniques for providing the capability of learning from the experience in 
order to face unforeseen and unexpected situations (e.g., a malicious user), that means the 
Embedded System Device’s Network Layer is equipped with cognitive capabilities. 
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Figure 29 – pSHIELD Network Adapter with some examples of exchanged information 

In order to clarify how the main research challenges are mapped in the overall pSHIELD component 
architecture, a more detailed component architecture of the pSHIELD Network Adapter has been 
depicted in the above figure. One of the most important aims that a cognitive radio has to perform is to 
obtain a SPD communication whenever and wherever (e.g., in an unknown environment). This task is 
also known in the open literature as Spectrum Sharing and its main objective is to enhance the utilization 
of the radio spectrum, exploiting the unused resources, without causing harmful interference to existing 
active users in the monitored environment, while guaranteeing an acceptable level of Network Layer 
services.  

To this end, the Awareness Engine has to gather information from the Legacy Network Services (through 
the NS interface) and from the pSHIELD Node Adapter (through the pS-NC interface), to acquire radio 
awareness (i.e. a precise and concise representation of the radio environment). For this purpose the 
Representation Engine collects all the needed information (radio spectrum, raw data from sensors, 
available network nodes and their status, etc.) and evaluate a precise and concise representation of the 
radio environment (i.e. the radio context). These algorithms and techniques which allow obtaining the 
radio awareness are known as Spectrum Sensing. For example, the Representation Engine can detect 
the active users in a monitored area, identify the used transmission standards, localize the radio sources, 
etc. This information is then provided to the Reconfigurability Engine to select a proper system Network 
Layer configuration according to a predefined goal of the Cognitive Radio and the surrounding 
environment. 

To be compliant with the Cognitive Radio paradigm, the Awareness Engine should face even unknown 
radio contexts and react properly. In other word the Awareness Engine should be able to learn from the 
experience to face unforeseen and unexpected situations. This task is performed by the Learning Engine, 
which applies algorithms and techniques for providing cognitive capabilities (i.e. learning from the 
experience). The outcome of Learning Engine is a set of parameters that represent the acquired 
experience useful to configure optimally the Representation Engine and the Reconfigurability Engine. 
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The Reconfigurability Engine is in charge to identify the optimal configuration of the pSHIELD Network 
Layer according to a given goal (e.g., the SPD metrics provided by the pSHIELD Middleware), the 
perceived radio environment (provided by the Representation Engine) and the acquired experience 
(provided by the Learning Engine). As an example, given a specific radio context, the Reconfigurability 
Engine can be able to derive a new, optimal Network Layer configuration to establish a communication 
with an already active Embedded System Device by using its preferred transmission standard, carrier 
frequency and transmission power. This task is also known as Opportunistic Communication and allows 
identifying and exploiting an “opportunity” to establish a communication with the other players in a given 
context according to the surrounding environment conditions and the SPD goals. 

6.2.4 Communication protocols 

A reference to the communication technologies used by pSHIELD nodes is made at this point: 
 
802.15.4 
IEEE 802.15.4, the basis for ZigBee, is a standard which specifies the physical and MAC layers for 
wireless personal area networks (WPANs), designed to be rather frugal in its functional power demands. 
In pSHIELD the standard could serve the communication needs of small to medium range sensors and 
additionally of Legacy devices that potentially will complement a pSHIELD system environment. Micro 
node, for example, operates at 2.4 GHz based on 802.15.4 radio, with chip ChipCon TI CC2420. The RF 
transceiver offers compliant medium access control and physical interfaces for data rates up to 250 kbps. 
The 802.15.4 radio includes a DSSS (digital direct sequence spread spectrum) baseband modem 
providing a spreading gain (e.g. 9 dB in IRIS motes). The 2.4 GHz is divided into a number of channels, 
with a fixed width and spacing. (e.g the XM2110’s Atmel radio can be tuned 16 channels from 11 (2.405 
GHz) to 26 (2.480 GHz) each separated by 5 MHz.   
      
