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Executive Summary 

This deliverable is focused on the detailed description of the node technologies that are currently under 
development in work package 3, conforming to the preliminary architecture and the composability 
requirements specified in deliverables D2.4 and D2.5. These technologies will be made available to the 
application scenarios and can be used as building blocks for the project demonstrators. This deliverable 
will be updated and refined in the second part of the project based on the final requests received from the 
application scenarios and on the refined system architecture, metrics and composition strategy to be 
followed. 
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1 Introduction 

The nSHIELD project proposes a layered architecture to provide intrinsic SPD features and functionalities 
to embedded systems. In this layered architecture work package 3 is responsible for the node layer that 
represents the lower level of the architecture, a basement constituted of real embedded devices on which 
the entire project will grow.  

As already outlined in the TA, work package 3 aims to create an Intelligent ES HW/SW Platform that 
consists of three different kinds of Intelligent ES Nodes: nano node, micro/personal node and power node. 
These three categories of embedded systems will represent the basic components of the lower part of an 
SPD Pervasive System that will cover the possible requirements of several market areas: from field data 
acquisition, to transportation, to personal space, to home environment, to public infrastructures, etc. 

The assessment of the state of the art as well as of the technologies to be developed in the context of the 
project is contained in deliverable D3.1. This deliverable is focused on the detailed description of the node 
technologies that are currently under development in work package 3, conforming to the preliminary 
architecture and the composability requirements specified in deliverables D2.4 and D2.5. These 
technologies will be made available to the application scenarios and can be utilized as building blocks for 
the project demonstrators. This deliverable will be updated and refined in the second part of the project 
based on the final requests received from the application scenarios and on the refined system 
architecture, metrics and composition strategy to be followed.  

The document is structured in the following sections: 

1. Introduction: a brief introduction.  

2. SDR/Cognitive Enabled node: SDR/Cognitive Enabled Node (CEN) technologies for generic 

application scenarios including technologies for secure booting, isolation of critical security tasks 

and power management. 

3. Micro/Personal node: Technologies required by scenarios 2 (Voice/Facial Recognition) and 4 
(Social Mobility) at node level. It focuses mainly on biometric algorithms for SPD and on the 
delegation of access rights for offline control systems. 

4. Power node: this section describes the technologies that will be adopted in the areas of 

surveillance, system of embedded systems and SPD for avionics. These technologies will be 

adopted in scenarios 1 (Railways security), 3 (Dependable Avionic Systems) and 4 (Social 

Mobility). 

5. Dependable self-x Technologies: this section introduces horizontal SPD technologies that will be 

adopted in task 3.1-3.2-3.3 at different levels, depending on the complexity of the node and 

considering its HW/SW capabilities, its requirements and its usage. The technologies are focused 

on areas such as denial-of-services and anonymity. 

6. Cryptographic technologies: this section provides the assessment of horizontal SPD technologies 

focused specifically on hardware and software cryptography, on the use of crypto technologies to 

implement SPD embedded devices and prevent physical attacks at this level using defence 

crypto-based solutions.   
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2 SDR/Cognitive Enabled Node Technologies 

The main research areas targeted by the SDR/Cognitive enabled node technologies are the following: 

• Intrinsically secure ES firmware including: 

o A hypervisor for ARM that allows security critical applications to run isolated, co-existing 
in the same system with less trustworthy or even insecure applications. 

o A secure boot loader for ARM ensuring the integrity of the images to be loaded. 

o Provision of confidentiality, integrity or/and authenticity services to nodes using 
smartcards. 

• Power management and supply protection, including: 

o A family of Smart Power Units that is flexible enough to be used as a potential solution for 
power supply management a protection by the application scenarios. 

o A Linux kernel module supporting password protection for MMC/SD cards to avoid power 
consumption resulting from encrypting data that are not considered to be too critical. 

o A user level interface exposing allowing applications to tune their computational 
requirements and their power consumption and an activity profiler that allows collecting 
information about the whole system behaviour enabling to control the power consumption 
by selecting the most effective energy policy as function of the computational load and of 
the power supply status. 

2.1 Hypervisor 

The technological advancement in embedded systems has led to new possibilities to run open and 
complex operating systems, in which before was privileged to personal computers. As these systems 
become more interconnected across networks and the Internet, there is a clear indication of threats 
increasing, targeting mobile and sensitive infrastructure devices [1]. This is indeed true for all nSHIELD 
nodes, and to combat the associated risks, SICS has developed a Hypervisor to provide a secure 
execution environment that allows trustworthy, security critical applications to run isolated, co-existing in 
the same system with less trustworthy or even insecure applications. In the following chapters, we will 
describe the fundamental technology in which the Hypervisor is built on, and how it can provide isolation 
for security critical applications. 

2.1.1 Virtualization 

In computer science, the term virtualization can refer to many things. Software can be virtual, as can 
memory, storage, data and networks. In this section, virtualization refers to system virtualization in which 
a piece of software, the hypervisor also known as a virtual machine monitor (VMM), runs on top of the 
physical hardware to share the hardware's full set of resources between its guests called virtual machines 
(VM). Virtualization is normally associated as a means to increase utilization, server consolidation and 
cross platform interoperability in enterprise systems and desktop computers. However in this case, for 
embedded systems, we are more interested in enhancing security by isolating different execution 
environments by having low level barebone security applications running isolated co-existing with a high 
level rich operating system. Contrary to desktop computers, the configuration can be quite static, rather 
than the dynamic creation and destruction of OS environments.  

2.1.1.1 Hardware Support for Virtualization 

CPU architectures provide multiple operational modes, each with a different level of privilege. Most 
current ARM architectures have two modes, privileged and unprivileged mode, while the new Cortex-A15 
have more extended virtualization support with three modes [2]. The CPU architectures we primarily 
target only have two operational modes. These different modes enforce the security of the system's 
resources and execution of privileged instructions.  
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Generally operating systems are designed to run directly on top of hardware and expect to run on 
privileged mode in order to take total control over the whole computer system. However in a virtualized 
environment, the hypervisor will be running in privileged mode while the operating system is modified to 
run in unprivileged mode. This complicates matters, as the operating system will not be able to execute 
the privileged instructions necessary to configure and drive the hardware directly. Instead, the privileged 
instructions need to be delegated to the hypervisor in order to provide the hardware safely to the guest 
VM. Another complication is that the user applications and the OS kernel now runs in the same privileged 
mode, which means that we have to introduce new virtual guest modes (virtual user mode and virtual 
kernel mode) in order to keep the kernel and user application isolated from each other. 

The figure below describes the hypervisor architecture. We have the hypervisor running in the most 
privileged mode right above the hardware. The guest OS together with its applications are in turn running 
on top of the hypervisor in a less privileged mode. There is also a security critical application running on 
top of the hypervisor isolated from the other OS. These can be seen as guest VM's of the hypervisor. The 
hypervisor thus maintains the resource allocation of the guests, while it also has the power to intercept on 
important instructions and events and handle them before they are executed on the real hardware. By 
utilizing the different operating modes of the CPU (supervisor/user), the memory management unit (MMU) 
and the different domains, the hypervisor can setup an access policy that satisfies the security and 
isolation of the embedded system. The guest OS can only communicate with the security critical 
application through well-defined interfaces that the hypervisor provides.   

 

Figure 2-1: Architecture of a hypervisor system. 

The following is the main advantage of virtualization for embedded systems 

• Isolation 

• Minimized size of trusted code base (TCB) 

• Improved security 

In the next section we will describe the different virtualization approaches that can be used to implement a 
hypervisor. 

2.1.1.2 Classical Virtualization 

Popek and Goldberg stated in their paper, [3], formal requirements for computer architectures to be 
virtualizable. The classifications of sensitive and privileged instructions were introduced in their paper: 
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• Sensitive instructions, instructions that attempt to interrogate or modify the configuration of 
resources in the system. 

• Privileged instructions, instructions that trap if executed in an unprivileged mode, but execute 
without trapping when run in a privileged mode.  

To be able to fully virtualize architecture, Popek and Goldberg stated that the sensitive processor 
instructions had to be equal to the set of privileged instructions or a subset of it. This criterion has now 
been termed classically virtualizable. In the following section we present different types of virtualization 
techniques as each has its own advantages and disadvantages. 

2.1.1.3 Full Virtualization 

As discussed earlier, because the hypervisor resides in the privileged mode, the guest OS which is 
residing in the less privileged mode, cannot execute its privileged instructions. Instead the execution of 
these privileged instructions has to be delegated to the hypervisor. One way to do this is through applying 
full virtualization. The idea behind it is, whenever software is trying to execute privileged instructions in an 
unprivileged mode, it will generate a trap into the privileged mode. Because the hypervisor resides in the 
privileged mode, one could write a trap handler that emulates the privileged instruction that the guest OS 
is trying to execute. This way, through trap-and-emulate, all the privileged instructions that the guest OS is 
trying to execute will be handled by the hypervisor, while all other non-privileged instructions can be run 
directly on the processor. The advantage with full virtualization is that the virtualized interfaces provided to 
the guest operating system has identical interfaces compared to the real machine. This means that the 
system can execute binary code without any changes, neither the operating systems nor their applications 
need any adaptation to the virtual machine environment and all code that had originally been written to the 
physical machine can be reused. 

However to apply full virtualization it requires that all sensitive instructions are a subset of the privileged 
instructions, in order for it to trap to the hypervisor. This is why Popek and Goldberg's criteria classically 
virtualizable have to be fulfilled in order to apply full virtualization and most general purpose CPU's does 
not support this. A downside with full virtualization is, since a trap is generated for every privileged 
instruction, it adds significant overhead as each privileged instruction is emulated with many more 
instructions. In turn we get excellent compatibility and portability. 

2.1.1.4 Binary Translation 

In the 90s, x86 architecture was prevalent in desktop and server computers but still, full virtualization 
could not be applied to the architecture. Because the x86 architecture contains sensitive instructions that 
are not a subset of the privileged instructions [4], it fails to fulfil Popek and Goldberg's criteria ''classically 
virtualizable``. These sensitive instructions would not trap to the hypervisor and it was not possible to 
execute these sensitive instructions in the unprivileged mode, making full virtualization not possible. 
VMware has however shown that, with binary translation one could also achieve the same benefits as full 
virtualization on x86 architecture. Binary translation solves this problem by scanning the guest code at 
load or runtime for all sensitive instructions that do not trap before they are executed, and replaces them 
with appropriate calls to the hypervisor. The technique used is quite complex and increases the code size 
running in the highest privileged mode, increasing the TCB. Through a security point of view, one would 
want the amount of code in the privileged mode to be as small as possible in order to minimize the area of 
the attack surface. This could affect the security and isolation properties of the entire system.  

Because of the complex scanning techniques of binary translation, the performance overhead is larger 
than full virtualization. However, binary translation has provided the benefits of full virtualization on an 
architecture that was previously not fully virtualizable. 

2.1.1.5 Paravirtualization 

Para-virtualization was designed to keep the protection and isolation found in the full virtualization but 
without the performance overheads and implementation complexity in the hypervisor. However, in order to 
achieve this, you have to sacrifice the convenience of running an operative system unmodified on the 
hypervisor. 
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In a paravirtualized system, all the privileged instructions in the operating system kernel have to be 
modified to issue the appropriate system call that communicates directly with the hypervisor, also called 
hypercalls. This makes paravirtualization able to achieve better performance compared to full 
virtualization due to the direct use of appropriate hypercalls instead of multiple traps and instruction 
decoding. Examples on hypercall interfaces provided by the hypervisor are critical kernel operations such 
as memory management, interrupt handling, kernel ticks and context switching. As each hypercall offers a 
higher level of abstraction compared to emulation at the machine instruction level, the amount of work that 
a hypercall can do is a lot more efficient compared to emulating each sensitive machine instruction.  

Most ARM architectures
1
, which are very common in embedded systems, however do not fulfil the criteria 

of "classically virtualizable". This means that virtualization on the ARM architecture can either be achieved 
through binary translation or paravirtualization. Because embedded systems generally are resource 
constrained, the performance overhead that binary translation generates is too high, making 
paravirtualization the best approach for the ARM architecture.  

However, the drawback with paravirtualization is that each operating system has to be adapted to the new 
interface of the hypervisor. This can be quite a large task, and closed-source operating systems like 
Windows cannot be modified by anyone other than the original vendor. Still, in embedded systems it is 
common for the developers to have full access to the operating system's source code. The disadvantage 
to run a modified operating system is not always a big issue; the operating system needs to be ported to 
the custom hardware either way and at the same time, it performs better. 

2.1.1.6 Hardware Virtualized Extensions ARM 

Focusing on the ARM architecture, it is worth to mention that it offers a hardware security extension called 
TrustZone [5] in ARMv6 or later architectures. It offers support for switching between two separate states, 
called worlds. One world is secure which is intended to run trusted software, while the other world is 
normal, where the untrusted software runs.  

A single core is able to execute code from both worlds, and at the same time ensuring that the secure 
world software is protected from the normal world. Thus, the secure world controls all partitioning of 
devices, interrupts and coprocessor access. To control the switch between the secure and normal world, 
a new processor mode has been introduced called Monitor mode, preventing data from leaking from the 
secure world to the normal world.  

In the latest ARMv7 architecture, the Cortex-A15 processor further introduced hardware virtualization 
extensions that allow the architecture to be classically virtualized by bringing a new mode called hyp as 
the highest privileged mode, hardware support for handling virtualized interrupts, and extra functionality to 
support and simplify virtualization. These extra extensions add features to make full virtualization possible 
and improve the speed of virtualization [2]. 

2.1.1.7 Virtualization in Embedded Systems 

As the nSHIELD project focuses in embedded systems, we will look into the functionality of virtualization 
that is inherited from their previous use in servers and workstations. The properties between the two 
systems are however completely different. For server and desktop computers, power, space or weight is 
of no concern, while for embedded systems the contrary often holds true. So a re-evaluation in the light of 
embedded systems is necessary.  

Because the server and desktop markets are largely dominated by x86 architecture, virtualization 
approaches have been specifically tailored for this architecture. Also for server and desktops, usually the 
number one requirement is to be able to run all commodity operating systems without modifications. This 
was the advantage that full virtualization had over paravirtualization, but in embedded systems, it is 
common for the developer to have access to the full source code of the operating system. Usually the 

                                                      

1
 With the exception of the new ARMv7 Cortex-A15 
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developers have to port the operating system to the specialized embedded hardware, thus using 
paravirtualization is not such big disadvantage anymore. 

2.1.1.8 Isolation 

In servers and desktops, all virtualization approaches featured strong isolation between the VM's and is 
usually all that is needed to provide a secure and robust environment. A VM that is affected by malicious 
software will be confined to that VM, as the isolation prevents it from spreading to other VM's. For server 
and desktop use, this is usually all that is needed because there is no need for VM's to interact with each 
other in any other ways from how real computers communicate, that is through the network. However in 
embedded systems, multiple systems generally contribute to the overall function of the device. Thus the 
hypervisor needs to provide a secure communication interface between the isolated VM's, much like a 
microkernel IPC, while still preserving the isolation of the system [6]. 

2.1.1.9 Trusted Computing Base 

In embedded systems, the size of the memory has a big effect on the cost of the device. They are 
generally designed to provide their functionality with minimal resources, thus cost and power sensitive 
devices benefits from a small code size.   

In other devices where the highest levels of safety or security are required, every code line represents an 
additional potential threat and cost. This is called the trusted code base and includes all software that is 
run in privileged mode, which in general cases include the kernel and any software modules that the 
kernel relies on. In security critical applications, all trusted code may have to go through extensive testing. 
In some cases where security needs to be guaranteed, the security of the system has to be proven 
mathematically correct and undergo a formal verification. This makes it crucial that the size of the trusted 
code base is as small as possible as it will make formal verification easier.  

In virtualization, the trusted code base will include the hypervisor as it now runs in the most privileged 
mode. For data server hypervisors like Xen [7], its code base is about 100,000 lines of code which is quite 
large, but the biggest problem is that is also relies on a full Linux system in the privileged mode. This 
makes the trusted code base several millions lines of code which makes a formal verification impossible. 
The reason the Xen and similar hypervisors is so large, is because it is mainly designed for server 
stations. Most policies are implemented inside the privileged code, which embedded systems have very 
little, or no use of.  

In a microkernel the servers provide all the policies, while the microkernel only provides the mechanism to 
execute these policies. It aims to reduce the amount of privileged code to a minimum but still provide the 
basic mechanism to run an operating system on it. This result in a small trusted code base and from a 
security perspective, for example the L4 microkernel has a big advantage as the size is only about 10,000 
lines of code and has also undergone formal verification [8]. 

2.1.1.10 Performance 

Most often performance is much more crucial and expensive for embedded systems. To be able to get the 
most out of the hardware, a hypervisor for embedded systems must perform with a very low overhead as 
well as being able to provide good security and isolation. The performance overhead that the hypervisor 
generate depends on many factors such as the guest operating system, hypervisor design and hardware 
support for virtualization. For embedded systems, it is almost always advantageous to apply 
paravirtualization as a hypervisor design approach, for the reasons stated in section 2.1.1.7. 

2.1.1.11 Virtualization Summary 

Awareness that embedded systems also can benefit from virtualization as a mean to improve security; 
efficiency and reliability have increased the popularity of embedded virtualization. As the performance of 
embedded systems continues to grow, one single embedded system is now powerful enough to handle 
workloads, which previously had to be handles by several dedicated embedded systems. As they also 
become increasingly interconnected through networks and the Internet, security issues and malicious 
software has become a threat even in small-embedded nodes.  
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One question one might ask is why implement virtualization when one can use hardware virtualized 
extensions like TrustZone on ARM. One main point is that additional hardware support is more expensive 
as it is only available on a limited set of the ARM family CPUs, additionally it requires that the SoC design 
is made according to the TrustZone principles from the very beginning in order to work, as sensitive units 
such as DMA, memory interfaces, and interrupt controllers must be designed to support TrustZone. 
Hence, if we in principle can fulfil the same security requirements using only the MMU and standard 
processor protection mechanism, why not use such a design instead as long as the performance impacts 
are reasonable. Furthermore, the hypervisor is more flexible solution as it can be configured to work for a 
specific security policy and has the possibility to interpose and monitor all the important events in the 
"Normal world", something that TrustZone does not allow the user [9]. Although the hypervisor approach 
requires substantially larger porting effort it is still a very attractive means to provide isolation between 
different execution environments, separating your security critical applications from the rest. 

2.1.2 ARM Architecture 

In order to understand how virtualization is implemented in the ARM architecture, we provide an overview 
over important components on the ARMv7-A architecture. More detailed information can be found in the 
ARM reference manual [10]. 

2.1.2.1 Introduction 

The ARM core is RISC architecture. RISC philosophy concentrates on reducing the complexity of 
instructions performed by the hardware, while putting a greater demand on the compiler. This way, each 
instruction is of fixed length of 32-bits and can be completed in a single clock cycle, while also allowing 
the pipeline to fetch future instruction before decoding the current instruction.  

In contrast to RISC, CISC architectures relies more on hardware for instruction functionality, which 
consequently makes the instructions more complex. The instructions are often variable in size and take 
many cycles to execute. 

As a pure RISC processor is designed for high performance, the ARM architecture uses a modified RISC 
design philosophy that also targets code density and low power consumption. As a result, the processor 
has become dominant in mobile embedded systems. It was reported that in 2005, about 98% of more 
than a billion mobile phones sold each year used at least one ARM processor and as of 2009, ARM 
processors accounted for approximately 90% of all embedded 32-bit RISC processors [11]. 

2.1.2.2 Current Program Status Register 

Beside the 16 general-purpose registers from r0 to r15 in the ARM architecture, we have the CPSR, which 
the ARM processor uses to monitor, and control internal operations. The CPSR is used to configure the 
following: 

• Processor mode: Can be in seven different processor modes, discussed in the next section. 

• Processor state: The processor state determines if ARM, Thumb or the Jazelle instruction set is 
being used

2
.  

• Interrupt masks: Interrupt masks are used to enable or disable the FIQ and IRQ interrupts.  

• Condition flags: Contains the results of ALU operations, which update the CPSR condition flags. 
These are instructions that specify the S

3
 instruction suffix and are used for conditional execution 

to speed up performance. 

                                                      

2
 ARM - 32 bit, Thumb - 16-bit, Jazelle - 8 bit (Java byte code support) 

3
 Certain instructions have the possibility to add an optional S suffix to the instruction 



nSHIELD  D3.2 Preliminary SPD Node Technologies Prototype 

 RE  

 RE D3.2 

Issue 8  Page 21 of 127 

2.1.2.3 Processor mode 

The ARM architecture contains seven processor modes, which are either privileged or unprivileged. It 
contains one unprivileged mode User and the following modes are all privileged. 

• Supervisor 

• Fast interrupt request (FIQ) 

• Interrupt request (IRQ) 

• Abort  

• Undefined 

• System 

When power is applied to the processor, it starts in Supervisor mode and is generally also the mode that 
the operating system operates in. FIQ and IRQ correspond to the two interrupt levels available on the 
ARM architecture. When there is a failed attempt to access memory, the processor switches to abort 
mode. System mode is generally used for other privileged OS kernel operations. Undefined mode is used 
when the processor encounters an instruction that is undefined or unsupported by the implementation. 
Lastly, the unprivileged mode User mode is generally used for programs and applications run on the 
operating system. In order to have full read/write access to the CPSR, the processor has to be in 
privileged mode. 

2.1.2.4 Interrupts and Exceptions 

Whenever an exception or interrupt occurs, the processor suspends the ongoing execution and jumps into 
the corresponding exception handler in the vector table. The vector table is located in a specific memory 
address and each 4-byte entry in the table contains an address, which points to the start of a specific 
routine: 

• Reset: Location of the first instruction executed by the processor at power up. The reset vector 
branches to the initialization code. 

• Undefined: When the processor cannot decode an instruction, it branches to the undefined 
vector. Also occurs when a privileged instruction is executed from the unprivileged user mode. 

• Software interrupt: Occurs when the SWI instruction is used. The instruction is frequently used 
by applications when invoking an operating system routine. When used, the processor will switch 
from user mode to supervisor mode. 

• Prefetch abort: Occurs when the processor trying to fetch an instruction from an address without 
the correct access permissions. 

• Data abort: Occurs when the processor attempts to access data memory without correct access 
permissions. 

• Interrupt request: Used by external hardware to interrupt the normal execution flow of the 
processor. 

What the specific routine will do is generally controlled by the operative system. However, when applying 
virtualization to the system, all the routines will be implemented inside the hypervisor. 

2.1.2.5 Coprocessor 

The ARM architecture makes it possible to extend the instruction set by adding up to 16 coprocessors to 
the processor core. This makes it possible to add more support for the processor, such as floating-point 
operations. 

Coprocessor 15 is however reserved for control functions such as the cache, memory management unit 
(MMU) and the translation looks aside buffer (TLB). In order to understand how the hypervisor can 
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provide improved security by isolating different resources, it is important to understand the mechanics 
behind the memory management of the ARM architecture. 

2.1.2.6 Memory Management Unit 

Through coprocessor 15 on the ARM architecture, the MMU can be enabled. Without an MMU, when the 
CPU accesses memory, the actual memory addresses never change and map one-to-one to the same 
physical address. However with an MMU, programs and data are run in virtual memory, an additional 
memory space that is independent of the physical memory. This means that the virtual memory addresses 
have to go through a translation step prior each memory access. It would be quite inefficient to individually 
map the virtual to physical translation for every single byte in memory, so instead the MMU divides the 
memory into contiguous sections called pages. The mappings of the virtual addresses to physical 
addresses are then stored in the page table. In addition to this, access permission to the page table is 
also configurable. 

To make the translation more efficient, a dedicated hardware, the TLB handles the translation between 
virtual and physical addresses and contains a cache of recently accessed mappings. When a translation 
is needed, the TLB is searched first, and if not found, a page walk occurs which means it continues to 
search through the page table. When found, it will be inserted into the TLB, possibly evicting an old entry 
if the cache is full. 

The virtualization of memory efficiently supports multitasking environments as the translation process 
allows the same virtual address to be held in different locations in the physical memory. By activating 
different page tables during a context switch, it is possible to run multiple tasks that have overlapping 
virtual addresses. This approach allows all tasks to remain in physical memory and still be available 
immediately when a context switch occurs.   

2.1.2.7 Page Tables 

The page table descriptors are architecture specific, and we will show how the ARMv7-A architecture 
looks like. 

There are two levels of page tables in the ARM MMU hardware. The master page table contains 4096 
page table entries known as first level descriptors, each describing 1MB of virtual memory, enabling up to 
4GB of virtual memory. The level one master page table can either be a super section descriptor, section 
descriptor or page table descriptor.  

• Supersection descriptor: Consists of 16MB block of memory. Because each first level page 
table entry covers a 1MB region of virtual memory, the 16MB supersections require that 16 
identical copies of the first level descriptor of the supersection exist in the first level page table.  

• Section descriptor: Consists of 1MB block of memory 

• Page descriptor: Provides the base address to a second level descriptor that specifies how the 
associated 1MB is mapped. It's either a large or small page descriptor. 

Second level descriptors: 

• Large page descriptor: Consist of 64KB blocks of memory 

• Small page descriptor: Consist of 4KB blocks of memory 

The large page descriptor thus has 64 entries while a small page has 256 entries, splitting the 1MB that 
the table describes into 64KB and 4KB of blocks respectively. The figure below shows the overview of the 
first and second level page tables. 
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Figure 2-2: Page table fetch. 

The translation process always begins in the same way at system start-up; the TLB does not contain a 
translation for the requested virtual address so it initiates a level one fetch. If the address is a 
supersection or section-mapped access it returns the physical address and the translation is finished. But 
if it is a page-mapped access, it requires an additional level two fetch into either a large or small page in 
where the TLB can extract the physical address.  

Common for all levels of page tables is that it contains configuration for cache, buffer and access 
permission. The domain configuration is however only configurable for the first level descriptors, 
associating the page table with one of the 16 MMU domains. This means that it can only be applied at 
1MB granularity; individual pages cannot be assigned to specific domains. 

2.1.2.8 Domain and Memory Access Permissions 

Memory accesses are primarily controlled through the use of domains, and a secondary control is the 
access permission set in the page tables. As mentioned before, the first level descriptors could be 
assigned to one of the 16 domains. When a domain has been assigned to a particular address section, it 
must obey the domain access rights assigned to that domain. Domain access permissions can be 
configured through the CP15:c3 register and each of the 16 available domains can have the following bit 
configurations. 

