

Project no: 269317

nSHIELD

new embedded Systems arcHItecturE for multi-Layer Dependable solutions

Instrument type: Collaborative Project, JTI-CP-ARTEMIS

Priority name: Embedded Systems

D6.3: Prototype integration report

Due date of deliverable: M22 –2013.06.30

Actual submission date: M27 – 2013.11.06

Start date of project: 01/09/2011 Duration: 36 months

Organisation name of lead contractor for this deliverable:

Hellenic Aerospace Industry, HAI

 Revision [Final]

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2012)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services) X

CO Confidential, only for members of the consortium (including the Commission Services)

Page ii Final

Document Authors and Approvals
Authors

Date Signature
Name Company

Kiriakos Georgouleas HAI 24/07/13

Nikos Pappas HAI 24/07/13

Balazs Berkes S-LAB 20/09/13

Mariana Esposito ASTS 23/09/13

Francesco Flammini ASTS 23/09/13

Lorena de Celis AT 24/09/13

Carlo Pompili TELC 24/09/13

Antonio Bruscino SESM 07/10/13

Ester Artieda Puyal INDRA 08/10/13

Andrea Morgagni SES 23/10/13

Luca Geretti UNIUD 30/10/13

Tor O Steine ALFATROLL 31/10/13

George Hatzivasilis TUC 31/10/13

Konstantinos Fysarakis TUC 31/10/13

Konstantinos Rantos TUC 31/10/13

Alexandros Papanikolaou TUC 31/10/13

Harry Manifavas TUC 31/10/13

Andreas Papalambrou ATHENA 31/10/13

Panagiotis Soufrilas ATHENA 31/10/13

Dimitrios Stachoulis ATHENA 31/10/13

Vasilios Siadimas ATHENA 31/10/13

Kyriakos Stefanidis ATHENA 31/10/13

Paolo Azzoni ETH 31/10/13

Stefano Gosetti ETH 31/10/13

Inaki Eguia TECNALIA 31/10/13

Dimitris Geneiatakis TUC 31/10/13

Andrea Fiaschetti UNIROMA1 31/10/13

Roberto Cusani UNIROMA1 31/10/13

Gaetano Scarano UNIROMA1 31/10/13

Andrea Morgagni SES 31/10/13

Reviewed by

Name Company

Approved by

Name Company

Final Page iii

Applicable Documents

ID Document Description

[01] TA nSHIELD Technical Annex

Modification History

Issue Date Description

V0.1 24.07.2013 ToC, Introduction

V0.2 26.07.2013 Integration Methodology

V0.3 20.09.2013 Middleware IDS prototype (S-LAB), Additions in Railway Scenario (ASTS)

V0.4 23.09.2013 Prototype oPACKS (AT, TELC)

V0.5 07.10.2013
Gateway (SESM), Link layer security (INDRA), Network Layer Security,
Automatic Access Control, Policy Based Management (TUC)

V0.6
24.10.2013

Attack Surface Metrics, Protection Profile (SES), Integration approach,
Reputation based Secure Routing (HAI)

V0.7

31.10.2013

Dependable Distributed Computation Framework (UNIUD), Reliable Avionic
(ALFATROLL), Reputation based Secure Routing, Automatic Access
Control, Policy based management (TUC), Key exchange protocol,
Recognizing DoS, Adaptation of legacy systems (ATHENA), Executive
summary (HAI)

V0.8 04.11.2013 Middleware Prototypes (UNIROMA1, SES), Metrics approach (TECNALIA)

Final 06.11.2013 Final review

Page iv Final

Executive Summary

D6.3 is the first deliverable of Task 6.1 aiming to present the integration of components and prototypes
developed in WP3 (node layer), WP4 (network layer) and WP5 (middleware/overlay layer), the
interoperability of the various SPD modules and the addressing of all SPD metrics and requirements that
the integrated solution needs to meet. The work of this deliverable presents a general framework
compliant with the nSHIELD reference architecture that can be used to construct a composable system
build on different SPD components from the node, network and middleware components. The integration
aspects of the four application scenarios, namely railways security, voice/facial recognition, reliable
avionic and social mobility are covered in detail connecting integration activities with the real application
demonstrators developed within the project.

Final Page v

Contents

1 Introduction .. 13

2 Software Integration Methodologies 14

2.1 Introduction ... 14

2.2 Software Integration Approaches ... 15

2.2.1 Phased / Incremental Integration .. 15
2.2.2 Top-Down Integration ... 15
2.2.3 Bottom-Up Integration .. 16
2.2.4 Other Integration Approaches .. 17

2.3 Version Control Systems ... 18

2.3.1 nSHIELD SVN Repositories ... 19

2.4 Software Integration Checklist .. 19

3 nSHIELD Integration Approach ... 20

3.1 Overall approach .. 20

3.2 System composition ... 22

4 Integration of Railway Scenario Components 29

4.1 Control Algorithms (Prototype 20) .. 29

4.2 Middleware Intrusion Detection System (Prototype 22) 29

4.2.1 IDS prototype interfaces ... 29
4.2.2 IDS prototype SPD features ... 30
4.2.3 IDS prototype environment ... 30

4.3 Reputation based Secure Routing (Prototype 16) 30

4.3.1 Reputation-based Secure Routing Prototype Interfaces 31
4.3.2 Reputation-based Secure Routing Prototype SPD features 32
4.3.3 Reputation-based Secure Routing Prototype environment 32

4.4 Offline Physical Access Control System (Prototype 05) 32

4.4.1 oPACS prototype interfaces ... 32
4.4.2 oPACS prototype SPD features ... 33
4.4.3 oPACS prototype environment ... 34

4.5 Network layer security (Prototype 24) .. 34

4.5.1 Network layer prototype interfaces ... 34
4.5.2 Network layer prototype SPD features ... 34
4.5.3 Network layer prototype environment ... 34

4.6 Metrics Approach (Prototype 27) .. 34

4.7 Semantic model (Prototype 26) ... 35

4.8 OSGI Middleware (Prototype 25) ... 35

4.9 Security Agent (Prototype 33) ... 36

4.10 Secure Discovery (Prototype 32) ... 36

Page vi Final

4.11 Automatic Access Control (Prototype 11) 37

4.11.1 Automatic Access Control Prototype Interfaces 37
4.11.2 Automatic Access Control Prototype SPD features 38
4.11.3 Automatic Access Control Prototype environment 38

4.12 Policy-based Access Control (PBAC) & Policy-based
Management (PBM) (Prototype 19) ... 39

4.12.1 Policy Based Access Control SPD & integration features 40

4.13 Interactions map .. 41

5 Integration of People Identification Scenario
Components .. 42

5.1 Face recognition (Prototypes 7 and 37) 42

5.1.1 Face recognition modules ... 42
5.1.2 Smart card manager ... 45
5.1.3 Smart card reader ... 45

5.2 Dependable Distributed Computation Framework
(Prototype 14) ... 46

5.2.1 At a glance .. 46
5.2.2 Repositories .. 47
5.2.3 Types ... 48
5.2.4 Behaviours .. 49
5.2.5 Structures .. 51

5.3 Smart Card Security Services (Prototype 6) 53

5.3.1 Communication with Smartcards .. 54
5.3.2 Smartcard File System and Data “Storage” .. 55
5.3.3 Secure services with smart cards ... 55
5.3.4 Building Secure Communications ... 56

5.4 Access Rights Delegation ... 57

5.4.1 Problem Statement ... 57
5.4.2 The Concept of “Path Array” ... 57
5.4.3 Mechanism of the Artefact .. 58
5.4.4 Smart Card and biometric data ... 60
5.4.5 Face Recognition Smart Card Support ... 61

5.5 Interactions map .. 62

6 Integration of Avionics Scenario Components 63

6.1 OMNIA (Prototype 36) .. 63

6.2 Gateway (Prototype 21) ... 64

6.2.1 n-ESD-GW Gateway SPD features .. 66
6.2.2 Gateway nS-ESD-GW ... 67

6.3 SPD-driven Smart Transmission Layer (Prototype 9) 69

6.4 Reliable Avionic (Prototype 30) .. 71

6.4.1 Areas of functionality to cover: .. 73

6.5 Semantic model (Prototype 26) ... 75

6.6 Metrics (Prototype 27) ... 75

Final Page vii

6.7 OSGI Middleware (Prototype 25) ... 75

6.8 Control Algorithms (Prototype 20) .. 75

6.9 Middleware Intrusion Detection System (Prototype 22) 76

6.9.1 IDS prototype interfaces ... 76

6.10 Interactions map ... 77

7 Components of the General nSHIELD Framework 78

7.1 Link Layer Security Prototype (Prototype 23) 78

7.1.1 Link layer prototype interfaces .. 78
7.1.2 Link layer prototype SPD features .. 78
7.1.3 Link layer prototype environment ... 78

7.2 Protection Profile (Prototype 31) ... 79

7.3 Attack Surface Metrics (Prototype 28) .. 79

7.4 Key Exchange Protocol (Prototype 02) ... 80

7.5 Recognizing Denial of Service (Prototype 13).............................. 80

7.5.1 Interfaces .. 80
7.5.2 Environment .. 80

7.6 Adaptation of Legacy Systems (Prototype 29)............................. 80

7.6.1 Prototype interfaces .. 80
7.6.2 Prototype environment ... 81

8 Conclusions .. 82

9 References .. 83

Page viii Final

Figures

Figure 2-1: Percentage of Development time for different Project Sizes in Lines of Code 14

Figure 2-2: Top-Down Incremental integration .. 16

Figure 2-3: System integration from the top down in vertical slices .. 16

Figure 2-4: Bottom-up integration .. 17

Figure 2-5: Risk-oriented integration ... 17

Figure 2-6: Feature-oriented integration ... 18

Figure 2-7: T-Shaped integration .. 18

Figure 3-1: Interdependencies between nSHIELD tasks .. 20

Figure 3-2: nSHIELD prototypes at node, network and middleware/overlay layer 22

Figure 3-3: Process for selecting hardware platforms prior to SPD algorithms deployment 25

Figure 3-4: Composed nSHIELD system: information about node, network and middleware
components includes SPD level assessment for each system element 27

Figure 3-5: Conceptual Architecture of the nSHIELD system ... 28

Figure 4-1: WSN secure routing prototype - nS-ESD GW (integration in Railway Scenario) 31

Figure 4-2: nSHIELD Knowledge Bases ... 35

Figure 4-3: Knopflerfish start-up environment ... 36

Figure 4-4: Service discovery architecture .. 37

Figure 4-5: Gossamer protocol .. 38

Figure 4-6: The nSHIELD secure policy-based access control .. 40

Figure 4-7: Railway scenario interactions ... 41

Figure 5-1: Face recognition and identification procedure .. 43

Figure 5-2: The enrol mode ... 43

Figure 5-3: The transit mode ... 43

Figure 5-4: Top-down (green) and bottom-up (red) design flows in Atta .. 47

Figure 5-5: Example of declaration for repositories and artifact references 48

Figure 5-6: Example of artifact descriptor for a type ... 48

Figure 5-7: Example of artifact descriptor for behaviour ... 51

Figure 5-8: Skeleton of artifact descriptor for a structure .. 52

Final Page ix

Figure 5-9: Example of declaration of a vertex ... 53

Figure 5-10: Example of declaration of an edge ... 53

Figure 5-11: Smartcard communication structure .. 54

Figure 5-12: The logical structure of file system in Smartcards.. 55

Figure 5-13: Path Array Design .. 57

Figure 5-14: Ticket along with Path Array... 58

Figure 5-15: Ticket Incrementing the index value ... 58

Figure 5-16: Process of HMAC creation ... 59

Figure 5-17: People Identification scenario interactions map ... 62

Figure 6-1: OMNIA Platform Services .. 63

Figure 6-2: OMNIA network .. 64

Figure 6-3: nS-ESD-GW HW architecture .. 65

Figure 6-4: nS-ESD-GW SW partitioning.. 66

Figure 6-5: nS-ESD-GW Functionalities ... 67

Figure 6-6: Smart transmission layer platform .. 70

Figure 6-7: Basic Omnia framework for IQ_Engine demo .. 71

Figure 6-8: IQ_Engine test set-up ... 72

Figure 6-9: Application areas that can be covered by IQ_Engine Cognitive Pilot 73

Figure 6-10: Feed from FlightRadar, for demo of Detect&Avoid .. 74

Figure 6-11: Dependable Avionic scenario interactions ... 77

Page x Final

Tables

Table 3-1: nSHIELD prototypes .. 21

Table 3-2: nSHIELD SPD nodes used during prototypes development ... 23

Table 3-3: Example template of HW platform with HW SPD features, available network connectivity
and algorithms ready to run ... 26

Table 4-1: Offline Access Control SPD features ... 33

Table 4-2: Prototype 24, Network Requirements addressed .. 34

Table 4-3: PBAC SPD levels ... 40

Table 5-1: Smartcard request command format ... 54

Table 5-2: Smart card response command format .. 55

Table 6-1: nS-ESD-GW Verification cases ... 68

Table 7-1: Link Layer SPD features .. 78

Final Page xi

Glossary

Please refer to the Glossary document, which is common for all the deliverables in nSHIELD.