IEEE 802.11 
Alternatively most of the commercial sensors, legacy or belonging to pSHIELD hardware equipment, can 
have IEEE 802.11 as their radio interface. Being the basis of Wi-Fi (and colloquially known with this 
name), is probably the most popular family of standards for WLANs. Therefore in the framework of 
pSHIELD, seems as a candidate technology for the communication of Power node.  It is IP based, issued 
in a set of amendments, the most known of which are summarized below: 
 

 
 

Table 6  - IEEE 802.11 family of standards 
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Detailed description is probably out of scope, since plenty of references can be found in the bibliography. 
However a few synoptic network parameters are summarized here: 
 

• Modulation 

 DSSS, FHSS, OFDM 

• Medium Access 

 TDMA, FDMA, CDMA 

• Keying Schemes 

 PSK, CCK, FSK 

• Structured with Access Points and Hotspots 

 Basic Service Sets (BSSs) of 30 clients in 100m (theoretical maximum) 

• Encryption 

 WEP, WPA (TKIP), WPA2 (CCMP) 

• Authentication 

 802.11i (WPA2) 

 EAP, EAP-TLS, EAP-TTLS, PEAP 

• Frequency is divided into overlapping channels 

 e.g. Band: 2.4000–2.4835 GHz, channels: 13, width: 22 MHz, spaced: 5 
MHz, channel 1: 2.412 GHz, channel 13: 2.472 GHz 

 
Ethernet and Gigabit Ethernet 
Another alternative in LAN communication, concerning Power node in our case, is Ethernet or IEEE 802.3 
standard. It is a frame-based networking technique, defining a number of wiring standards for the 
Physical Layer and an addressing format and MAC procedures for the Data Link Layer. Some technical 
specifications, are shortly presented below (including the amendment of Gigabit Ethernet IEEE 802.3-
2008): 
 

• Medium access 

 CSMA/CD 

•  Data rate 

 Gigabit links may operate Full Duplex (Fast Ethernet Switch) or Half 
Duplex (Fast Ethernet Hub) 

• Hardware Components 

 Hubs, Switches, Routers 

 Media converters (change twisted pair copper wires to fiber optic cabling) 
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6.2.5 Interfaces 

During the incremental presentation of pSHIELD reference system architecture, we defined a generic 
interface NS (Network Services), responsible for Network Layer services provision. It is an integral 
element of all node types in the architecture hierarchy (L-ESD → pS-ESD → pS-SPD-ESD) and manages 
their Network Layer communication and functionalities. The innovative SPD functionalities implemented in 
pSHIELD introduced functional blocks and subsystems (e.g. Network Adapter) interoperate with Legacy 
systems through network interface NS.   
 

6.2.6 Security 

 

6.2.6.1 Cryprographic Algorithms 

According to the ISO/IEC 27002 information security standard, the objective of network security is the 
preservation of three principles:  
 

• Confidentiality: the communication data are only disclosed to authorized subjects  

• Integrity: the data in the communication retain their veracity and are not able to be modified by 
unauthorized subjects  

• Availability: authorized subjects are granted timely access and sufficient bandwidth to access the 
data  

 

In the selected application framework of monitoring hazardous material transported via railway, the 
necessity of a robust protection against malicious actions rises. Cryptography has been used for many 
years to provide security and information protection against different forms of attacks.    

In previous section, during Node layer description (6.1), some cryptographic algorithms and mechanisms, 
possibly implemented on the nodes, were introduced. 802.15.4, the communication standard of the 
majority of pSHIELD nodes, includes symmetric cryptography, to protect data payload. Versions of 
Advanced Encryption Standard (AES) can be realized on the nodes. Trusted Platform Module (TPM) is 
another possible approach. However it should be noted that every algorithm appliance (accompanied by 
software or hardware extras) on the nodes comes with the trade-off of increasing constraints, such as 
cost, size, memory and energy efficiency, and therefore has to be dealt cautiously.   
 

6.2.6.2 IPsec 

Security and appliance of corresponding protocol suites in wireless networks can be realized in many (if 
not all) layers of OSI model. A reference to Internet Protocol Security (IPsec), which implements both 
Encryption and Authentication in Network Layer, follows. IP should not be confused with Network Layer, 
in general, since the former is an implementation (the most popular though) of the latter. IPsec is the 
protocol suite for securing IP. It is an end-to-end scheme that can be used to protect sensible data 
transfer between hosts or gateways. In other words, IPsec is the “interconnecting” security scheme. 
Connecting with the known protocols, it is worth referring that IPsec overcomes RADIUS vulnerability 
concerning the latter’s lack of (per) packet authentication for access request packets. Originally designed 
for IPv6 version of Internet Protocol, IPsec is one of the commonest protocols for securing, through 
encryption, VPNs and in general remote accessing to private LANs. Another use concerns securing the 
path between Access Point and Authentication Server, during the authentication stepped procedure of a 
client’s request towards a wireless network. Often IPsec is adopted as a holistic solution for LANs and 
WLANs protection in the borders of an enterprise and there also lies its potential usefulness in ATOM 
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network. By doing so, the network designer replaces Layer 3 (Network, e.g. IP) with IPsec layer, 
emphasizing users’ identity and credentials against mere IP addresses. The advantage of the approach 
rests in the fact that the notion of “security” acquires a more hardware based dimension. For example, 
routers would be necessary to be employed to route based not only in IP addresses but on other 
connection characteristics, also (IPsec related associations). 