• Manager (11): Access to this domain is always allowed 

• Client (01): Access controlled by permission values set in the page table entry 

• No Access (00): Access to this domain is always denied 

If the configuration is set to Client, it will look at the access permission of the corresponding page table. 
The table below shows how the MMU interprets the two bits in the AP bit field of the page table. 

Table 2-1: Page table AP Configuration 

AP bit User mode Privileged mode 

00 No access No access 

01 No access Read and write 

10 Read only Read and write 

11 Read and write Read and write 
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With the help of the domain access control and page-level protection, we can isolate different memory 
regions in the system to achieve the wanted security configuration. 

2.1.2.9 Summary 

This concludes the ARM architecture background information where we described the fundamental 
mechanisms necessary to apply virtualization to a system. In the next section, we will go into the detailed 
design on how the SICS hypervisor is designed and implemented. 

2.1.3 SICS Hypervisor 

The hypervisor software was designed for the ARM architecture, with the main goal to improve the 
security of an embedded system through the isolation properties that it can provide. This is achieved by 
only letting the hypervisor execute in privileged mode, where it can control all the systems hardware 
resources and control the access policy and security of the running application and operating systems. In 
our case, the SICS hypervisor uses paravirtualization to virtualize the guest system to run on top of the 
hypervisor in a lower privilege mode (user mode).  

By having several virtual guest modes, each with its own execution context and memory access 
configuration, the hypervisor can enforce the memory isolation between the operating system, its 
applications and most importantly, the security critical applications. 

2.1.3.1 Guest Modes 

The hypervisor supports arbitrary number of "virtual" guest modes. As guest modes have their own 
memory configuration and execution context, the hypervisor always controls which current guest mode is 
executing. There are currently four virtual guest modes defined in the hypervisor: 

• Kernel mode: Execution context for guest kernel 

• Task: Execution context for user applications 

• Trusted: Execution context for security critical applications 

• Interrupted mode: Execution context for interrupts 

These virtual guest modes are necessary in the ARM architecture, because we only have two security 
rings, privileged and unprivileged. The hypervisor has to reside in the privileged ring while all other 
software such as, the operating system, task applications and security critical application have to reside in 
the unprivileged ring. Therefore to keep the separation between the software located in the unprivileged 
ring, we need these virtual guest modes.  

Depending on which the current guest mode is, the memory access to the different domains can be set up 
differently to suit the security needs of the system. The hypervisor then makes sure that the correct 
corresponding virtual guest mode is running, depending on whether kernel, task or trusted code is 
executing. Whenever an interrupt is generated, the hypervisor will change the guest mode to interrupt 
mode. In the next section we will go through how memory isolation is achieved. 

2.1.3.2 Memory Protection 

With the help of the linker script file, we can decide where the hypervisor, kernel, task and trusted code 
are placed in the memory. Through the domain access permission and the page table access permission 
we can setup access rights to different parts of the system by separating the memory addresses into 
several domains as shown below. 
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Figure 2-3: MMU Domains 

2.1.3.2.1 Hypervisor Protection 

The hypervisor, boot code, exception handlers and all device peripherals are located in the hypervisor 
domain. This domain is only accessible in privileged mode, which the system boots up in. At system boot, 
the hypervisor sets up the hardware and configures the MMU according to the wanted security 
configurations. Before the hypervisor starts up the guest OS, it makes sure to switch the processor state 
to user mode and the current virtual guest mode to kernel mode, and continue the execution of the OS 
kernel application. Transition back to privileged mode only occurs on hypercalls or hardware exceptions, 
ensuring that no one except the hypervisor can tamper with the memory configurations of the MMU. 

2.1.3.2.2 OS Kernel Protection 

The kernel code and data are located in the kernel domain. When the OS kernel context is running, the 
hypervisor makes sure that the virtual guest mode kernel is active. The domain access configuration for 
virtual guest mode kernel is client access to the kernel and application domain. The trusted domain is set 
to no access. The figure below shows the general memory domain access configuration for the kernel 
mode. 

 

Figure 2-4: Kernel mode domain access 

2.1.3.2.3 Task Protection 

The user application code and data are located in the task domain. When the application context is 
running, the hypervisor makes sure that the virtual guest mode task is active. The domain access 
configuration for virtual guest mode task is client access to the task domain. Kernel domain and trusted 
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domain are both set to no access. This isolates the task from the rest of the system. The figure below 
shows the memory domain access configuration for the task mode. 

 

Figure 2-5: Task mode domain access 

2.1.3.2.4 Trusted Protection 

Lastly, a domain is reserved for our security critical applications. This domain will be completely isolated 
from all other domains in order to protect all data that reside in it from illegal accesses. When a security 
application that resides in the trusted domain is running, the hypervisor makes sure that the virtual guest 
mode trusted is active. The domain access configuration for this mode is client access to trusted domain 
and no access to all other domains.  

To use these secure services, a secure well-defined interface is provided that can be called through a 
remote procedure call (RPC). This will be described in the next section. A typical scenario is a commodity 
operating system and an isolated trusted domain offering secure services to untrusted applications. 

The figure below shows the memory access configuration for the trusted mode. 

 

Figure 2-6: Trusted mode domain access 

2.1.3.3 Hypervisor Configuration 

For each system running on the hypervisor, there is a configurable file that contains the setup of the 
running system. It contains information regarding which address space and domain each region reside in 
and capability list of each virtual guest mode, what it is allowed to do and not. This configuration file is 
parsed by the hypervisor at start-up to setup the hypervisor system. There is one configuration file for 
each platform and OS port.  
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2.1.3.4 Hypercall Interface 

To provide a safe access to privileged functionality, the hypervisor has a hypercall interface available for 
the guest OS to use. Because the OS kernel now runs in unprivileged mode, all the previous privileged 
instructions that the kernel could do itself, now has to be delegated to the hypervisor through hypercalls. 
These are invoked through the SWI instruction. A list of the offered hypercalls can be seen in the table 
below. Each hypercall is verified by the hypervisor to confirm that it is an allowed operation. Important 
checks consists of where the call origin from, which virtual guest mode, address space and memory 
access configurations. 

Table 2-2: Hypercall interface 

Hypercall Description 

BOOT_INFO Provides the hypervisor with OS specific information to setup the system 

SET_CPU_CR Sets the CPU control register 

GET_CPU_CR Gets the CPU control register 

IRQ_SAVE Saves the state of the IRQ 

IRQ_RESTORE Restores the state of the IRQ 

INTERRUPT_SET Sets the state of the IRQ and FIQ in the CPSR 

END_INTERRUPT 
Gives back execution to the interrupted context (called after hardware 
interrupts) 

IRQ_DISABLE Disables IRQ 

IRQ_ENABLE Enables IRQ 

FLUSH_ALL Flushes all caches 

TLB_INVALIDATE Invalidates translation look aside buffer 

CACHE_INVALIDATE Caches invalidate operations on virtual address 

SET_PAGE Page table operations 

CREATE_SECTION Creates a section page table and inserts it in the master page table 

RESTORE_USER_REGS Used to switch execution context 

SWITCH_MM Sets another page table for user process 

RPC 
Used to communicate between different guest modes. (Used to change 
virtual guest mode and execute security critical applications). 

END_RPC Gives back execution to the RPC caller 

 

2.1.3.5 Hardware Exceptions 

Whenever a hardware exception or an interrupt occurs, the processor suspends the ongoing execution 
context, switches to privileged mode and jumps into the corresponding exception handler. These have all 
been redirected to the respective hypervisor handler routine. 

• Undefined: When the hypervisor encounters an undefined exception, it means that the guest OS 
tried to execute an instruction that the ARM processor could not understand. The hypervisor can 
either decide to halt the execution or jump over it and continue execution. 

• Software interrupt: This is the hypercall handler. When the guest OS executes a software 
interrupt, the handler decodes the requested hypercall and executes the requested operation. 
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This can also be a user application requesting the OS kernel to perform a system call, in which 
case the hypervisor redirects execution to the OS kernel. 

• Prefetch abort: When the guest OS attempts to fetch an instruction from an address without 
correct access permissions, the hypervisor first check the memory address if its an legal access 
and redirects the execution to the OS kernel own prefetch abort handler (if available). If it’s an 
illegal access, the hypervisor can halt execution or jump over it. 

• Data abort: When the guest OS attempts to access data memory without correct access 
permissions, the hypervisor check the memory address if it’s an legal access and redirects it to 
the OS kernels own data abort handler.  If it’s an illegal access, the hypervisor can halt execution 
or jump over it. 

• Interrupt: Hypervisor interrupt handler saves execution context of the interrupted task, which 
includes the CPU registers, state and guest mode. It then disables interrupts for the guest OS and 
redirects to the OS kernels interrupt handler.  When the guest OS has finished handling the 
interrupt, it gives back execution to the hypervisor which restores the execution context of the last 
interrupted task. 

Whenever the hypervisor gets execution, it saves the interrupted virtual guest mode and its execution 
context in order to know where to resume execution when it is finished with its operations. 

2.1.3.6 Hypervisor Development Progress 

The hypervisor was first developed for the ARMv5 architecture, specifically the ARM926EJ-S CPU 
supporting the FreeRTOS kernel as a paravirtualized guest. All hardware and peripherals were initially 
simulated with the simulation software Open Virtual Platforms (OVP) [12]. A generic OVP barebone 
platform was used. 

As the first hypervisor prototype was deemed successful in terms that security was significantly increased 
because of the added isolation properties, efforts were made to add more platform support, hypervisor 
functionality and use real hardware. The following are the progress list of the hypervisor. 

• Functional hypervisor on ARMv5 926EJ-S CPU with paravirtualized freeRTOS port running on 
simulation software (OVP) 

• Added security critical application running isolated from the rest of the system on top of the 
hypervisor to test real use case.  

• Added hypervisor DMA virtualization to prevent illegal hardware access. 

• Added support for ARMv7 Cortex A8 on hypervisor (OVP) 

• Modified hypervisor to be more platform and architecture independent through a hardware 
abstraction layer (HAL). Increased portability. 

• Added real hardware support for the hypervisor (BeagleBoard and BeagleBone). Working in real 
hardware. 

• Paravirtualizing Linux kernel and adding hypervisor functionality to support Linux (Current) 

2.1.4 FreeRTOS Port 

FreeRTOS is a free open source real time operating system that we have ported to work on the SICS 
hypervisor. It is very simple and small, consisting of approximately 4000 lines of code, with no file 
systems, complex memory management or device drivers.  

Thus paravirtualizing FreeRTOS is a relatively simple task, compared to for example the Linux kernel. We 
will show the main modifications required for it to work on the hypervisor. The figure below shows the 
basic structure of the FreeRTOS system. 
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Figure 2-7: FreeRTOS hypervisor system 

2.1.4.1 FreeRTOS Kernel 

The core FreeRTOS kernel has remained almost completely unchanged except from some minor 
modifications on how the task applications are allocated. Previously, the kernel allocated memory for all 
tasks from the same heap. We added extra functionality to allocate task memory from a pool of separated 
heaps which also gives you the possibility to create isolation between the different application tasks. 
Except from this change, the core kernel has stayed unmodified. 

2.1.4.2 Platform Dependent Code 

The platform dependent code is responsible for carrying out critical low-level operations, which requires 
privileged instructions. These have been paravirtualized replacing all the privileged instructions with 
hypercalls. 

2.1.4.3 Memory Management 

Originally, FreeRTOS does not have any memory protection, as it does not use the MMU to setup the 
system. All memory accesses use physical addresses and are unprotected. This means that security is 
non-existent for the system as user applications have full access to all hardware resources and the kernel. 
Because there were no memory management for the FreeRTOS we had full freedom to decide the 
location of all software regions, access control and how the memory addresses will be mapped. 

What we have done is through the linker script, defined distinct addresses for the different software 
regions (kernel address space and user task address space), and through the MMU, domain and page 
table settings, setup a configuration that effectively enforces an access policy that provides us with 
memory isolation between our hypervisor, OS kernel and user applications. This is used in our first 
prototype for the nSHIELD 3.3 deliverable and more details on the configuration can be seen in D3.3. 

2.1.4.4 Hypercalls / System Calls 

As the FreeRTOS originally did not have any kernel and user space separation, user applications could 
directly use the kernel API to call kernel functions. This is generally not the case in more complex 
operating systems where applications have to use system calls through the SWI instruction to perform 
kernel operations.  

With the hypervisor in place creating separation between kernel and user address space, it can no longer 
access the kernel API. To solve this, the kernel API functions have been wrapped around RPC hypercalls 
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that changes the virtual guest mode, this in order to get access to the kernel address space. This provides 
a secure interface to use the kernel API without compromising the security of the kernel. When the kernel 
API call is finished, an end RPC hypercall is issued to change the current guest mode back to task mode, 
disabling the kernel domain and yielding back to the calling task. 

2.1.4.5 Interrupt Handling 

The FreeRTOS scheduler relies on the hardware timer to schedule tasks. In order for FreeRTOS to work 
as usual, the Hypervisor redirects all timer interrupts to the FreeRTOS timer tick handler, which schedules 
the next task.  

When FreeRTOS is scheduling a new task, it saves the current tasks execution context in its data 
structures and uses a hypercall to load the next running task context. 

2.1.4.6 Summary 

In our experience, paravirtualizing the very small OS FreeRTOS was relatively easy to accomplish. We 
went from a system with non-existent security to a hypervisor protected secure environment. 

2.1.5 Linux Port 

Work is currently in progress of porting the Linux kernel version 2.6.34.3 to our hypervisor using 
paravirtualization. The main reason behind choosing this specific kernel release is that the simulation 
software OVP already has a working Linux kernel running on an ARM Cortex A8 Integrator CP platform. 
To simplify things, the Linux kernel 2.6.34.3 has been modified and compiled with only UART support as a 
start. The kernel starts the bash shell command that communicates with a serial console through the 
UART.  This will be the start base of our porting efforts. We will issue the biggest challenges with the port.  

• Memory management 

• Interrupt service routines 

• Processes  

• Hypercalls & System Calls 

• Platform support 

2.1.5.1 Memory Management 

One requirement for Linux to work is that it requires a one to one mapping of the physical memory to the 
kernels virtual address space. This is given to the Linux kernel by the hypervisor during the 
boot/initialization phase. The hypervisor provides the page table structure for the OS and keep track of 
which physical memory addresses that belong to the OS. Any attempts to access memory outside of the 
OS will generate an access fault. Currently, the configuration is static in the first iteration of the port and 
more advanced features can be added when we have a more stable version. As the current goal is to 
successfully run a single guest, we don’t need any advanced OS like memory management in the 
hypervisor.  

As the Linux kernel no longer has permission to communicate with the MMU, it has to go through the 
hypervisor to update these parts of the CPU. The hypervisor will also be responsible for updating the 
Linux page table whenever it needs more memory, or when there is free memory that it no longer needs. 
Another instance is when a certain application wants access to something in memory that is not yet 
mapped to physical memory; it will generate a page fault. The hypervisor need to let the Linux kernel 
know that it must look up the physical address to map it into the specific application.  As the true hardware 
page tables are kept inside the hypervisor the OS have a shadow page table to be able to keep track of 
the page attributes in order to properly map and unmap pages for the user processes.   

Modifications to the memory management of the Linux kernel also includes giving the SICS hypervisor 
responsibility for all CPU operations such as flushing/invalidating the TLB and cache. 
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2.1.5.1.1 Page Tables in ARM Linux 

Hardware wise, ARM has a two level page table structure, where the first level has 4096 entries, and the 
second level has 256 entries

4
. Each entry is one 32-bit word. The problem here is that the page tables do 

not contain any "accessed” or “dirty” bits which specify if the address have been accessed or written. The 
Linux kernel uses this information for its memory management operations such as resolving page faults, 
freeing memory and swapping memory. Thus, Linux has to keep its own copy of the page tables that 
contains the missing information. Another detail is that Linux has a three level page table structure

5
 which 

in the ARM port is wrapped to fit in a two level page table structure using only the page global directory 
(PGD) and page table entry (PTE).  

Linux therefore is tweaked to having 2048 entries in the first level, each of which is 8 bytes (i.e. two 
hardware pointers to the second level). The second level contains two hardware PTE tables (of 256 
entries each) arranged contiguously, followed by Linux version which contain the state information that 
Linux needs. Therefore, the PTE level ends up with 512 entries [13]. 

2.1.5.1.2 Linux Kernel Mappings 

The Linux kernel has a very specific virtual memory layout that we have to follow, in order to not break 
kernel functionality. Mappings, which collide with the above areas, may result in a non-bootable kernel, or 
may cause the kernel to eventually panic at run time.  

Looking at the table below [14], we can see that the virtual address space of a user process in native 
Linux kernel range from 0x1000 to PAGE_OFFSET

6
 - 1. This address space can be accessed in either 

user or privileged mode. The address space from PAGE_OFFSET to 0xFFFF FFFF belongs to the kernel 
and can only be accessed in privileged mode. The hypervisor virtual guest modes will mimic these 
privilege states in order to enforce these rules. 

The hypervisor software also needs a mapping and can be put between VMALLOC_END - 0xFEFFFFFF, 
which is free for platform use. We have decided that a suitable location is 1MB from 0xF000 0000 is 
mapped for the hypervisor. 

Table 2-3: Kernel Memory Layout on ARM Linux 

Start End Use 

0xFFFF 8000 0xFFFF FFFF Copy_user_page / Clear_user_page use 

0xFFFF 4000 0xFFFF FFFF Cache aliasing on ARMv6 and later CPUS 

0xFFFF 1000 0xFFFF 7FFF Reserved. Platforms must not use this address range 

0xFFFF 0000 0xFFFF 0FFF 

CPU vector page. The CPU vectors are mapped here 
if the CPU supports vector relocation (control register 
V bit) 

0xFFFE 0000 0xFFFF 0FFF 

XScale cache flushes area. This is used in proc-
xscale.S to flush the whole data cache. (XScale does 
not have TCM.) 

0xFFFE 8000 0xFFFE FFFF 
DTCM mapping area for platforms with DTCM 
mounted inside the CPU 

                                                      

4
 Linux ARM kernel only uses small pages of 4KB for second level descriptors 

5
 This comes from the x86 architecture 

6
 Normally set to 0xC000 0000 which gives a user/kernel split of 3GB/1GB 
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0xFFFF E000 0xFFFE 7FFF 
ITCM mapping area for platforms with ITCM mounted 
inside the CPU 

0xFFF0 0000 0xFFFD FFFF 
Fixmap mapping region. Addresses provided by 
fix_to_virt() will be located here 

0xFFC0 0000 0xFFEF FFFF 

DMA memory mapping region. Memory returned by 
the dma_alloc_xxx functions will be dynamically 
mapped here. 

0xFF00 0000 0xFFBF FFFF Reserved for future expansion of DMA mapping region 

VMALLOC_END 0xFEFF FFFF 
Free for platform use, recommended. VMALLOC_END 
must be aligned to a 2MB boundary. 

VMALLOC_START VMALLOC_END -1 

vmalloc() / ioremap() space. Memory returned by 
vmalloc/ioremap will be dynamically placed in this 
region. VMALLOC_START may be based upon the 
value of the high_memory variable 

PAGE_OFFSET high_memory  -1 

Kernel direct-mapped RAM region. This maps the 
platform RAM, and typically maps all platforms RAM in 
a 1:1 relationship. 

PKMAP_BASE PAGE_OFFSET -1 
Permanent kernel mappings. One way of mapping 
HIGHMEM pages into kernel space. 

MODULES_VADDR MODULES_END -1 

Kernel module space 
Kernel modules inserted via insmod are placed here 
using dynamic mappings 

0x0000 1000 TASK_SIZE – 1 

User space mappings 
Per-thread mappings are placed here via the mmap() 
system call 

0x0 0x0000 0FFF 

CPU vector page / null pointer trap 
CPUs, which do not support vector remapping, place 
their vector page here. NULL pointer dereferences by 
both the kernel and user space is also caught via this 
mapping. 

2.1.5.1.3 System Memory Layout 

The current memory layout looks the following.  

Physical address 0-1MB is reserved for the hypervisor while address 1-15MB can be reserved for the 
trusted applications that provide security services to the Linux kernel and shared memory. The reason we 
have assigned so much to the trusted applications and shared space is because the Linux kernel start 
address is required to be a multiple of 16MB. We used this solution, as it was relatively easy to configure 
the Linux start address to move 16MB forward while keeping the hypervisor at its original address at 0. 
This might change in the future to better utilize RAM. 

The Linux kernel then has from 16MB - end of RAM to claim for its own use. Approximately the first two 
megabytes of physical memory are reserved for hardware/boot information, Linux OS text, data and 
paging data structures.  Below is a rough overview on how the physical- virtual mappings look like. 
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Figure 2-8: System memory layout 

2.1.5.1.4 Memory Configuration 

The table below shows how the different regions have been setup in the page tables. 

Table 2-4: Page table access permissions configuration 

Region Domain AP (User) AP (Privileged) 

Hypervisor 0 No Access Read/Write 

Kernel 1 Read/Write Read/Write 

User 2 Read/Write Read/Write 

IO 3 Read/Write Read/Write 

Trusted 4 Read/Write Read/Write 

 

The table below shows the domain access configuration of the system. The different virtual guest modes 
set the access permissions to the different domains. 00 specifies no access, 01 checks the access 
permissions in the page table according to the table above. As usual, only virtual guest mode trusted has 
access to the trusted domain. Virtual guest mode kernel has access to its own kernel domain, user and 
IO, while virtual guest mode User has access to its own user domain and IO. 

Table 2-5: Domain access configuration 

Mem Region TRUSTED IO USER KERNEL HYPERVISOR 

Domain 4 3 2 1 0 

Virtual Guest Mode      

GM_TRUSTED 01 00 00 00 01 

GM_KERNEL 00 01 01 01 01 

GM_USER 00 01 01 00 01 

2.1.5.2 Interrupt Handling 

The hypervisor have to deal with the interrupts, as it is the only software that has privilege to handle it and 
pass the hardware information to the Linux kernel top-half interrupt handler where the interrupt is 
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processed. It runs with the highest priority and can’t be preempted or sleep which makes it important that 
the interrupt is processed as fast as possible. Another thread executes all bottom halves once the pending 
top halves have been completed.  

In the Linux kernel, there is interrupt handlers for both user and privileged modes, and the handlers also 
switch to supervisor mode (SVC) after entering an interrupt. Before switching, it copies the IRQ registers 
to the SVC registers. This makes it possible to handle another interrupt while the other is getting served in 
SVC mode. The hypervisor interrupt handling has been rewritten to support the same mechanism. 
However, instead of switching to SVC mode it switches to user mode when jumping into the Linux kernel, 
making it able to catch another interrupt.  

The Linux kernel also has its own mechanism to register an interrupt with the system and provides means 
to acknowledge and clear interrupts. These are provided through hypercalls. Critical low level interrupts 
like the timer controller is handled directly in the hypervisors interrupt vector. To enable a fast and 
responsive system, it is important the timer interrupt is redirected as fast as possible to the Kernel tick 
handler in where it updates time and execute the next scheduled task/process. 

2.1.5.3 Processes 

Each process has its own Page Global Directory (First level descriptor in ARM) and its own set of page 
tables. Whenever a process switch occurs, page tables for user space are switched as well in order to 
install a new address space. This will be handled in the hypervisor.  

The kernel allocates the virtual addresses to a process called memory regions. Typical situations in which 
a process gets a new memory region is creating a new process (fork), loading a new program (execve), 
memory mapping (mmap), creating shared memory (shmat), expanding its heap (malloc) etc. The linear 
address space of a process is divided into two parts. We have user processes that are allowed to run in 
the virtual address space between 0x0 to 0xBFFF FFFF and kernel processes that can run from virtual 
address 0xC000 0000 to 0xFFFF FFFF, each running in their corresponding virtual guest mode (virtual 
user and virtual kernel mode). One important exception is the first MB in 0xF0000000, which is reserved 
for the SICS hypervisor, this address space can only be run in privileged mode of the processor. 

The Linux kernel will remain the pager for the user tasks and any user process page fault will be 
redirected from the hypervisor to the Linux kernel in order to decide whether it’s legal. The Linux pager 
works in a way called demand paging. This meaning a process only gets additional virtual address space, 
not physical when it requests more memory from the kernel. When it actually tries to access the new 
virtual address, a page fault occurs to tell the kernel that the memory is actually needed (i.e. demand 
paging) and maps the pages of its address space to the Linux user process. 

So, during execution at user level, only user space should be accessible. Attempting to read, write, or 
execute kernel space/hypervisor space shall cause an exception that the hypervisor takes care of. In 
contrast, during execution in the Linux kernel, both user and Linux kernel space are accessible. 
Hypervisor will have access to the whole address space. The correct virtual guest mode will be enforced 
and handled by the hypervisor in order to provide the correct access configurations. 

2.1.5.4 Hypercalls / System Calls 

As stated earlier, when using the para-virtualization method, the Linux kernel needs to be modified to be 
able to run in user mode. Not being able to execute privileged instructions anymore, the hypervisor have 
to provide a mechanism to execute these instructions, which is called hypercalls. This is the operating 
systems counterpart to the system call, which is used in applications. 

When the Linux kernel executes a hypercall, it puts data structures, operators and other arguments to the 
specific hypercall in the ARM registers R0-R1 while R2 is reserved for the hypercall number. The SWI 
handler then interprets these parameters.  

It’s also important that user processes can run on the Linux kernel unmodified, maintaining binary 
compatibility. This is achieved by reserving all the original system call numbers from Linux in the 
hypervisor. When the user process uses the library to use the system calls, which is done through a SWI 
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instruction, the hypervisor SWI handler catches this and forwards the call to the Linux kernel with the 
correct virtual guest mode where it will be processed. When it is finished with the kernel operation, it gives 
back execution to the hypervisor that in turn restore the context of the user process that used the system 
call.  

There are also some important security checks in these handlers checking if the hypercall originated from 
the correct address space, such as that user space can never execute hypercalls that is intended for the 
kernel. Another important thing is that if a pointer is passed to the hypervisor, it needs to make sure that 
the process executing the call owns the memory address of the pointer. It would be a security hole if it 
were possible to pass arbitrary memory address and the hypervisor blindly writes to the given parameter. 
Currently, we check the virtual address of the running process along with the active virtual guest mode. If 
the virtual address is smaller than 0xC0000000, it belongs to user space, and above 0xC0000000 belongs 
to kernel, except the first MB from 0xF0000000, which is the hypervisors virtual address space. 

2.1.5.5 Linux Kernel Integrator Platform 

Normally the platform setup is performed in the start of the Linux kernel; it is now being setup by the 
hypervisor initialization and is not executed in the Linux kernel. Only the relevant data structures and 
device operations are kept to maintain normal functionality. The platform IO has been setup to use the 
following mappings. 