Page xii Final

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 13 of 83

1 Introduction

This document is the first integration report inside WP6, “Platform Integration, Validation and
Demonstration”. Its purpose is to explore system composability based on different prototypes developed
for node, network and middleware layers, concentrate the prototypes needed for each nSHIELD
application, explore the interoperability and interdependencies of these and proceed in a first stage of
prototypes integration. A second deliverable update will follow, the objective of which is to unify the
integral nSHIELD software and hardware units, demonstrating the features of an (as much as possible)
integrated platform.

The integration process is connected with the totality (or at least the basic milestones) of the up to now
conducted studies and developments. This is a dynamic correlation having the nature of background,
bidirectional feedback and on going development. To this date a series of notions have been studied and
contribute as cornerstones in nSHIELD integration and outcome, while in parallel these technical topics
are under cooperative adjustment and optimization. High level requirements have been defined, imposed
by use cases needs and the nSHIELD layers and stratification. Taxonomy of metrics has been presented,
along with methodologies to quantify them, in order to better reflect the waviness of SPD levels. The
reference architecture has been described, including plain but explicit recitation of the types of nSHIELD
devices, layers and functionalities. The definition of interfaces connecting components is the next
development step concerning both the finalization of nSHIELD architecture and the integration,
demonstration and tuning of nSHIELD platform. In the framework of WP3-WP5, numerous prototypes of
node, network and middleware layers are in an advanced or less mature stage of development, whereas
the 4 application domains and correspondent scenarios are being built. All these activities will come to
synchronize efforts in the integration roadmap. The technical result of what would be a materialized
nSHIELD system will be validated and demonstrated to prove (among others) its concept, functionality,
reliability, and SPD level compliance and eventually prove its applicability.

The integration task is a complicated one, having a lot to do with available input, compatibility between
components, ground conventions and application requirements. The first step would be (not exhaustively)
answering questions and defining parameters related with nSHIELD components:

 Node definition and correspondence to working field equipment

 Nodes’ Operating Systems (OS) and their capabilities

 Internetworking options (Gateway based or Direct connectivity)

 Application needs for interoperability

 Middleware and Overlay as the core of system’s structure

 Security policies applied

 Functionalities and capabilities and their trade-off with resource consumption

 Grouping of applications, components and functionalities

 Interfaces (intra-node, intra-layer, between devices, user interfaces)

 Prototype implementation status

 The document’s structure begins introducing a review of software methodologies used in the integration
of large software systems. Then a system integration approach is presented in Chapter 3, proposing a
framework that starting from a list reciting all the developed prototypes and all platforms used as nodes
enables a user to select all the SPD algorithms and components running on an integrated system which is
compliant with the nSHIELD reference architecture. The integration work is organized on the
discrimination of the 4 application scenarios and the components’ distribution, use and integration aspects
in these use cases. For each scenario an interaction map is drawn to result in the integrated subsystem
that will meet the specifications of the respective application.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 14 of 83 Final

2 Software Integration Methodologies

2.1 Introduction

Integration is a critical phase in most cases of software development process as the discrete subsystems
developed during the implementation phase must be tied together to bring the required functionalities that
the system aims to target. As other activities of software development integration phase is greatly affected
by project size. As the project size increases, the number of involved persons and the need for formal
communication increases and the portion of time for all the kinds of activities a project needs can change
dramatically. A representative figure taken after examining numerous projects of different sizes that shows
the proportions of different activities for projects of different sizes is presented in Figure 2-1. It is obvious
that for large systems despite how carefully the construction phase have been accomplished, integration
and system testing together will dominate the percentage of the total time needed for a software project to
be completed and their rate of increase is more that linear.

Figure 2-1: Percentage of Development time for different Project Sizes in Lines of Code

As it can be seen by the figure, larger projects require more architecture, integration work and system
testing to succeed. Requirements work is not shown on this diagram because requirements effort is not as
directly a function of program size as other activities are.

Software integration is performed after finishing developer testing and in conjunction with system testing.
For this reason it is sometimes regarded as a testing activity but as the size and the complexity of the
target system increases it becomes an independent activity. Key benefits expected from high quality
integration are:

• Fewer defects

• Easier defect diagnosis

• Shorter time to first working product

• Shorter overall development schedules

• Better customer relations

• Improved morale

• More reliable schedule estimates

• More accurate status reporting

• Improved code quality

• Improved chance of achieving full functionality of the system under development

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 15 of 83

2.2 Software Integration Approaches

Over the time, along with different software development life-cycle (SDLC) models, different approaches
of software integration have been presented [1]. In this section a short presentation of the most important
ones is performed aiming to select or adapt a proper solution for the nSHIELD needs. It is obvious that
integration which will include different prototypes developed during the WP3, WP4 and WP5 of the
nSHIELD will have a central focus on real application demonstrators integrating SPD modules according
to the needs of each of them.

2.2.1 Phased / Incremental Integration

In a first distinction programs are integrated by means of either phased or incremental approach. Phased
integration which was the dominant approach until a few years ago, postponed integration after each
individual subsystem was completed. It follows these well-defined steps:

• Design, code, test and debug each software module (unit development)

• Combine the modules into the big system (system integration)

• Test and debug the whole system

One problem with this approach (called also Bing Bang integration) is that it examines interoperability of
{a large number of} modules that have never worked together before at a late phase increasing the
possibilities for a large number of errors to appear and making harder code debugging. An alternative
approach is incremental integration where a program is written and tested in small pieces combined one
at a time. The steps followed in this approach are:

1. Development of a small functional part of the system that acts as a skeleton where the remaining
parts of the system will be attached

2. Design, code, test and debug a module

3. Integrate this module with the skeleton, test and debug the combination of skeleton and the newly
developed module. Repeat the process starting at step 2, after making sure that the combination
works as expected

Some of the advantages that the incremental approach offers over the phased approach are:

• Easy finding of the location of errors

• Improved progress monitoring

• Extended unit testing and approval that the unit fulfils its goals

• System’s building with a shorter development schedule

With incremental integration the order in which components are constructed is important as it affects the
features and functionality of the integrated product over time and careful planning is needed in order the
final product to succeed. Different integration-order strategies have been developed that come in a variety
of shapes and sizes and none of them is best in every case. The integration strategy must be thoroughly
examined to meet the specific demands of the given project.

2.2.2 Top-Down Integration

In top-down integration, the component at the top of the hierarchy is written and integrated first. This top
level component can be the portion with the application’s control loop from which lower layer components
are called. Stubs have to be written to exercise this top level component. Then, as classes are integrated
from the top down, stub components are replaced with real ones. The order of integration for the Top-
Down approach is depicted in Figure 2-2.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 16 of 83 Final

Figure 2-2: Top-Down Incremental integration

In addition to the advantages that included in any kind of incremental integration, an advantage of top-
down integration is that the control logic of the system is tested relatively early. Big, conceptual design
problems are exposed quickly and the backbone of the system is thoroughly tested over time. Another
advantage of the top-down integration is that with careful planning a partially working system can be
completed early in the project. Moreover with the Top-down approach coding can begin before the low-
level design details are complete.

Pure top-down integration involves a number of disadvantages as well: a major problem is that tricky
system interfaces for the full functional system may be not integrated until last. It is not unusual for a low-
level problem to propagate its erroneous behaviour to the top of the system causing high-level changes
and reducing the benefit of earlier integration work. Stubs developed within this approach are also more
likely to contain errors than the more carefully designed production code. Pure Top-down integration
maybe also be impossible to be implemented in some systems (meaning that all the higher level
components have to be integrated before proceeding with the first lower level component) due to
functional reasons so most people use a hybrid approach such as integrating from the top down in
sections instead. In this approach (Figure 2-3) the system is implemented in sections fleshing out areas of
functionality one by one, and the moving to the next area.

Figure 2-3: System integration from the top down in vertical slices

2.2.3 Bottom-Up Integration

In bottom-up integration, components are written and integrated at the bottom of the hierarchy first (Figure
2-4). Test drivers are used to exercise the low-level components initially and subsequently higher level
classes are added to the test-driver scaffolding as they are developed.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 17 of 83

Figure 2-4: Bottom-up integration

Bottom-up integration provides a limited set of incremental integration advantages. Its main advantages
are the easy detection of error location and the early integration of full functional low level components
early in the project. On the other hand leaving integration of the major high-level system interfaces until
last can lead to serious problems as conceptual design problems at the higher levels will not have been
identified. Significant changes in design will have as a result to discard some of the low-level work already
developed. This method also requires a complete design of the whole system before the start of the
integration. Pure bottom-up integration is rare and a more applicable alternative is the hybrid approach of
integrating bottom-up in sections in a way similar to this of top-down in vertical slices approach.

2.2.4 Other Integration Approaches

As pure top-down and bottom-up integration are difficult to be applied in most real cases a number of
integration alternatives have been proposed.

In Sandwich integration [2], the integration starts from the high-level business-object classes at the top of
the hierarchy and continuous with low level device-interface classes and widely used utility classes of the
lower level. Middle-level classes are left for the end of integration.

In risk-oriented integration each system component is associated with a level of risk, and the system is
integrated with the most challenging parts to implement first. The remainder of the code which is easier to
implement is left for integration later. An illustration of risk-oriented integration is presented in Figure 2-5.

Figure 2-5: Risk-oriented integration

 In feature-oriented integration the key focus of integration is a functional feature (e.g. automatic
reformatting of a document in a word processor) that may expand to more than one single component. A

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 18 of 83 Final

prerequisite for this method is the existence of a skeleton upon which the new features will be integrated
and tested. Components are usually added in “feature trees”, hierarchical collections of classes that make
up a feature. An illustration of feature-oriented integration is presented in Figure 2-6.

Figure 2-6: Feature-oriented integration

A final approach that often addresses the problems associated with top-down and bottom-up integration is
“T-Shaped Integration” (Figure 2-7). In this approach, one specific vertical slice is selected for early
development and integration. This slice exercises the system end-to-end and should be capable to reveal
any major problems in the system’s design assumptions. Once the implementation and testing of a
vertical slice has been completed the procedure continues with the next slice until the whole system is
finished. This approach can also be combined with risk-oriented or feature-oriented integration.