 

In the analysis of pSHIELD functional architecture, the notion and criticality of Security Agents was 
illustrated. Being part of the pSHIELD Proxy component, Security Agent is charged with the aggregation 
of information from the pSHIELD Middleware Services and from other Security Agents connected on the 
same Overlay, composing instances of pSHIELD subsystems to serve corresponding per demand needs. 
IPsec poses a strong candidacy as the network security mechanism foreseen for Security Agents. The 
overall security scheme would be again a composable one, maintaining the individual security protocols 
of each instance’s component, implementing simultaneously IPsec on top.    

 

6.2.6.3 SSL 

Along with IPsec, SSL, being the predecessor of TLS (Transport Layer Security), is the most popular 
cryptographic protocol, for securing communications across the Internet. It is used mostly to protect HTTP 
transactions, whereas other protocols concern IMAP (Internet Message Access Protocol) and POP3 (Post 
Office Protocol) and applications as web browsing, electronic mail, Internet faxing, instant messaging and 
voice-over-IP (VoIP). SSL uses asymmetric cryptography to encrypt network data above OSI’s Transport 
Layer. It is composed of the following protocols: 

 

1. Handshake protocol 

2. Change Cipher Spec protocol 

3. Alert protocol 

4. Application Data protocol 

 

6.3 Middleware Layer  
 

6.3.1.1 Formalized conceptual model 

The formalized conceptual model of the core SPD services has been conceived refining the pSHIELD 
middleware layer introduced in the previous section and have been derived from the study of the 
requirements of the pSHIELD application scenario (see deliverable D2.1.1 for more detail). 
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Figure 30 – Core SPD services in the pSHIELD functional component architecture 

 
The Orchestration, Composition and Discovery functionalities are the enablers (i.e. the sensors and the 
actuators) of the decisions taken by the pSHIELD Security Agent Control Algorithms residing in the 
pSHIELD Overlay. The mutual interoperation between the pSHIELD Middleware Adapter and the 
pSHIELD Security Agent enables the pSHIELD Composability concept.  

 
It is worth to note that not all the core SPD services must be necessarily located in each pSHIELD 
Embedded System Device (pS-ESD). Indeed the pSHIELD component architecture depicted in above 
figure identifies the Discovery, Composition and Orchestration functionalities that must be supported by at 
least one pS-ESD in a network of Embedded System Devices. Moreover the core SPD services can be 
deployed applying centralized or distributed approaches. It is a matter of the precise application scenario 
to decide whether a specific functionality must be supported by each Embedded System Device (ESD). It 
is obvious that the more ESDs are equipped with the pSHIELD Middleware Adapter (resulting to be a pS-
ESD), the more will be the coverage area and the effectiveness of the pSHIELD functionalities to 
guarantee a certifiable SPD level (based on common shared SPD metrics) over the whole system. 

 
Let’s see more in detail the formalized conceptual model of the Core SPD services, detailing the 
architecture depicted in previous figure and exploding the core SPD services into their functional 
components. 
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Figure 31 – Core SPD services in the pSHIELD functional component architecture 

 
Apart from the Discovery, Composition and Orchestration components already described in the previous 
section, the following additional conceptual entities have been introduced: 

 
• Service Registry: it acts as a database to store the service entries. Any pSHIELD Node, Network 

or Middleware layer component can be registered here to be discovered 

• Semantic DB (Database): it holds any semantic information related to the pSHIELD components 
(interface, contract, SPD status, context, etc.). The use of common SPD metrics and of a shared 
ontology (derived from the formalized semantic model) to describe the different SPD aspects 
involved in guaranteeing a precise level of SPD, allows to dominate the intrinsic heterogeneity of 
the SPD components. Any semantic data is thus technology neutral and it is used to interface 
with the technology independent mechanisms applied by the pSHIELD Overlay  

Focusing exclusively on the Core SPD services located in the pSHIELD Middleware Adapter, we can 
describe how it works when it is in an operative status. Let consider a typical situation, where the whole 
system is properly working at runtime. The Orchestration functionality is in charge to monitor continuously 
the Semantic DB with the updated status of the functionalities operating at node, network and middleware 
layers. The pSHIELD Adapters are in charge to update in the Semantic DB their status. 