Table 2-6: Integrator CP platform IO 

Virtual Physical Device 

0xF100 0000 0x1000 0000 Core module registers 

0xF110 0000 0x1100 0000 System controller registers 

0xF120 0000 0x1200 0000 EBI registers 

0xF130 0000 0x1300 0000 Counter/Timer 

0xF140 0000 0x1400 0000 Interrupt Controller 

0xF160 0000 0x1600 0000 UART 0 

0xF170 0000 0x1700 0000 UART 1 

0xF1A0 0000 0x1A00 0000 Debug LEDs 

0xF1B0 0000 0x1B00 0000 GPIO 

 

The IO has been setup by the hypervisor and complies with the virtual addresses of Linux. 

2.1.5.6 Summary 

The Linux port is still ongoing work and in this phase of development, it’s still too early to present a 
prototype. However, foundation of the port is in place and we have gotten as far as the kernel has 
successfully passed all boot and architecture initialization, exception handlers are connected through the 
hypervisor, major part of the hypercalls and system are paravirtualized and the scheduler has started the 
first user process. As the memory management is quite complex in the Linux kernel, we have to go 
through extensive debugging and tests in order to make sure that it works as intended, especially the user 
processes running in the system.  

When we have managed to get the bash shell command up and functioning, the next step is then to put 
the ported OS through extensive system tests and benchmarks to be sure that it’s stable and dependable. 
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2.2 Secure ES firmware 

2.2.1 Description 

The prototype hardware is based on the jointly selected BeagleBone platform which includes an AM3359 
processor (ARM Cortex-A8).  The BeagleBone development kit is shipped with software including a boot 
loader and Linux. The actual boot loader is UBOOT and it lacks some properties for required by nSHIELD. 
There is no integrity control of the images to be loaded; the footprint of the final image exceeds the 
internal static ram inside the ARM processor (which has resulted in a two stage boot procedure). Finally 
the code base is licensed under the restrictive GPL license.  Therefore a new design has been selected in 
favour of modification of UBOOT. The high level requirement from nSHIELD to apply SPD Metrics on the 
firmware must be addressed in the design. Since the final design goal is to provide a ROM code inside the 
ARM processor the dependency of other nSHIELD components is not applicable. Privacy depends on 
integrity. General security metrics could be mapped to properties of cryptography such as selected 
algorithms and key length, however security also depend on the quality of the implementation, therefore 
the design is made for review. The design enlightens the execution path from power-on until control is 
passed to the loaded and verified image. The flexibility of Uboot is provided by parsing custom boot 
scripts; in the new design one static boot flow applies restrictions, but enables improved security instead. 
Flexibility is however provided by the layout of the image, since it contains different objects such as 
executable, ram disk and parameter blocks.  Each object in the image is cryptographically sealed. The 
parameter block enables allocation of loaded objects in memory as well as passing parameters to the 
object prior to execution.    

The first software that executes after a power-up or a reset is secloader. The name indicates that this is 
prototype and not implemented inside the ARM processor. The functionality of secloader can be 
visualized with the flow chart depicted in Figure 2-9. 

When the system is started, secloader first initializes hardware and starts the watchdog. After this, a 
normal power-on-self-test should be performed. 

When the power-on-self-test has executed, secloader checks if a secondary boot media (USB stick) is 
present. Before booting from the USB stick, secloader checks how many times it has previously tried to 
boot from the USB stick. For each attempt, the dirty_external parameter is incremented by one. If this 
parameter reaches max_external, secloader no longer tries to boot from the USB stick. Instead, it 
attempts to boot from the primary media.  

When booting from USB, secloader searches for an image on the USB stick.  To verify the images, 
secloader uses the public part of the key, which is stored on the board. If secloader fails to authenticate 
the images, external boot is aborted and secloader tries to boot from internal media. If the images are 
correctly verified, secloader increments the dirty_external parameter and extracts them to internal RAM. 
After this is done, the extracted and verified image is started.  

If no USB stick is detected, secloader attempts to boot from the internal media. As is the case when 
booting from USB, secloader checks how many times it has tried to boot from internal media by verifying 
and thereafter incrementing the dirty_internal parameter. If the parameter reaches max_internal, 
secloader no longer tries to boot from compact flash.  

When booting from compact flash, the image is located on the first partition of the media. If secloader fails 
to authenticate the image, internal boot is aborted and secloader performs a hard reset of the board. If the 
images are authenticated, they are extracted to internal RAM and started in the same way as for USB.  

If both primary and secondary media are corrupt i.e. both dirty_internal and dirty_external have reached 
their respective max-values, dirty_external is set to zero before the board is reset. 
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Figure 2-9: Secloader functionality 
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2.2.2 Architecture Modules 

The secure firmware is based on a fixed boot flow that enables addition of cryptographic functions for 
verifying issuer of images to be loaded.  The implementation of the prototype is written mainly in portable 
C with a few exceptions:   

• Low level hardware access 

• CPU mode and cache 

• Stack management 

The resulting firmware image is monolithic but is based on several modules. The execution path involves 
two modules: 

• bios_low (memory and hardware setup)  

• bios_high (static boot flow logic)  

The first instruction in the bios_low module is placed on address 0x402F0400 in the processors physical 
address space.  The last instruction is a call to bios_high.  In between a full C environment is established 
so that code generated by a standard C-compiler could be used for all functions in bios_high. To allow 
flexible memory configuration the new design will adopt Serial Presence Detection. Normally a memory 
module has a small i2c module containing all sizing and timing parameters needed for memory controller 
configuration. The prototype will use the i2c memory located on the motherboard to simulate a memory 
module. The static specific memory configuration will be replaced with a standard SPD detection similar to 
X86 based systems.  

The remaining modules are: 

• bios_timer: timing function library and hardware setup 

• i2c_driver: management of devices on i2c bus 

• bios_mmc: media controller (SD card) 

• bios_output: output on serial port 

• plf_bios_arm: minimal portable C-library 

• provision: cryptographic library 

• bios_vfat: file system library 

• bios_usb: usb stack for storage type device 

2.2.3 Architecture Interfaces 

2.2.3.1 Passing SPD Metrics  

The firmware is responsible of configuring SDRAM and then report the size of memory to the object that 
will be loaded and executed. For ARM processors a data structure in memory holds this information. By 
adding a new type to the ATAG-list, SPD metrics could be passed from the firmware to next layer of 
software (Linux / hypervisor).  
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2.2.3.2 Load Image Format 

 

Figure 2-10: Load image format 

 

struct linux_kernel  

{ 

 int load_address; 

 int start_address; 

 char cmdline[1024]; 

}; 

 

struct hypervisor  

{ 

 int load_address; 

 int start_address; 

 char cmdline[1024]; 

}; 

 

typedef union   

{ 

  struct linux_kernel; 

  struct hypervisor; 

} item; 

 

typedef struct object  

{ 

    int type; 

    item data; 

    int object_start;  

    int object_len;  

    int object_signature_type; 

    int object_signature_start;  

    int object_signature_len;  

}; 

2.2.4 Boot Media Layout 

By dividing the boot media into partitions and optionally keep the boot partition read-only, the solution 
becomes more robust.  

The production file system is located on the second partition. 

2.2.5 Parameters Stored on the Motherboard 

The parameter memory is located in a non-volatile I2C memory located on the board. It is available from 
secloader, and must be accessible from the next layer of software. The following parameters are stored in 
the parameter memory: 

OBJECT 1 OBJECT 2 OBJECT 3 

HEADER DATA SIGNATURE 
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Table 2-7: Parameter memory contents 

Name Description 

Serial The serial number written during production of the unit. 

Boot key The public part of the key used to verify images to load. 

ATB Attempt-to-boot flag. 

dirty_internal 
A parameter indicating how many times secloader has tried to 
boot from compact flash. 

max_internal The maximum number of internal media boot attempt permitted. 

dirty_external 
A parameter indicating how many times secloader has tried to 
boot from USB. 

max_external The maximum number of USB boot attempt permitted. 

 

The parameter memory has a CRC that guarantees that the data is not corrupt. If the CRC is not correct, 
secloader initiates the parameter memory to default values. 

2.2.6 Metrics 

SPD Values: 

• The firmware resides inside the silicon of the ARM processor (last phase in design document) and 
dependencies to other nSHIELD components are therefore not applicable. Code quality is subject 
to analyse, other metrics include code size, complexity, test coverage etc.  

Dependability: 

• Not applicable  

Privacy: 

• Not applicable  

Security:  

• Code Quality 1-255 

• Strength of cryptographic algorithms 1-255 

• Length of cryptographic keys 1-255 

SPD Metrics will be passed as ATAG list element. 

2.3 Smart Card Security Services in nSHIELD 

2.3.1 Building Secure Communications  

In order to build trust among different type of nodes on the nSHIELD architecture we can exploit the 
benefits of smart cards and the cryptographic schemes they implement. Considering, the nSHIELD 
architecture where decentralized components are interacting not only with each other but also with 
centralized ones, depending on the type of the device and the employed scenario; there is a need for 
integrating security and interoperability. In this context, we rely on [15] for building secure communication 
channels among different devices. We should mention that smart cards currently are used in various 
applications, where proof-tamper devices are need for the provision of security services.  
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In the proposed scheme in order to issue a smart card the related component (e.g. micro node) should 
create a request for issuing a smart card. This request will include the serial number of the component 
and will be forwarded to the central authority. If needed, depending on the type of service, the central 
authority will check the register status of the requested component and afterwards will generate a new 
smart card. In the new smart card will be installed the following information: 

• Node’s serial number.  

• Node’s secret key. 

• Node’s id.  

• Node’s auth key. 

The generation of secret keys will be based on the following types: 

Encryption-Key = AES-256 (Central Mother Key XOR Node’s Serial Number) 

Auth-Key = AES-256 (Central Mother Key XOR Node’s ID) 

 

We should note that in this scheme we assume that the central authority has also a TPM for generating 
the secret keys in a secure way for the issued tokens, while all the smart cards are issued by a (trusted) 
central authority. The generated keys will be unique since they are related with node’s serial number, 
which is unique.  

The node, as a smart card is issued can exploit its security feature for providing confidentiality, integrity 
or/and authenticity services. The provided services depend on the application. For instance, if there is a 
requirement to provide confidentiality services to the data sent to the central authority the following 
procedure will be take place: 

1. The node will send the data to the smart card.  

2. The smart card encrypts the provided data, using the secret-key installed into the smart card 
during the registration, and forwards them to the node.  

3. The node sends to the central authority the encrypted data and its serial number.  

4. The central authority generates in the TPM the corresponding secret key using the serial number 
sent by the node. Note that the key is not “extracted” from the TPM.  

5. The TPM decrypts the data and send and acknowledgement to the node.  

A very similar approach will be followed when an authentication is needed. Particularly:  

1. The node will send to the smart card a random number that will be used as the data require 
validation. 

2. The smart card using the Auth-Key and the random data generates the MAC and forwards it to 
the node. 

3. The node sends to the central authority the MAC including the random number and its id. 

4. The central authority generates in the TPM the corresponding auth key using the id. 

5. The central authority using the auth-key produces a new MAC and compares it with the one 
received by the node. If those two MACs are matched the central authority sends to the node a 
successful response otherwise a failure occurs. 

These procedures can be combined in order to provide confidentiality and authenticity services 
simultaneously, depending on the requirements. 
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2.3.2 Implementation  

To support the functionality of secure communication described in the above section we are implementing 
the architecture illustrated in the following figure:  

 

Figure 2-11: High level components of the proposed implementation 

Particularly, the implemented architecture will be consisted of the following modules:  

 Security services 

 Server, and  

 Client 

2.3.2.1 Security services  

The security services in this architecture will be provided using GPK 16000 smart cards. Currently, we are 
under the development of the required functionality. The development is taking place on Linux based 
system relying on the interface of open smartcard [71]. 

2.3.2.2 Server & Client  

The server and the client modules are under development.  

2.4 Power Management & Supply Protection Technology 

2.4.1 Description 

Power management and supply protection is fundamental feature to ensure the reliability of any electronic 
device. The technology under development uses commercial available power management 
semiconductors to integrate their features into nSHIELD networks, [16], [17], [18] and [19]. 

2.4.1.1 Technology Architecture 

The first step has been the definition of reference architecture for the power management & supply 
protection unit as show in Figure 2-12. This power unit is referenced from here on as the Smart Power 
Unit (SPU). The following sub-modules can be identified in the SPU: 

• Power Inputs: Include all the power sources AC/DC and they can be of different types: power line 
/ harvesting / battery … 

• Power Outputs: Include all the power sinks and will be mainly DC in the 3.3V to 12V range. 

• Input Hardware Modules: Embed the needed semiconductors to adapt the input power sources to 
the battery module. 

• Microcontroller (µC): Includes an ARM low power microcontroller that manages the SPU and 
implements its needed functions and external/internal interfaces. The following SW/HW have 
been identified:  

o Input Manager: Manages the input hardware modules. 

o Output Manager: Manages the output hardware modules. 
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o Command & Control Manager: Implement the command and control interfaces that allow 
the integration of the SPU with other nSHIELD modules in order to compose the 
nSHIELD node. Currently standard serial HW interfaces have been proposed (SPI or 
RS232). 

o Modes Manager: Different power modules manager to implement different power states 
for the SPU (standby, sleep, low power, normal mode…). 

o Monitoring Manager: Implements the monitoring of the different HW modules of the SPU. 
The monitored parameters are accessible externally over the C&C interface. 

o Alarms Manager: Implements the alarm configuration and triggering for the monitored 
parameters. 

o Battery Manager: Manages the battery hardware. 

• Output Hardware Modules: Embed the needed semiconductors, mainly linear regulators, to 
provide several output voltage signals. This module support programmable output voltages with 
different maximum output currents to supply different modules. 

• Batteries: Embed all the power storage devices. 

o Bypass: Module that bypass the input power signal to the output power modules for 
scenarios with no battery units. 

o Battery 1, 2…N: One or more battery devices that provides energy storage. 

 

Figure 2-12: Smart power unit 

The parameters/attributes that have been identified to define the SPU features and current state are: 

• C&C manager:  

o firmware version,  

o SPU name,  

o serial configuration,  

o authentication parameters,  

• Input:  number of inputs. For each input  
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o enable/disable,  

o type (Harvesting, Power Line),  

o frequency (DC, AC (frequency)) 

• Output: number outputs. For each output 

o enable/disable 

o DC voltage (range) 

• Battery Manager: For each battery 

o enable/disable, 

o capacity, 

o load (%), 

o estimated autonomy, 

• Monitoring:  

o inputs voltages/currents,  

o output voltages/currents,  

o temperature, humidity 

• Alarms:  

o alarm status (related to timestamp if possible):  

 Batteries alarms: Battery Low, Overload, Over Temperature, Input/output over 
limits 

 Input/outputs alarm: Current threshold overrun  

2.4.1.2 Technology Prototype 

The previous section describes a general SPU that could not be very energy efficient to implement for 
specific input/output power signals. In order to develop more energy efficient and simple SPU several 
more specific devices are planned. The final selection will depend on the requirements and needs of the 
components that will use this module: 

• DC/DC SPU: Power management and supply protection for DC (12V-25V) to DC (3.3V-5.0V) 

• AC/DC SPU: Power management and supply protection for AC (220V-50Hz) to DC (12V-25V) 

• DC/DC SPU+: Same features of the DC/DC SPU but includes a battery unit. 

• AC/DC SPU+: Same features of the AC/DC SPU but includes a battery unit. 

All the above SPU include the full implementation of the C&C interface and all the µC internal modules 
depicted in Figure 2-12. 

2.4.2 Architecture Modules and Interfaces 

Deliverable D2.4, done in the scope of WP2, defines a set of basic functionalities at node layer in order to 
support the final composition of capabilities in nSHIELD framework. 

In this section, a preliminary design of a power unit has been presented. This unit could be mapped 
directly as one of the modules, “power module”, defined in the node layer of nSHIELD device. Figure 
2-13 summarized node layer modules described in D2.4. 
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Figure 2-13: nSHIELD Reference architecture – Node Layer (power module) 

Taking into account the description of the node layer modules done in the architecture definition, this 
module should provide some attributes in order to be monitored by other components in nSHIELD 
architecture.  

The components and attributes defined for the power module in the reference architecture are 
summarized in the following table: 

Table 2-8: Power module at node layer 

 Attributes 

Power module 

Mode Low power     

Source Power line Battery Energy harvest AC DC 

Protection Fuse     

 

All of these attributes could be monitored by the monitor module of nSHIELD node, through an interface 
such as SPI or UART. 

Taking account that the definition of the reference architecture proposed at this moment is an intermediate 
version, the components and attributes can be modified and completed. 

Some attributes that could be monitored in order to provide interesting information about the operation of 
the module would be: inputs voltages/currents, output voltages/currents, temperature, and humidity. 
These attributes will be finalized taking into account the requirements of the applications scenarios. 

2.4.3 Metrics 

In the same way that D2.4 describes an intermediate version of the reference architecture of nSHIELD 
system, D2.5 defined the preliminary metrics that nSHIELD system should provide. This preliminary 
definition of the metrics is split by layer. 

The main metrics that can be provided by the module descript in this section are related with the 
availability, the code execution, the data freshness, and the alternative power supply sources. Also 
metrics like low power mode would be provide if it is required.  

2.5 MMC/SD Password Management 

For nano node evaluation, in terms of relation between power figures and security, the main reference 
platform chosen is the "Beagleboard" embedded system (powered by a SoC built around an ARM core). 



D3.2 Preliminary SPD Node Technologies Prototype  nSHIELD 

 RE  

D3.2  RE  

Page 46 of 127  Issue 8 

However, to avoid limiting the exploration to a single case study, we also adopted a virtual platform, based 
on a customized variant of a software emulator ("qemu"), which is still focused on the ARM architecture. 
Using a virtual platform is also beneficial because it allows a deep inspection of the HW/SW interaction 
(by analysing the hardware behaviour even in components which do not expose debug features, as JTAG 
probing and scan access). Furthermore, within the software emulator, also hardware components not yet 
developed can be taken into account, and, finally, faulting hardware can be modelled. As reference 
operating system, the Linux kernel 3.4.4 was selected and ported on the real target system, as well as on 
the virtual platform. 

Mobile nodes must take into account power supply limitations and are also exposed to physical attacks. 
These two issues are related when data security must be enforced, since a mobile node must be able to 
safely shut down the elaboration, it must also store data in a persistent memory. Such a storing can 
trigger a data leak, if not carefully considered, because the storage content could be dumped by an 
attacker. A possible solution to such an issue is to strongly encrypt all data before storing. However, this 
approach must pay an overhead both in energy and in computation time that, whenever the power supply 
is going to be removed, could turn out excessive. A more flexible approach is to recognize that, for some 
data, cryptography is an overkilling measure. Some information, in fact, must only remain secure for 
"enough time", after which they become no more relevant. In such a view, the simple password protection 
offered by standard "Multimedia Cards" (MMC) or "Secure Digital" (SD) memory cards can be secure 
enough. A node which is shutting down can therefore encrypt only the most sensitive data, and then store 
encrypted and unencrypted data in a password protected memory card. 

Since in the standard Linux kernel, the support for password management of MMC/SD cards is missing, 
we developed a kernel module to handle this kind of interaction. Such a kernel module implements a 
simple char driver which provides an ioctl call for receiving commands from user space. Besides the 
functionality to implement, the other two major objectives were a minimal impact on the kernel code and 
the portability across different kernel versions. 

The low-level interaction with the mmc Linux subsystem requires accessing to some functions that are not 
exported, and then not available to modules. Rather than patching the kernel sources, which would 
require a continuous management effort to guarantee the portability, we chose to dynamically search the 
addresses of the needed functions by exploiting the kallsyms subsystem which, therefore, must be 
enabled on the target OS (as usually is). Such a search is performed during the device opening (the driver 
provides the "open" function). 

The password management is then performed by the ioct call, which receives data from user space (the 
name of the hardware host to use, the password and the action to perform), looks for the required host 
and then sends commands as lock/unlock and password setting. 

The driver was tested on several versions of the Linux kernel, to assess its portability. The only change 
that can be needed is a slightly modification on the prototype of the ioct call, since it has been changed 
when Linux kernel switched from version 2.6.xx to version 3.xx. 

2.6 User Level Power Management 

Another activity about the power management of nano nodes is the development of a user level interface 
to kernel power management features. The operating system provides access to the ARM specific power 
management and to the voltage regulators that supply the whole system. However, a user level interface 
to those features is needed to allow applications to tune their computational requirements and their power 
consumption. The development of such an interface was started and it is in its preliminary phase. 

Last planned activity is the development of an activity profiler that allows to collect information about the 
whole system behaviour. Such data will allow to control the power consumption by selecting the most 
effective energy policy as function of the computational load and of the power supply status. 

We started the development of a kernel scheduler augmentation, that will allow to expose information 
about running tasks and their resource requirements to a user space application. 
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3 Micro/Personal Node 

The main research areas targeted by the micro/personal enabled node technologies are the following: 

• Advanced biometric algorithms that are capable to identify the most significant features of the 
face and of the voice of a person. 

• Access rights delegation for offline control systems. 

3.1 Face and Voice Recognition for People Identification 

The SPD technologies required by the “Face and voice recognition for people identification” usage 
scenario have been identified and analysed during the assessment phase and have been illustrated in the 
deliverable D3.1 “SPD node technologies assessment”. After the assessment phase, during the first part 
of the project, the effort has been concentrated on the study of the technologies related to face 
recognition. The results of this activity will allow the implementation of a first prototype that demonstrates 
the part of the “Face and voice recognition” usage scenario related only to face recognition. The prototype 
will be capable to identify a person comparing the photos acquired by a camera, the photo available on 
his/her identification document (identification card or passport) and a biometric profile database. 

In the second part of the project the activity will focus on the other part of the usage scenario that is 
related to the identification of people based on voice recognition and verification. The final prototype will 
demonstrate the capabilities of a recognition embedded system based on multiple biometric sources, 
introducing in this way an increased level of security, privacy and dependability in the context of people 
identification. 

3.1.1 Embedded System Based Face Recognition for People Identification 

Several new face recognition technologies have been proposed recently in the scientific community and 
they have been evaluated and assessed in D3.1 “SPD node technologies assessment”. The new 
technologies are based mainly on the following approaches: 

• usage of three-dimensional (3D) scans,  

• recognition from high resolution still images,  

• recognition from multiple still images and 

• multi-modal face recognition.  

In addition, considering real applications, it is important to consider a set of multi-algorithms and pre-
processing algorithms that can be applied to the previous approaches in order to correct the illumination 
and pose variations. The goal of these technologies is to significantly improve the performance of 
automatic face recognition, in particular when it is based on embedded system platforms. 

The assessment phase performed during the first part of the project produced the following results: 

• identification of the most suitable recognition and identification algorithm, 

• definition of the evaluation framework. 

3.1.1.1 The Recognition Algorithm 

The approach identified in the assessment phase that satisfies the technical requirements for face 
recognition and that provides a contribution in terms of SPD capabilities is the Eigenface method. This 
method is based on the idea of extracting the basic features of the face: the objective is to reduce the 
problem to a lower dimension maintaining, at the same time, the level of dependability required for this 
application context. This approach has been theoretically studied during the nineties and has been 
recently reconsidered because, considering the ratio between the required resources and the quality of 
the results, it is well dimensioned for embedded systems, [20] and [21]. Today, it is becoming the most 
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credited method for face recognition, [22] and [23]. The core of this solution is the extraction of the 
principal components of the faces distribution, which is performed using the Principal Component Analysis 
(PCA) method. This method is also known in the pattern recognition context as Karhunen-Lo ve ( L) 
transform. The principal components of the faces are eigenvectors and can be computed from the 
covariance matrix of the face pictures set (faces to recognize). Every single eigenvector represents the 
feature set of the differences among the face picture set. The graphical representations of the 
eigenvectors are also similar to real faces and, for this reason, they are called eigenfaces. The PCA 
method is autonomous and therefore is particularly suggested for unsupervised and automatic face 
recognition systems. 

The recognition process is performed conceptually in three steps: 

 

Figure 3-1: Recognition process main phases. 

The mathematical key concept on which the algorithm is based is that the eigenfaces are the principal 
components of the distribution of faces, or the eigenvectors of the covariance matrix of the set of face 
images. Starting from this idea the approach proposes the following steps: 

1. The PCA method is used to find the eigen-vectors, called “eigenfaces”, of the covariance matrix 
corresponding to the generic training images.  

2. The eigenvectors are ordered to represent different amounts of the variation, respectively, among 
the faces. Each face can be represented exactly by a linear combination of the eigenfaces. It can 
also be approximated using only the “best” eigenvectors with the largest eigenvalues.  

3. Identification of the “face space”: the best M eigenfaces are used to construct an M dimensional 
space.  

4. In the final step, unknown face pictures are projected on the face space to compute the distance 
from the reference faces. The weights describing each face are obtained by projecting the face 
image onto the eigenface. 

The details of the algorithm and of its implementation are provided in the following sub-sections. 

3.1.1.2 Identification of Eigenvectors and Eigenfaces 

The eigenfaces set defines the so called “face space”. In the recognition phase, the unknown face 
pictures are projected on the face space to compute the distance from the reference faces. 

Each unknown face is represented (reducing the dimensionality of the problem) by encoding the 
differences from a selection of the reference face pictures. The unknown face approximation operation 
considers only the eigenfaces providing higher eigenvalues (variance index in the face space). In other 
words in the face recognition the unknown face is projected on the face space to compute a set of weights 
of differences with the reference eigenvalues. This operation allows to recognize if the picture contains a 
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face (known or not), that happens if its projection is close enough to the reference face space. In this case 
the face is classified using the computed weights, deciding for a known or unknown face. A recurring 
unknown face can be added to the reference known face set, recalculating the whole face space. The 
best matching of the face projection with the faces in the reference faces set allows identifying the 
individual. 

Going in the detail of the “face space”, the evaluation process requires some introductory considerations. 
A generic bi-dimensional picture can be grey level converted and eventually adjusted for brightness and 
contrast. If square shaped (the general case slightly differs), it can be defined by an N x N matrix of pixels, 
and each of them is a point in a N

2
-dimension space. A set of pictures can hence map to a set of points on 

this space. 

In our case, every picture refers to faces: the representation in the N
2
 space will not be randomly 

distributed. Also, the PCA analysis provides the best vectors representing the pictures distribution. It’s 
possible to gather that these vectors can define a subspace (of the whole space) for generic face pictures 
(called “face space”). The following figure shows this concept. 

 

Figure 3-2: Space distribution of faces images. 

Each vector of the subspace so defined has a dimension N; these vectors are the eigenvector of the 
covariance matrix corresponding to the original images, and given that shown have the appearance of a 
face, they are called "eigenface". 