Figure 2-7: T-Shaped integration

2.3 Version Control Systems

Along with Incremental Integration, Source Code Version Control is another major approach to gain in
productivity and increase quality and consistency when constructing advanced software systems. Source
Code Control is essential to allow software development teams to work effectively together and let each
team member to make progress without interfering with the work of other people of the team. Some of the
big benefits of incorporating version control in software development are:

 Parallel working on a file while someone else is working on it

 Easy update of all project’s files to the latest version usually by issuing a single command

 Backtrack to any version of any file that was ever checked into version control

 Ability to track the list of the changes made to any version of any file

 Avoidance of the burden of personal backups as the version control system works as a safety net

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 19 of 83

Particularly in integration version control can provide a safe backup point with branching, where a new
branch is constructed each time a new subsystem is being integrated. In case a problem appears in the
integration of a new feature rework can easily restart at the point of the previous branch containing all the
work prior the attempt to integrate the new feature. The degree of help that a version control system
provides is also affected by parameters like:

 The structure of the development team: A two person team in one room has different needs than
a large team spread across the globe.

 The software product architecture: Some points in the architecture allow for a greater degree of
decoupling than other points.

 The capabilities of the version control tool: The selected tool must support effectively all the
features required from a version control tool for the specific product.

All these parameters must be thoroughly examined prior the adoption of a version control tool to maximize
the possibilities of a successful integrated product developed on time.

2.3.1 nSHIELD SVN Repositories

For the purposes of nSHIELD project Apache Subversion [15] was used as revision control system for
software versioning. A SVN first repository managed by MGEP for source code integration of WP4
activities has been deployed at:

svn://forja.mondragon.edu/scmrepos/svn/nshieldwp4/

A second SVN repository related to WP5 activities managed by UNIROMA has been deployed at:

svn://labreti30.ing.uniroma1.it/nshield/code

2.4 Software Integration Checklist

The following list of activities is provided as a tool that helps in clarification of prerequisites for successful
integration as well as in the adoption of the strategy that serves better the project needs.

1. Identification of the optimal order in which subsystems, classes and routines should be integrated.

2. Examination of the relevance between integration order and construction order so that
components are ready for integration at the right time.

3. Examination for well-defined interfaces between components

4. Adoption of an integration strategy (or combination of strategies) that offer benefits over other
alternative strategies. Key attributes in which each integration strategy should be examined
include:

a. Easy debugging and diagnosis of defects

b. Minimal development of supplementary code for integration only purposes

c. Easy integration of new components

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 20 of 83 Final

3 nSHIELD Integration Approach

3.1 Overall approach

The aim of the Multi-Technology system integration task it to compose seamlessly components and
prototypes developed in WP3, WP4 and WP5 in order to address all SPD concerns and requirements of a
real application scenario. As described in the nSHIELD Technical Annex [3] composability and
architectural dependability are two priorities of highest importance for the nSHIELD project.

After selecting the most appropriate SPD algorithms, technologies and procedures and developing the
missing ones, nSHIELD must be capable to integrate and harmonize them in a modular, composable,
expandable and high-dependable architectural framework. A first step toward this goal is to identify the
framework inputs that will make the composable system a reality. Figure 3-1 helps in the clarification of
the required inputs and the produced output for the system integration procedure.

Multi-Technology

System Integration

System

Requirements

High Level

Node

Network

Middleware/

Overlay

SPD Prototypes

Node

Network

Middleware/

Overlay

Application

Requirements

Application

Demonstrator

Application Validation

& Verification

WP2

WP7

WP3/WP4/WP5nSHIELD

Reference System

Architecture

SPD Metrics

Rules & Constraints

Figure 3-1: Interdependencies between nSHIELD tasks

Starting from the system requirements presented in [4] where both high level requirements related to
nSHIELD application scenarios and requirements related to each one of the nSHIELD layer (node,
network, middleware, overlay), the identification of SPD metrics in [5] and the overall reference
architecture design [6] where all types of nSHIELD embedded devices and means of their interconnection
where identified, a number of prototypes related to node [7], network [9] and middleware/overlay [11] layer
were constructed. The prototypes list of Table 3-1 contains all technology prototypes developed within
nSHIELD activities.

Having available the list of prototypes the first step of the System Integration is to analyse the application
requirements and crosscheck them with the repository of system requirements to find the degree of
fulfilment of both application and SPD requirements. Considering nSHIELD an open and expandable
security and dependability framework, the number of SPD prototypes will be increased in the future
covering new aspects as technology evolves. After the assessment of requirements fulfilment and in the
case of a positive result application requirements must be decomposed to node, network and
middleware/overlay parts. At node layer the framework must be able to distinguish the network interface
for interconnected node, the inclusion of nS-ESD Gateways for supporting legacy and proprietary
networks as well as to evaluate the SPD capabilities of each node. At network layer the framework must
be able to provide efficient communication among all the involved entities meeting the requirements set by

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 21 of 83

the specific application. The middleware requirements must be also able to be supported from the nodes
(constrained devices may not allowed to have a direct connectivity to middleware services) otherwise the
system will may be functional composable but with lower SPD capabilities. The framework must be able to
provide a general SPD level assessment as well as a list of threats addressed and possible known
vulnerabilities before application composition.

Table 3-1: nSHIELD prototypes

PROTOTYPE LIST

00 Elliptic Curve Cryptography UNIGE

01 Lightweight Ciphering TUC

02 Key Exchange Protocol TUC

03 Hypervisor SICS

04 Secure Boot T2D

05 Secure Power (&) Communication cape AT

06 Smart Card based Security Services TUC

07 Facial Recognition ETH

08 GPU accelerated Hashing TUC

09 Smart Transmission SES/UNIGE

10 Anonymity & Location Privacy Service TUC

11 Automatic Access Control TUC

12 DDoS Attack Mitigation ATHENA

13 Recognizing DoS ATHENA

14 Dependable Distributed Computation Framework UNIUD

15 Intrusion Detection System MGEP

16 Reputation-Based Secure Routing TUC/HAI

17 Access Control Smart Grid TECNALIA

18 Policy Definition ASTS/SES/SESM

19 Policy Based Management Framework TUC/HAI

20 Control Algorithms UNIROMA

21 Gateway SESM

22 Middleware Intrusion Detection System S-LAB

23 Link Layer Security INDRA

24 Network Layer Security TUC

25 OSGI Middleware UNIROMA1

26 Semantic Model UNIROMA1

27 Multimetrics TECNALIA

28 Attack Surface Metrics SES

29 Adaptation of Legacy System ATHENA

30 Reliable Avionic ALFATROLL

31 Middleware Protection Profile SES

32 Secure Discovery UNIROMA1

33 Security Agent UNIROMA1

34 Audio Surveillance System ISD

35 Beagle Board-Xm SICS

36 OMNIA-IMA SES

37 ETH SecuBoard

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 22 of 83 Final

Prototypes of Table 3-1 can be distinguished according to the layer designed for as presented in Figure
3-2.

Node Prototypes

00 Elliptic Curve Cryptography

01 Lightweight Ciphering

02 Key Exchange Protocol

03 Hypervisor

04 Secure Boot

05
Secure Power (&)

Communication Cape

06
Smart Card based Security

Services

08 GPU-accelerated Hashing

10 Anonymity & Location Privacy

11 Automatic Access Control

07 Face Recognition

34 Audio Surveillance System

30 Reliable Avionics

Network Prototypes

09 Smart Transmission

12 DDoS Attack Mitigation

13 Recognizing DoS

14
Dependable Distributed

Computational Framework

15 Intrusion Detection System

16
Reputation-based Secure

Routing

17 Access Control Smart Grid

23 Link Layer Security

24 Network Layer Security

Middleware/Overlay Prototypes

25 OSGI Middleware

26 Semantic Model

18 Policy Definition

19
Policy Based Management

Framework

20 Control Algorithms

21 Gateway

22
Middleware Intrusion

Detection System

29 Legacy System Adapter

31 Middleware Protection Profile

32 Secure Discovery

33 Security Agent

Figure 3-2: nSHIELD prototypes at node, network and middleware/overlay layer

3.2 System composition

The enormous amount of Security, Privacy and Dependability features covered by nSHIELD prototypes
poses a lot of challenges to system composability. Integration of different prototypes will be firstly driven
by application scenario requirements where security and dependability requirements should also be
expressed. It is neither feasible nor required for a scenario to include all the prototypes of Table 3-1 as
different applications have different requirements and some essential prototypes for one scenario may be
meaningless for another. The following section provides a guide for prototypes composition which can
form the basis for the creation of a software framework that working together with SPD metrics
quantification software will help in the integration of the different technologies developed throughout the
nSHIELD project as well as in the SPD level assessment compliant with the work presented in [5]. At this
point prototypes of Table 3-1 are focused on a specific SPD feature and their initial implementation has
been performed in isolation from the other prototypes. The final version of the integration report will
receive feedback from the attempts to compose systems that include different prototypes in four
application scenarios, railway security, voice/facial recognition, dependable avionic and social mobility
and networking.

The first step performed by the composition framework is the selection of the most appropriate hardware
nodes from the repository of all valid nSHIELD platforms. This repository will include all platforms
presented in Table 3-2 expanded with new platforms while nSHIELD project evolves

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 23 of 83

Table 3-2: nSHIELD SPD nodes used during prototypes development

nSHIELD
SPD node

Operating
System

Application
Processor

(Legacy Device
Component)

Non-volatile
memory (Legacy

Device
Component)

Volatile
memory
(Legacy
Device

Component)

Special-Purpose
Processor

(Legacy Device
Component)

Stable Storage
(Dependability

Block)
I/O Interface

Power
Management

Waveform / Freq.
Band / Data rate

Zolertia Z1
Contiki /
TinyOS

MPU @ 16MHz

EEPROM
CP2102 usb-to-

uart (Please
check)

RAM 8KB 12 bit ADC
92KB Flash or
16MB (Please

check)

USB, UART,
GPIO,

802.15.4
(ZigBee)
(CC2420

transceiver)

Batteries /
USB

DSSS / 2.4 Ghz /
250 kbps

Raspberry Pi Linux

ARM11 @
700MHz +

GPU

-
SDRAM 256

MiB
(mebibyte)

DSP available
but not currently

public API

Secure digital
SD/MMC/SDI

O card slot
(4GB)

USB, UART,
GPIO,

Ethernet

Micro USB /
GPIO

No wireless
module

Arduino Uno
Arduino
software

MCU @ 16 MHz 1KB EEPROM SRAM 2KB - 32KB Flash USB, UART
Batteries /

USB

WiFi (802.11 b/g)
and Wireless

(802.15.4)
Shields available

BeagleBoard Linux
MPU @ 720
MHz (OMAP)

DDR2
256MB

SD/MMC/SDI

O card slot
USB, UART,

GPIO
USB / DC

No wireless
module (interface

available)

BeagleBoard
-XM

Linux /
WinCE

DSP @ 1 GHz
(DM3730)

DDR2
512MB

microSD card

slot
USB, UART,

GPIO
USB / DC

No wireless
module (interface

available)

BeagleBone Linux

MPU @ 720
MHz (DC

powered) OR

MPU @ 500
MHz (USB
powered)

32KB EEPROM
DDR2
256MB

microSD card

slot (4GB)

USB, UART,
GPIO, I2C,

Ethernet
USB / DC

WiFi (802.11 b/g)
and Wireless

(802.15.4) Capes
available

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 24 of 83 Final

OMBRA v2
Linux /
WinCE

ARM Cortex
CPU @ 1GHz

 LPDDR 1GB DSP & FPGA
microSD
(32GB)

USB,
Ethernet,

VGA
Usb / DC

No wireless
module at the

moment (future
versions may

include RF front
end)

Memsic IRIS
TinyOS /
Contiki
(port)

Atmel ATMega
1281, 8MHz

4KB EEPROM RAM 8KB 10bit ADC

128KB
Program Flash

Memory,
512KB

Measurement
(Serial) Flash

UART, I2C,
SPI

Batteries
(2xAA)

802.15.4 (2.4
Ghz / 250 kbps)

Eurotech
SecuBoard

Linux

WinCE
(optional)

ARM® Cortex-
A8 RISC

Processor (up
to1,35 GHz)

1 GB DDR3
@400MHz

VLIW floating-
point DSP core

- 3
Programmable

HD Video Image
Coprocessing

(HDVICP2)
Engines, 3D

Graphics
Engine,

Integrated
CMOS sensor

(M031 or T001
or ICD445 or

AR0031 FullHD)

512 MB Nand
Flash / SD

Card

USB,
Ethernet
(1Gb),
UART,

GPIO, SPI,
IrDA, CIR,

I2C, eSATA,
PCIe,

McBSP,
HDMI, APC

for
FPGA,CPLD
and ASICS

DC (9-15
Vcc), PoE
(optional)
Batteries
(optional)

WiFi, 3G

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 25 of 83

Application requirements will guide the selection of the nodes. The output of this process, Figure 3-3, will
be a list of all hardware platforms able to successfully compose the application, a list of all prototypes able
to run on them together with an initial SPD level assignment. The analysis of this step should include the
following steps:

nSHIELD

nodes

repository

Application

Requirements

Selection Engine

Nodes Selection

prior to software

algorithms

deployment

Figure 3-3: Process for selecting hardware platforms prior to SPD algorithms deployment

1. Physical Protection: The necessity of anti-tampering detection, TPM for secure storage of
cryptographic keys and secure power unit must be examined during node selection.
BeagleBone Secure Power and Communication Cape (Prototype 5) is able to provide
physical protection in any application scenario that uses BeagleBone as platform/node.