Whenever the needed application SPD level, for any reason, due to external/internal unforeseen/ 
predictable events, changes and go beyond the threshold, the Orchestrator triggers the Overlay. The 
Overlay tries to react and to restore the SPD level back to an acceptable level identifying the best 
configuration rules. The Discovery and Composition are then triggered by the pSHIELD Overlay with the 
aim to apply the configuration rules. On the basis of the configuration rules, the Composition service 
makes use of the Discovery service to search for all the needed and available SPD components. The 
Composition service analyses the SPD components interfaces and contracts to determine which SPD 
components are required, which should be activated and in which order to make the configuration of SPD 
components properly work. Thus while the Overlay operates in a technology independent fashion, the 
Composition service operates all the needed low-level, technology-dependent activities to actuate the 
Overlay decisions. 
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Figure 32 – Details of the Discovery core SPD service 

 
Zooming more in the detail the Discovery service, as shown in figure above, the following elements can 
be distinguished: 

 

• Discovery Engine: it is in charge to handle the queries to search for available pSHIELD 
components sent by the Composition service. The Discovery Engine manages the whole 
discovery process and activates the different functionalities of the Discovery service: (i) the query 
pre-processor to enrich semantically and contextually the query, (ii) the different discovery 
protocols to harvest over the interconnected systems all the available pSHIELD components, (iii) 
the Filter Engine to discard those components not matching with the enriched query 

• Query Pre-processor: it is in charge to enrich the query sent by the Composition service with 
semantic information related to the peculiar context. The query pre-processor can be configured 
by the Overlay to take care of the current environmental situation 

• Discovery Protocol: it is in charge to securely discover all the available SPD components 
description stored in the Service Registry, using a specific protocol (e.g. Service Location 
Protocol – SLP or Universal Plug and Play Simple Service Discovery Protocol – UPnP SSDP, 
etc.). Indeed the SPD component descriptions can be registered in different types of Service 
Registries, located everywhere in the network, using heterogeneous protocols to be inquired 

• Filter Engine: it is in charge to semantically match the query with the descriptions of the 
discovered SPD components. In order to perform the semantic filtering, the Filter Engine can 
retrieve from the Semantic DB the information associated to the SPD components, whose 
location is reported in the description of the SPD component 

 

The composition engine tries to accomplish the pSHIELD Overlay configuration rules applying the 
following procedure: 
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1. Composition service triggers the Discovery service, sending a SPD component request, looking 
for those SPD components defined in the configuration rules provided by the Overlay  

2. The Discovery Engine sends the request to the Query Preprocessor 

3. The Query Preprocessor enriches the service request with contextual information and sends it 
back to the Discovery Engine 

4. The Discovery Engine applies a global service discovery using heterogeneous Discovery 
Protocols, in order to collect as much available SPD functionalities as possible over the 
networked  Embedded System Devices 

5. Each Discovery Protocol interacts with the Service Registries reachable in the network and 
retrieves the SPD components’ descriptions and provides them back to the Discovery Engine 

6. The Discovery Engine collects the discovered descriptions and sends them to the Filter Engine 

7. The Filter Engine applies a semantic filtering, retrieving the semantic metadata from the semantic 
DB, accordingly with the references reported in each SPD component description. The filtered list 
of component is then sent back to the Discovery Engine 

8. The Discovery Engine sends the list of available, filtered SPD components to the Composition 
service 

9. If the Composition service, considering the available SPD components is able to provide a new 
configuration, these components are activated, otherwise the Composition service advise the 
Overlay that it is not possible to apply its decision 

It is important to note that the validity of this conceptual framework model is independent from the specific 
application scenario. On the basis of this conceptual framework it is possible to derive a number of 
possible alternative implementations, belonging to different pSHIELD compliant technology providers. If 
the interfaces and the operation between the different elements are respected, it is possible to setup 
heterogeneous systems with the enhanced pSHIELD SPD functionalities. 

 

6.4 Overlay Layer  
The following figure highlights in light red, some key functionalities and interfaces involving the Overlay 
layer. 
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Figure 33 – pSHIELD overlay: a functional view 

 
The Overlay consists of a set of SPD Security Agents, each one controlling a given pSHIELD subsystem. 
Subsystem identification has to be carefully performed scenario by scenario. Expandability of such 
framework is obtained by enabling communication between SPD Security Agents controlling different 
sub-systems. As a matter of fact, the presence of more than one SPD Security Agent is justified by the 
need of solving scalability issues in the scope of system-of-systems: exponential growth of complexity can 
be overcome only by adopting the policy of divide et impera (divide and rule). 

Each SPD Security Agent, in order to perform its work, exchange carefully selected information with the 
other SPD Security Agents, as well as with the three horizontal layers (node, network and middleware) of 
the controlled pSHIELD subsystem. 