More formally, given a training set of images: 

Γ1, Γ2, .., ΓΜ 

the average face is computed as: 

 

Each face of the training set differs from the average according to the vector: 

φi = Γi – ψ 
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This set of vectors of large size is then subjected to analysis of the main components that allows to obtain 
a set of orthonormal vectors ui and of scalars λi associated with them, that best describes the data 
distribution. The vectors ui and the scalars λi are respectively the eigenvector and the eigenvalue of the 
covariance matrix: 

 

3.1.1.3 Complexity Reduction 

The mechanism that allows reducing the complexity of the problem is based on the identification of the Mi 
(Mi ≤ M) further eigenvalue of the training set, with which it is possible to select the corresponding 
eigenvector. These form the basis of a new space of representation of data, particularly from the reduced 
dimensionality. The number of eigenvectors considered is chosen heuristically and depends strongly on 
the distribution of the eigenvalue. To improve the effectiveness of this approximation the background is 
normally cut from the images; in this way it makes zero the value of the eigenface outside of the face. 

At this point the identification is a simple pattern-recognition process. 

Every new image Γ to identify is transformed into the eigenface components through a projection on the 
"face space" with the simple operation: 

ωk = u
T

K (Γ - ψ), 

with k=1,..., M' (and u
T

K transposed to the base of the transformed space) that consists of multiplications 
and sums, point to point of the image. 

The values thus obtained from a weight vector Ω
Τ
 which expresses the contribution of each eigenface in 

representing the image data. It is now clear how M’ eigenface may constitute a basis set to represent  the 
other images. The vector is used to determine, if it exists, which of the predefined classes describes in 
best way the image (through a nearest-neighbour algorithm type). The simplest way to determine which 
class best describes the face in question consists in identifying the class k that minimizes the Euclidean 
distance.  

A face is classified as belonging to the class k if the minimum distance ek is below a predetermined 
threshold value θε; otherwise the face is classified as unknown. In addition to this and to consider that the 
image of a generic face should project itself in extreme proximity of the "face space" that in general, as it 
was built (the faces of the training set), should describe all the images with the appearance of a face. In 
other words, the distance ε of an image from its projection should be within a certain threshold. 

In general, four possible cases may arise, as shown in the figure below. 

1. the carrier is near the "face space" and its projection to a class; 

2. the carrier is near the "face space", but its projection is not close to any known class; 

3. the carrier is far from the "face space", but its projection is close to a class known; 

4. the carrier is far from the "face space" and its projection is not close to any class known. 
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Figure 3-3: Example of a simple "face space" consisting of just two eigenfaces (u1 and u2 ) and 
from three individuals known (Ω1 , Ω2 and Ω3). 

The recognition algorithm reacts in four different ways: 

1. In the first case, the individual is recognized and identified; 

2. In the second case the algorithm detects only the presence of the individual but doesn’t recognize 
him/her; 

3. The third case could represent a typical false-positive, because of the apparent distance between 
the carrier and the "face space", and the algorithm can refuse to recognize the person; 

4. Finally, in the fourth case it is assumed that the image doesn’t contain a face. 

The detection of faces within an image can be performed also using the space formed by the best 
eigenface. The creation of the weight vector is nothing but a projection of the space "facespace" low 
dimensional (ωk = u

T
K (Γ - ψ)), so the distance ε between the image and its projection coincides with the 

distance between the image of the average deducted: 

φ = Γ – ψ 

and the projection of the vector of weights in the "face space": 

 

Note that in this case, the appearance of the projected image will not be in general any feature of the face. 
To detect the presence of a face in the image it is necessary to calculate the distances between different 
portions of the image and the projection on the face sought. In this way is to generate a map ("facemap") 
of distances ε(x, y). The only flaw of this approach for the identification of faces is the computational cost, 
which increases with the granularity with which it analyses the image. 

The next step is to try to extend the eigenface in order to make it well suited to managing large databases. 
We adopt the so-called "modular eigenspace" that, when used in support of traditional Eigenface, can 
demonstrate an improvement in recognition accuracy. This extension consists in an additional "layer" of 
key features of the face such as eyes, nose and mouth (as shown in the figure below). In this 
circumstance one speaks of: eigeneye, eigennose and eigenmouth, or more generally of eigenfeature. 

The new representation of the faces can be seen, in a modular fashion, as a description of the entire low-
resolution face, combined with a more detailed facial features on the most salient. 
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Figure 3-4: Eigenface in which domains were identified: eigeneye (left and right), eigennose and 
eigenmouth. 

Of course achieving this technique needs an automated method of detection of the characteristic 
elements of the image (shown in the figure below): this can be taken from the mechanism adopted to 
identify faces offered directly from the Eigenface. Similarly to the distance from the space of faces, in this 
circumstance is called away from the “feature space”. 

 

Figure 3-5: Example of identification of eigenfeature. 

This extension is suitable above all to offer a valuable mechanism for modular reconstruction of images, 
which is advantageous in terms of compression. And thanks to the more details provided by eigenfeature 
the reconstructed images show a higher quality than the reconstruction from eigenface. 

The advantage offered by the eigenfeature is the ability to overcome some weaknesses of the standard 
eigenface method. In fact, the standard eigenface recognition system can be fooled by gross variations in 
the input image (hats, beards, etc.). 

Finally, the use of infrared images with the eigenface technique has been revealed successful. An infrared 
image (or thermogram) has the characteristic of showing the distribution of heat emitted by an object. 
While this approach may prove a formidable strength to attack with "mask", and the ability to work with 
any type of lighting (also absent), may ultimately prove a big problem with people who wear glasses, as in 
infrared these are very often completely opaque. Considering images of individuals without glasses the 
benefits are obvious, especially on profile pictures. 
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3.1.2 The Evaluation Framework 

The evaluation of the quality and reliability of the recognition process is fundamental in order to guarantee 
the required levels of security and dependability. The evaluation can be considered conceptually as a part 
of the recognition algorithm itself, providing feedbacks that close the retroaction loop. This phase allows 
the system to adjust the parameters of the recognition algorithm, in order to maintain the maximum level 
of identification reliability. The problem addressed during the evaluation phase is very complex and plays 
an important role since from the begging of the system configuration and deployment: during the initial 
training phase, a controlled biometric dataset is used to train the recognition algorithm and obtain the 
configuration that guarantee the minimum level of identification reliability. In this case, the evaluation 
process is used to understand when the system is ready for the deployment (as shown in the figure 
below). 

 

Figure 3-6: The evaluation framework in the recognition system life cycle. 

From a technical point of view, considering the complexity of the addressed problem, the evaluation 
process cannot be performed simply by the recognition algorithm but requires a complete evaluation 
framework that integrates with the recognition system. The evaluation framework is composed by: 

• A standard evaluation data set: the Embedded Face Recognition System (EFRS) proposed in 
nSHIELD adopts a data corpus that must contain at least 50,000 recordings divided into training 
and validation partitions. The data corpus is constituted by high resolution still images, taken 
under controlled lighting conditions and with unstructured illumination, 3D scans and 
contemporaneously still images collected in a real environment. 

• A challenging problem that allows the evaluation of the improvement in terms of performance: the 
identification of a challenging recognition scenario ensures that the evaluation is performed on 
sufficiently reasonable, complex and large problems and that the results obtained are valuable, in 
particular when compared between different configurations and recognition algorithms. The 
challenging problem identified to evaluate the EFRS consists of six experiments. The experiments 
measure the performance on still images taken with controlled lighting and background, 
uncontrolled lighting and background, 3D imagery, multi-still imagery, and between 3D and still 
images.  

• A software evaluation infrastructure: it supports an objective comparison among different 
recognition configuration and algorithms. The infrastructure ensures that results from different 
algorithms are computed on the same data sets and that performance scores are generated with 
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the same protocol. To measure the improvements introduced by the EFRS and perform the run 
time evaluation required by the recognition system we selected the Face Recognition Vendor Test 
of year 2002 (FRVT) [24], that “provide independent government evaluations of commercially 
available and prototype face recognition technologies. These evaluations are designed to provide 
U.S. Government and law enforcement agencies with information to assist them in determining 
where and how facial recognition technology can best be deployed. In addition, FRVT results help 
identify future research directions for the face recognition community”. FRVT 2002 consists of two 
tests: the High Computational Intensity (HCInt) Test and the Medium Computational Intensity 
(MCInt) Test. Both tests require the systems to be full automatic, and manual intervention is not 
allowed. 

3.1.2.1 Design of Data Set and Challenge Problem 

The design of the EFRS starts from the performance measured using FRVT. It establishes a performance 
goal that is an order of magnitude greater than FRVT measured performance. Starting from this goal, it 
introduces a data corpus and a challenge problem that are significant and valuable for real application. 
The evaluation process, using this data corpus and challenge problem, aims at understanding if the EFRS 
has reached the FRVT goal and is capable to maintain at runtime this performance improvement. 

The starting point for measuring the improvement of performance is the high computational intensity test 
(HCInt) of the FRVT. The images in the HCInt corpus are taken indoors under controlled illumination. The 
performance point selected as the reference is a verification rate of 80% (error rate of 20%) at a false 
accept rate (FAR) of 0.1%. This is the performance level of the top three FRVT 2002 participants. An 
order of magnitude improvement in performance that we expect from EFRS requires a verification rate of 
98% (2% error rate) at the same fixed FAR of 0.1%. 

A challenge for designing the EFRS is collecting sufficient data to measure an error rate of 2%. The 
verification performance is characterized by two statistics: verification rate and false acceptance rate. The 
false acceptance rate is computed from comparisons between faces of different people. These 
comparisons are called non-matches. In most experiments, there are sufficient non-match scores 
because the number of non-match scores is usually quadratic in the size of the data set. The verification 
rate is computed from comparisons between two facial images of the same person. These comparisons 
are called match scores. Because the number of match scores is linear in the data set size, generating a 
sufficient number of matches can be difficult. 

For a verification rate of 98%, the expected verification error rate is one in every 50 match scores. To be 
able to perform advanced statistical analysis, 50,000 match scores are required. From 50,000 match 
scores, the expected number of verification errors is 1,000 (at the EFRS performance goal). 

The challenge is to design a data collection protocol that yields 50,000 match scores. We accomplished 
this by collecting images for a medium number of people with a medium number of replicates. The 
proposed EFRS data collection is based on the acquisition of images of 200 subjects once a week for a 
year, which generates approximately 50,000 match scores. 

The design, development, tuning and evaluation of the face recognition algorithms require three data 
partitions: training, validation, and testing. The EFRS challenge problem provides training and validation 
partitions to developers. A separate testing partition is being collected and sequestered for an 
independent evaluation. 

The representation, feature selection, and classifier training is conducted on the training partition. For 
example, in PCA-based (Principle Component Analysis) and LDA-based (Linear Discriminant Analysis) 
face recognition, the subspace representation is learned from the training set. In vector machine (SVM) 
based face recognition algorithms, the SVM classifier is trained on the data in the training partition. 

The challenge problem experiments must be constructed from data in the validation partition. During 
algorithm development, repeated runs are made on the challenge problems. This allows developers to 
assess the best approaches and tune their algorithms. Repeated runs produce algorithms that are tuned 
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to the validation partition. An algorithm that is not designed properly will not generalize to another data 
set. 

To obtain an objective measure of performance it is necessary that the results are computed on a 
separate test data set. The test partition measures how well an approach generalizes to another data set. 
By sequestering the data in test partition, participants cannot tune their algorithm or system to the test 
data. This allows for an unbiased assessment of algorithm and system performance. 

The EFRS experimental protocol is based on the FRVT 2002 testing protocols. For an experiment, the 
input to an algorithm is two sets of images: target and query sets. Images in the target set represent facial 
images known to the system. Images in the query set represent unknown images presented to the system 
for recognition and identification. The output from an algorithm is a similarity matrix, in which each 
element is a similarity score that measures the degree of similarity between two facial images. The 
similarity matrix is comprised of the similarity scores between all pairs of images in the target and query 
matrices. Verification scores are computed from the similarity matrix (see next figure). 

 

Figure 3-7: The testing protocol. 

3.1.2.2 Description of the Data Set 

The EFRS data corpus is part of an ongoing multi-modal biometric data collection. 

A subject session is the set of all images of a person taken each time a person’s biometric data is 
collected. The EFRS data for a subject session consists of four controlled still images, two uncontrolled 
still images, and one three-dimensional image. The figure below shows a set of images for one subject 
session. The controlled images are taken in a studio setting, are full frontal facial images taken under two 
lighting conditions (two or three studio lights) and with two facial expressions (smiling and neutral). The 
uncontrolled images were taken in varying illumination conditions; e.g., hallways, atria, or outdoors. Each 
set of uncontrolled images contains two expressions, smiling and neutral. The 3D images are taken under 
controlled illumination conditions appropriate for the sensor (structured light sensor that takes a 640 by 
480 range sampling and a registered colour image), not the same as the conditions for the controlled still 
images. In the FRP, 3D images consist of both range and texture channels. The sensor acquires the 
texture channel just after the acquisition of the shape channel. This can result in subject motion that can 
cause poor registration between the texture and shape channels. The still images are taken with a 4 
Megapixel camera. 
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Figure 3-8: Images from one subject session. (a) Four controlled stills, (b) two uncontrolled stills, 
and (c) 3D shape channel and texture channel pasted on 3D shape channel. 

Table 3-1: Size of faces in the validation set imagery broken out by category. Size is measured in 
pixels between the centres of the eyes. The table reports mean, median, and standard deviation. 

 Mean Median Standard Deviation 

Controlled 261 260 19 

Uncontrolled 144 143 14 

3D 160 162 15 

 

Images are either 1704x2272 pixels or 1200x1600 pixels, in JPEG format and storage sizes range from 
1.2 Mbytes to 3.1 Mbytes. Subjects have been photographed approximately 1.5 meters from the sensor. 

The table above summarizes the size of the images for the uncontrolled, controlled, and 3D image 
categories. The average distance between the centres of the eyes in the FRVT 2002 database is 68 
pixels with a standard deviation of 8.7 pixels: the data set adopted for the EFRS satisfies the FRVT 2002 
and provide a quality largely better than the FRVT 2002. This means that we follow this standard but we 
use a source of information that makes the test at least 4 to 6 times harder. 

The data required for the experiments on the EFRS are divided into training and validation partitions. 
From the training partition, two training sets are distributed. The first is the large still training set, which is 
designed for training still face recognition algorithms. The large still training set consists of 12,776 images 
from 222 subjects, with 6,388 controlled still images and 6,388 uncontrolled still images. The large still 
training set contains from 9 to 16 subject sessions per subject, with the mode being 16. The second 
training set is the 3D training set that contains 3D scans, and controlled and uncontrolled still images from 
943 subject sessions. The 3D training set is for training 3D and 3D to 2D algorithms. Still face recognition 
algorithms can be training from the 3D training set when experiments that compare 3D and still algorithms 
need to control for training. 

The validation set contains images from 466 subjects collected in 4,007 subject sessions. The 
demographics of the validation partition broken out by sex, age, and race are given in the following figure. 
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Figure 3-9: Demographics of FRP ver2.0 validation partition by (a) race, (b) age, and (c) sex. 

The validation partition contains from 1 to 22 subject sessions per subject (see figure below). 

 

Figure 3-10: Histogram of the distribution of subjects for a given number of replicate subject 
sessions. The histogram is for the ver2.0 validation partition. 

3.1.2.3 Description of the Evaluation Test 

The experiments that will be performed to evaluate the EFRS are designed to improve the face 
recognition algorithm with emphasis on 3D and high resolution still imagery. EFRS will perform six tests: 

1. The first test measures the performance on the classic face recognition problem that is the 
recognition from frontal facial images taken under controlled illumination. To encourage the 
development of high resolution recognition, all controlled still images are taken in high resolution. 
In this test, the biometric samples in the target and query sets consist of a single controlled still 
image. It is clear that multi-still images of a person can substantially improve performance. This 
test operates in 2D. 

2. The second test is designed to examine the effect of multiple still images on performance. In this 
test, each biometric sample consists of the four controlled images of a person taken in a subject 
session. The biometric samples in the target and query sets are composed of the four controlled 
images of each person from a subject session. This test operates in 2D. 

3. The third test is focalized on 3D imagery and measures performance when both the enrolled and 
query images are in 3D. In this test, the target and query sets consist of 3D facial images. One 
potential scenario for 3D face recognition is that the enrolled images are 3D and the target images 
are still 2D images. 

4. The forth test is designed to measure the progress on recognition from uncontrolled frontal still 
images. In this test, the target set consists of single controlled still images, while the query set 

consists of single uncontrolled still images. The “supporters” of 3D face recognition claim that 3D 

imagery is capable of achieving an order of magnitude of improvement in face recognition 
performance. Recognizing faces under uncontrolled illumination has numerous applications and is 
one of the most difficult problems in face recognition. 
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5. The fifth test explores this scenario when the query images are controlled. The query set consists 
of a single controlled still. This test operates on 3D Imagery. 

6. Finally, test number six examines the uncontrolled query image scenario. The query set consists 
of a single uncontrolled still and the test operates on 3D Imagery. 

3.1.2.4 Baseline Performance 

The baseline performance is introduced to demonstrate that a challenge problem can be executed, can 
provide a minimum level of performance and a set of controls/feedback for detailed studies and 
evaluation. The face recognition algorithm based on PCA has been selected as the baseline algorithm. 

The initial set of baseline performance results has been provided for test 1, 2, 3, and 4. For test 1, 2, and 
4, baseline scores have been computed from the same PCA-based implementation. In test 2, a fusion 
module is added to handle multiple recordings in the biometric samples. The algorithm is trained on a sub- 
set of 2,048 images from the large training set. The representation consists of the first 1,228 
eigenfeatures (60% of the total eigenfeatures). All images were pre-processed by performing geometric 
normalization, masking, histogram equalization, and rescaling pixels to have mean zero and unit variance. 
All PCA spaces have been whitened. The distance in nearest neighbour classifier is the cosine of the 
angle between two representations in a PCA-space. In test 2, each biometric sample consists of four still 
images, and comparing two biometric samples involves two sets of four images. Matching all four images 
in both sets produces 16 similarity scores. For test 2, the final similarity score between the two biometric 
samples is the average of the 16 similarity scores between the individual still images. 

An example set of baseline performance results is given for test 3 (2D versus 3D face recognition) in the 
following paragraphs. It has been obtained in the previous test performed by independent research team 
and can be considered as a reference point. The baseline algorithm for the 3D scans consists of PCA 
performed on the shape and texture channels separately and then fused. Performance scores are given 
for each channel separately and for the shape and texture channels fused. We also fused the 3D shape 
channel and one of the controlled still images. The controlled still is taken from the same subject session 
as the 3D scan. Using the controlled still models a situation where superior still camera is incorporated 
into the 3D sensor. The baseline algorithm for the texture channel is the same as in test 1. 

 

Figure 3-11: Example of expected baseline ROC performance for test 1, 2, 3, and 4. 

The PCA algorithm adapted for 3D is based on Chang et al. [25]. 
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The results obtained in the example of baseline verification performance for test 1, 2, 3, and 4 are shown 
in the above figure. Verification performance is computed from target images collected in the fall semester 
and query images collected in the spring semester. For these results, the time lapse between images is 
between two and ten months. The performance is reported on a Receiver Operator Characteristic (ROC) 
that shows the trade-off between verification and false accepts rates. The false accept rate axis is 
logarithmic. The results for test 3 are based on fused shape and texture channels. The best baseline 
performance should be achieved by multi-still images, followed by a single controlled still, and then 3D 
scans. The most difficult category should be the uncontrolled stills. 

The figure below shows another example of baseline performance for five configurations of the 3D 
baseline algorithms: fusion of 3D shape and one controlled still; controlled still; fusion of 3D shape and 3D 
texture; 3D shape; and 3D texture. The best result is achieved by fusing the 3D shape channel and one 
controlled still image. This result suggests that 3D sensors equipped with higher quality still cameras and 
illumination better optimized to still cameras may improve performance of 3D systems. 

 

Figure 3-12: Example of baseline ROC performance for Experiment 3 component study. 

Successful development of pattern recognition algorithms requires that one knows the distributional 
properties of objects being recognized. A natural starting point is PCA, which assumes the facial 
distribution has a multi-variate Gaussian distribution in projection space.  

In the first facial statistics experiment we examine the effect of the training set size on the eigenspectrum. 
If the eigenspectrum is stable, then the variance of the facial statistics on the principal components is 
stable. The eigenspectrum is computed for five training sets of size 512, 1,024, 2,048, 4,096, and 8,192. 
All the training sets are subsets of the large still training set. The expected eigenspectra should be similar 
to the ones plotted in the figure below. The horizontal axis is the index for the eigenvalue on a logarithmic 
scale and the vertical axis is the eigenvalue on a logarithmic scale. The main part of the spectrum 
consists of the low to mid order eigenvalues. For all five eigenspectra, the main parts overlap. 

The eigenvalues are estimates of the variance of the facespace distribution along the principal axes. The 
figure below shows that the estimates of the variances on the principal components should be stable as 
the size of training set increases, excluding the tails. The main part of the eigenspectrum is approximately 
linear, which suggests that to a first order approximation there is a 1/f relationship between eigen-index 
and the eigenvalues. 
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Figure 3-13: Estimated densities. 

The figure above describes an example of performance on test 1 for training sets of size 512, 1,024, 
2,048, 4,096, and 8,192.  The figure illustrates the estimated densities for the (a) 1st and (b) 5th eigen-
coefficients for each training set (the numbers in the legend are the training set size). To generate the 
curve label 1024 in (a), a set of images are projected on the 1st eigenfeature generated the 1024 training 
set. The set of images projected onto the eigenfeatures is a subset of 512 images in common to all five 
training sets. All other curves were generated in a similar manner. Verification performances at a false 
accept rate of 0.1% is reported (vertical axis). The horizontal axis is the number of eigenfeatures in the 
representation. The eigenfeatures selected are the first n components. The training set of size 512 
approximates the size of the training set in the FERET Sep96 protocol. This curve approximates what was 
observed by Moon and Phillips [26], where performance increases, peaks, and then decreases slightly. 
Performance peaks for training sets of size 2,048 and 4,096 and then starts to decrease for the training 
set of size 8,192. For training sets of size 2,048 and 4,096, there is a large region where performance is 
stable. The training sets of size 2,048, 4,096, and 8,192 have tails where performance degrades to near 
zero. 

The examples described in this section allowed to identify and demonstrate the two most important 
consequences that we expected from the experiments: first, it is evident that increasing the training set 
increases also the performance of the recognition, and second, it is clear that the selection of the cut off 
index is not critical. 

3.2 Access Rights Delegation 

Within the scope of 3.2 (WP3, Task 2) an approach to delegation of access rights has been investigated. 
In a network of offline trusted embedded systems, a node need to be able to authenticate another node 
requesting some privileges, but also to determine what – if any – privileges should be granted. A model 
for doing this has previously been developed by the project partner (Telcred), but this model assumes that 
all access rights are issued by a central trusted authority and does not support delegation.  

A real world example where delegation of access rights would be relevant is where the access rights 
issued by the central authority are valid only if the node seeking access has first interacted with another 
node. For example node: “Allow access to door B, but only if the visitor has first passed door A”. In this 
example, door A is entrusted to verify that a correct passage has taken place.  

The approach that was investigated uses a construct called a path array. Nodes to which some authority 
has been delegated can read and write to the path array, thereby proving that a bona fide interaction has 
taken place. This information can then be used by the next node in the path array as part of the access 
control decision. 

The work was mainly carried out as a M.Sc. thesis at KTH, the Royal University of Technology in 
Stockholm.  
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3.2.1 Problem Statement 

In an offline PACS (Physical Access Control System), there is no continuous exchange of information to 
verify and allow a user through a series of doors, whereas this is a common feature in an online PACS. 
Current offline systems are unable to force a user to follow a certain designated route, e.g. Room A 
should be accessed before entering room B. This project explores a model to enforce such a route, by 
using delegation of some authority from the main administrative system to the offline locks. 

3.2.2 The Concept of “Path Array” 

The developed artefact consists of a construct known as Path Array aka PA. Path Array is an array that 

can be one or multi-dimensional based upon the administrator requirements. PA consists of Lockid stored 

into each index of the array that needs to be accessed by the user in a sequence. Administrator is 
responsible to implement path array onto the user’s smart card before handing it over to the user. 

Ticket that is stored in the flash memory of the smart card contains the PA. After the formation of mutual 

trust between the Lock and Card, Lock makes use of the remaining contents inside the Ticket for 

decision making. 

 

Figure 3-14: Path Array Design 

The Figure above shows the outline of PA. PA consists of Lockid stored at each index (i = 0, 1, 2...). PA 

holds the Lockid that should be accessible by a user in a sequence. Server digitally signs the PA stored 

inside the Ticket. Index i value starts from 0 and increments each time a user passes a door. This index 

value points to the Lockid that the user needs to visit. Hence, the contents of the Ticket will be as 

follows. 

 

Figure 3-15: Ticket along with Path Array 
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3.2.3 Mechanism of the Artefact 

After the creation of trust between the entities of offline PACS [27],  Lock now processes the contents of 

PA, and then checks for its own ID at the current index i, if it is found then Lock performs three steps as 

follows, 

• Increment index i 

• Generate HMAC and write it to Card 

• Grant access to the user 

If the Lockid present at index i does not correspond to Lock own id, it then it denies the access and logs 

the user action. 

3.2.3.1 Incrementing Index i 

The path array PA contains lock ids stored inside it. Only the relative matching Lock is allowed to 

increment i value by one. At the time of generation of Ticket by the Server, it also generates a HMAC 

to be used by the first lock in the PA. The Lock located at the first index of PA makes use of this HMAC to 

ensure that no illegal modifications are done on the smart card. The Index of PA starts from the value 0. 
For instance, consider the below path array. This path array consists of lock ids B, A and C which should 
be followed in that order by the user. 

 

Figure 3-16: Ticket Incrementing the index value 

In the figure above, the current value is 0 and PA[0]=B. Only the lock with id ‘B’ can increment the i value 
further. 

3.2.3.2 Generating Hash using HMAC 

Lock creates the HMAC after incrementing the i value. HMAC stands for Hash Based Message Authentic 
Code. It calculates the message authentic code using a cryptographic hash function and shared secret 
key. In the offline PACS scenario, geographically dispersed locks securely exchange the messages 
among them by using message digest. HMAC is necessary in offline PACS scenario to ensure the 
integrity of smart card contents. The process of creating HMAC is as shown in the formula below. 