2. Secure Boot & Execution Environment: Platforms that support secure execution environment
that allows trustworthy, security critical applications to run isolated from other co-existing less
trustworthy/insecure applications provide another input for the SPD level assessment.
BeagleBone platform supports these features implemented in Prototypes 3 & 4.

3. Operating System: Depending on their resources nSHIELD nodes can run on a variety of
operating systems from more full-featured like embedded Linux and Android to lightweight like
Contiki and TinyOS. Security and dependability features of the operating system must be
evaluated.

4. Network interfaces: Network requirements must be analysed for each scenario and the
selected node must support this network interface which can be either wired like Ethernet,
USB or serial interface or wireless like SDR, 802.11, 802.15.4, RFID, Smart Card, Bluetooth
etc. The network interface will form the base for the examination of network layer security and
dependability algorithms applicability.

5. Java Runtime Environment: Nodes able to support core nSHIELD SPD services denoted as
ns-SPD-ESD nodes in [6] must be equipped with Java Runtime Environment for dynamic
SPD services establishment.

6. Hardware Accelerators/Specific processors: The need of using specific hardware
accelerators/processors to run at node a required prototype must be examined at this step.
Prototype 8 GPU-accelerated hashing belongs to this category.

An example template with SPD features and supporting functionality prior node/network/middleware
SPD algorithms deployment is provided in Table 3-3.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 26 of 83 Final

Table 3-3: Example template of HW platform with HW SPD features, available network connectivity
and algorithms ready to run

Platform Name: Feature Supported

BeagleBone Yes No

Physical Protection

Custom Encapsulation X

TPM Crypto-coprocessor X

Secure power unit X

Secure Execution Environment X

Secure Boot X

Operating System

Embedded Linux X

Communication Interface

Ethernet X

USB X

Serial X (add-on cape)

SDR X

802.11 X (add-on cape)

802.15.4 X (add-on cape)

RFID

Smart Card

Bluetooth

Java Runtime Environment X

GPU Unit X

Prototypes able to run

Node Layer Network Layer Middleware/Overlay Layer

00 Elliptic Curve Cryptography 24 Network Layer Security 19 Policy Based Management

01 Lightweight Ciphering 32 Secure Discovery

02 Key Exchange Protocol 33 Security Agent

10
Anonymity and Location
Privacy

11 Automatic Access Control

The next step where the framework will be utilized in system composition is the selection of the SPD
algorithms that will run at each platform taken from node/layer/middleware prototypes. A distinction at this
point must be provided between features that needed to be selected statically (at design time and prior to
node programming and deployment) and those that can be configured at runtime which are closely related
to middleware services. Source code integration of prototypes with related functionality can follow the

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 27 of 83

general procedures described in Chapter 2. The framework must be also able to resolve conflicts and
solve issues related to the involvement of legacy and proprietary nodes where some kind of Gateway (nS-
ESD Gateway in the nSHIELD reference architecture [6] addressed from prototype 21) and Legacy
System Adapter (addressed from prototype 29) must be used. After system composition the system
administrator must have a clear view of all SPD components included in each node, an interface to
interact with runtime parameters as well as SPD levels at node, network and middleware layers for all
elements included in system configuration (Figure 3-4). For more complicated and numerous systems a
clustering approach will be followed. A more detailed description of composability framework will be
presented in D6.5.

Node

Components

Network

Components

Middleware

Components

SPD

Level

Node 1

[nS-ESD]

Node 2

[nS-ESD]

Node 3

[nS-SPD-ESD]

Node 4

[nS-SPD-ESD]

Node 5

[L-ESD]

Node 6

[L-ESD]

Node

Components

Network

Components

Middleware

Components

SPD

Level

Node

Components

Network

Components

Middleware

Components

SPD

Level

Node

Components

Network

Components

Middleware

Components

SPD

Level

Node

Components

Network

Components

Middleware

Components

SPD

Level

Node

Components

Network

Components

Middleware

Components

SPD

Level

nS-

ESD

GW

Figure 3-4: Composed nSHIELD system: information about node, network and middleware
components includes SPD level assessment for each system element

The above picture can be compared with Figure 3-5 taken from the reference architecture [6]. The view of
an integrated and working nSHIELD system must be compliant with the conceptual architecture giving in
their users and administrators the ability to have a clear picture of the SPD algorithms implemented in
each network element, a quantified value of the security/dependability applied as well as the ability to
change dynamically at run time the SPD level utilizing middleware services deployed.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 28 of 83 Final

Figure 3-5: Conceptual Architecture of the nSHIELD system

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 29 of 83

4 Integration of Railway Scenario Components

This chapter presents the description of different prototypes used in railway scenario. Components of the
middleware layer have been built with the adoption of the Knopflerfish OSGi open source service platform
which facilitates the integration process. The chapter concludes with an interaction map that presents the
interfaces and interactions needed to build the railway security system from all the components that
participate in system composition. A more detailed picture of interactions among the involved components
will be presented in the final version of this deliverable taking feedback from the development effort of the
railway security demonstrator.

4.1 Control Algorithms (Prototype 20)

The SHIELD control algorithms are the simplest prototype to be integrated in the common platform, since
they are embedded in the Middleware code and are implemented in the Security Agent bundle. On a
practical point of view, the control algorithms will be a set of software instructions that will implement the
SPD driven composition as described in D5.2 and D5.3 as follows:

• The OSGI services will populate the knowledge bases that contain the semantic representation of
the SHIELD components and the scenario dependent information

• This information will be merged by means of adequate control algorithms to compute the list of
SPD functionalities that have to be activated to satisfy the user requirements in terms of SPD.

• This list will be forwarded to the middleware to propagate the control command to system
components

The strength of this solution is that the behaviour of the control algorithm module is independent from the
specific control algorithm implemented, leaving the possibility of exploring more than one solution within
the same framework (if needed).

In addition, in case the OSGI libraries will not be suitable to solve the composition (mathematical)
problem, then the support of external computational software tool can be foreseen, like, for example,
Matlab, that could be easily called by the Security Agent routines to solve the problems.

4.2 Middleware Intrusion Detection System (Prototype 22)

4.2.1 IDS prototype interfaces

In its current status, the preliminary IDS prototype has generic network interfaces for receiving and
forwarding requests that are to be filtered. In Figure 4-7, these bi-directional interfaces are denoted as IF-
2. The IDS prototype will receive and optionally forward messages without altering their content or re-
encapsulating them. In this sense, IF-2 is a homogeneous interface between the Middleware services and
the prototypes which use them.

It is however anticipated that TAP / TUN virtual network interfaces could be used to physically separate
and protect internal (Middleware services) and external (other components and networks besides
Middleware) network domains. These changes could mostly be implemented in a transparent manner for
the system components using middleware services, but may impact how connection methods towards
middleware services should be implemented. The design of the network domains and the connection
methods used will be studied at the time of integration with other Middleware components.

Using the IDS prototype requires setting up network infrastructure so that requests are received by the
gateway instead of the middleware services natively. For this purpose, the Intrusion Detection and
Filtering Module provides additional function call interfaces towards the Middleware services that
implement the use of the IDS – see IF-3 in Figure 4-7. At the time of integration, it needs to be determined
which Middleware services are to be protected against DoS/DDoS attacks, and which operation mode of
intrusion detection (blacklisting / whitelisting) is more beneficial to be used for each. Use of IDS prototype

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 30 of 83 Final

for these services is straightforward: by adding a few lines of Java code to the services, they can be
enabled to use intrusion detection functionality.

The nSHIELD Overlay functionality will be responsible to monitor SPD properties and control desired SPD
level for the prototypes. The function interface IF-3 provides all functions for this purpose; for more details,
see next chapter.

Further information and source code for the IDS prototype is available in D5.3 [11] and D5.2 [10].

4.2.2 IDS prototype SPD features

The preliminary version of the Intrusion Detection and Filtering Module provides the following features for
the Middleware and Overlay services utilizing and controlling the IDS. These features are accessible via
Java function interfaces in the OSGi Middleware environment:

• Intrusion detection configurable per service

• Provides manual addition and removal of blacklist and whitelist elements for clients – operation
mode and lists can be controlled from the Overlay based on higher level semantic SPD
information (e.g. based on trust level associated with clients obtained from Secure Discovery)

• Critical Load Detection of Server

• Can be switched to whitelisted or blacklisted mode, or can switch automatically under critical load
(can be controlled according to required SPD level changes as well)

• Provides function interface to query Service Metrics that can be used to assess SPD level of the
prototype:

o totalIncomingRequestCount

o totalOutgoingResponseCount

o totalDroppedFromQueueCount

o currentQueueSize

o totalBlacklistRejection

o totalWhitelistRejection

4.2.3 IDS prototype environment

The IDS prototype was designed to become part of the Middleware services, thus its function interfaces
are implemented in Java, wrapped as a Knopflerfish OSGI Bundle. However, to reduce overhead imposed
by the IDS forwarding all Middleware requests, the core functionality was implemented in C++ natively.
The code was designed to be portable, available for compilation under different OSes – using either
Visual Studio 2012 (Windows) or g++ 4.7.3 (Linux / Windows). The code uses portable libraries (Boost).
The core functionality can be compiled either as:

 stand-alone executable (providing default IDS settings for services configured via command line
or configuration file)

 DLL / so shared library that can be used from Java via JNI wrapper. This method is implemented
by the current solution in the OSGI Framework for Middleware, providing also a function interface
to other OSGI bundles.

4.3 Reputation based Secure Routing (Prototype 16)

For the integration of reputation-based secure routing prototype in the railway scenario, network
interfacing is the first issue needed to be solved. This of course is true in the case that secure routing is
running on 802.15.4 wireless network of embedded device as is the case of Prototype 16. From an
architectural point of view the kind of network that secure routing prototype runs can be considered a

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 31 of 83

legacy network and a gateway device (nS-ESD GW) must be included in order to communicate with the
L-ESD devices (Figure 4-1).