Each SPD Security Agent collects properly selected heterogeneous SPD-relevant measurements and 
parameters coming from node, network and middleware layers of the controlled pSHIELD subsystem; this 
information is used as valuable input for the Control Algorithms. Since the SPD Security Agent is mainly a 
software functionality and not a physical system itself, it needs the mediation of the pSHIELD Middleware 
Core SPD Services as it has been explained in the previous section.  

The heterogeneous data collected from the three horizontal layers are abstracted, translated into 
technology-independent metadata, semantically enriched and aggregated. The resulting metadata 
(referred to as sensed metadata) are stored in the Semantic Knowledge Representation of the considered 
SPD Security Agent. By so doing, this database stores a dynamic, semantic representation of the 
controlled pSHIELD subsystem.  

In the considered SPD Security Agent, the representation mentioned above is used as a valuable, rich 
input for a set of intelligent, technology-independent, closed-loop Control Algorithms. These last, by using 
(as input) the above-mentioned representation and by adopting appropriate advanced methodologies 
able to profitably exploit such input, produce (as output) decisions aiming at guaranteeing, whenever it is 
possible, target SPD levels over the controlled pSHIELD subsystem. In the Composability feature 
described in the previous section, these decisions consist in a set of rules for discovery, configuration and 
composition of SPD components. 
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The decisions mentioned above are eventually actuated in the pSHIELD subsystem controlled by the 
considered SPD Security Agent, by exploiting the mediation of the middleware as detailed in the previous 
section.  

Summarizing, each SPD Security Agent consists of two key elements:  

i. the Semantic Knowledge Repository (i.e. a database) storing the dynamic, semantic, enriched, 
ontological aggregated representation of the SPD functionalities of the pSHIELD subsystem 
controlled by the SPD Security Agent 

ii. the Control Algorithms generating, on the grounds of the above representation, key SPD-relevant 
decisions (consisting, as far as the Composability feature is concerned, in a set of discovery, 
configuration and composition rules)  

The formalized conceptual model of a pSHIELD Security Agent, described in the previous section, is 
reported in the below figure.  
 

 
 

Figure 34 – Formalized conceptual model for pSHIELD Security Agent 

 

The figure also highlights the correspondence between the class diagram and a classical feedback 
control scheme (including Process, Controller and Sensing/Actuation functionalities) where: 

• the Process to be controlled is represented by the three horizontal layers (Node, Network and 
Middleware) 
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• the Controller is the Security Agent supported by the Semantic Knowledge Repository 

• Sensors/Actuators are represented by the Core SPD Services lying at the pSHIELD Middleware 
layer 

The formalized conceptual model of the pSHIELD Overlay is shown in the following figure. Taking into 
account that the pSHIELD Overlay can include several Security Agents each one controlling a pSHIELD 
subsystem, the pSHIELD Overlay model is easily obtained by composing in parallel the feedback control 
scheme relevant to each Security Agent presented in the previous figure. The coordination and 
information exchange between the different controllers (i.e. SPD Security Agents) is performed by means 
of metadata (referred to as exchanged metadata). The advantages in terms of flexibility entailed by this 
modular approach are evident. 

 

 
 

Figure 35 – Formalized conceptual model for the pSHIELD Overlay 

 

6.5 System Overall Architecture  
In order to formally describe the pSHIELD system overall architecture, we decided to use the UML 
component diagram formalism, where there could be identified the following formal elements: 

 

 
Figure 36 – pSHIELD functional architecture formalism 

 
A functional component describes a functional entity that, in general, does not have necessarily a 
physical counterpart (e.g. a software functionality, a middleware service, an abstract object, etc.). A 
physical component describes an entity that can be mapped into a physical object (e.g. a hardware 
component). A functional component as well as a physical component, can require or provide 
functionalities, properties, connections, services, configuration parameters, energy, etc. To model these 
aspects, we use the interface symbol. An interface can be used to import all the needed elements to 
make a component to properly work. An interface can also be used to export some elements as outcome 
of the component operations or physical structure. 
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From the pSHIELD perspective, there exist three different types of Embedded System Devices (ESDs): 
Legacy Embedded System Device (L-ESD): it represents an individual, atomic physical Embedded 
System device characterized by legacy Node, Network and Middleware functionalities. This device can be 
modelled as depicted in the following figure. So, the legacy functionalities of an L-ESD can be partitioned 
into three subsets: 

− Node layer functionalities: hardware functionalities such as processors, memory, battery, I/O 
interfaces, peripherals, etc. 