    (   )   ((        )    (         )    ) 

where: 

• K is the shared secret key 

• m is the message to be protected 

• opad is outer padding (0x5c5c….) 

• ipad is inner padding (0x3636….) 

• H is the cryptographic hash function (MD5, SHA etc.) 

• || is concatenation  

•  is the exclusive-OR operation 

B A C 

i = 0 
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The locks inside the facility were pre-installed with keyshared. Concatenating the keyshared with Lockid 

generates the secret key keysecret. Message m in this context indicates the current index i value, and the 

rest of them use default parameters. 

While hash generation, keysecret = keyshared || Lockid. 

 Generation of HMAC is as following: 

 

Figure 3-17: Process of HMAC creation 

In the above figure, H can be any hash algorithm. 

3.2.3.3 Generating Hash by the Locks in the Sequence 

The overall concept of the artefact is to enforce the user through the path specified by the administrator. 
The user should attend this path in sequence. Hence, if one lock grants access to the user, which is 
present at index zero of PA i.e., PA[0], then the next lock in the sequence, which is available at PA[1] 
should be able to prove that the user has already passed through the door mentioned at PA[0].Verification 
of the hash value generated by the lock present at PA[0] solves the above issue. 

When the user presents his smart card at a Lock mentioned in the PA, the lock allows access only if it 

has confirmed that the user has already been allowed access by an earlier lock. During the verification 

process of HMAC Lock always uses the previous index for key generation and while in a hash generation 

process it uses its own Lockid. Current lock initially checks i value. 

3.2.3.3.1 Scenario 1: If i=0 

Then the lock knows that it is the first lock in the order. It then checks whether the value present at PA[0] 
matches its own lock id. If the id is not equal to its own id, it will log the user activity and deny the access. 
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Lock has the authority to perform further actions if the value at PA[0] matches  its own id. It then verifies 

the HMAC stored by the Server on the Card, to make sure that nothing has been changed illegally. It 

will then increment i value by one and will generate HMAC by using the secret key keysecret. In this 

scenario, keysecret results from concatenating the keyshared with its own Lockid. 

3.2.3.3.2 Scenario 2: If i>0 

If i value is greater than zero, then lock confirms that the user has already accessed some doors in the 
sequence. Hence, it will confirm its own authority that it can change the contents of the card by looking up 

for its own lock id, and then generates hash to verify the hash stored by the earlier lock. Now, the Lock 

increments i value by one and generate a new hash to be used by the next lock in the series.  

Verification steps by current lock in action are as follows, 

• Step 1: reads current i value 

• Step 2: Looks up  present at PA[i] 

• Step 3: If the value of own =PA[i], then proceed to step 4 else go to step 10  

• Step 4: Verify the HMAC hash stored on smart card (generated by previous lock)  

• Step 5: If the hash can be verified, continue else go to step 10 

• Step 6: Increment i value by one 

• Step 7: Generate new HMAC 

• Step 8: Replace the old HMAC with generated HMAC to be used by next lock 

• Step 9: Allow access and stop 

• Step 10: Deny access and log user activity onto the card 

Using above procedure the n
th
 lock will verify that the user has accessed the (n-1)

th
 lock, and this process 

continues with all the locks. 
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4 Power Node 

The main research areas targeted by power node technologies are the following: 

• Avionic system. 

• Audio based surveillance infrastructure. 

• Integration of heterogeneous embedded systems. 

• GPU accelerated hashing and hash lookup. 

4.1 Avionic System 

4.1.1 Description 

SES has been working on designing an innovative dependable Avionic Architecture (OMNIA) to be 
employed as nSHIELD demonstrator. OMNIA has been built on SHIELD concepts and on an innovative 
avionic standard, following the rules of the Integrated Modular Avionic (IMA) in order to implement the 
IMA2G architecture: OMNIA is an Open System HW/SW architecture based on the IMA concept 
connected with “standard” in order to maximise the benefits. 

The avionic applications are strongly driven by regulations and by a complex certification processes that 
increase the system design complexity, the deployment and the maintenance as well. Albeit, these 
processes of certification and regulation are expansive, they are mandatory and necessary to ensure an 
adequate level of security and dependability. The proposed architecture, conceptually based on SHIELD 
methodologies and on IMA, aims to simplify the overall processes of maintenance, certification and 
design, without jeopardizing the dependability and safety levels required by the domain.  

The HW/SW units developed in accordance to the IMA are connected by a High Speed Serial Network 
based on the ARINC 664p7 standard. 

Due to pre-existing avionic standards and solutions, SHIELD methodology will be modelled and embodied 
into the foregoing solution (IMA).  

In the following subsections the OMNIA architecture, IMA based, is described. 

4.1.2 Architecture Modules and Interfaces 

4.1.2.1 System Overview 

The architecture developed for this demonstrator will be composed of a network of Aircraft & Mission 
Management Computers (AMMC) and related Remote Interface Unit (RIU or NSIU) connected between 
them from a High Speed deterministic serial line, each “unit” is connected to the A/C (AirCraft) sensors. 

The system/network, by means of an additional middleware layer built around the RTPS architecture will 
virtualize the connection of a related sensor with all “computer units” that will be present in the system, 
allowing also the fault tolerance functionalities.  

In particular: 

• The main unit AMMC is used as IMA Central Unit. 

• The other “units” (referenced as RIU or NSIU) are mainly used as sensor interfaces. 

• IMA central unit and RIU-IMA are both “computer units”. 

• All the “Computer Units” are connected via Ethernet (Rate constraint or Best effort methodology) 
among them, each “computer unit” can implement the interface with the avionic sensor. 
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The RTPS functionality has been integrated, as a library, in the Equipment Software (EQSW) 
environment. This library, according to the IMA concept, is segregated in a partition in order to increase 
the reliability and flexibility of the system. The RTPS represents the communication pattern used by the 
IMA and the RIU to exchange data. In particular, the publish-subscribe architecture is designed to simplify 
one-to-many data-distribution requirements. In this model, an application “publishes” data and 
“subscribes” to data. Publishers and subscribers are decoupled from each other too. Real-time 
applications require more functionalities than those provided by the traditional publish-subscribe 
semantics. The RTPS protocol adds  publication and subscription timing parameters and properties so 
that the application developer can control different types of data flows and therefore the application's 
performance and reliability goals can be achieved. 

The RTPS developed has been implemented on the top of the UDP/IP protocol and tested on Ethernet; 
the determinism of the Ethernet is provided by the AFDX network. 

In the figure below it is represented a logical view of the Demonstrator architecture. 

 

 

Figure 4-1: OMNIA Architecture. 

Exchanged data between all the IMA “computer units” could be: 

• Discrete signals. 

• Bus1553 data words. 

• ARINC 429 data words 

• In general all the I/O signals. 

In particular, data are managed by the RIU and sent/received by the IMA Central Unit. 
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4.1.2.2 Hardware description 

In this section hardware components utilized for the demonstrator will be described. 

As already mentioned, the solution developed by Selex Es is characterized by two N-AMMC equipments 
connected to each other via AFDX, where: 

The IMA Central Unit is constituted mainly by a rack with: 

• a processor module based on the PPC microprocessor (APM460); 

• an Ethernet  mezzanine card. 

The RIU is constituted by a rack with: 

• a  processor module based on the PPC microprocessor (APM460); 

• an Ethernet  mezzanine card; 

• two I/O boards (RS422, Arinc429, discrete and analog) (DASIO); 

• a 1553 mezzanine card. 

The following figure shows the hardware block diagram of the RIU configuration. Being a modular 
architecture, every component has been developed according to the actual avionic standards in terms of 
processing cycles, data buses, signal types, memory use, etc. 

 

Figure 4-2: RIU HW block diagram. 

4.1.2.3 Software description 

Regarding the software, each “computer unit” of the demonstrator is constituted by the following different 
components: 
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• RTPS SW: that provides the management of the RTPS protocol and the interface to application 
software layer (RTPS API). 

• VMS (Vehicle management System) SW: that is constituted by the Resident SW and Equipment 
SW (EQSW). 

These components run on the main processor. Also a software resident on the I/O boards is present. 

The VMS SW can be divided in three layers: 

• Application Layer; 

• Middleware Layer; 

• Module Support Layer. 

More specifically, the Middleware layer is constituted by EQSW (API and Virtual Device Drivers) and 
RTPS SW, while the Module layer is represented by the Kernel between the Middleware and the physical 
layer. This architecture is represented in the following figure. 

A space partitioning policy has been implemented. Each Application SW operates in one partition, while 
the RTPS SW operates in another partition, different from the first. 

Communications in RTPS occur in three steps: 

• Publisher declares intent to publish a publication. 

• Subscriber declares interest in a publication. 

• Publisher sends a publication issue. 

 

Figure 4-3: APM460SW. 

In the figure above it is represented the software layers view where the IMA Application publishes 
Data_out and subscribes Data_in and, respectively, the RIU Application publishes Data_in and subscribes 
Data_out. 

More in detail, the demonstrator read/write data via the DASIO boards of the RIU as described hereafter: 

• The RIU Application reads the input discrete signals using the Discrete API provided by the 
EQSW; 

• The RIU Application publishes the read data via the RTPS API; 
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• The IMA Application subscribes the input discrete data via the RTPS API. 

Vice versa: 

• The IMA Application publishes the output discrete signals via the RTPS API; 

• The RIU Application subscribes the data to be written via the RTPS API; 

• The RIU Application sends received data to the DASIO via the Discrete API. 

According this description, the middleware handles three basic programming chores: 

• Maintain the database that maps publishers to subscribers resulting in logical data channels for 
each publication between publishers and subscribers. 

• Serialize (also called marshal) and de-serialize (or de-marshal) the data on its way to and from 
the network to reconcile publisher and subscriber platform differences. 

• Deliver the data when it is published. 

4.1.3 Metrics 

In order to implement metrics described in the D2.5, the RTPS development will satisfy the following 
constraints: 

• use of a BSP (Board Support Package), associated  to the used board; 

• use of an UDP/IP library; 

• use of an RTOS for certifiable applications (i.e., GHS Integrity 178B). 

The dependability of the system communication is guaranteed by the AFDX network that provides a dual 
link redundancy and Quality of Service. Besides, thanks to its topology and structure AFDX significantly 
reduces wires improving the system reliability. 

The composability functionality will be provided thanks to the integration in the IMA architecture of a new 
module developed in accordance to the nSHIELD methodology and the ARINC standards. 

4.2 Audio Based Surveillance 

4.2.1 Description 

4.2.1.1 Introduction 

ISD has been designing a novel audio based surveillance system that aims to overcome the most 
important limitations of non-military grade systems currently utilized in acoustic based research by 
providing correlated data acquisition from a large number of overlapping sensors. 

Its hardware synchronized sensors make it ideal for applications requiring 3D sound capture such as 
acoustic hologram generation in real time. It features an extremely flexible and high performance DMA 
engine able to perform any type of spatial processing purely in hardware. It will be the only system able to 
deliver to main memory synchronized uncompressed audio streams from up to 768 microphones with 
zero CPU load. Its hierarchical structure is fully extensible and able to support any number of 
microphones. The targeted implementations will support from 8 up to 768 sensors in multiples of 8 units. 

4.2.1.2 System Boards 

The system consists of 3 types of boards, namely the audio daughterboards, the concentrator boards and 
the grabber board. 

The audio daughterboard, which has already been manufactured and tested, is used in order to receive 
audio streams from up to eight microphones, perform amplification of the audio signals and analogue to 
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digital conversion. It supplies the combined digital audio stream to the concentrator board, on which it is 
plugged. 

 

Figure 4-4: The audio daughterboard 

The concentrator board is equipped with 16 input slots, where audio daughter boards can be plugged into. 
It is also equipped with a single output UTP port, able to deliver the combined audio streams to the 
grabber board. The concentrator board design is currently in progress. 

Finally, the PCIX grabber board is equipped with 6 input UTP ports where concentrator boards can be 
connected using standard UTP cat6 network cables. It receives the streams and delivers the data to the 
host utilizing an extremely powerful and flexible DMA engine. 

  

Figure 4-5: The grabber board 

The grabber board hardware is available and its firmware is currently under design. 

4.2.2 Architecture Modules and Interfaces 

4.2.2.1 Power 

Due to the inherent redundancy of the architecture, no power protection countermeasures need to be 
taken. Each of the concentrator boards will be independently powered and will supply power to the 
daughterboards plugged to it. Thus cutting off power to one of the concentrator boards will not affect the 
system at all provided that we deploy a topology utilizing overlapping sensors attached to different 
concentrators. As more concentrators get powered off, the system performance will start degrading as 
soon as all sensors deployed in a region belong to concentrators that have been powered off.  

Moreover, the grabber board is bus powered, thus its availability regarding power depends on the power 
availability of the embedded PC it is attached to.   
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4.2.2.2 Security 

Due to its nature, the system can be utilized as an anti-tampering mechanism by examining in real time 
the audio signals captured by sensors that are attached to its components. Moreover the communication 
between the concentrators and the grabber will be encrypted to guarantee data integrity. Code integrity is 
ensured by making the design non-upgradeable in the field. Finally, data freshness will be ensured by 
attaching a monotonically increasing label to each chunk of data captured. 

4.2.2.3 Status and Configuration 

The node will inform upper layers regarding its status (detection of tampering attempt, sensors activated) 
and will allow them to configure the sensors to activate. 

4.2.3 Metrics 

The node will provide metrics on its availability, tamper resilience and data freshness computed at real 
time as well as Boolean metrics describing its capabilities (such as ability to reconfigure the sensors 
utilized).  

4.3 System of Embedded System, SoES  

4.3.1 Description 

This section illustrates the technologies that will be employed to develop the power node prototype.  

Leveraging the results gained on pSHIELD and considering the current evolution of nSHIELD, we began 
an in-depth analysis geared towards the identification of technologies that shall ease the composability of 
heterogeneous SHIELD nodes.  

Distributed real-time and embedded (DRE) systems are a class of real-time systems formed through a 
composition of predominantly legacy, closed and statically scheduled real-time subsystems, which 
comprise over-provisioned resources to deal with worst-case failure scenarios. The formation of the 
system-of-systems leads to a new range of faults that manifest at different granularities for which no 
statically defined fault tolerance scheme applies.  

The selected technologies will be used to endow SPD functionalities to legacy systems that, because of 
their nature, are not SHIELD compliant. In particular, we envision applying the aforementioned results to 
an Avionic System. Due to the fact that avionic systems are dominated by very stringent security policies, 
the integration of nSHIELD in such environment is extremely challenging and valuable.  

So far, a subset of technologies has been identified and some of them verified. Once the set of the 
technologies will be consolidated the integration process will be triggered. The result of such integration 
will be an IP that will expose the following features: 

• Monitor interface; 

• Data integrity; 

• Encryption / Decryption; 

• Dynamic Reconfiguration (complete and partial); 

• Abnormal event detection; 

• Diagnostic. 

The process of technologies selection and technologies integration is tightly connected to the avionic 
application scenario; since the application scenario has not been consolidated yet, an adaptation of the 
exposed features is foreseen. 
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More specifically, a FPGA IP will be developed, according to the nSHIELD Overall Architecture as 
depicted in D2.3. It will represent an nS-ESD GW (nSHIELD Embedded System Device Gateway) that will 
provide enhanced capabilities in terms of security and dependability to the cluster where it will be 
integrated. 

 

Figure 4-6: nS-ESD GW Integration 

As shown on the picture above reported, the FPGA-based NS-ESD GW will operate as an nSHIELD 
adapter that interconnects the middleware and the node layers. To achieve the dependability and to 
assure performances, a Softcore microprocessor will be synthesized onto FPGA to support the 
application-specific customization. The implementation of the aforementioned NS-ESD GW implies the 
development of custom hardware controllers and software drivers, because of the heterogeneous nature 
of legacy nodes. 

The overall NS-ESD GW design process will be performed in adherence to the RTCA/DO-254 and 
RTCA/DO-178B standard. 

4.3.2 Architecture Modules and Interfaces 

As reported by the Node Layer Logical View depicted in the D2.4, the FPGA-based IP Core will include 
different modules to implement specific capabilities. 

 

Figure 4-7: IP Logical Architecture. 
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As shown in the picture above, the internal outlined architecture consists of a set of different components 
whose synergy will foster the integration of legacy embedded systems in the SHIELD architecture. 

 According to the logical view of the FPGA-based NS-ESD GW Core, the modules that will be developed 
are the following: 

• Monitor module; 

• Coordination module; 

• Security module. 

More specifically, in the context of this partitioning it’s possible to identify elements that are involved to 
implement security, communication and monitoring functions. 

Going further, a plethora of technological solutions is already made available for almost every single block 
highlighted in the previous figure. Which one to choose is a delicate balance among antagonistic aspects 
as costs, usefulness, technical complexities and design trade-offs 

Having said this, a brief survey about every technological solution available for some blocks is briefly 
presented as follows: 

• DR / DPR AND DATA INTEGRITY: manages the FPGA configuration process, increasing security 
and dependability levels of the node, transitioning the device among different operational modes. 
Depending on the speed of the reconfiguration process and on budget constraints: a wide variety 
of parallel and serial flash memory devices are supported. Newer devices offer dynamic 
reconfiguration port (DRP) as a mean of achieving partial dynamic reconfiguration features, highly 
valuable in the nSHIELD context. A high degree of design security can be attained thanks to the 
built-in AES decryption logic which decrypts on the fly the configuration bit stream. The chance to 
update system configuration bit streams on the field and remotely is provided as well with 
“multiboot” and “fallback” features. 

• SOFTCORE: a wide range of embedded processing solutions:  high performance, low power, and 
very low cost options are available (MicroBlaze, Leon3, NIOSII, ARM). 

• CRYPTOGRAPHY: Cryptography plays a vital role for securing information exchange. 
Cryptographic algorithms impose tremendous processing power demands that can be a 
bottleneck in high-speed and real time networks. The implementation of a cryptographic algorithm 
must achieve high processing rate to fully utilize the available network bandwidth. To follow the 
variety and the rapid changes in algorithms and standards, a cryptographic implementation must 
also support different algorithms and should be upgradeable in field. For all these reasons, a 
reconfigurable/upgradable FPGA based HW accelerator could provide software-like  flexibility with 
hardware-like performances 

4.3.2.1 Monitor Module 

In order to foster the integration and communications between legacy power Node and SHIELD 
components (Middleware, Nodes, etc.), two FPGA controllers will be developed. In the logical view above 
these controllers are identified as middleware and physical. Through the middleware controller the NS-
ESD GW Core converts a service request from the nSHIELD component to a logical format that legacy 
systems in the lower layer can understand. This component can be seen as an interface to the SHIELD 
architecture. Likewise, the physical controller will be used to supply proxy services for nodes with a non-
standard physical communication. According to this, it can be seen as an interface to the legacy 
embedded systems. 

Middleware and physical controllers will provide configuration and status services through both hardware 
and software. 
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4.3.2.2 Coordination Module 

The presence of a softcore provides coordination capabilities. In the context of an FPGA-based solution it 
is possible to implement different microprocessors using logic synthesis. Different softcores can be 
instantiated on the FPGA according to the specific technology that will be identified to be used for the 
demonstrator and to specific features required. Some of softcores that can be used are: 

• Microblaze: 32bit RISC-based proprietary soft-processor by Xilinx; 

• Nios II: 32bit RISC proprietary softcore by Altera; 

• Leon3/4: 32bit open source soft-processor based on SPARC V8 RISC architecture by Aeroflex 
Gaisler; 

• Cortex M1: 32bit RISC ARM proprietary processor licensed by ARM Holdings; 

• OpenSPARC T1: 64bit open source softcore RISC architecture by Oracle. 

Thanks to the softcore it will be possible to manage the resources allocation and to balance services with 
the aim to ensure the system reliability with a dynamic load distribution. The processor will be exploited to 
execute balancing algorithms, safety algorithms, etc. The development of hardware accelerators (HA) is 
foreseen. An HA is a hardware implementation of a specific operation or function e.g. cryptography. There 
are several algorithms and functions that are specially tailored to be executed by an HA rather than a 
microprocessor due to their parallel nature. Using the HA is possible to optimize the system performance 
in a way that is not possible with traditional off-the-shelf processor. 

 

Figure 4-8: Hardware Accelerator 

4.3.2.3 Security module 

Several components will be developed as parts of the security module.  

The component identified as DPR will be in charge of managing the FPGA configuration. The purpose of 
this functional block is to increase security and dependability aspects of the node allowing the device to 
change between different operational modes. Thanks to this component it will also possible to run multiple 
applications on the same device enhancing the dependability and redundancy. 

A Data Integrity controller will be included into the NS-ESD GW architecture to process data by 
implementing cyclic redundancy check. This component validates the content of each data packet by 
calculating a new CRC value and matching it to the one contained in the packet. The core also checks the 
ordering of the received packets by monitoring the contained sequence number in each packet.  

It’s also scheduled the implementation of a Secure Storage controller to protect the confidentiality and 
integrity of processed data. In conjunction with an Encrypt/Decrypt controller it will be possible to ensure 
long term storage of sensitive data improving security aspects of the node. 

4.3.3 Metrics 

The nS-ESD GW Core will provide metrics as defined in D2.5 (Preliminary SPD Metric Specifications). In 
particular, with the aim to ensure a fulfil integration of such IP with SHIELD architecture, security, 
dependability and privacy metrics will be implemented.  
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Digital signature policies and data freshness metrics will be implemented to confer Security aspects on 
the FPGA-based solution. These metrics will be implemented in the Security Module. 

The runtime reconfiguration metric will be implemented to improve the Dependability of the node during 
both normal operation and fault conditions. This metric will be used in the DPR module. 

The secure key distribution and the storage of private information will be provided to give an appropriate 
level of Privacy to the node. These metrics will be implemented as core of the Encrypt/Decrypt and Data 
Integrity controllers. 

Being the node an nS-ESD GW, also the node availability metric will be implemented to provide the 
composability of the IP inside a legacy cluster. 

4.4 GPU accelerated hashing and hash lookup mechanism 

4.4.1 General description 

This implementation involves the development of a lightweight, efficient, GPU accelerated hashing and 
hash lookup mechanism utilizing the CUDA GPGPU toolkit and exploiting the highly parallel nature of 
modern GPUs. 

Main operations: 

• Compute a digest 

• Compare two digests 

• Insert a new digest in the hash table 

• Search for a digest in the hash table 

• Delete or Move detected malicious file (optional) 

 

A sketch of the basic functionality of the utility can be seen on the following figure. 
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Figure 4-9: Functionality sketch of GPU-accelerated hashing mechanism 

The mechanism, as implemented in its basic form, is a simple file integrity checker. It involves a command 
line interface where at the time of execution a directory has to be provided. The folder and subfolders are 
accessed recursively and hash values are computed for all the included files. The mechanism utilizes the 
recently selected SHA-3 hash function (i.e. the Keccak hash function [28]).The hash values are kept in a 
table structure with two fields: full path & hash value. 

Once this first initialization phase is over, the utility waits for another folder to scan. Again, it recursively 
scans the folder and looks for an entry that matches each file’s full path. If there is no such entry the file is 
considered unknown/new and a message is displayed. If it does find the same full path entry but the hash 
values do not match, another message is displayed. In this form, the tool can be used for pre- or post- 
installation audits, integrity checks on firmware files stored in secure locations etc. If the full path/filename 
and hash value are the same, no message is displayed. This basic functionality can be seen in the Figure 
4-10, where file “example.txt” did not exist during initialization and file “scanner.c” has been modified since 
the initialization phase (i.e. hash values do not match). 

 

Figure 4-10: Basic file check utilizing the SHA-3 hash function 
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In its hash-matching form, the utility does not look up values in the hash table based on full path. Instead, 
it scans the whole hash table looking for matches for the hash it just calculated. This way, it can report 
back if the specific file exists in the initial hash table and what that file was. Such a mechanism could be 
useful for malware detection on local disks or network monitoring (if, e.g., during initialization, known 
malware are used as input). 

4.4.2 Development & performance comparisons 

An initial CUDA implementation of the Keccak hashing mechanism was compared to the reference serial 
implementation as well as an optimized serial implementation, both of which are available on the official 
website [29]. 

Before proceeding with optimizing the GPU implementation, the data structure to be used had to be 
finalized. To that end, the performance of alternative structures was examined and compared. In specific, 
array, binary tree and hash table structures were investigated, focusing on the insertion time (i.e. how long 
it takes to insert a new entry into the data structure during initialization) and search time (i.e. how long it 
takes to lookup a specific entry in the data structure). The results of said comparison can be seen in 
Figure 4-11, where it is evident that the hash table has an advantage over alternative structures. 

 

Figure 4-11: Data structure performance comparison for CUDA-accelerated implementation 
Dependable self-x Technologies 

Having finalized the data structure to be used, development could focus on the optimization of the CUDA 
hashing mechanism. Some preliminary results appear below. As is evident from the graph, the GPU-
accelerated version of the hashing mechanism has a significant advantage in terms of the actual hashing 
performance, but also suffers extra I/O overhead because of the data transfer from host to GPU. The 
CUDA implementation will be further optimized to allow for greater speed-up times. 
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Figure 4-12: Comparison of execution and I/O time of SHA-3 implementations 

 

0 1 2 3 4 5

Reference_Array

Optimized_Array

CUDA_Array

Reference_Tree

Optimized_Tree

CUDA_Tree

Reference_Hash

Optimized_Hash

CUDA_Hash

Keccak time Rest time



nSHIELD  D3.2 Preliminary SPD Node Technologies Prototype 

 RE  

 RE D3.2 

Issue 8  Page 79 of 127 

5 Dependable self-x Technologies 

The main research areas targeted by the dependable self-x technologies are the following: 

• Selection of the appropriate platform to be used as a basis for development. 

• An anonymity service targeting applications with demanding privacy needs. 

• Mechanisms for DDoS attack mitigation. 

5.1 Platform Selection  

According to the task requirements the research was focused to define a prototype of a scalable node 
family in order to cover the three node typologies and to be useful for the four application scenario. 

The chosen platform integrates in a very small (18X68 mm) and low power board three main devices with 
different and orthogonal features: micro controller, FPGA and DSP. 

The scalability can be achieved deciding which components integrate in the final product or the size of the 
component itself (for instance the dimension of the FPGA or the size of the microprocessor memory). 

The general schematic of the prototype is shown below (source: OMBRAv2 HW MANUAL- Issue 9). 