From a usage perspective, several kinds of sensors can be attached to sensor nodes (Temperature,
Vibration, Pressure, Infrared, etc) according to application needs. A translation between the legacy
network and the railway security network must be performed for middleware tasks such as:

 Service discovery where the services provided by the sensor network must be identified

 Data gathering of sensed values

 SPD level management where the security and dependability level of each participating node will
be configured. In the case of reputation based secure routing prototype this level could adjust the
inclusion of indirect trust in trust calculation and the examination of conformance of third party
opinions to a statistical distribution mean value in order to exclude bad-mouthing attacks. More
details on this can be found in D4.2 [8] and D4.3 [9].

nS-ESD GW
1

2

3

4

5

6

BS

IEEE 802.15.4 PHY & MAC

 Temperature

Light

Vibration

Pressure

Infrared

USB/RS232

7

8

9

Sensors

Figure 4-1: WSN secure routing prototype - nS-ESD GW (integration in Railway Scenario)

4.3.1 Reputation-based Secure Routing Prototype Interfaces

WSNs with sensor/mote nodes are applied in railway scenarios. Such nodes are placed along the train’s
route for continuous monitoring. As it is expensive for all these nodes to be directly connected to the
railway station network, they must cooperate to communicate information from one end to the other. Thus,
routing protocols can be applied to carry out the communication from nodes to the WSN gateway which is
connected to the railway WAN. Due to the difficulty in physically securing all these nodes and avoiding
nodes that have been compromised by attackers to interact with the rest of the network, trust and
reputation-based schemes for secure routing can be applied. Furthermore, trust and reputation-based
routing can act as an intrusion detection mechanism and detect jamming areas.

In Figure 4-7, the general interfaces for interacting with the main railway WAN can be denoted as the
prototype “Reputation-Based Secure Routing – 16” in the “Redundant cluster” box as “Other Smart
Sensors” technologies. The prototype communicates with the “Network Layer Security / LAN / WAN – 24”
component.

Using the reputation-based secure routing prototype requires setting up a WSN, which embodies the
proposed trust and reputation-based system, and has at least one gateway that is connected to the
Network Layer Security component of the rest nSHIELD railway system. At the initialization phase, the
WSN manager must set the parameters of the trust and reputation-based scheme for each node. The
nodes will automatically discover the communication routes (using the pure routing protocol procedures).
Then the nodes will start performing their main operations (e.g. sense local environment variables). The
communications between the sensor nodes are evaluated by the trust and reputation-based system. The

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 32 of 83 Final

WSN can automatically communicate with the rest railway system to transmit the data (e.g. sensed info,
trust and reputation) or arise an alarm in case of attack. The main railway system can make requests to
the WSN or change the configuration parameters of the trust and reputation-based scheme at runtime.

The nSHIELD Network functionality will be responsible to monitor SPD properties and control desired
SPD level for the prototypes. For more details, see next chapter. Further information and source code for
the reputation-based secure routing prototype is available in D4.2 [8] and D4.3 [9].

4.3.2 Reputation-based Secure Routing Prototype SPD features

The preliminary version of the Reputation-Based Secure Routing Module provides the following features
for the Network services to configure and control the reputation scheme. The following function interfaces
are considered:

• Configuration of the trust and reputation scheme to comply with the application’s requirements. A
GUI is implemented to ease the configuration process at deployment time.

• Pre-defined options for implementing the decision making process of well-known trust and
reputation-based schemes

• Runtime configuration of the scheme to comply with the security policies and the relevant SPD
level

• Provides function interface to query Service Metrics that can be used to assess SPD level of the
prototype (per node):

o averageReputation

o reputationBias

o transactionRate

o agentTypeProfit

4.3.3 Reputation-based Secure Routing Prototype environment

The reputation-based secure routing prototype was designed to become part of the Network services. Its
function interfaces are implemented in C++ and extend the routing protocol DSR. The code is tested
under the operating system Linux. The core functionality is implemented in the Linux kernel and rest
functionality in the user space. The compilation creates a module in the Linux framework Netfilter, which is
responsible for manipulating the out/incoming network traffic of a node.

4.4 Offline Physical Access Control System (Prototype 05)

Railway operators are responsible for a large number of locked assets spread over a large area. Due to
the high cost of traditional access control systems, many railway operators still rely on traditional
mechanical keys, which are both inefficient and insecure. For example, the operator of the subway system
in Stockholm, Sweden, is responsible for more than 20.000 doors, of which only 10% are currently
equipped with an access control system.

An offline system is much less costly to install compared to an online system, and therefore an interesting
alternative to online systems and traditional keys. Offline Physical Access control solution fits well with the
need of a railways operator and can complement the Railways Security System in that areas where a
secure online integration present a higher cost.

4.4.1 oPACS prototype interfaces

The nSHIELD partner Telcred (TELC) develops an offline access control system. At the door, the solution
is comprised of a reader, a lock controller and an electric lock.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 33 of 83

The lock controller is placed on the inside of the door and is a critical component since it is responsible for
making the actual access control decisions based on the credentials presented by the user to the reader.
In other words, it is highly important that this component is both reliable and resistant to attacks.

Within the scope of the project, Telcred (TELC), Acorde (AT), and SICS are collaborating on developing a
secure micro node, which can be used as a lock controller. A custom “cape” for a standard BeagleBone
low end Linux computer is being developed. This cape will provide features such as tamper detection,
backup power, secure storage of cryptographic keys, and a real time clock.

This system will be used as an offline physical access control and the secure lock controller will operate
offline/standalone. This means that, at the beginning, no interfaces with other nSHIELD devices/
components will be implemented.

4.4.2 oPACS prototype SPD features

This nSHIELD node prototype is composed of different subsystems that are directly related to different
partners’ expertise. This prototype has been designed as a BeagleBone cape. The main functionalities of
this prototype are:

a) Custom encapsulation + Supervisor and anti-tampering
b) Power unit for the BeagleBone board and third-party boards
c) TPM module to support the storage of the security keys that are involved in the partners

cryptographic developments. This feature is provided through a holder/slot for a smart card with
form factor ID-000 (same as a typical SIM-card). This way, different hardware can be used
depending on the application (using a smart card with Java Card for secure storage and to serve
as a crypto co-processor).

d) RF Module that supports the 802.15.4, based on the MRF24J40 that provides a wireless
communication link.

e) Other features:
i. Additional RS-485/RS-232 external interfaces (driver + connector) will be available in the

cape.
ii. RTC signal will be provided.
iii. Two relays
iv. Several digital inputs

With this prototype some SPD functionalities that could be covered are listed below:

Table 4-1: Offline Access Control SPD features

Digital Signatures
Different signature verifications can be done using Java Card applets (like
implementation of ECDSA java card applet on the smart card)

Physical/tamper
resilience

This feature is a requirement that has been considered during design stage. It
has been included a supervisor chip to cover this feature connected to a
switch.

ECC Authentication
This feature can be covered by means a software solution like using Java
Card/JCOP smart cards (built-in functionality in Java Card)

Accommodations for
future energy sources

The design of AT custom power module will include a power input interface for
alternative power sources and on-board battery to allow the future
implementation of power harvesting technologies

Power management

This requirement manages any system power supply risk, which might affect
to the node behaviour. In case of failure of any of the countermeasures, being
able to protect all the electronics and devices, in order to avoid further
damages into the system and increase the node availability

Due these "nSHIELD capabilities" (mainly the crypto implementation) this micro node allows to
communicate securely with external devices such as NFC phones, smart cards and wireless sensors.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 34 of 83 Final

4.4.3 oPACS prototype environment

For the use case demonstration, the physical access control system can be integrated with other
nSHIELD components through the back end. In other words, the overarching SMS (security Management
System) can be integrated with the oPACS (Physical Access Control System) on the back end, while the
secure lock controller will operate offline/standalone.

4.5 Network layer security (Prototype 24)

4.5.1 Network layer prototype interfaces

The network layer prototype developed can be connected to other systems through a gateway that
supports the underlying protocols for offering network layer security.

4.5.2 Network layer prototype SPD features

The network layer security prototype deals with the ability to provide message protection at the network
layer. In this way, any sensitive information transmitted among nodes will be secured in a way that will
feature both confidentiality and integrity. A protocol utilizing the cryptographic algorithm AES in CCM*
mode will ensure that the aforementioned requirements are satisfied for the restricted nodes of the
nSHIELD network.

The following table summarizes the list of network requirements addressed by Prototype 24.

Table 4-2: Prototype 24, Network Requirements addressed

Prototype 24: Network Layer Security prototype

Confidentiality
Using AES in CCM* mode ensures the confidentiality
of the communicated message.

Integrity and authenticity
The CCM* mode of operation utilises CBC-MAC as
an integrity-checking mechanism. Correct reception of
the message

Multiple protocol support
The scheme is able to support different cryptographic
configurations, for increased compatibility.

4.5.3 Network layer prototype environment

The network layer prototype has been implemented in the Contiki OS and is meant for securing
communication between nano nodes and other nSHIELD nodes. The implementation has taken place
within the Contiki’s uIP stack, which is responsible for handling the incoming/outgoing traffic of a node.

4.6 Metrics Approach (Prototype 27)

nSHIELD proposes 2 types of metric aggregation measurement. Both types of metrics are described in
document D2.8 Final Metric Specification.: Attack Surface Metric and Multi Metric approach. Both need an
integration procedure with respect the holistic nSHIELD platform.

This integration approach will be held by incorporating the aggregation formula to OSGI Middleware
governing nSHIELD Overlay, and in particular by embedding it in the semantic model used in the SHIELD
framework. This middleware will enable a container for aggregation formula and/or algorithm.

However it must be understood that both approaches have to be tuned by operator experts, so that
integration will be finished with both perspective: this one which will be automatically addressed and one
more manual one with the opinion of experts.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 35 of 83

For railway scenario, many metrics have been found (See D7.1) and therefore, for multi-metric approach
this could be seen as a good use case for its expert system algorithm validity.

4.7 Semantic model (Prototype 26)

The SHIELD Semantic Mode is based on a separation paradigm: on one hand a set of scenario
dependent DBs contain all the information necessary to tailor the system aspects to the specific
application. On the other hand, the abstract model of the generic SPD functionality, derived from the
“attack surface” logic, contains the quantification of the SPD capabilities of the component as well as the
mapping between menaces and means of mitigation (the basic principles of security). This concept is
depicted in Figure 4-2 and detailed in D5.2 and D5.3.

Figure 4-2: nSHIELD Knowledge Bases

All the requirements related to data integrity and management are addressed by an adequate data
storage mechanism (relational DB rather than global variable in system memory) with basic security
functionalities implemented by the software environment.

The integration of this prototype in the common platform is done in two ways:

i. By providing the components’ responsible with the “guidelines” to write down the Ontology model
for their component as well as the Domain Dependent Library

ii. By codifying this ontology into an xml file that can be parsed by the OSGI to extrapolate relevant
information.

For the sake of simplicity, the demonstrator could be set up with the semantic data bases already
initialized (in the real system this “learning” phase will be done at the “switch on”)

4.8 OSGI Middleware (Prototype 25)

As already written in D7.1, D7.2 and D7.3 (from which this text is taken), it has been decided to adopt the
open source Knopflerfish OSGi service platform to implement the behaviour of the SHIELD Middleware.
Knopflerfish (hereafter referred as to KF) is a component-based framework for Java in which units of
resources called bundles can be installed. Bundles can export services or run processes, and have their
dependencies managed, such that a bundle can be expected to have its requirements managed by the
container. Each bundle can also have its own internal classpath, so that it can serve as an independent
unit, should that be desirable. All of this is standardized such that any valid Knopflerfish bundle can be
installed in any valid OSGi container (Oscar, Equinox or any other).