− Network layer functionalities: communication functionalities such as connectivity, protocols stack, 
etc. 

− Middleware layer functionalities: firmware and software functionalities such as services, 
functionalities, interfaces, protocols, etc. 

The L-ESD exposes three interfaces: (i) the legacy, technology-dependent middleware services, (ii) the 
legacy, technology-dependent network services and (iii) the legacy, technology-dependent node 
capabilities. 

 
pSHIELD Embedded System Device (pS-ESD): it is a L-ESD equipped at least with the minimal set of 
pSHIELD functionalities at Middleware Layer. This device can be modelled as depicted in the second of 
the following figures: The pS-ESD exposes the same functionalities as the L-ESD plus an additional 
interface: the pSHIELD Middleware layer services. 

 
pSHIELD SPD Embedded System Device (pS-SPD-ESD): it is a pS-ESD equipped at least with the 
minimal set of pSHIELD Overlay functionalities. This device can be modelled as depicted in the third of 
the following figures. 
 

The pS-SPD-ESD exposes the same functionalities as the pS-ESD plus an additional interface: the 
pSHIELD Overlay layer SPD services provided by a so-called Service Agent operating in that ESD. 

 

 
 

Figure 37 – Legacy Embedded System Device (L-ESD) with its exposed functionalities 
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Figure 38 – pSHIELD Embedded System Device (pS-ESD) with its exposed functionalities 

 
 

 
 

Figure 39 – pSHIELD SPD Embedded System Device (pS-SPD-ESD) 

 
We can define the architecture of a pSHIELD Subsystem (pS-S) as a set of Embedded System Devices 
including several L-ESD, connected to several pS-ESD and one and only one pS-SPD-ESD. Connections 
between two generic ESDs (L-ESD, pS-ESD or pS-SPD-ESD) can be performed, by means of legacy 
functionalities at Node, Network and/or Middleware layer, through the so-called NC, NS and MS 
functionalities, respectively. This means, for example, that the legacy Node layer capabilities (e.g. legacy 
physical connectors) of an L-ESD can be used to connect it to a pS-SPD-ESD having a compatible Node 
layer capability (e.g. the same connector format factor). The connection of a pS-ESD with another pS-
ESD or with a pS-SPD-ESD can also be performed by exploiting the additional pSHIELD Middleware 
layer functionalities exposed by the pS-MS interface. Each pSHIELD Subsystem (pS-S) must have one 
and only one pS-SPD-ESD, so that a pS-SPD-ESD can be connected to another pS-SPD-ESD by means 
of so called pS-OS functionalities. A pSHIELD Subsystem is depicted in the following figure. 
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Figure 40 – pSHIELD Subsystem architecture decomposed into ESD components 

 
Let’s consider a pSHIELD system including several Embedded System Devices belonging to the three 
above defined types of ESD: L-ESD, pS-ESD and pS-SPD-ESD. The pSHIELD system architecture can 
be represented as a set of pSHIELD subsystems each connected to the other by means of the overlay 
interfaces provided by the Service Agent: 
 

 
 

Figure 41 – pSHIELD System Architecture decomposed into pSHIELD Subsystem 

 
The figure above shows the pSHIELD System Architecture highlighting the various ESD types. 
In particular, for the sake of clarity, only the pSHIELD Subsystem 1 has been exploded to explicitly the 
various ESD types. Specifically, within the pSHIELD Subsystem 1, (i) the connections among the pS-ESD 
and the L-ESDs have been grouped in the “Legacy Middleware Network Node” cloud, (ii) the connections 
among the pS-ESDs and the pS-SPD-ESD have been grouped in the “pSHIELD Middleware” cloud, (iii) 
the connections among different pSHIELD Subsystem (i.e. between different pS-SPD-ESDs) have been 
grouped in the “Overlay” cloud. 

The Overlay consists of a set of SPD Security Agents located each in a different pS-SPD-ESD. Each SPD 
Security Agent controls a different pSHIELD subsystem. Subsystem identification has to be carefully 
performed scenario by scenario. Expandability is obtained by enabling communication between SPD 
Security Agents taking care of different pSHIELD sub-systems.  
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Figure 42 – pSHIELD System Architecture highlighting the ESD types 

 

In order to introduce the next sections, we should refine the ESD model. Exploding the model of a pS-
SPD-ESD, it is possible to identify that its external functionalities are provided by the interaction of two 
components: the L-ESD and the pSHIELD Proxy. While we have already defined the L-ESD component, 
the pSHIELD Proxy is a new component. 
 