 

Figure 5-1: Prototype schematic 

The following table summarize the prototype features (source: OMBRAv2 HW MANUAL- Issue 9). 
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Table 5-1: Prototype features 

Description Full Version Standard Version Lite Version 

Processor Ti DM3730 Ti DM3730 Ti AM3717 

ARM CortexA8 
processor speed  

1Ghz 1Ghz 1Ghz 

DSP  TMS320C64+ TMS320C64+ - 

DSP processor 
speed 

800Mhz 800Mhz - 

Ram POP Memory 
(LpDDR) 

1024 Mbyte 512 Mbyte 512 Mbyte 

Flash POP Memory 
(Nand) 

- 512 Mbyte - 

Flash Disk 
On uSD card up to 

32GB 
On uSD card up to 

32GB 
On uSD card up to 

32GB 

Video 3D 
acceleration 

PowerVR SGX530 PowerVR SGX530 PowerVR SGX530 

Wireless connection 
WiFi 

IEEE 802.11 b/g/n 
(option (*)) 

  

Wireless connection 
Bluetooth 

2.1+ EDR class 1.5 2.1+ EDR class 1.5 2.1+ EDR class 1.5 

Wireless connection 
PAN 

ANT+ (option (*)) ANT+ (option (*)) ANT+ (option (*)) 

Wireless 
Bluetooth/WiFi/ANT+ 
antenna 

Unified u.Fl connector Unified u.Fl connector Unified u.Fl connector 

Expansions 
connector  

J1, J4, J5 J1, J4 J1, J4 

USB 2.0 OTG  
1 connected to ARM 

(HS,FS,LS) 
1 connected to ARM 

(HS,FS,LS) 
1 connected to ARM 

(HS,FS,LS) 

USB 2.0 HOST  
1 connected to ARM 

(HS only) 
1 connected to ARM 

(HS only) 
1 connected to ARM 

(HS only) 

USB 1.1 HOST  
connected to FPGA 

(FS only) 
connected to FPGA 

(FS only) 
connected to FPGA 

(FS only) 

USB 1.1 
HOST/DEVICE sw 
configurable 

connected to FPGA 
(FS, LS) 

connected to FPGA 
(FS, LS) 

connected to FPGA 
(FS,LS) 

Audio Stereo 
Mic In, Line-in and 

Line-out 
Line-in and Line-out Line-in and Line-out 

Video VGA  16 bit (VGA and XGA) 16 bit (VGA and XGA) 16 bit (VGA and XGA) 

Video Digital Output 
connection 

DSS 24 bit 1v8 levels 

TV composite/S-
VIDEO 

DSS 24 bit 1v8 levels DSS 24 bit 1v8 levels 
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Video Digital Input  
connection 

Omap 12 bit Camera 
interface 

  

FPGA 
Xilinx Spartan6                  
(XC6SLX16-
2CPG196I) 

Xilinx Spartan6                  
(XC6SLX16-
2CPG196I) 

Xilinx Spartan6                       
(XC6SLX16-
2CPG196I) 

FPGA connections 
between FPA and 
OMAP 

1xUSB-FS, McBSP1, 
McBSP4, 2xGPIO, 

Uart3, (2Wires),  I2C-2, 
Uart1 (4wires), 

2xGPIO 

1xUSB-FS, McBSP1, 
McBSP4, Uart1 

(4wires), 
Uart3/4(2Wires), 

2xGPIO, I2C-2, SPI1, 
6xGPIO 

1xUSB-FS, McBSP1, 
McBSP4, Uart1 

(4wires), 
Uart3/4(2Wires), 

2xGPIO, I2C-2, SPI1, 
6xGPIO 

FPGA pins available 
for the user 

4+2 on J1/J4 (1v8 IO-
level) 

27 on J5 (1v8 IO-level) 

4 on J1/J4 (1v8 IO-
level) 

15 on J1/J4 (1v8 IO-
level) 

4 on J1/J4 (1v8 IO-
level) 

15 on J1/J4 (1v8 IO-
level) 

Debug connection 
JTAG both for 

processor and FPGA 
JTAG both for 

processor and FPGA 
JTAG both for 

processor and FPGA 

Power Supply 
Range 

3.2..4.2 Vcc, 2.5W 3.2..4.2 Vcc, 2.5W 3.2..4.2 Vcc, 2W 

Temperature range 
(components) 

-40..+55 C -40..+55 C -20..+55 C 

 

The current prototype just includes three possible levels of scalability but it is possible to build any 
descendent platform starting from the Full version. 

The main component is the Processor and others component can be used as co-processor or as new 
features-hardware. 

The figure below shows the picture of the OMBRA board with respect to 1 euro coin. 

 

Figure 5-2: The OMBRA board 

Hereafter the main features of the three main components of the OMBRA Board taken from the 
component datasheets itself: Processor, FPGA and DSP. 
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General feature of the chosen processor (DM3730125 Digital Media Processors): 

 

The double boot mode, through the micro SD, allows to use the processor as a Linux or Windows CE 
embedded PC, with the possibility to work with the Windows or the GNU tool chain. 

The selected FPGA is a Xilinx Spartan 6 – 16. All Xilinx tool chain can be used for developing HW and/or 
SW devices (for example a MicroBlaze was mapped on the FPGA). 
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TMS320C64 outline: 

 

Users and designers that want to implement self-x technologies can use the powerful reconfigurability 
features of the Ombra board. 

For instance it is possible to change hardware functionalities reprogramming the FPGA and chaining on 
the fly hardware parameters or algorithms: it is possible to think that micro-controller application can 
reprogram the FPGA or a lot subset. It is also possible to use the FPGA IOs in order to configure different 
interfaces, for instance for different sensor to use in several application, maintaining the same kernel. 

One of the most interesting methods for security implementation is cryptography. Several algorithms were 
studied and implemented; the most important point for such task is the trade-off between security level 
and computational complexity in order of calculation time and hardware resources. 

Speaking about embedded system this kind of problem is more important with respect to the reduced size 
in term of area and hardware resources of the target system. 



nSHIELD  D3.2 Preliminary SPD Node Technologies Prototype 

 RE  

 RE D3.2 

Issue 8  Page 85 of 127 

The Ombra multi-core system allows a Hardware-Software co design in a very small area, this allows to 
build and run algorithms as the elliptic curves cryptography in a very short time. 

The implemented demo shows how it is possible to run such algorithm in a very short time. 

5.1.1 Metrics 

The purpose of this section is to correlate the prototype features with the metrics for the node level 
described in the D2.5 deliverable. 

Generally speaking, the prototype implements a multi core platform able to meet the requirements of self-
reconfigurability and self-adaptation both software and hardware levels. Self-reconfigurability and self-
adaptation are the main features in order to implement SPD capabilities also at network and middleware 
level. In fact, the purpose of this prototype is to provide a complete and powerful platform for not only for 
the three node typology but also for the upper nSHIELD levels. 

Note that several metrics described in D2.5 are not directly applicable in the hardware platform but their 
application in the upper levels can be facilitated by an appropriate hardware platform. 

5.1.1.1 Security 

Metrics related to cryptography are met as demonstrated with the demo (next section). The Montgomery’s 
algorithm, that performs the point multiplication on an elliptic curve, is implemented in the prototype. The 
run speed allows using different bit lengths for the curve, allowing different security level. The possibility to 
use a reconfigurable hardware device could allow the application to change the cryptography parameter 
run time. 

5.1.1.2 Dependability 

The metrics of redundancy and reconfiguration can be easily achieved by the multi core platform. 
Redundancy is granted by the multi core and reconfiguration is granted by the reconfigurable hardware. 

5.1.1.3 Privacy 

The characteristics of the embedded platform ensure the possibility to store sensible and private data in 
non-accessible memory space. In addition an area of the FPGA (subsets of the block RAM for instance) 
can be allocated for this use. 

5.1.1.4 Composability 

The high flexibility of the node platform allows performing the listed dynamic and flexibility features. 

5.1.1.5 Performance 

Lightweight embedded operating system: the prototype micro-host can support Linux and windows CE. 

5.1.1.6 Interfaces 

The on board FPGA can be configured to directly implement custom devices or to implement connection 
interfaces for new devices. 

5.1.2 Demo 

This chapter describes the implementation on the OMBRA platform of the Montgomery’s algorithm that 
performs the point multiplication on an elliptic curve developed in work package 3.5, refer to section 6 for 
the technical details. 

The target is to show the running algorithm on the implemented embedded Linux platform (Linux omap 
2.6.32) and calculate the working time. It was needful to compile for the above mentioned Linux version 
the gnu gmp libraries. 
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In order to achieve a high accuracy in the running time calculation the algorithm is repeated 1000 times, 
dividing the final result for the repetition number. In this way we can obtain a reasonable average running 
time for the implemented algorithm. 

 

Figure 5-3: Demo for 256 bit curve 

We implemented the demo for two NIST standard elliptic curves: secp256r1 and secp521r1.The first 
curve is 256 bit length instead the second one is 521. The test program first of all asks to select the curve, 
and then the two branches run independently. 

The figure above shows the algorithm when the 256 bit curve is selected and the one below the 521 case. 

In the 256 bit length case the time to perform the point multiplication (change coordinates included) is 
0.023390 seconds. In the 521 bit length case the time to perform the point multiplication (change 
coordinates included) is 0.113280 seconds. 
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Figure 5-4: Demo for 521 bit curve 

We perform the same experiments on an intel core i7 @3Ghz to compare the results. In the 256 bit length 
case the time to perform the point multiplication (change coordinates included) is 0.003895 seconds. In 
the 521 bit length case the time to perform the point multiplication (change coordinates included) is 
0.017379 seconds. We can note that the computational times on the OMBRA platform are very good 
(ratio is around 6 in the 256 bit length and around 6,5 in the 521 bit length) considering that its processor 
runs at 1Ghz. 

5.2 Anonymity Service 

An anonymizer component is being developed for nSHIELD applications where personal location privacy 
must be preserved while enabling the system to provide location monitoring services. Such a service is 
essential in applications involving wearable/personal nodes where, on one hand, privacy concerns may 
arise from disclosing the service users’ exact location while, on the other hand, users’ location is essential 
to provide certain personalised services.  

After an extensive state of the art review, the TinyCasper [30] scheme was selected and will be 
implemented, aiming to preserve personal location privacy via the well-established K-anonymity privacy 
concept, while enabling the system to provide location monitoring services. The implemented scheme will 
offer a resource-aware algorithm for applications where it is essential to minimize communication and 
computational cost. A quality-aware algorithm which minimizes the size of cloaked areas in order to 
generate more accurate aggregate locations may be developed at a later stage. Provisions will be made 
and original work will be extended in order to better match nSHIELD's architecture and hardware and to 
facilitate scenarios where the nodes are mobile. On the server side a simple graphical interface will be 
used in order to setup the various parameters and monitor the system. 
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5.2.1 Network Topology & Connectivity 

As already mentioned, the system implemented relies on the K-anonymity privacy concept that aims to 
make a user indistinguishable from "K" of her neighbours. 

In more detail, every sensor node is connected to its neighbours. Sensors of a node may have different 
sensing areas due to hardware limitations: for example RED sensors RS={J} have 12x12 sensing area, 
PURPLE sensors PS={H,I,B,F,E,D} have 5x5, and GREEN sensors GS={A,C,GI} have 7x7. This is 
depicted in the figure below. Classes of sensors and their respective range must be set during 
initialization. 

 

Figure 5-5: Overlay of anonymity service node topology over floor layout. 

The location of every sensor and its sensing area is modelled as coordinates of a grid. The server of the 
system implements this grid and also keeps the accurate location of every connected node and its 
neighbouring nodes. The server is not aware of the type each sensor nor its sensing area as shown 
below. 

 

Figure 5-6: The anonymity server and its connection to nodes. 
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If a sensor moves to a new position and its sensing area is out of the grid limits, its type is downgraded to 
a lower one. The connectivity between sensors is also set by default until the sensor moves to another 
location as shown below. If a sensor moves, it informs the server about the new position and the server 
replies with the new neighbouring nodes. 

 

Figure 5-7: The Sensor "C" moving to new location. 

All of the aforementioned nodes are used as a kind of proxy, to serve requests of users in their respective 
“cloaked areas”, allowing said users to utilize location based and other such enhanced services without 
disclosing their true identity and exact location. An enhanced view of the service’s overlay including users 
can be found in the figure below. 

 

Figure 5-8: Service topology including users. 

Every node communicates with neighbours sending them its name, sensing area and number of 
monitored users. The purpose of these lists is to allow nodes to find "K" users in an area as close as 
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possible. When peers receive these messages, they rebroadcast them until all their neighbouring sensor 
nodes have enough number of users, i.e., at least K users. A snapshot of peer lists pertaining to the 
example shown above could be the following: 

A B C D E F G H I J 

H(2) A(2) B(2) C(3) D(0) J(7) J(7) G(4) C(5) B(2) 

I(2) C(3) D(0) E(2) F(1) E(2) H(2) J(7) A(2) F(1) 

B(2)  E(2)     I(2)  H(2) 

       A(2)   

 

If a node does find the required number of users, it notifies its neighbours, otherwise it informs them that it 
is still trying to find K users. In turn, each neighbour sends its peer list to the node. When a node does 
reach the desired K level based on information received, it computes a score for every peer in its peer list. 
The score is defined as follows: 

      
                             

                    
 

After the abovementioned score is calculated, the node selects the peers with the highest score and 
computes the cloaked area. The cloaked area is, therefore, a minimum bounding rectangle of the area (of 
the node and its chosen peers) which contains at least K users. Finally, the node sends the cloaked area 
it just calculated to its neighbouring nodes, validates that this area is unique and sends it to the server 
along with the total number of users contained in the area. 

An example of this process can be seen below. In this example the anonymity level is assumed to be 8 
(i.e. K=8).  

 

Figure 5-9: Example of cloaked area calculation. 

Node “I” asks node "C" for more peers to reach the desired  -anonymity level. Node "C" responds by 
sending Node "B"'s info. This way node "I" can now reach the desire K level and computes a cloaked 
area, namely the rectangle defined by: (9, 1) - (22, 1) - (9, 9) - (22, 9). This area is validated as unique 
and transmitted to the server. 
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5.2.2 Implementation Details 

Every node structure contains all the necessary information:  

• Name 

• Area-location  

• User count  

• Network address 

• Listening port  

• Send port  

It also contains dynamic linked lists with information about its neighbours: 

• A list of its neighbours 

• Neighbour’s cloaked areas 

• A peer list of the neighbours that reached K anonymity level 

The figures below detail all the data structures used. It should be mentioned that all data structures are 
dynamic to cater for the lack of memory on some of the nodes (i.e. nano nodes). 

 

Figure 5-10: Node data structure. 

 

Figure 5-11: Peer structure. 
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Figure 5-12: Peer list structure. 

 

Figure 5-13: Neighbourhood and Neighbour’s cloaked area structures. 

 

Figure 5-14: Area and Pair structures. 
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In the above figure, an example of how areas are calculated can also be seen. In the above case “A” 
node’s location would be point (5, 4) and his sensing area would be defined by points a1= (3, 2), a2= (7, 
2), a3= (3, 6), a4= (7, 6).  

5.2.3 Node Communication 

A valid message interchanged between nodes must have one of the structured defined below: 

1. /<callsign>_<sender>/ 

2. /<callsign>_<sender>_<area>_<userCount>/ 

3. /<callsign>_<sender>_<area>/ 

Callsigns types: 

• “SNINF”: a node info package (type 2) 

• “NOTIF”: Notification package. Sender reached   anonymity level (type 1) 

• “CAREA”: Cloaked Area of the sender (type 3) 

• “NO US”: Sender did not reach   anonymity level (type 1) 

A typical node message exchange can be seen below. 

  

Figure 5-15: Typical node message exchange. 

If the receiver accepts the message, it replies with the call sign. If the reply is valid, the sender considers 
that the message has been delivered successfully. 

5.2.4 Server Platform 

The server implementation was designed to be deployable in nSHIELD power nodes without imposing a 
significant performance overhead. The application was developed using Java and is deployed as a bundle 
for Knopflerfish, the service platform already present on nSHIELD power nodes. It features a graphical 
user interface (GUI) which displays the system grid, latest cloaked areas received and the pseudonym 
associated with those areas. A screenshot of the server interface can be seen in Figure 5-16. 
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Figure 5-16: Server application. Cloaked area received from node “6”. 

The main task of the server is to act as a proxy between the actual LBS service and the community of 
users and nodes. Hence, the server will be responsible for formulating service requests received by the 
nodes in a way that these will be compatible with the supported LBSs. E.g. if an LBS requires an explicit 
location to provide its services, the server can select a random position inside the cloaked area and report 
that position to the LBS server. 

5.2.5 Anonymity Scheme Demonstration 

The screenshots below detail a test execution of the resource-aware anonymity scheme implemented. In 
this demonstration two nodes where deployed, namely node “4” (at 192.168.1.4) and node “6” (at 
192.168.1.6). 

5.2.5.1 Initialization 

The nodes are initialized by the server, i.e. the server sends a list of neighbouring nodes to each node 
and its exact location in the server's grid. Every node computes its sensing area and saves its neighbour 
list. Server also informs the nodes about the required anonymity level. 

  

Figure 5-17: Typical Initialization of node “6”. 
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As can be seen above, the information displayed by the node after initialization includes: 

• Name 

• Sensing area and location : |<sArea>||<loc>| 

• Users monitored at the time of initialization 

• Network address 

Moreover the peer list is displayed with all the relevant info known for each neighbour, since every node is 
initialized with a neighbours list. If a node changes position, the server sends to the node a new 
neighbours list that contains the new neighbouring nodes. 

It should also be noted that the “(!)” mark displayed in the area field of the above figure is used to indicate 
that the area is not expected; it was chosen on purpose for this demo execution. 

  

Figure 5-18: Typical Initialization of node “4”. 

At this demo execution there are only two nodes, node “6” and node “4”. 

5.2.5.2 Node Information exchange 

The execution of the anonymity algorithm on node “6” is detailed in Figure 5-19, with an explanation next 
to the key output lines (see white text). 
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Figure 5-19: Node "6" running the anonymity algorithm. 

The same scheme is simultaneously run on node “4” (see Figure 5-20). The SNINF messages exchanged 
by nodes can also be seen in the screenshots. 

 

Figure 5-20: Node "4" running the algorithm. 

5.2.5.3 Various K-anonymity states 

As already mentioned, there are two different cases that have to be taken into account:  

In some cases the node will manage to directly reach the desired K-anonymity levels, but in other 
instances some help from neighbouring nodes will be required.  
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5.2.5.3.1 Node reached required K-anonymity level 

The successful state can be seen in the following figures, for nodes “6” and “4” respectively. Once a node 
finds K users, it broadcasts a notification to its neighbours. 

 

Figure 5-21: Node "6" achieved the desire K-anonymity level. 

 

Figure 5-22: "4" reached the required k-Anonymity level. 
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5.2.5.3.2 Node did not reach required K-anonymity level 

The unsuccessful – in terms of k-Anonymity - state for node “6” can be seen below. 

 

Figure 5-23: Node "6" cannot find K users, thus node "4" sends its peer list to node "6". 

If a node cannot find   users on its sensing area and its neighbours’ sensing area, it sends a “No   Users 
notification” (“NO US” message) and expects to receive their Peer list. The node that received a NO US 
message sends its peer list to the sender node in “SensorNodeINFo”-like messages for every peer onits 
peer list.  

Once a node eventually reaches K-anonymity it’s ready to compute its cloaked area, validate it and inform 
its neighbours and server. 

5.2.5.4 Error messages 

A typical error situation can be seen in the figure below. In this example node “4” did not reach the 
required   level and therefore “6” sent its own peer list to “4”. Since “6” did not get a valid response from 
“4”, it assumes that node “4” did not receive the message. 

 

Figure 5-24: Typical error message. 

5.3 DDoS Attack Mitigation on SPD Power/Micro Nodes 

5.3.1 Introduction 

Distributed Denial of Service attacks are one of the most common weapons in cyber-crime. The evolution 
of computer viruses the last two decades shows a clear trend from destructive viruses that used to corrupt 
files and delete hard disks to stealthy parasites that once they infect a system, they use them to spread 
spam, host phishing web sites or make them part of a DDoS attack network also known as “botnet”. We 
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now face the reality of botnets that hold millions of compromised systems ready to cripple almost any 
network or internet service they choose. 

During a DDoS attack, a massive amount of traffic arrives to the target of the attack (victim). The target is 
either a network service or the network itself. The victim’s services are disrupted due to this large traffic or 
the computational overhead that it produces. This traffic is generated from thousands of compromised 
systems that belong to, probably, unaware users. 

Due to the specification of the IP protocol, those systems can generate any kind of packets. Those 
packets can contain any random source IP address. Packets that originate from compromised systems as 
part of a DDoS attack usually hold a random source IP address or an address that belongs to another 
host. This technique, called IP spoofing, is one of the reasons that make DDoS attacks very difficult to be 
traced and/or countered. The victim accepts incoming traffic from irrelevant sources and any kind of 
filtering based on the source IP address is not possible without filtering out legitimate customers or users 
too. Either way, the final result is that the victim cannot provide its services on an acceptable rate or 
cannot provide them at all. 

nSHIELD’s power and, to an extent, micro nodes have the required characteristics to be considered as 
service providers. This brings those systems to the same environment with conventional service providers 
and makes them potential targets of DDoS attacks. 
 

In order to be able to defend against DDoS attacks, we need an effective way of knowing the true source 
of an incoming packet or, at least, some indication that will enable us to incorporate an effective filtering 
strategy. 

In this chapter we present two packet marking schemes that enable the victim to perform real time filtering 
of incoming DDoS traffic as well as trace this traffic to its true source. Given those schemes, we describe 
in detail the architecture of the filtering and traceback mechanism that is used on the victim’s network. 

The three basic methods that exist to date regarding IP traceback are ingress filtering [31], packet logging 
[32] and packet marking [33], [34], [35], [36], and [37]. 

Ingress filtering [31] dictates that each router should know the IP address space that each router’s local 
interface is serving. When a packet arrives to the router’s ingress interface it should have a valid IP 
address or it is dropped. This method is quite simple and effective for preventing IP spoofing but has its 
drawbacks. It requires considerable additional knowledge from the routers. It also depends on global 
deployment. Even today, a considerable percentage of the networks do not employ ingress filtering or 
similar methods and allow spoofed packets to travel through the Internet [38]. 

In packet logging, the routers keep logs regarding the packets that pass through them. With the help of 
those logs, a recent packet can be traced back to its original source. Routers are required to keep 
considerable amount of information especially in high bandwidth networks. In [32], we see that the 
memory overhead can be reduced by storing only a digest of the packet’s header. Global deployment is 
also an issue in this method. 

Packet marking was first introduced in [34]. In packet marking, the routers overload parts of the IP header 
of the traversing packets in order to put a marking that notifies the recipient of the packet of their presence 
on the route. The recipient gathers those markings and rebuilds the complete path that this packet 
traversed. 

In probabilistic packet marking (PPM) [34], [35], the marking procedure is performed once every n 
packets. This reduces the computational overhead of the marking but increases the number of packets 
needed to reconstruct the path. In deterministic packet marking (DPM) [33], the marking procedure is 
performed for each packet at edge routers only. This reduces the number of packets needed for path 
reconstruction. 
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5.3.2 Packet Marking Schemes 

The basic principle of our packet marking schemes [36], [37] is that, in order to be able to effectively stop 
an ongoing DDoS attack, we have to be able to distinguish which incoming packets are parts of the 
attack. We have to be able to perform this in real time so that we can filter each and every packet that 
belongs to the attack before it reaches the victim’s server. 

Existing mechanisms can identify the packets that belong to an ongoing DDoS attack, given enough 
packets and time to process them [39], [40], [41]. If the source IP address was reliable, they could filter all 
the packets that arrive from the IP address and stop the attack. Since this is not the case, packet 
markings are to be used instead of source IP address. 

According to our schemes, the routers along a packet’s path inject inside the IP header of that packet 
information that can be used as an indication regarding to the true source of this packet. Once the packets 
arrive at their destination, the victim can use this piece of information instead of the source IP address in 
order to distinguish which packets belong to which network. Moreover, our packet marking schemes 
enable real time filtering of the traffic that belongs to a DDoS attack mainly due to the fact that the filtering 
procedure is based, unlike most existing packet marking schemes, only on the information that exists 
inside each individual packet. In more detail, the packet marking procedure can be described as follows: 

Once a packet enters the network, the first router along its path overwrites certain fields of the IP header 
and puts part of its IP address, that we will call “Router Signature”, in that place. It also initializes a 
distance counter, that we will call “Distance Field”, to zero. The distance field and the router signature 
occupy the part of the packet’s IP header that we have overwritten. More detail about this encoding can 
be found in the next subsections. 

Each subsequent router along the packet’s path increases the distance field by one and puts the result of 
a <xor> between the existing router signature (inside the packet’s header) and its own signature to the 
corresponding field inside the packet’s header. 

From the victim’s point of view, all the incoming packets bear inside their IP header a distinctive marking 
that denotes their true origin. The DDoS detection system as well as the filtering mechanism and firewall 
can use those marks instead of the source IP address in order to decide, in real time since no other piece 
of information is required, which packets should be dropped. This scheme is able to provide information 
up to the closest router to the source. Thus when one or more hosts, from a certain network, participate in 
an ongoing DDoS attack, all the packets from that network will be dropped by the victim. This is an 
inherent limitation of any packet marking scheme. The more extensive the deployment of the marking 
scheme becomes, the more precise the filtering capabilities are. 

In case there is a need of finding the true source of the attack packets, the victim needs to collect all those 
marks that participated in the attack and perform, recursively, the reverse marking procedure [37]. For the 
traceback procedure to work, it is required from the victim to hold an updated map of all upstream routers. 
That kind of map can be obtained by using standard trace route tools such as Skitter [42] that can map 
thousands of nodes every day in a non-intrusive manner. Furthermore, such a map can be obtained after 
the DDoS attack because of the fact that the traceback procedure, being recursive, is too computational 
intensive to be performed during an ongoing attack. 

The marking procedure introduces no additional network bandwidth overhead, unlike packet logging 
schemes [32], since no control traffic is generated during the marking, filtering or traceback procedure. 
The computational overhead required by the routers is minimal and it involves one increment and one 
<xor> operation between constant values. The majority of the computational overhead is distributed 
amongst the victims of the DDoS attacks and not the network backbone itself. No additional memory 
overhead is introduced to the routers either. 

The filtering procedure can be performed in real time since all the required information lies inside each 
individual packet’s header unlike Probabilistic Packet Marking [34] that needs 500-4000 packets and 
Deterministic Packet Marking [33] that needs 7-10 packets to identify the source of one packet. 
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5.3.2.1 Scheme I 

In the packet marking scheme I [36] we use the shaded part of the IP header that can be found in the 
figure below for the packet marking. From those 17 bits, we use 12 bits for the “Router Signature” field 
and 5 bits for the “Distance” field. 