Basically, running OSGi is very simple: one grabs one of the OSGi container implementations (Equinox,
Felix, Knopflerfish, ProSyst, Oscar, etc.) and executes the container's boot process; much like one runs a
Java EE server. Like Java EE, each container has a different startup environment and slightly different
capabilities. The KF environment can be downloaded here: http://www.knopflerfish.org/

The KF start-up environment is shown below:

Technology
Independent
Abstraction

Domain
Dependent
Libraries

SPD

ABSTRACTION

http://www.knopflerfish.org/

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 36 of 83 Final

Figure 4-3: Knopflerfish start-up environment

All the major nSHIELD Middleware services have been translated into specific Bundles (including the
Security Agent) so that the platform is representative enough of the final system.

On a deployment point of view, this framework is installed into a Notebook that is interfaced directly with
the Intrusion Detection Bundle and consequently with the rest of the railways demonstrator through a
network (most likely an Ethernet LAN). The interfaces with the Secure Discovery Bundle (in charge of
populating the service databases) and the Security Agent are internal and implemented directly in Java
Language.

4.9 Security Agent (Prototype 33)

The Security Agent is one of the main OSGi bundle and is responsible of interfacing the control algorithms
with the discovery module, i.e. it represent the “embedded intelligence” of the SHIELD framework. It has
direct access to the policy/ontology/domain repositories and can parse this information to feed the control
algorithms. In addition, it is able to receive a solution computed by the control algorithms and translate it
into a set of enforcement/control command to be propagated into the system directly or by means of
proprietary protocols (in this case the security agent acts more like a remote console to drive specific
equipment, i.e. the railways demonstrator PSIM server).

Since the Security Agent is an OSGI bundle, no integration issues are foreseen, since it is native in the
middleware prototype itself.

4.10 Secure Discovery (Prototype 32)

The Secure Service Discovery protocol is in charge of discovering the SHIELD components (including
their semantic description) and feeding the Security Agent with this information, useful for control
purposes. A typical service discovery architecture could be depicted as follows:

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 37 of 83

Figure 4-4: Service discovery architecture

Where the three entities present in all the demonstrator are depicted, and in particular:

 a Service Discovery Client (User Agent), which initializes the service discovery process: it is the
entity interested in finding a certain service

 a Service (Service Agent), which, further being the service (one of the services) to be discovered
by the client, is interested to be discovered, in case properly “advertising” itself

 a Service Repository (Directory Agent), which is a sort of database containing all the services that
have published themselves in a certain scenarios and which discovery client could actually find.

The service discovery client and repository will be implemented in the OSGI framework, while the service
agent will be installed into the railways demonstrator PSIM server. The specific discovery protocol
adopted for the demonstration purposes is the SLP protocol.

4.11 Automatic Access Control (Prototype 11)

4.11.1 Automatic Access Control Prototype Interfaces

Access control mechanisms are in charge of preventing malicious entities to access the physical
resources of a network node. Nodes utilize asymmetric cryptography to verify access requests. A DoS
attack can be performed if a large number of access requests are sent to exhaust node’s resources.
Automatic access control embodies lightweight features to easy the verification process and avoid the
DoS attack. The prototype is utilized in the railway scenario for providing automatic access control
functionality between clients and a server, and preventing some types of DoS attacks.

In Figure 4-7, the general interfaces of interacting between a node and server are denoted as the
prototype “Automatic Access Control – 11” under the “PSIM Server” component.

Gossamer [14] is a protocol for preventing DoS attacks on RFID systems. It belongs to the UMAP (Ultra
Lightweight Mutual Authentication Protocol) family of protocols and provides data confidentiality, tag
anonymity, mutual authentication, data integrity, forward security, robustness against replay attacks and
DoS attack prevention. We implement the Gossamer protocol for the automatic access control prototype
and Node Layer dependable self-x technologies. The protected server and its clients utilize the prototype
prior to a session communication to achieve the aforementioned properties. Then, they continue the main
communication tasks that are provided by the server. When the protocol fails to recognize a legitimate
user, it may lead to the conclusion that the system is under attack. Thus, other mechanisms like anomaly
detection, intrusion detection, intrusion prevention, intrusion tolerance and mitigation, intrusion response
mechanisms and firewalls can undertake.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 38 of 83 Final

The nSHIELD Node functionality will be responsible to monitor SPD properties and control desired SPD
level for the prototype. For more details, see next chapter. Further information and source code for the
automatic access control prototype is available in D3.2 [13] and D3.3 [7].

4.11.2 Automatic Access Control Prototype SPD features

The preliminary version of the automatic access control Module provides the following features for the
Node services:

 Report of a DoS attack

 Provides function interface to query Service Metrics that can be used to assess SPD level of the
prototype:

o transactionRate

o Blacklist/whitelist additions and removals

o Failed authentication

4.11.3 Automatic Access Control Prototype environment

The automatic access control prototype was designed to become part of the Node services. Its function
interfaces are implemented in C++ and implements the ultra-lightweight protocol for automatic access
control and mutual authentication – Gossamer. The code is tested under the operating system Linux. The
core functionality is implemented in the Linux kernel and rest functionality in the user space. The
compilation creates a module in the Linux framework Netfilter, which is responsible for manipulating the
out/incoming network traffic of a node.

Figure 4-5: Gossamer protocol

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 39 of 83

4.12 Policy-based Access Control (PBAC) & Policy-based
Management (PBM) (Prototype 19)

The nSHIELD secure policy-based access control (PBAC) framework facilitates the control of access

to devices and their resources via security policies residing on resource-rich infrastructure nodes.

The PBAC framework is DPWS-compliant, utilizing the relevant specifications and existing work to provide
message-level security and fine-grained security policy functionality while maintaining interoperability with
the standard. The Devices Profile for Web Services (DPWS) is the “UPnP

1
 for the Internet of Things”; a

unified protocol platform developed because of the need to implement dynamic and secure discovery of
devices and Web Services (including messaging, description, interactions, event-driven changes etc.) on
resource constrained devices and supported by Microsoft and other industry leaders. While UPnP and
DLNA (Digital Living Network Alliance) are favored for home entertainment scenarios, DPWS is
recommended for enterprise and vertical applications. By adopting a DPWS-compliant mechanism, the
PBAC framework offers seamless integration (discovery, access etc.) of new devices into the ecosystem
and good scaling, which is especially desirable in large-scale deployments as will often be the case in
Railway scenarios.

The solution adopted for secure policy-based access control is based on eXtensible Access control
Markup Language (XACML) policies, an XML-based general-purpose access control policy language
used for representing authorization and entitlement policies for managing access to resources and,
moreover, an access control decision request/response language. The above fit well into the model of a
network of heterogeneous embedded systems where access to resources is provided by nodes as a
service, and into the management architecture developed by IETF Policy Framework. This typical policy
based access control architecture combined with XACML is mapped to a Service Oriented Architecture
(SOA) network of nodes to provide protected access to their distributed resources.

By combining the above technologies, the PBAC framework allows for fine-grained, policy-based
control of all resources from remote locations, via any compatible app developed for the purpose or
even typical browsers and off the shelf mobile phones. The resources may include but are not limited to
DPWS-enabled cameras deployed on train stations or train wagons, sensors (to detect open emergency
doors or environmental monitoring on carriages carrying sensitive material), control stations and other
“smart devices” that are expected to be deployed in the context of a smart railway deployment. The
framework will, therefore, facilitate access to various pertinent resources (e.g. sensor data or video
stream), setting updates or even the receipt of alerts (e.g. in case of emergencies), all based on what the
active policy dictates, while various metrics will be reported to the overlay.

The figure below depicts the integration of the PBAC framework into the Railway scenario System
Security Architecture.

1
Universal Plug and Play

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 40 of 83 Final

Figure 4-6: The nSHIELD secure policy-based access control

4.12.1 Policy Based Access Control SPD & integration features

The aforementioned framework addresses the critical issue of controlling access to nSHIELD resources.
Its main features are that (1) it is policy based, hence allows the dynamic change of privileges and the
SPD levels, based on the stakeholders’ needs and decisions and (2) it provides the capability to directly
access nodes’ resources and address access requests to them, with no need to be aware of the system’s
details. In that sense policy based access control only authorized access satisfying the corresponding
requirements.

There is a strong relation between the SPD levels of the PBAC framework and the defined policies and
the corresponding rules which can be very strict or relaxed based on the system owner’s requirements.
Note that this policy can be defined either on a node basis, set of nodes, or for the whole system or it can
even target specific subjects and resources.

On top of these policy-based levels there are some features available that affect the protection of the
framework itself and therefore its effectiveness. These mechanisms are the encryption of messages and
their authentication. Unprotected messages can disclose access control related messages and make
them subject to unauthorised modifications. Therefore, the SPD levels of the Policy Based Access Control
mechanism are shown in Table 4-3.

Table 4-3: PBAC SPD levels

SPD Level Functionality

1 (low) No encryption – No Authentication-

2 (medium) Encryption or Authentication

4 (high) Encryption + Authentication

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 41 of 83

The various entities (DPWS devices/peers) that the PBAC framework is comprised of can report various
metrics to the higher layers, as needed. In terms of other integration features, an OSGi-DPWS interface
has been selected and integrated into the standard OSGi platform typically running on nSHIELD power
nodes (i.e. Knopflerfish). Said interface uses DPWS as communication protocol and includes several
features regarding the mutual integration of DPWS and OSGi.

4.13 Interactions map

PC

Vehicle

Network Layer Security /LAN/WAN) Network Layer Security /LAN/WAN)

Video wall

24

Camera A

...

Other Smart

Sensors

Camera B

NVR

Automatic

Access

Control

PSIM

Server

Security

Agent

Intrusion

Detection

Bundle

Redundant cluster

IF- 3

IF- 4

11

Camera B
Other Smart

Sensors
Camera A

Semantic Model

Multimetrics

Attack Surface Metrics

Protection Profile

26

27

28

31

Middleware

Services

22

Offline Access

Control

Reputation-Based Secure

Routing 16

Policy Based

Framework

05

Figure 4-7: Railway scenario interactions

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 42 of 83 Final

5 Integration of People Identification Scenario
Components

5.1 Face recognition (Prototypes 7 and 37)

The prototypes 7 and 37 are the face recognition components of the scenario “People Identification at the
Stadium”. This scenario is an evolution of the original scenario “Face and voice recognition” and it has
been introduced to better illustrate the capabilities and potentialities of the adopted technologies and for
its relevance in terms of market interest.

The face recognition prototype (prototype 7) is an all-in-one solution conceived to practically demonstrate
the functionalities and potentialities of the face recognition system for people identification. It represents a
proof of concept of the technologies adopted for the face recognition and it will be used to develop the
final prototype. This prototype belong to the former “Face and voice recognition” application scenario and
has been developed during the first part of nSHIELD project. During the second part of the project it will
be finalized developing the embedded camera for face recognition that can be used in a real environment
(prototype 37) and in the final demonstrator.

From a software point of view, the approach identified in the assessment phase has been implemented
using three different modules that rationalize the recognition process. The prototypes, both the Windows
and the Linux versions, are based on the Eigenface method. This method is based on the idea of
extracting the basic features of the face: the objective is to reduce the problem to a lower dimension
maintaining, at the same time, the level of dependability required for this application context. The core of
this solution is the extraction of the principal components of the faces distribution, which is performed
using the Principal Component Analysis (PCA) method. This method is also known in the pattern
recognition context as arhunen-Lo ve (L) transform. The principal components of the faces are
eigenvectors and can be computed from the covariance matrix of the face pictures set (faces to
recognize). Every single eigenvector represents the feature set of the differences among the face picture
set. The graphical representations of the eigenvectors are also similar to real faces and, for this reason,
they are called eigenfaces. The PCA method is autonomous and therefore is particularly suggested for
unsupervised and automatic face recognition systems. This software solution has been developed in C++
and has been compiled for Windows, (all-in-one demonstrator) and for Linux-ARM.(final embedded
camera prototype).