 
Figure 43 – pS-SPD-ESD architecture 

 
A pSHIELD Proxy (pS-P) is a technology dependent component of a pS-SPD-ESD that, interacting with 
the available legacy Node, Network and Middleware capabilities and functionalities (through the NC, NS 
and MS interfaces, respectively), provides all the needed pSHIELD enhanced SPD functionalities. From 
the above figure, it is clear that the pS-SPD-ESD functionalities belongs both to the L-ESD component 
(MS, NS and NC interfaces), as well as to the pSHIELD Proxy component (pS-MS and pS-OS interfaces). 
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The pSHIELD Proxy component can be further decomposed in two components (see following figure), 
namely the pSHIELD Adapter and the Security Agent. The rationale behind these two components, as 
well as their architecture, is hereinafter explained. 

The pSHIELD Adapter is a technology dependent component in charge of interfacing with the legacy 
Node, Network and Middleware functionalities (through the MS, NS and NC interfaces). The legacy 
functionalities can be enhanced by the pSHIELD Adapter in order to make them pSHIELD-compliant, i.e. 
they become SDP legacy device components, which can be composed by other SPD components, 
according to the SPD Composability approach. In addition, the pSHIELD Adapter includes Innovative 
SPD functionalities which are SPD pSHIELD-specific components, which can be composed by other SPD 
components. The pSHIELD Adapter exposes the technology independent pSHIELD Middleware layer 
functionalities that are used by the Security Agent component. 

The Security Agent is a technology-independent component in charge of aggregating the information 
coming from the pSHIELD Middleware Services provided by the internal pSHIELD Adapter or by other 
pSHIELD Proxies located in the same subsystem. The Security Agent is also in charge of gathering the 
information coming from other Security Agents connected on the same Overlay (through the pS-OS 
interface). The Security Agent includes proper control algorithms working on the basis of the available 
information; the decisions taken by these Control Algorithms are enforced through the pS-MS and the pS-
-OS interfaces.  

 
Figure 44 – pSHIELD Proxy component architecture 

 

The Security Agent component can be further decomposed in two components (see following figure), 
namely the Semantic Knowledge Representation and the Control Algorithms. The rationale behind these 
two components, as well as their architecture, is hereinafter explained. 
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Figure 45 – pSHIELD Security Agent component architecture 

 
The Semantic Knowledge Representation is in charge of bi-directionally exchanging technology-
independent (and semantic enriched) information from the pS-MS and the pS-OS interfaces. It is also in 
charge to provide such information via the pS-SKR interface to the Control Algorithms component. 

The Control Algorithms retrieves the aggregated information on the current SPD status of the 
subsystem, as well as of the other interconnected subsystems, by the pS-CA interface connected to the 
Semantic Knowledge Representation; such retrieved information is used as input for the Control 
Algorithms. The outputs of the Control Algorithms consist in decisions to be enforced in the various ESDs 
included in the pSHIELD subsystem controlled by the Security Agent in question; these decisions are 
sent back via the pS-MS interface, as well as communicated to the other Security Agents on the Overlay, 
through the pS-OS interface. 

The pSHIELD Adapter can be further decomposed as in three components (see following figure), namely 
the pSHIELD Node Adapter, the pSHIELD Network Adapter and the pSHIELD Middleware Adapter. The 
rationale behind these three components, as well as their architecture, is hereinafter explained. 

 
 

Figure 46 – pSHIELD Adapter component architecture 

• The pSHIELD Node Adapter includes a set of Innovative SPD functionalities interoperating 
with the legacy ESD node capabilities (using the NC interface) in order to enhance them with the 
pSHIELD Node layer SPD enabling technologies (such as FPGA Firmware and Lightweight 
Asymmetric Cryptography). This adapter is in charge to provide (through the pS-NC interface) 
all the needed information to the pSHIELD Middleware adapter to enable the SPD composability 
of the Node layer legacy and Node pSHIELD-specific functionalities. Moreover, the pSHIELD 
Node Adapter translates the technology independent commands, configurations and decisions 
coming from the pS-NC interface into technology dependent ones and enforce them also to the 
legacy Node functionalities through the NC interface. 

• The pSHIELD Network Adapter includes a set of Innovative SPD functionalities interoperating 
with the legacy ESD network services (through the NS interface) and the pSHIELD Node Adapter 
(through the pS-NC interface) in order to enhance them with the pSHIELD Network layer SPD 
enabling technologies (such as Smart Transmission). This adapter is also in charge to provide 
(through the pS-NS interface) all the needed information to the pSHIELD Middleware adapter to 
enable the SPD composability of the Network layer legacy and Network pSHIELD-specific 
functionalities. Moreover, the pSHIELD Network Adapter translates the technology independent 
commands, configurations and decisions coming from the pS-NS interface into technology 
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dependent ones and enforce them also to the legacy Network functionalities through the NS 
interface. 