 

Figure 5-25: The IP header in packet marking I. In packet marking scheme I, we overload the 
shaded part of the IP header to put the 17 bit packet marking. 

In every detection system exists the probability to classify a host that is not part of a DDoS attack as an 
attacking host (false positive) or an attacking host as legitimate (false negative). 

The packet marking scheme is supposed to be deployed along with a DDoS detection mechanism. This 
mechanism identifies the sources of the DDoS attack as long as the information about the source of each 
packet provided by the marking scheme is correct. By design the packets that come from a host that 
participates on the attack will bear the same marking. In the rare exception that the routing changes 
during the attack, either this host will disappear, from the victim’s point of view, and be replaced by 
another host (the marking of the host will change) or other hosts will appear as parts of the DDoS attack 
(some of the host’s traffic will follow another route). Nevertheless the marking scheme produces no false 
negatives and the false negative probability of the combination of the two systems depends only on the 
detection system. 

 

Figure 5-26: The false positives of packet marking scheme I for 130 to 150 thousand edge routers. 
As the attack sources rise, we notice a considerable decline in false positives. 
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The false positive probability depends on the number of the attackers, the total number of edge routers 
and the length of the marking field. Let R be the number of edge routers and A the number of attacking 
hosts. Let n be the length of the marking field. The number of edge router IP addresses that match a 
specific marking is μ=R/2n. The number of distinct markings that the attacking packets will bear is the 
number of the resulting faces of a 2n faced die after A throws. The latter is a special case of the 
occupancy problem [43]. Thus the expected number of distinct markings of the attack packets is: 

 

The number of false positives F can be calculated as follows: 

 

As the number of attackers increase, the collisions between sources that belong to the attack also 
increase. Thus the percentage of false positives lowers for large numbers of attacking hosts as shown in 
the figure above. 

5.3.2.2 Scheme II 

In packet marking scheme II [37] we use the shaded part of the IP header that can be found in the figure 
below for the packet marking. From those 32 bits, we use 27 bits for the “Router Signature” field and 5 bits 
for the “Distance” field. 

In order to ensure that the packet will not be corrupt due to the IP fragment fields overload, before the 
packet reaches its destination, the offset and flags fields are set to zero. This is done by the closest to the 
destination router which is usually the one that collects the markings too. All the packets except 
fragmented packets will remain compatible with the IP specification. The fragmented packets will still be 
corrupt though. 

The fact that we use 27 bits for the router signature field ensures that there is enough space to cover all 
the class A and B networks as well as most of the class C networks. The routers simply put their 27 most 
significant bits of their IP address into the field during the marking procedure. Therefore the marking 
procedure has virtually zero fault positive probability unlike previous marking schemes [33], [34], [35], [36]. 
False negative probability is the same as in packet marking I. 

 

Figure 5-27: The IP header in packet marking II. In packet marking scheme II, we overload the 
shaded part of the IP header to put the 32 bit packet marking. 

5.3.3 Filtering and Traceback Mechanism 

Given the deployment of one of the above packet marking schemes; the victim is in the position of 
knowing valuable information about the origin of each incoming packet. When a network or system is 
under a DDoS attack, two things are of highest priority. First, the victim should be able to keep its service 
online and serve its legitimate customers with as little disruptions as possible. Second priority is to be able 
to identify the true sources of this attack and see what it can be done to stop it permanently. 
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In order to achieve undisrupted services, the victim must be able to filter out in an intelligent manner most 
of the incoming attack traffic. The fine line lies to the point where the victim drops enough attack traffic to 
hold the server load to acceptable levels so that it can serve legitimate requests. In most cases, dropping 
attack traffic, which means putting entire networks to a black list and refusing any kind of traffic originating 
from them, results in some legitimate clients to be denied access too. This is the result of two factors. The 
first factor is the inherited false positives of the packet marking schemes which indicate that some 
networks that are not part of the attack could be marked as such. The second and most important, due to 
the existence of packet marking scheme II, factor is the inability to distinguish nodes inside the same 
network. This means that there are situations where legitimate clients and attack nodes lie inside the 
same network. Refusing incoming traffic from that network, even if we know for sure that is one of the 
origins of the DDoS attack, means that some legitimate users will not be able to access the service. 

Filtering the incoming traffic should be done in real time for each packet. The factor that enables real time 
filtering is the marking that lies inside each packet header. Once it is known that packets from a certain 
network (bearing a distinct marking) are part of the DDoS attack, all those packets can be easily identified 
from their marking and be dropped. The lack of any kind of necessary correlation between packets and 
the complete independency from the source IP address ensure that the filtering mechanism can perform 
in real time and be robust against IP spoofing respectively. 

Apart from filtering, it is often necessary to identify the exact address of the networks that took part in the 
DDoS attack so that the victim can either inform the administration of those networks for the existence of 
a live botnet inside their networks or demand compensation. Packet markings do not show the exact 
address of the incoming packet but this can be calculated following the traceback procedure that has 
been described in previous sections. This procedure is time consuming but can be followed during or after 
the DDoS attack in a separate environment. All the necessary information is stored inside the 
mechanism’s repository and, due to its tiny storage size, it can be held indefinably. 

Repository

Control Center

System Load 

Monitor

DDoS Detection 

Monitor

DDoS Load 

Monitor

Network Interface

Firewall

 

Figure 5-28: The filtering and traceback mechanism architecture. 
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In the figure above we show the architecture of the filtering and traceback mechanism. The mechanism 
consists in a DDoS load monitor, a DDoS detection monitor which can be part of existing network 
intrusion detection (NIDS) system, a system load monitor, and a reconfigurable firewall able to handle 
packet markings, a repository and a control centre. 

In general, the two DDoS monitors observe incoming traffic and send alerts to the control centre. The 
control centre gets periodic reports from all three monitors. The repository holds information about the 
networks that are of interest to the victim’s company or organization. In the case of an ongoing DDoS 
attack, the control centre evaluates the reports and, in conjunction with the information in the repository, 
sends directives to the firewall regarding which networks (i.e. markings) should it filter out. 

In the following sections, we will describe each module and we will present some test case scenarios. 

5.3.3.1 Module Description 

The modules of the filtering and traceback mechanism can be seen in the figure above. The system, 
implements a reconfigurable firewall that handles all the filtering according to the directives taken from the 
control centre. 

As the packets travel from the network interface, they are being observed by two DDoS monitors. The first 
is the DDoS detection monitor who determines whether or not the system is under DDoS attack and also 
informs the control centre which networks are parts of this attack. Once the attack alert has been sent, the 
markings of the identified networks are being sent to the control centre the moment they are observed. 
The DDoS detection monitor can be part of a more complete NIDS system that is probably already 
installed on the victim’s system. It uses any of the existing DDoS detection mechanisms [39], [40], [41] 
which incorporate detection methods that span from statistical anomaly detection to neural networks and 
pattern matching mechanisms or the DDoS detection system designed in nSHIELD. One major difference 
from conventional monitors is that all the necessary packet analysis and correlation is being done based 
on the existing packet marking instead of the source IP address. Detection mechanisms usually involve 
large samples of packets originating from the same source and/or deep packet inspection. This procedure 
is not required to be in real time as long as it produces results with low positive or negative fault 
probability. The actual filtering is being performed by the firewall once the monitor sends the results to the 
control centre. 

The second DDoS monitor gathers load statistics regarding the attack traffic. Once a DDoS attack begins, 
it receives the offending markings from the control centre and it sends back the traffic load that each 
attack source (network) produces. This information helps the control centre to decide which network 
should be filtered out, depending on the overall server load. 

The last monitor is a standard system load monitor that reports back to the control centre. This monitor 
also triggers a DDoS attack alert when the server load reaches a certain use specified threshold. This 
alert is indicative of the possible existence of an ongoing attack but the absence of a similar alert from the 
DDoS detection monitor in a user specified amount of time results in a visual alert and/or report to the 
network administrator. 

The repository is a database the holds information about the networks that are of interest to the server’s 
company or organization. Each record has the fields that can be seen in the table below. 

The fields “network name”, “network”, “network marking”, “average traffic” and “block” are standard while 
the rest can be user specific. Each user specific field reflects one metric that should be considered when 
deciding to block this network as part of an ongoing attack. Such fields also have a weight factor. This 
factor denotes the percentage that this characteristic should take part to the final result. 

The necessity of a repository occurs due to the fact that, in many cases, networks that are part of an 
ongoing DDoS attack host legitimate users too. It is therefore necessary to hold back on blocking certain 
networks until it is absolutely necessary. The combined results of the user specific factors along with their 
weights for each network give to the control centre the priority list that dictates the order that those 
networks get blocked. 
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The “average traffic” field is used to calculate the approximate “real” attack traffic that originates from this 
network if this network is part of an ongoing DDoS attack. The “block” field denotes a network that is 
either of no value at all to the organization or, for some other reason, should be blocked even before 
attempting to block unknown networks which usually have the first priority. 

Table 5-2: Each record in the repository denotes a network and has a set of standard fields (those 
marked with *) and user specific fields along with their respective weights. 

Id* 

Network Name* 

Network* 

Network Marking* 

Network Size 

Network Size Weight 

Customer Size 

Customer Size Weight 

Customer Priority 

Customer Priority Weight 

Region 

Region Weight 

Average Traffic* 

Block* 

 

The next module is the firewall. Apart from the usual features, the firewall can be reconfigured on the fly 
by the control centre as more markings appear in the firewall’s black list. This type of filtering is based 
only on the marking that the packet bears and not its source IP address. The remaining firewall rules can 
use the usual method of source identification. The firewall also strips the marking from the packet and 
resets the overloaded IP header fields to their default values depending on which packet marking scheme 
is used. 

The last component is the control centre. The control centre is the component that gathers all the data 
from the three monitors and decides which networks should be blocked. This decision is based on the 
monitor readings and the information that lies inside the repository regarding known networks. 

In the case where the DDoS attack originates from unknown networks (not present in the repository), it 
progressively blocks those networks by sending their respective markings to the firewall’s black list. The 
readings from the DDoS load monitor enable the control centre to randomly block the minimum amount of 
attacking networks that will bring the server load to comfortable levels in the first iteration. In subsequent 
iterations, possible fluctuations on the traffic rate will result in more or less networks blocked respectively. 
The selective blocking of even unknown networks ensures that possible legitimate users from those 
networks get to be served if the server load permits it. 

When the DDoS attack involves networks that exist in the repository, it follows the following procedure: 
first it blocks the networks that have the “block” field enabled. Then it uses the readings from the DDoS 
load monitor to determine the server load in the case where every network (known or unknown) is 
blocked. If the result is lower than the user defined “comfortable” level, it starts subtracting known 
networks from the candidate black list according to their position in the repository’s priority list until the 
projected load reaches as close to the user defined maximum load. In the case where more than one 
combination exists, i.e. more than one known networks of the same priority can fit in the last place before 
the projected server load reaches the maximum, the “average traffic” field is used instead of priority. If the 
result is still lower than the “comfortable” level, unknown networks are being subtracted from the 
candidate black list. The resulting list is sent to the firewall which handles the filtering procedure. In each 
subsequent iteration, measurements from the server load and DDoS load monitors, are being taken to 
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determine if further reconfiguration is needed. If the server load exceeds the upper or lower threshold or 
the traffic load of the attacking networks changes considerably, the control centre repeats the procedure. 

This procedure ensures service availability while taking care of blocking the least possible legitimate 
users. 

5.3.3.2 Scenarios and Test Cases 

A typical scenario of a DDoS attack starts with an alert from DDoS detection monitor and a significant rise 
of the system load as perceived from the respective monitor. Let’s say that the attack originates from five 
distinct networks. After a short amount of time, the control centre receives the markings of those five 
networks from the DDoS detection monitor. It performs a repository lookup and finds that two of those 
networks are large ISPs with considerable customer base that should be handled with different priorities. 
The control centre gets readings from the DDoS load monitor and based on those readings and the 
known networks priorities tries to fit as many networks as possible inside the 80-100% server load 
boundary that has been configured by the administrator. The result is that the three unknown networks get 
blocked at first. Of the remaining two networks, the one with the lowest priority gets blocked too. Having a 
projected system load of ~70% and not being able to fit the other known network, the control centre 
chooses not to block the one of the three unknown networks that produces traffic equal to 15% of the 
server capacity. The server load stabilizes to ~85% for some time until the DDoS attack stops. At this 
moment, the control centre revokes all filtering directives. Two more test cases can be seen in the figures 
below. 

 

Figure 5-29: Test case 1. A DDoS attack starts progressively. The control centre responds and 
stabilizes the server load to a comfortable level. 
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Figure 5-30: Test case 2. This DDoS attack incorporates networks that are of value to the victim’s 
organization. Some networks stop sending traffic in the middle of the attack while others join the 

attack later. 

In the first figure we see at timeframe 7 the start of a DDoS attack. At timeframe 14, the server load 
exceeds server capacity. Until then, no action was taken since the server load was under the upper 
threshold. After a while, at timeframe 20, the control centre has received the markings of all attacking 
networks and chooses to block some of them randomly since none of them had a record in the repository. 

In the second figure we see the start of a massive DDoS attack at timeframe 6. This time the attack 
originates from networks that are known to the victim’s repository as well as unknown networks. The 
control centre receives all the markings and each network’s approximate traffic and takes the decision to 
block all unknown networks and one known that has low priority, so that the server load comes to 
acceptable levels. At timeframe 17, some of the attacking networks stop sending traffic. The control centre 
then releases the one known network that was previously blocked as well as a few unknown networks. At 
timeframe 27, more networks join the ongoing DDoS attack. The control centre repeats the decision 
procedure and stabilizes the system load. 

5.3.4 Conclusions 

We designed a packet marking scheme in conjunction with an intelligent filtering and traceback 
mechanism that can effectively stop ongoing DDoS attacks. We described in detail the architecture of a 
highly configurable mechanism able to react in different attack scenarios and ensure the highest amount 
of legitimate user service under an ongoing DDoS attack. With precise tuning of this mechanism, an 
organization can provide robust while flexible protection against such attacks. 
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6 Cryptographic technologies 

The main research areas targeted by cryptographic technologies are the following: 

• Hardware and software crypto technologies (including asymmetric cryptography, ECC 
cryptography and symmetric cryptography suitable for constrained devices). 

• Anti-tamper technologies. 

• Key exchange mechanisms. 

6.1 Elliptic Curve Point Multiplication over Prime Fields Library 

This library represents the implementation of the point multiplication operation on an elliptic curve on 
prime field, which is the core of elliptic curve-based cryptographic protocols like Elliptic Curve Diffie-
Hellman (ECDH) and Elliptic Curve Digital Signature Algorithm (ECDSA). 

Detailed information about the algorithm and the theory included in the library can be found in the 
deliverable D3.1. 

6.1.1 Description 

The elliptic curve point multiplication operation is defined as Q=kP, where Q, P are points in a previously 
chosen elliptic curve defined over a prime field GF(p), and k is a field element. Here p is the characteristic 
of the field. 

The elliptic curves supported are in the simplified Weierstrass form y
2
=x

3
+ax+b, where a,b are elements of 

GF(p) with p different from 2 or 3. Supported curves include those specified by NIST (Standards for 
Efficient Cryptography 2 – September 20, 2000, available at www.secg.org) indicated as secp160r2, 
secp192k1, secp192r1, secp224k1, secp224r1, secp256k1, secp256r1, secp384r1, secp521r1. 

This library supports elliptic curve point representations called Affine coordinates and Jacobian 
coordinates. 

This library employs the Montgomery Ladder algorithm in order to accomplish the elliptic curve point 
multiplication. This is the most efficient algorithm producing side-channel attacks-resistant cryptosystems. 
For testing purposes only, the elliptic curve point multiplication is provided with the trivial binary method 
also. 

6.1.2 Basic Interface 

Configuration parameters: field characteristic p, elliptic curve coefficients a, b belonging to GF(p). 

Input parameters: scalar k belonging to GF(p), x coordinate of the affine point P(x,y) belonging to the 
elliptic curve y

2
=x

3
+ax+b defined over GF(p). 

Library output: if x is a valid coordinate of a point over the specified curve, the library returns the affine 
point Q = kP. 

6.1.3 Code Compilation and Dependencies 

This library requires the GNU Multiple Precision Library (libgmp) version 4.3 or higher. This dependency is 
freely available at [44], with LGPL license. 

The entry point of the library is represented by the source file Lib.h. A custom program including this 

source file can be compiled with the following line: 

$ gcc -o CustomProgram CustomProgram.c Lib.c -lgmp –lm 
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6.1.4 Hardware platform 

Hardware tests for present library are conducted on the OMBRA platform, provided by Selex ES, with a 
Linux operating system. This platform presents a SOIC integrating an ARM Cortex-A8 running at 1GHz. 

6.1.5 Library API 

• void Montgomery(mpz_t x3,mpz_t y3,mpz_t x1,mpz_t y1,mpz_t field,mpz_t a,mpz_t k): 
performs (x3,y3)=k(x1,y1), using the Montgomery algorithm, on a curve with parameter a and 
over the prime field. Point operations are performed in affine coordinates. 

• void Montgomery_j(mpz_t x3,mpz_t y3,mpz_t x1,mpz_t y1,mpz_t field,mpz_t a,mpz_t k): 
performs (x3,y3)=k(x1,y1), using the Montgomery algorithm, on a curve with parameter a and 
over the prime field. Point operations are performed in Jacobian coordinates. 

• int testCurve(mpz_t delta,mpz_t a,mpz_t b,mpz_t field): checks if the elliptic curve described 
by the parameters a, b over the prime field field is supersingular, returning delta=4a

3
-27b

2
. 

• int testPoint(mpz_t y_square,mpz_t a,mpz_t b,mpz_t field,mpz_t x): checks if field element x 
is a valid coordinate on the curve described by a, b returning corresponding y

2
. 

• int Tonelli(mpz_t c,mpz_t a,mpz_t p): given a field element a, computes c
2
=a mod p. Used to 

evaluate y from y
2
 provided by test Point API. 

• int Hasse(mpz_t field): returns the theoretical upper bound of the number of elliptic curve points 
over specified field.  

• void KappaP(mpz_t x3,mpz_t y3,mpz_t x1,mpz_t y1,mpz_t field,mpz_t a,mpz_t k): performs 
(x3,y3)=k(x1,y1) on a curve with parameter a and over the prime field. Point operations are 
performed in affine coordinates. This algorithm is only for testing purposes, since it makes the 
cryptosystem vulnerable to side-channel attacks. 

• void KappaP_j(mpz_t x3,mpz_t y3,mpz_t x1,mpz_t y1,mpz_t field,mpz_t a,mpz_t k): 
performs (x3,y3)=k(x1,y1) on a curve with parameter a and over the prime field. Point operations 
are performed in Jacobian coordinates. This algorithm is only for testing purposes, since it makes 
the cryptosystem vulnerable to side-channel attacks. 

6.1.6 Service functions 

• void sum(mpz_t x3,mpz_t y3,mpz_t x1,mpz_t y1,mpz_t x2,mpz_t y2,mpz_t field): sum of two 
elliptic curve points in affine coordinates over a specified prime field: (x3,y3)=(x1,y1)+(x2,y2) 

• void duble(mpz_t x3,mpz_t y3,mpz_t x1,mpz_t y1,mpz_t field,mpz_t a): doubling of an elliptic 
curve point in affine coordinates over a specified prime field and on curve specified parameter a: 
(x3,y3)=2(x1,y1) 

• void sum_j(mpz_t X3,mpz_t Y3, mpz_t Z3,mpz_t X1,mpz_t Y1,mpz_t Z1,mpz_t X2,mpz_t 
Y2,mpz_t Z2,mpz_t field): sum of two elliptic curve points in Jacobian coordinates over a 
specified prime field: (X3,Y3,Z3)=(X1,Y1,Z1)+(X2,Y2,Z2) 

• void duble_j(mpz_t X3,mpz_t Y3,mpz_t Z3,mpz_t X1,mpz_t Y1,mpz_t Z1,mpz_t field,mpz_t 
a): doubling of an elliptic curve point in Jacobian coordinates over a specified prime field and on 
curve specified parameter a: (X3,Y3,Z3)=2(X1,Y1,Z1) 

• void a2j(mpz_t x,mpz_t y,mpz_t X,mpz_t Y,mpz_t Z): conversion from affine point to Jacobian 
point: (x, y) => (X,Y,Z) 

• void j2a(mpz_t x1,mpz_t y1,mpz_t X1,mpz_t Y1,mpz_t Z1, mpz_t field): conversion from 
affine point to Jacobian point: (X,Y,Z) => (x, y) 
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6.1.7 Code Samples 

An example of library usage is provided in Main.c: this program performs a simple Elliptic Curve Diffie-
Hellman protocol. The example code shows how to initialize the memory for every finite field element 
(mpz_t type from libgmp), the definition of some domain parameters of the protocol (underlying prime field 
characteristic, elliptic curve parameters, generator point affine coordinates) and the actual protocol 
execution. 

6.2 Compact Crypto Library 

Well-known crypto libraries, like open SSL, target on mainstream applications. Other libraries that are 
designed for embedded system applications contain redundant functionality as they support a wide range 
of cryptographic primitives. For nSHIELD cryptographic technologies, we implement a compact crypto 
library for a subset of lightweight ciphers and compact implementations of standard cipher. The library 
utilizes open source implementation of known ciphers. We implement a common API for utilizing all of 
them with their different parameters. 

6.2.1 Description 

In this first prototype, the library contains block/stream ciphers and hush functions. For block ciphers, it 
supports AES [45], DES [46], 3DES [46], PRESENT [47], LED [48], KATAN [49], KTANTAN [49], Clefia 
[50], Camellia [51], XTEA [52] and XXTEA [53]. The block ciphers can operate in ECB, CBC and CTR 
modes of operation. The padding schemes that have implemented are the zeroPadding, PKCS5, PKCS7, 
ISO_10126-2, ISO_7816-4 [54] and X9.23. For stream ciphers, it supports the ARC4 [55] and the 
eSTREAM project [56] finalists Salsa [57], Rabbit [58], HC128 [59], SOSEMANUK [60], Grain [61], Grain-
128 [61], Trivium [62] and Mickey v2 [63]. For hash functions, it supports the new SHA-3 function Keccak 
[64] and the other finalists of the SHA-3 contest [65] Blake [66], JH [67], Groestl [68] and Skein [69]. The 
crypto library is implemented in C language. We apply and test the library on on MemSic IRIS [70], 
BeagleBone [71], BeagleBoard [72] and BeagleBoard-xM [73] devices. 

6.2.2 Basic Interface 

Configuration parameters: the type of the crypto-primitive [block cipher, stream cipher, hash function] 

Input parameters: The input parameters of each crypto-primitive. For block ciphers, the input parameters 
are the cipher name (AES, DES, TripleDES, PRESENT, LED, KATAN, KTANTAN, CLEFIA, CAMELLIA, 
XTEA and XXTEA), the encryption key, the plaintext/ciphertext, the mode of operation (ECB, CBC and 
CTR) and the padding (ZEROPADDING, PKCS5, PKCS7, ISO_10126-2, ISO_7816-4 and X9.23). For the 
stream ciphers, the input parameters are the cipher name (ARC4, HC128, RABBIT, SALSA20, 
SOSEMANUK, GRAIN, GRAIN128, TRIVIUM and MICKEY2), the encryption key, the initialization vector 
(IV) and the plaintext/ciphertext. For the hash functions, the input parameters are the hash function name 
(MD5, SHA-1, SHA-256, SHA-512, SHA-3, KECCAK, BLAKE, JH, GROESTL and SKEIN), the encryption 
key and the plaintext. 

Library output: if the input parameters are valid, the library returns the result of the crypto-primitive. For a 
block/stream cipher encryption/decryption returns the ciphertext/plaintext. For a hash function returns the 
message digest. If the input parameters are invalid, the library returns error codes. 

6.2.3 Code compilation and Dependencies 

This library embodies open source implementations of crypto-primitives. 

• The full library is compiled by the command: $ make 

One can compile specific components of the library like: 

• Compile all the block ciphers: $ make block_ciphers 
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• Compile all the stream ciphers: $ make stream_ciphers 

• Compile all the hash functions: $ make hash_functions 

Or even specific crypto-primitives: 

• E.g. Compile the block ciphers AES and the stream cipher Salsa20:  

$ make --enable-aes --enable-salsa20 

The entry point of the library is represented by the source file crypto_lib.h. A custom program must 

include the library header in its source file: 

“include crypto_lib.h” 

6.2.4 Hardware platform 

Hardware tests were conducted on Memsic IRIS devices [70], with Contiki operating system. IRIS uses 
the Atmel ATMega 1281 processor at 8 MHz, with 8-KB RAM and 128-KB program flash memory. For 
nSHIELD’s scope, Memsic IRIS is considered as a nano node. We also test the proposed library on the 
BeagleBone [71], BeagleBoard [72] and BeagleBoard-xM [73] platform, with an Ubuntu Linux operating 
system. For system in chip, the BeagleBone uses an AM3359, the BeagleBoard uses OMAP3530 and the 
BeagleBoard-xM uses a DM3730. All of them include an ARM Cortex-A8 single core CPU running at 500-
720 MHz, 720MHz and 1GHz respectively. BeagleBone and BeagleBoard have 256-MB RAM and 
BeagleBoard-xM 512-MB RAM. For nSHIELD’s scope, BeagleBone and BeagleBoard are micro/personal 
nodes and BeagleBoard-xM is a power node. 

6.2.5 Library API 

For block cipher en/decryption: 

• Byte * cryptolib_encrypt(char *cipher_name, byte *plaintext, byte *key, char *mode, char 
*padding): encrypts a plaintext with the block cipher ‘cipher_name’ and encryption key ‘key’, with 
operation mode ‘mode’ and padding ‘padding’. The function returns the ciphertext. 

• Byte * cryptolib_decrypt(char *cipher_name, byte *plaintext, byte *key, char *mode, char 
*padding): decrypts a ciphertext with the block cipher ‘cipher_name’ and decryption key ‘key’, 
with operation mode ‘mode’ and padding ‘padding’. The function returns the plaintext. 

For stream cipher en/decryption: 

• Byte * cryptolib_encrypt(char *cipher_name, byte *plaintext, byte *key, byte *iv): encrypts a 
plaintext with the stream cipher ‘cipher_name’, encryption key ‘key’ and initialization vector ‘iv’. 
The function returns the ciphertext. 

• Byte * cryptolib_decrypt(char *cipher_name, byte *plaintext, byte *key, byte *iv): decrypts a 
ciphertext with the stream cipher ‘cipher_name’, decryption key ‘key’ and initialization vector ‘iv’. 
The function returns the plaintext. 