The two prototypes integrate with the smart card security services, introduced by TUC, and with the
dependable distributed computation framework, developed by UNIUD.

5.1.1 Face recognition modules

The face recognition and people identification application is based on three modules: the face finder
module (FF), the ICAO module (ICAO) and the face recognition module (FR). These components
cooperate to implement the recognition and identification procedure illustrated in the following figure:

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 43 of 83

Figure 5-1: Face recognition and identification procedure

The face recognition application can operate in two different modes: “Enrol” mode and “Transit” mode.

The enrol mode is used to populate the data base with the biometric profiles of the people that will be
accepted by the system. The transit mode is used to dynamically recognize and identify the people that
pass (“transit”) in front of the camera. The following diagrams illustrate the operations performed in this
two working modes:

Figure 5-2: The enrol mode

Figure 5-3: The transit mode

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 44 of 83 Final

5.1.1.1 Face Finder Module (FF)

The face finder module is responsible for the acquisition of the video stream, for the analysis of the video
stream itself and for the generation of the output messages when a human face is found in the input
stream.

This module can be configured using a configuration file or through the web interface.

The module can be controlled using RPC.

The functions that can be executed by the application (RPC Server) are:

• Start: EthFF_Start()

Start the process of face detection in the input stream.

• Stop: EthFF_Stop()

Stop the process of face detection in the input stream.

• KeepAlive: EthFF_KeepAlive()

Provide a feedback on the correct status of every module in the application.

Every time a face is detected in the video stream, the extracted features are passed to the ICAO module
that accepts them as input data and elaborates them with an appropriate function.

5.1.1.2 The ICAO module (ICAO)

The ICAO module is responsible for the selection of the best image in the set of images identified by the
FF module.

This module can be configured using a configuration file or through the web interface.

The module can be controlled using RPC.

The functions that can be executed by the application (RPC Server) are:

• Face: EthICAO_Face(DetectionData)

This function requires in input the features of a detected face and provides the corresponding
ICAO scores.

• KeepAlive: EthICAO_KeepAlive()

Provide a feedback on the correct status of every module in the application.

Once the module identifies a face with an ICAO score that allows the identification, the “stop” function of
the FF module is called and the best result of this detection phase is sent to the face recognition module.

5.1.1.3 The face recognition module (FR)

The face recognition module is responsible for the extraction of the biometric profile and for the
identification of a matching profile in the data base. This module can run in two different modes: “Enrol”
and “Transit”. In “Enrol” mode the detected biometric profile and personal information of a person are
stored in the data base. In “Transit” mode the module search the data base for the biometric profile
matching the one extracted from the video stream.

This module can be configured using a configuration file or through the web interface.

The module can be controlled using RPC.

The functions that can be executed by the application (RPC Server) are:

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 45 of 83

• Face: EthFR_Face(DetectionData)

The module receives a face in input and extracts its biometric profile.

• User Info: EthFR_UserInfo(UserInfo)

If the module is working in enrol mode, this function provides the user information of the person
that has been detected and that will be registered in the data base. If the module is working in
transit mode, this function provides the information of the identified person.

• KeepAlive: EthICAO_KeepAlive()

Provide a feedback on the correct status of every module in the application.

In enrol mode the module performs the following actions:

• the module receives the image and the features of a face;

• the function EthFR_Face extracts the biometric profile of the face;

• the function EthFR_UserInfo provides the associated person information;

• the module saves the biometric profile and the person information in the database.

In transit mode the module performs the following actions:

• the module receives the image and the features of a face;

• the function EthFR_Face extracts the biometric profile of the face and compares it with the
biometric profiles stored in the data base;

• the function EthFR_UserInfo provides the information of the identified person;

• the module saves the transit of the identified person.

5.1.2 Smart card manager

This component is responsible to read the encrypted biometric profile of a person from his/her smart card.
It works with the access rights delegation module to setup a secure session during which the biometric
profile is collected from the smart card using a common smart card reader.

This component provides the following functions:

• EthSD_OpenSession(SessionKey Key)

Open a secure session using the session key generated by the access right delegation module.

• EthSD_GetHMAC()

Obtain the HMAC generated by the access right delegation module.

• EthSD_GetBioPro()

Read the encrypted biometric profile from the smart card during the secure session.

• EthSD_CloseSession(SessionKey)

Close the secure session opened using the provided session key.

5.1.3 Smart card reader

The identification of a person is based on multiple sources of information, in order to increase the security
of the recognition and identification process. The use of a smart card, that contains the biometric profile of
the person, represents a solution to verify the identity of a person using two completely different sources
of the biometric profile itself. Furthermore, this information is provided with different devices, with a very
different physical nature and usage. This double check is performed at the turnstile when the person is in

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 46 of 83 Final

front of the camera and the verification software asks to him/her to insert the smart card in the smart card
reader.

The smart card reader that has been selected for the demonstrator is the SCR3310 V2 - USB Smart Card
Reader. It supports every ISO 7816 Class A, B smart card. Any USB that can support this standard can
be used instead of the selected one.

The manufacturer developed an SDK that provides demo, tools and PC/SC source code samples for
development in VC++, Delphi, C#, VB.NET. The selected smart card reader is supported under Linux:
drivers and development information can be found on the web site [16].

5.2 Dependable Distributed Computation Framework (Prototype 14)

The Dependable Distributed Computation Framework (officially named Atta, for short) is a middleware
that allows applications to be run on multiple nodes in a distributed way. It essentially enhances
dependability by managing nodes redundancy and also adds security both in the registration of the nodes
and the transmission of data.

The role of Atta in the Face Recognition scenario is to add the cited features to the ETH SecuBoard
prototype (prototype 37). In this context, the face recognition routines in prototype 37 are written as library
objects that Atta is responsible to deploy, (possibly) compile and run on the nodes of the distributed
platform.

Interfacing with Atta is mostly a design concern: an application must be (re)designed using a specific
dataflow model. Each vertex of the application model contains code, while each edge represents a data
transfer. The effort from the designer is therefore to think in terms of independent sections of code that
interact with each other.

It must be noted that Atta does not force the designer to abandon his compilation and testing flows of
choice: as soon as an application model has been designed, each code section can be built and tested in
isolation using the preferred tools. With little adaptation, all sections can be linked together to test the
whole application in a monolithic way. Consequently, while an “Atta-aware” design introduces additional
concerns, it still accommodates as much as possible the existing design conventions.

5.2.1 At a glance

In practice, an Atta application model is a set of descriptor files in the YAML language. There may exist
several descriptor files since the application is split into different so-called artifacts, one for each
descriptor file, that combined with each other realize the complete application. This approach favours the
reusability of code and also helps manage complex applications. The choice of the YAML language
versus the XML language is for human readability, since YAML uses indentation rather than tag pairs as
delimiters, allowing very terse and intuitive descriptors.

Figure 5-4 shows how a new application can be designed by using the Atta paradigm under a top-down
approach. First, the application is defined as a directed graph. In this phase the semantics of each code
section is undefined: only the interactions between code sections are important. Two kinds of artifacts are
hereby identified: the data types for the information transferred between vertices and the blocks (called
structural implementations, or simply structures) of vertices interconnected by edges. A vertex within a
structure may contain either another structure or a code section. The artifacts corresponding to the latter
are called behavioural implementations or behaviours; the specification of behaviour describes how to
build the sources and access the resulting library. Please note that each artifact will have its own
descriptor file and such file will be published (along with any source code, in the case of behaviours) in a
versioned repository for deployment.

When all the artifact descriptor files are produced, the coding phase can start. This phase is conventional,
in the sense that scripts or library objects for behaviours can be written with no particular concern for Atta-
related aspects: it is only sufficient to actually supply the access function (similar to the “main” function of
C/C++) declared within the descriptor file.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 47 of 83

As soon as all the code artifacts are written and published, the work of the designer is complete. If the
application has to be run in the distributed platform, the middleware will be responsible for downloading
artifacts, generating and building the “glue code” that allows to actually interfacing the code sections
together.

If instead the application already exists, the designer should identify the independent code sections and
split his code base accordingly. Then, the descriptor files for the corresponding behaviours can be written,
along with any types required for interfacing; finally the descriptor files for the structure(s) and the
remaining types that connect the behaviours are provided. This represents a bottom-up approach that is
still perfectly valid, especially when we expect the application to grow in complexity during the
development phase.

Figure 5-4: Top-down (green) and bottom-up (red) design flows in Atta

Summarizing, the interface that Atta exposes is essentially the set of artifact descriptors, where a certain
artifact is a structure that represents the whole application. Since such structure “imports” the remaining
artifacts, the application is ultimately represented by one artifact only.

In the following we will touch the most important aspects of the artifact descriptor files for types,
behaviours and structures. As a prerequisite, we will describe how references to repositories are declared
within a descriptor file. A complete coverage of the specification turns out to be overwhelming for the
scope of this document: we rather refer the interested reader to the Latex documentation of the
framework. The latest version can be obtained by checking out the public Git repository at the official Atta
web site [12].

5.2.2 Repositories

Repositories are fundamental in order to both identify artifacts in an unambiguous and secure way, and to
provide a reliable source for deployment.

A repository may contain multiple artifacts, each one identified by a descriptor file. For this reason, the
declaration of repositories is separated from the declaration of references to artifacts.

repositories:
- name: myrepo
 control: git
 address: 'git@mysite.com:myself/myproject.git'
 mirrors:
 - 'git@thirdsite.com:myname/myproject.git'
 - 'git@fourthsite.com:othername/someproject.git'

Structures and types

Behaviours and types

Code

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 48 of 83 Final

references:
- name: vector
 repo: myrepo
 path: myproject/physics/vector
 version: 477125dbe78fe0a51be2486d8902b49ec2161450

Figure 5-5: Example of declaration for repositories and artifact references

In Figure 5-5 we can see how both repositories and references are declared.

For a repository, the name is the name given to the repository in the domain of this descriptor. The control
represents the version control system used. We support the git, svn and hg systems, corresponding to
Git, Subversion and Mercurial. The address represents the main coordinates for downloading artifacts.
Finally, the optional mirrors represent equivalent implementations that are alive, i.e., exist simultaneously.
We provide the ability to specify mirrors in order to avoid a single-point-of-failure situation where no node
is able to collect a required artifact.

For a reference, name is the name given to the artifact in the domain of this descriptor; it can be used
within the file to refer to the remote artifact. The repo references the declared repository in this descriptor,
thus it must correspond to an existing repository name. The path provides the actual path to the artifact:
following this path, an artifact.yaml file describing the artifact is expected to be found. Omitting the path
implies that we refer to the root of the chosen repository. The version cannot be omitted, since assuming
the latest commit is directly against having immutable references to artifacts. Please note how no branch
information is used: the version and the path already provide all the necessary information to identify a
specific state of the repository.

This information is therefore sufficient to refer to external artifacts, which can be downloaded from the
declared repositories and combined into a self-contained application during run time.

5.2.3 Types

Since nodes may have heterogeneous CPU architectures, floating point precisions or running OSs, it is
necessary to abstract type information away. Consequently, Atta uses a minimal set of atomic data types,
namely boolean, byte, real and text. In practice, the real type covers all the numeric values, while the text
type covers terminated char arrays.

Apart from atomic types, we allow composite types that combine existing types hierarchically.