• The pSHIELD Middleware Adapter which can be further partitioned in the Core SPD services 
and in the Innovative SPD functionalities. These two components are linked through the pS-MS 
interface. The figure below shows the pSHIELD Middleware Adapter component architecture.  

• The Core SPD Services are in charge to discover all the available functionalities at Node, 
Network and Middleware layers and to describe them in a technology-independent fashion. All 
the information is sent to the Overlay through the pS-MS interface. The pSHIELD Middleware 
Adapter should also carry into operation the decisions taken by the Overlay and communicated 
via the pS-MS interface by actually composing the discovered SPD functionalities. The pSHIELD 
Middleware Adapter includes a set of Innovative SPD functionalities interoperating with the 
legacy ESD middleware services (through the MS interface) in order to make them discoverable 
and composable SPD functionalities. 

The second of the following figures shows the pS-ESD architecture. As expected, a pS-ESD is an 
enhanced L-ESD with some additional pSHIELD capabilities: the ones provided by the pSHIELD Adapter 
component. However, the pS-ESD is not equipped with a Security Agent (otherwise it would have 
become a pS-SPD-ESD).  

 
 

Figure 47 – pSHIELD Middleware Adapter component architecture 

 

 
Figure 48 – pS-ESD component architecture 
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Finally the Legacy Embedded System Device (L-ESD) can be further exploded into a more detailed 
component diagram, as shown in corresponding figure below. 

 
Figure 49 – L-ESD component architecture 

 
The L-ESD architecture is composed by three components: (i) the Legacy Middleware Services; (ii) the 
Legacy Network Services and (iii) the Legacy Node Capabilities. 

The Legacy Middleware Services includes all the legacy middleware services (i.e. messaging, remote 
procedure calls, objects/content requests, etc.) provided by the Legacy Embedded System Device which 
are not pSHIELD-compliant. In order to be pSHIELD compliant, these services should be enriched with 
pSHIELD SPD functionalities. This task is in charge of the pSHIELD Middleware Adapter. 

The Legacy Network Services includes all the legacy network services (protocol stacks, routing, 
scheduling, Quality of Service, admission control, traffic shaping, etc.) provided by the Legacy Embedded 
System Device which are not pSHIELD-compliant. In order to be pSHIELD compliant, these services 
should be enriched with pSHIELD SPD functionalities. This task is in charge of the pSHIELD Network 
Adapter; 

The Legacy Node Capabilities component includes all the legacy node capabilities (i.e. battery, CPU, 
memory, I/O ports, IRQ, etc.) provided by the Legacy Embedded System Device which are not pSHIELD 
compliant. In order to be pSHIELD-compliant, these capabilities should be enhanced and enriched with 
pSHIELD SPD functionalities. This task is in charge of the pSHIELD Node Adapter; 
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Figure 50 – pSHIELD functional component architecture 

 

The result of the above considerations is the pSHIELD functional architecture depicted in Figure 50. This 
figure highlights some of the key pSHIELD enabling technologies mapped into the four functional layers 
introduced in the previous section. More specifically: 

1. The pSHIELD Node  

2. The Innovative SPD functionalities (e.g. smart SPD driven transmission and Cryptographic 
algorithms)  

3. The semantic knowledge models  

4. The core SPD services  

5. The control algorithms based on Hybrid Automata theory  

 

6.6 Intra-layer Interfaces  
 

6.7 Inter-layer Interfaces  
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7 Conclusion  
D2.3.1 represents consortium’s effort to conclude on a preliminary, as complete as possible though, 
system architecture. Special care was given, to include all system design relating factors impact, as 
explained in the Executive Summary of this document. A formalization methodology was followed, to 
derive the architecture, from a cooperation of known pre-defined components and functions (that we call 
legacy) with modules that possess features and capabilities representative of pSHIELD project 
application domain. In this hierarchy of adding functionalities and value, three main subsystems were 
introduced: the Legacy Embedded System Device (L-ESD), the pSHIELD Embedded System Device (pS-
ESD) and the pSHIELD SPD Embedded System Device (pS-SPD-ESD). The pSHIELD System 
Architecture, from the view of Embedded System Device (ESD) types, is practically consisted from the 
possible networking versions of the aforementioned subsystems. pSHIELD team aims at working further 
in refining the architecture proposal and present an optimized system solution with the deliverance of 
D2.3.2. 
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