For hash functions: 

• Byte * cryptolib_hmac(char *hmac_name, byte *plaintext, byte *key): calculates the digest of 
a plaintext with the hash function ‘hmac_name’ and the encryption key ‘key’. The function returns 
the digest. 

6.2.6 Service Functions 

For input/output: 

• Byte * cryptolib_read_file_text(char *plainFILE, int *plbytes): reads the file ‘plainFILE’ that 
contains ASCII characters. The function returns the data that was read in bytes. 
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• Byte * cryptolib_read_file_hex(char *plainFILE, int *plbytes): reads the file ‘plainFILE’ that 
contains hexadecimal characters. The function returns the data that was read in bytes. 

6.2.7 Code Samples 

Three examples of library usage are provided in demo_block_ciphers.c, 
demo_stream_ciphers.c and demo_hamcs.c: this program reads the input parameters from the 

command line and executes one cryptographic function. For block/stream ciphers, the cryptographic 
function encrypts a plaintext, decrypts the relative cipher text and verifies the decrypted massage is the 

same with the initial plaintext. For hmacs, the cryptographic function computes the digest of a message. 

The program prints relevant error messages. The user can also define input/output files. 

For the first demo runs the command: $ make block_ciphers 

The demo compiles all block ciphers. To run the program, type the command: 

$./demo_block_ciphers –o –h <cipher_name> <key_string> <mode> <padding> 
<input_file> 
 

where: 

• -o: optional parameter for printing descriptive messages (debugging) 

• -h: optional parameter for reading the input data from a file 

• <cipher_name>: AES, DES, TRIPLEDES, PRESENT, LED, KATAN, KTANTAN, CLEFIA, 
CAMELLIA, XTEA and XXTEA 

• <key_string>: the en/decryption key 

• <mode>: ECB, CBC, CTR 

• <padding>: zeroPadding, PKCS7, PKCS5, ISO_10126-2, ISO_7816-4, X9.23 

• <input_file>: the input file for the ‘-h’ parameter 

 

For the second demo runs the command: $ make stream_ciphers 

The demo compiles all block ciphers. To run the program, type the command: 

$./demo_stream_ciphers –o –h <cipher_name> <key_string> <IV_string> 
<input_file> 
 

where: 

• -o: optional parameter for printing descriptive messages (debugging) 

• -h: optional parameter for reading the input data from a file 

• <cipher_name>: ARC4, HC128, RABBIT, SALSA20, SOSEMANUK, GRAIN, GRAIN128, 
TRIVIUM and MICKEY2 

• <key_string>: the en/decryption key 

• <iv_string>: the initialization vector (IV) 

• <input_file>: the input file for the ‘-h’ parameter 

 

For the third demo runs the command: $ make hmacs 

The demo compiles all hmacs. To run the program, type the command: 
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$./demo_hmacs –o –h <hmac_name> <key_string> <input_file> 
 

where: 

• -o: optional parameter for printing descriptive messages (debugging) 

• -h: optional parameter for reading the input data from a file 

• <cipher_name>: MD5, SHA-1, SHA-256, SHA-512, SHA-3, KECCAK, BLAKE, JH, GROESTL 
and SKEIN (SHA-3 actually runs the Keccak function) 

• <key_string>: the digest key 

• <input_file>: the input file for the ‘-h’ parameter 

Moreover, we implement a benchmark application (benchmark_suite.c) that executes all the compiled 

primitives over 1 MB data and presents their execution time (the block ciphers are executed in ECB mode 
with zeroPadding). 

After compilation, run the command: 

$./benchmark_suite 

6.3 Anti-tamper technologies 

There are basically two kinds of anti-tamper measurements to protect the sensitive information of the 
node and prevent an easy access by an external attacker [74]: 

• Measures that are typically implemented at manufacture level as passive physical barriers. 

• Measures consisting of continuous monitoring and detection of tamper attacks. This could be 
done by means of commercial supervisor chips or through dedicated blocks already implemented 
in some microprocessors. 

Ideally, the safest approach would be to always maintain critical information within a secure chip. Both 
TPM chips, crypto processors and some other microprocessors already provide some kind of anti-tamper 
mechanisms and sealed storage. Therefore, depending on the system design, sensitive data flow, 
execution environment and targeted security level, additional anti-tamper measures may be necessary or 
not.  

It is important to remark that although security level could be increased with better anti-tamper 
mechanisms, it is not possible to develop a 100% trusted device. The security level of the node must be 
targeted taking into account its final market. It must be evaluated whether the complexity of the anti-
tamper measures compensate the cost of a successful attack or not.  

The hypothetical investment that would be required to perform a successful attack would be increased 
accordingly to the efficiency of the security measurements implemented. 

6.3.1 Encapsulation and physical barriers 

There are some basic guidelines at PCB design phase that could be followed to achieve a minimum 
protection level: 

• Use PCBs with several layers and route the sensitive tracks by intermediate layers only. 

• Use BGA-style chips. 

• Use blind vias in intermediate layers. 

• EMI shielding 

• ESD protection 
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However, these measurements could be circumvented with dedicated tools and instrumentation. 

Some manufacturers offer commercial anti-tamper solutions that provide protection for small PCBs by 
means of dedicated enclosures fully covered with conductive nets. These enclosures contain some 
monitor points intended to be connected to specialized chips in order to detect physical intrusions (seen 
as open or short circuits). Some of these products conform to FIPS 140-2 and other security standards: 

 GORE: this manufacturer provides some anti-tamper mechanisms based on different enclosure 
types [75].  The following list is just an excerpt of all available options: 

o Secure encapsulated module: this method is used to provide complete coverage of all 
surfaces of the PCB. Communication with outside world is done through two flat 
connectors. It conforms to FIPS 140-2, Level 4. 

 

Figure 6-1 – Secure encapsulated module 

o Secure PCMCIA Card: it is applied to PCMCIA form factor cards. Targeted for FIPS 140-
2, Level 4, DoD, NSA Type 1, and CESG Enhanced Grade security 

 

Figure 6-2 – Secure PCMCIA Card 

o Secure Plug-on Module: the PCB is contained in a rigid secure module which is 
connected to a motherboard through one single multipurpose connector. This mechanism 
conforms to FIPS 140-2, Level 3, 3+, and USPS security requirements. 

 

Figure 6-3 – Secure plug-on module 
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o Tamper Respondent Surface Enclosure: consists of an envelope that covers only the 
critical components of the PCB. It is targeted to meet the requirements of FIPS 140-2, 
Level 3 and Level 4, DoD, NSA Type 1 security. 

 

Figure 6-4 – Tamper respondent surface enclosure 

 American Energy [76]: 

o Anti-tamper films for electronics 

6.3.2 Supervisor chips 

These chips provide the following monitoring capabilities: 

• Detection of short and open circuits (in dedicated nets or circuits). 

• Measurement of voltage levels (at critical points). 

• Temperature value and temperature change rate. 

• Battery leakage. 

Therefore, most of these chips usually work in conjunction with some of the encapsulation methods 
described in 6.3.1, which act as the monitored net/circuit. 

Supervisor chips must me continuously powered for right monitoring; usually requiring a current of a few 
µA. This involves the utilization of a dedicated battery that limits the lifetime of the device. This battery 
must be carefully selected regarding aspects such as capacity, self-discharge, temperature range and 
dimensions. 

Examples of this kind of supervisor chips are: 

 Maxim [77]: 
o DS36XX family 

 
Some of these chips also provide basic secure storage features, such auto-erase small volatile memories. 

Usually supervisor chips provide a digital output that change when an attack is detected. The sensitive 
information should be stored in the volatile memory of the supervisor or any other volatile memory that 
could be erased if the output is triggered. Therefore the original design of the secured device may be 
adapted in order to support this kind of chips. 

6.3.3 Modules interfaces 

As commented in previous sections, deliverable D.2.4 presents a proposal of a Reference Architecture for 
nSHIELD systems. 

Technologies described in this section, 6.3, could be used to implement the “anti-tamper” component of 
the Security Module and also depend on the anti-tamper technique some attributes of the ”secure 

storage” could be implemented, as it is depicted in Figure 6-5. 
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Figure 6-5: Reference architecture - Node layer (anti-tamper component) 

Each component should provide some attributes. Next table summarizes the attributes that can be 
reported by the security module (anti-tamper and secure storage component) with this implementation: 

Table 6-1: Reference architecture – Node Layer (anti-tamper attributes) 

 Attributes 

Security 
module 

Cryptography   

Data integrity   

Identification   

Anti-tamper Secure key storage Physical path protection 

Secure storage   

 

These attributes will be reported to the monitor module or to other component of nSHIELD system. The 
internal interfaces will be defined. 

6.3.4 Metrics 

The main metrics reported by these components, as defined in deliverable D2.5, could be the metrics 
related with the physical / tamper resilience (“detect” and report the presence of tamper-resistance 
provisions on the node) and storage of private information (boolean value depending on node’s provisions 

for long-term/fault-condition secure storage of private information). 

Taking into account that the current list of metrics is a preliminary one, some other metrics could be 
added. For example: 

• PCB design following recommendations  Boolean value 

• Anti-tamper passive (mechanics  resin)  Boolean value 

• Security level achieved by the passive anti-tamper (0 – N) 

• Anti-tamper active (with supervisor)  Boolean value 

• Security level achieved by the active anti-tamper FIPS 140-2 

6.4 An Identity-Based Encryption scheme 

6.4.1 Description 

Encrypted communications between nodes require a key distribution scheme that will distribute in a 
secure manner the required keys to the involved nodes. Identity-based cryptography features certain 
advantages that simplify key distribution and has therefore been preferred. Although the Private Key 
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Generator (PKG) will have to cope with quite computationally-intensive tasks, the remaining operations 
can be performed by resource-constrained nodes. Therefore, by assigning the role of the PKG to powerful 
enough nodes, the use of such a scheme is possible among the heterogeneous nSHIELD network. The 
Sakai-Ohgishi-KasaharaIBE scheme will be implemented. 

6.4.2 Hardware it will be deployed on 

The scheme will be initially developed on BeagleBoard-xM and BeagleBone (power and micro nodes, 
respectively), as they share common characteristics in terms of operating system (Linux) and networking 
abilities. It will then be extended to other platforms, so as to support more resource-constrained nodes.  

Some more detailed hardware specifications are as follows: 

• BeagleBoard-xM  

o Operating system: Ubuntu Quantal 12.10 armhf, a version of Ubuntu for ARM processors. 
An X Window environment is not required. 

o Networking: IPv4, IPv6, IEEE 802.15.4, 6LoWPAN (requires additional hardware). Can 
connect via its built-in Ethernet port, or through additional hardware attached to its USB 
port, or its expansion headers. 

o Product website: http://beagleboard.org/hardware-xm 

• BeagleBone  

o Operating system: Ubuntu Quantal 12.10 armhf, a version of Ubuntu for ARM processors. 
An X Window environment is not required. 

o Networking: IPv4, IPv6, IEEE 802.15.4, 6LoWPAN (requires additional hardware). Can 
connect via its built-in Ethernet port, or through additional hardware attached to its USB 
port, or its expansion headers. 

o Product website: http://beagleboard.org/bone 

• Crossbow Technology IRIS motes (Nano node) 

o Operating system: Contiki 

o Networking: IEEE 802.15.4, 6LoWPAN 

o Product website: http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=26 

• Zolertia Z1 (Nano node) 

o Operating system: Contiki 

o Networking: IEEE 802.15.4, 6LoWPAN 

o Product website: http://www.zolertia.com/ti 

The default operating system of the BeagleBoard-xM and the BeagleBone was Angstrom Linux. However, 
Ubuntu was chosen because of its wider support community and some networking issues Angstrom had 
with its networking manager (ConnMan). 
 
The RELIC toolkit [78] supports several cryptographic protocols, including the Sakai-Ohgishi-KasaharaIBE 
scheme. This scheme will initially be ported to Linux editions that run on BeagleBoard-xM (power node) 
and BeagleBone platforms (micro node), and some performance statistics will be obtained. As has 
already been mentioned, the Private Key Generator (PKG) is responsible for generating and distributing 
the keys to the nodes that wish to communicate between them. However, since this is quite a 
computationally-demanding operation, the role of the PKG is therefore most suitable to be assigned to 
power nodes. Certain micro nodes may also be able to support it, but nano nodes should certainly be 
excluded. Based on the obtained results, the possibility of using a micro node (BeagleBone) as a PKG will 
be examined. Nano nodes, although they are excluded from becoming PKGs, they should still be able to 
support the required cryptographic operations, in order to communicate securely with other nodes. This 
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mechanism will serve as a key exchange scheme that will be incorporated into the IPsec scheme 
developed for T4.4. 

6.4.3 Implementation and Security Issues 

The RELIC toolkit [78] contains an implementation of the Sakai-Ohgishi-Kasahara IBE protocol. The 
relevant API includes the functions: 

void cp_sokaka_gen(bn_t master); 

Generates a master key for the SOK protocol and stores it in master. 

void cp_sokaka_gen_prv(sokaka_t k, char *id, int len, bn_t master); 

Generates a private key (k) for identity id (having a length of len bytes), using the master key. 

void cp_sokaka_key (unsigned char *key, unsigned int key_len, char *id1, int 
len1, sokaka_t k, char *id2, int len2); 

Creates a shared key (key) between identities id1 and id2 (of length len1 and len2, respectively), 

using the first identity’s private key, k. 

An example screenshot of a key created using the above API on a Linux system is shown in Figure 6-6. 
The key was created using a 160-bit long prime as the field base, which is able to offer a satisfactory 
security level, according to the current standards. 

 

Figure 6-6: Key generation using the Sakai-Ohgishi-Kasahara IBE protocol 

What also need to be investigated are the memory footprints in both ROM and RAM if the pairings are 
performed over prime or binary fields, with respect to any potential implications on the execution speed. 
This will enable making the best possible decision before porting the scheme on nano nodes running the 
Contiki OS. 

6.5 Secure Cryptographic Key Exchange using the Controlled 
Randomness Protocol 

6.5.1 Introduction 

In real world applications of cryptographic protocols, the key management problem refers to the life cycle 
management of cryptographic keys. It includes the necessary operations for key generation; distribution; 
storage; replacement and exchange; usage; and destruction. In order to retain specific security level, keys 
used in cryptographic algorithms and protocols must be periodically refreshed i.e., new keys are 
exchanged between communicating parties and old keys are replaced.  

These precautions ensure that only a specific amount of information is encrypted under the same key and 
thus, the exposure of information is minimized in case a key is leaked. Key agreement is the process by 
which two or more parties agree on a common cryptographic key for a specific timeframe. Key transport is 
the process by which the agreed key is transferred to the participants. In many scenarios, the two 
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processes occur simultaneously: the participants exchange information by which they both set and 
exchange the key(s) to be used (or some parts of it).  

In many scenarios, the key agreement and transport occur as exchange of control messages through a 
control channel. This channel does not interfere with the data channel in where actual secure data 
exchange takes place. A public-key cryptosystem (PKC) is commonly used in such setups in order to 
securely exchange through the control channel the symmetric-key cryptosystem (SKC) 
encryption/decryption keys used to securely exchange data within the data channel. The latter keys are 
often called ephemeral or session keys, since their lifetime spans a specific time period i.e., a session and 
then they are disposed.  

In typical resource-limited environment, like the embedded systems are, it is rather costly to implement 
and use a public key cryptography (PKC) scheme for secure communication between two entities. When 
the resource constraints are more severe or the participants are all known beforehand, another option is 
to replace the “heavy” P C scheme in the control channel with a lighter S C scheme. The SKC scheme 
can use a master key in order to set and transfer the ephemeral keys needed for the data channel. In 
these cases and for sake of resource economy, the same S C algorithm can be used in both the “control” 
and “data” channels albeit with different keys. An embedded system can incur an interesting trade-off on 
security level and resource consumption.  

From a security point of view, the keys must be often refreshed, as explained earlier, in order to maintain 
the required security level. From a system resource consumption point of view, the keys must be rarely 
changed, in order to minimize the consumption of precious resources (processor, power, and bandwidth). 
Further, in some usage scenarios, advanced care must be taken in order to ensure that the new keys will 
be available by the time they must be used, especially when only intermittent connectivity exists.  

The “controlled randomness protocol” (CRP) for cryptographic key management was proposed as an 
improvement for the security level of secure communication protocols. The CRP allows multiple keys to 
be valid at any given time; it neither alters the total number of keys needed in the underlying cryptographic 
algorithms, nor the need of a control channel to periodically refresh keys. However, the increased security 
offered by CRP allows for far less frequent key exchanges.  

The Beagle Board is a low-cost, fan-less single-board computers based on TI's OMAP3 device family, 
with all of the expandability of today's desktop machines, but without the bulk, expense, or noise. It uses a 
TI OMAP3530 processor (ARM Cortex-A8 superscalar core ~600 MHz paired with a TMS320C64x+ DSP 
~430MHz and an Imagination SGX 2D/3D graphics processor). The Beagle Bone is the latest addition to 
the BeagleBoard.org family and like its’ predecessors, is a low cost ARM Cortex A8 based processor. It 
has been equipped with a minimum set of features to allow the user to experience the power of the 
processor and is not intended as a full development platform as many of the features and interfaces 
supplied by the processor are not accessible from the Beagle Bone via on-board support of some 
interfaces. 

In this chapter we assess the performance of the Controlled Randomness Protocol when implemented on 
Beagle Board and Beagle Bone embedded systems. We present our findings from two different 
embedded platforms: one Beagle Board running Embedded Linux and one Beagle Bone running a custom 
compiled Linux kernel. We provide insights and possible explanations.  

The rest of the chapter is organized as follows. Section II presents the key management problem and the 
controlled randomness protocol. Section III presents our test bed environment and experiments held. 
Section IV presents the results of our experiments and discusses our findings. Finally, Section V 
concludes our findings and discusses future directions of the work. 

6.5.2 The Controlled Randomness Protocol 

Conventional cryptographic schemes operate under the assumption that at most one key is active in any 
time moment. There is only one exception to this assumption. This is the transition periods when changing 
a cryptographic key. In these cases, at most two keys can be active in order to cope with delayed 
messages.  
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We propose a novel approach of having more than one key at any given time moment. The approach is 
based on the concept of “controlled randomness” i.e., randomly using keys in a controlled environment. 
The concept of “controlled randomness” can be utilized in any protocol that uses temporal (ephemeral) 
keys. It increases protocol security with minimal computational overhead. In the following paragraphs we 
describe the Controlled Randomness Protocol (CRP). 

6.5.2.1 Protocol Definition 

Assume a time period t = [0, T] composed of time slots t1, t2… tn such as t = t1 ∪ t2 ∪ . . . ∪ tn. Each 

time slot ti represents a session. Within each session one specific, temporal cryptographic key ki is used 
in conventional schemes.  

The Controlled Randomness Protocol works as follows. Within the time period t every cryptographic key 
k1, k2, …, kn is valid and can be used. The sender chooses with a uniform distribution a random integer i 
and encrypts the input data using the key ki. The receiver has access to a secret mechanism and upon 
receiving a   cipher text ci can deduce which of the possible keys was used for the encryption and thus, 
use the correct one to decrypt the cipher text.  

The CRP does not dictate how all these keys are transferred to the receiver. It can be through a control 
channel using a PKC scheme, or an SKC with master key, or any other method. The CRP dictates how all 
these keys are used and reused within a time frame composed of many conventional sessions.  

Two different methods are originally proposed in for deriving the index, j, of the secret key used for a 
given cipher text. The first method is using a synchronized random number generator (RNG) in both the 
sender and the receiver for the indexes. The second method involves usage of a Keyed Hash Function 
(KHF) also known as Message Authentication Code (MAC). The sender and the receiver agree on a set of 
n encryption keys for a chosen encryption algorithm as usual and additionally on a set of n keys for 
computing MAC. The sender further uses an RNG. In this cases, the sender works as follows for every 
plaintext m: 

• Sender chooses a random number j. 

• Sender encrypts m under key kj to produce the cipher text E(m, kj). 

• Sender computes H(E(m, kj), hj) i.e., the MAC of the cipher text using the j-th MAC key. 

• Sender sends E(m, kj)||H(E(m, kj), hj), where || denotes the concatenation operation. 

The receiver works as follows to recover m from the quantity E(m, kj)||H(E(m, kj), hj): 

• Receiver computes H(E(m, kj), hj) for every possible j = 1, 2, . . . , n. This step involves at most n 
MAC operations. Upon completing all computations, the receiver has derived the secret index j 
used by the sender. 

• Receiver decrypts E(m, kj) using the j-th decryption key. This step involves one decryption 
operation and derives the plaintext m. 

6.5.2.2 Advantages of CRP 

The concept of controlled randomness i.e., having multiple active keys at any given time moment, offers 
superior security characteristics compared to conventional protocols. The system designer can reuse well-
known cryptographic blocks in a novel way to achieve increased security with minimal hassle: 

• minimal computational effort can be induced by CRP in the case that both sender and receiver 
can maintain a synchronized random number generator. 

• the synchronization requirement can be relaxed, if the system can sustain some increased 
computational effort induced by the KHF (MAC) operations. 

• in heavily constrained environments, the two above mechanisms can be replaced by sending the 
random number j with each packet. In this case, some security is indeed sacrificed since an 
attacker can know which packet is encrypted under what key. Yet, the intermix of keys allows 
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consecutive packets to be encrypted under different keys and thus, protect against some 
cryptanalysis attacks. 

The CRP allows in all above scenarios to extend the lifetime of each key way beyond the time of a 
conventional session.  

Further, it allows less frequent exchanges of messages in the control channel (if one is implemented), 
since less keys are needed to achieve a specific security level for a specific timeframe. An attack on the 
classical key management protocol with a master key of n bits has complexity O(22n/3); an attack on the 
RNG for the controlled randomness protocol with m keys has complexity O(l2m) (usually for m, the period 
of RNG, it holds m >> n); and an attack on the KHF method has a total complexity of O(l(2p + l2n/2)) where 
p the size in bits of the MAC keys. 

6.5.2.3 Problem Statement 

It is argued that the KHF (MAC) method leads to an efficient implementation in the case of combining a 
symmetric encryption algorithm with KHF operations, since the latter are an order of magnitude faster 
than the former. This assumption holds if the MAC algorithm is implemented based on a hash algorithm 
rather than on a symmetric key algorithm. In the simplest scenario, a 0.05l overhead is introduced on 
average for superior security. In a more complex scenario, this overhead can be lowered to 1%. This is 
achieved by performing the key detection function every few packets instead of each packet, as in the 
simpler scenario.  

We seek to validate these arguments for overheads in the BeagleBoard family products as a 
demonstration and stepping stone for the development of the CRP protocol in other embedded systems 
that are utilized for numerous applications and functionalities. 

6.5.3 Methodology 

6.5.3.1 Protocol Implementation in SPD Nodes 

We implemented the classical protocols and the two methods of controlled randomness. The protocol 
implementation simulates a session of data where n keys are used in total for the three key management 
variants (classical, CRP with synchronized random number generation, and CRP with keyed hash 
function). 

We used as the underlying symmetric key encryption method the AES algorithm which is readily available 
in the Linux distribution that we used. On the platform that did not provide readily available AES and 
HMAC algorithm implementations, we ported those implementations to the Beagle Bone Linux kernel. 

6.5.3.2 Experiments 

We run sets of experiments for release versions of the code. In total, there are four (4) different setups to 
test. We run two sets of experiments in all platforms. The first set relates to the performance of the CRP 
depending on the number of keys used. 

We run experiments for 4, 8, 16, and 32 keys. We opted to limit the experiments up to 32 keys since it 
already offers a superior level of security and keeps the average processing overhead relatively low. The 
second set relates to the performance of the CRP depending on input size. We run experiments for 32, 
64, 128, and 256 KB. We opted not to validate for larger sizes given the constrained nature of the device. 
One should not realistically expect to exchange larger packets with such devices. 

6.5.4 Results and Discussion 

All measurements reported are the average time of 1000 protocol executions. The mean times are in 
milliseconds. The execution time was measured using the system's tick counts API calls, which offers 
millisecond granularity. The standard deviation was almost zero in all cases. The execution path remains 
almost stable in all cases. These sections are still under construction while testing the effects of different 
cryptographic algorithm implementations on both platforms. 
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6.5.4.1 Results for Beagle Bone 

The experiments ran both on emulator and on a real device. No significant difference was observed in the 
two sets of measurements. This finding is consistent across all packet sizes and number of keys used. 
We also verified this in the initial benchmarks we ran for comparing AES with SHA1 implementation. The 
CRP/RNG implementation offers comparable performance with classical protocols for key management, 
although the latter do not utilize multiple keys per session. This is an expected behaviour, since, from an 
implementation point of view, CRP/RNG adds only the use of a random number generator. The 
CRP/HMAC implementation for the simple scenario (one HMAC per each packet) increases the required 
computational effort by a linear factor to both the packet size and the number of keys. The increase is 
between 10% (in case of 4 keys) and 80% (in case of 32 keys). When CRP/HMAC is implemented on the 
more complex scenario (one HMAC per n packets), the overheads are lowered, as expected, and within 
1-20% range (n = 4 : 3.5 − 20%, n = 8 : 2 − 15%, and n = 16 : 0.7 − 7%). We note that it is up to the 
system designers to decide if, as the number of keys increases, this overhead is acceptable or to opt for 
fewer keys, without a big sacrifice in the achieved security level. The work for an eavesdropping attacker 
is smaller but remains exponential to both the symmetric key and the MAC key size. 

6.5.4.2 Results for Beagle Board 

Initial benchmarking showed that the SHA-1 implementation on .NET CF 4.0 is slower than the SHA1 
implementation on the .NET CF 3.5. The faster AES implementation combined with the slower HMAC 
algorithm results in larger overheads. This is because the performance of the two algorithms does not 
differ by an order of magnitude any more. We can now see overheads three to six times bigger than 
before on the same setup. As an example, consider the case of packet size of 64 KB with 32 keys we 
report a 64%. As long as the results are further verified in a real device, the system designers should use 
the minimum acceptable number of keys as to minimize the induced computation overhead and retain a 
high level of security. 

6.5.5 Conclusions 

In this chapter we assessed the performance of the controlled randomness protocol when implemented in 
the Beagleboard.org family of products. Our findings validate the claims of the initial protocol proposal: the 
overhead on the encryption side is practically non-existent and only a small, tolerable processing 
overhead can be induced in the decryption side, despite the increased number of required computations. 
Thus, the controlled randomness protocol can be a viable implementation option in embedded systems for 
increasing the actual security of the underlying security protocol. It is an indication that the two platforms 
incorporate different implementations of cryptography, while sharing a large portion of other code and 
being akin. 
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