For each of these types, multi-dimensional homogeneous arrays are supported, thus limiting to a regular
(i.e., rectangular) matrix; hence we say that a data type is either a scalar (if no array specification exists)
or an array. Arrays can be made of composite types freely.

kind: type
name: town
fields:
- name: name
 type: text
- name: location
 fields:
 - {name: province, type: text}
 - {name: region, type: text}
 - {name: state, type: text}
 - {name: coords, type: real, array: '2:3'}
- name: props
 type: text
 array: ':,2'

Figure 5-6: Example of artifact descriptor for a type

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 49 of 83

In Figure 5-6 we have the full artifact descriptor of a type. The kind field describes the artifact kind, along
with its name; the name only has descriptive purposes, since references provide their own name for the
artifact. The fields then supply a list of fields, possibly hierarchical, where each field has at least one name
and a type. The array specification specifies that the field is of array type and its bounds. In particular, for
cords, the array has one dimension with 2 to 3 elements. For props, two dimensions exist, separated by a
comma, in particular an unbounded first dimension (because there is no value on both sides of the colon)
and two elements on the second dimension (i.e., an N-by-2 matrix).

This is the basic way to declare types. We also allow a field to have a composite type as its type: it is
sufficient to use the composite type name, and then include the corresponding reference and repository
within the artifact descriptor. This approach supports type reuse and simplifies the type descriptors
dramatically.

5.2.4 Behaviours

Behavioural implementations (behaviours, for short) are the code units of Atta. Given the dataflow
paradigm of computation, they essentially represent (stateless) functions that take inputs and produce
outputs.

A behaviour descriptor file has a behaviour artifact kind. It is characterized by the language element that
specifies the language of the interface of the implementation. Currently, the java, c and c++ values are

supported.

Then there are several classes of specifications that define the implementation itself. We cover the most
important ones, namely:

1. Entry: (optional) the entry point of the library/script used to start computation;

2. Ports: the interface of the implementation in respect to vertices that will be bound to it;

3. Build: the specification for building and linking the sources;

4. Load: the specification for loading the behaviour.

In addition to these specifications, we will have repositories/references and types, as described
previously.

Before discussing these classes, let us introduce the concept of a runner, which is the Atta way of
specifying some executable (binary or script) that has to be run in order to perform an action. A runner
contains a list of elements called executable, each specific to an OS (linux, macos, windows and solaris
are supported, but also *nix to accept any among the non-windows variants). If no os element is absent,
the executable is os-independent, meaning that it is run into an environment that is multi-platform (such as
the Java or Python runtimes). Apart from the os, three other elements may be provided to an executable:
a command, a file and an args. The command is a path-independent command that can be launched, like
make, ant or bash. The file instead is an executable file (possibly with a path relative to the location of the
artifact descriptor); we remind here that paths can be specified with either forward or backward slash,
independently from the operating system. Either a command or a file can be specified, not both. Please
note that a runner does not define the semantics of the underlying executable(s): it is the designer that
must choose the proper runner for the required task.

Now the four specifications are summarily described. Please refer to the example of Figure 5-7 which
covers the basic elements described below.

5.2.4.1 Entry

This is an optional specification that defines which entry point is provided by the behaviour; this
specification is given within an entry element. Since different languages are supported (including scripts,
in the future) it may be the case that the framework needs to identify how the entry function is accessed.
Consequently, the entry element itself has up to four different elements under it, namely file, namespace,
class and function. The file is useful for script languages and it defines which file contains the entry

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 50 of 83 Final

function; the path is relative to the location of the artifact descriptor. The namespace provides the
namespace, while the class adds the class name if pertinent (e.g., Java requires it, C++ may have a free
function, C does not have classes). The function finally identifies the actual function. If a required element
is not present, defaults are available: in particular, files are expected at the same location as the artifact
descriptor, with name atta and extension dependent on the language. The namespace is empty if not
available for the language, atta otherwise. The class is Atta, but only if required by the language. The
entry function is always atta_main.

5.2.4.2 Ports

Ports describe the interface of the implementation in respect to vertices; this specification is given by a list
within a ports element. Each port has some fields, where the most important are the name and the
direction.

While the name is straightforward, the direction can have three values: in, out and inout. At least one input

port and one output port (or alternatively, one in-out port) must be declared.

Also, the transmission of produced data can be made secure using encryption, by setting the secure field
to true; this field is optional and it defaults to false. It applies only to out ports or in/out ports, the latter

meaning that data is secured only in the output direction.

Please note that the order of declaration of the ports is also the order in which the arguments to the entry
function have to be supplied.

5.2.4.3 Build

The build specification allows identification of how to build the sources of the implementation. All the
specification lies within a build element. We currently support two kinds of build systems: maven and
custom. The Maven build has several advantages, one of them related to the ability to discover
dependencies; it is assumed that a pom.xml file is present in the root of the checkout path: this
information is sufficient, in the default case, to describe the build. As for the custom build, we can provide
actions for three separate phases: prepare, clean and compile. The preparation is done once and creates
supporting files, like it happens with Autotools using the autoreconf -i command; if no preparation phase is
defined, it is simply not performed. The build phase is the main phase (for Autotools, configure followed by
make all) and its textual output can be analysed to identify errors during compilation. After fixing the
issues, the build phase can be performed again, possibly preceded by the clean phase if present. No
phase is really mandatory here: if no prepare/clean command is defined, its phase is simply ignored; if no
phase at all is defined, then the script is simply executed as-is.

5.2.4.4 Load

Even when compilation and linking succeeds, loading the process that handles the behavioural
implementation still may require some attention. This is particularly true when dynamic libraries must be
loaded. For that reason, the Load specification provides specific runners that may be used for bringing up
the process while satisfying all its runtime dependencies.

kind: behavior
language: java
entry:
 namespace: my.domain.examples
 class: AttaAccess
 function: compute
ports:
- name: ip1
 direction: in
 type: mytype1
- name: op1
 direction: out

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 51 of 83

 type: mytype3
 secure: true
- name: iop1
 direction: inout
 type: mytype1
build:
 kind: custom
 target: Build
 phases:
 - kind: prepare
 args: prep
 - kind: clean
 args: cl
 - kind: compile
 args: build
 runners:
 - os: *nix
 command: bash
 args: atrun.bsh
load:
- os: *nix
 command: bash
 args: run.bsh
- os: windows
 file: run.bat

Figure 5-7: Example of artifact descriptor for behaviour

5.2.5 Structures

Structural implementations (structures, for short) are defined in terms of vertices and edges.

It must be noted that a system model is just a structural implementation, possibly with inputs and outputs.
Each structure can then be made of other structures, until behavioural implementations are found that
actually supply the functions that are run in a distributed way.

Input and output ports may be specified, along with their types; in fact, ports are optional in some cases,
i.e., where the structure is the whole system to be executed, since inputs are embedded in the model and
outputs are only used internally. It must be remarked that the input ports and output ports are declared
using a dedicated name, different from the edge names that will be wired to them. This solution allows to
discriminate between the internal and external role of one data connection. If output ports are provided,
each one must specify a wiring to an existing vertex or input (sub)port (more about wiring in the following).
Compared to a behavioural implementation, no index or in-out ports are allowed.

In Figure 5-8 we show an example of a structural implementation descriptor; again, types, repositories
and references are omitted for compactness. The list of vertices and edges are described next

kind: structure
local: true
ports:
- name: ip1
 type: mytype1
 direction: in
- name: ip2
 type: mytype2
 direction: in
- name: op1

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 52 of 83 Final

 type: mytype3
 direction: out
vertices:
...
edges:
...

Figure 5-8: Skeleton of artifact descriptor for a structure

5.2.5.1 Vertices

For each vertex we define the interface and its implementations. It is usually the case that only one
implementation exists. While we do not discuss multiple implementations here, these are supported in the
form of a switched system with defined transitions.

Vertices support guards, i.e., conditions on the values of their input ports that allow the execution of the
bound implementation; guards are useful for conditional execution. A guard consists of a disjunction of
conjunctions of expressions related to port fields (or edge fields, as we will see in the following). In Figure
5-9 the full syntax of a vertex is shown, where a guard is present. All the entries of the list inside a clauses
element are combined with an AND operation; the resulting predicates are then combined with an OR
operation, meaning that the guard corresponds to: (ip1.u=2 AND ip2>=0) OR (ip1.v>20). For fields with
the real atomic type, we allow the =,!=,<,<=,>,>= operators, while for the text atomic type only the equality

and inequality operators are available.

An implementation must be associated with a vertex using a binding. It is necessary since the interface of

an implementation may have some mismatch with the interface of the vertex.

These are the rules for binding:

1. All vertex output ports must be completely bound, exactly once;

2. All implementation input ports implementation ports must be completely bound, exactly once;

These rules guarantee that vertex outputs always can produce data, while implementation inputs always
can consume data; also, it prohibits binding the destination more than once. Please note that for
composite types, we can bind a subset of the source to the destination.

The kind of a binding refers to the side of the implementation, where the input side binds vertex input
ports with implementation input ports, and the output side binds implementation output ports with vertex
output ports, in this specific order. The separation between the two sides is for clarity. Then, the from field
specifies the source, and the to specifies the destination.

name: v1
ports:
- name: ip1
 type: mytype1
 direction: in
- name: ip2
 type: mytype2
 direction: in
- name: op1
 type: mytype3
 direction: out
guard:
- clauses:
 - field: ip1.u
 expression: '=2'
 - field: ip2
 expression: '>=0'

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 53 of 83

- clauses:
 - field: ip1.v
 expression: '>20'
implementations:
- name: impl1
 bindings:
 - kind: input
 from: ip1.u
 to: X
 - kind: output
 from: Y.a
 to: op2

Figure 5-9: Example of declaration of a vertex

5.2.5.2 Edges

An edge is simply the connection between structure and vertex interfaces.

It can be enriched by a name, but that has only descriptive purposes. More important, an edge has a from
field which represents a source subport and a to field which represents a destination port. The source
subports may come either from the input ports of the structure, or from the output ports of the internal
vertices. The destination ports may come either from the output ports of the structure, or from the input
ports of the internal vertices.

The syntax for wiring a source/destination vertex is v@p, where v is the vertex identifier and p is a port or
subport, using the dotted notation (e.g. myinfo@position.x). The syntax for the enclosing structure
source/destination simply omits the vertex id, i.e., @p; the empty name avoids the introduction of a
protected keyword, such as ``this'', to refer to the behavioural implementation.

In addition, an edge can have a guard too: if the guard is not satisfied, new data flowing through the edge
is ignored. In this case, the guard is expressed in terms of the ports in the source of the edge.

An example of an edge is shown in Figure 5-10.

edges:
- from: @ip1
 to: v2@x
- name: speed
 from: v1@x
 to: @op3
- from: v2@y
 to: v3@p1
- from: v3@y
 to: v3@p2
 guard:
 - clauses:
 - field: p1.b
 expression: '=1'

Figure 5-10: Example of declaration of an edge

5.3 Smart Card Security Services (Prototype 6)

A smartcard is a tamperproof secure device resilient to physical attacks used to perform secure
transactions. Smartcards are used in a plethora of applications require security such as payment
applications, healthcare, physical access control to mention a few. Smartcards can provide multiple
security levels for sensitive data stored in them. For instance, a security key can be marked as read-only,

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 54 of 83 Final

while the read operation is accomplished only inside the smartcard. Even more the security key can be
protected by a PIN to add one more security level. One of the main advantages of smart card solution is
that all the sensitive operations are accomplished in the smart card rather than the terminal or application,
which in many cases is not considered trustworthy. Smartcards among to others provide the following
security services:

1. Message Authentication code

2. Encryption

3. Identity validity

4. Digital signatures

5. Hash functions

6. Secure key management

5.3.1 Communication with Smartcards

Smartcards have the structure depicted in the figure below.

Figure 5-11: Smartcard communication structure

It should be noted that even in cases that smartcards do not provide a specific API for communication
between the application and the smart card the communication with them can be accomplished by issuing
direct command to the smartcard since the smartcards follows the ISO standards [5]. The general
structure of a command in smartcards is illustrated in the table below.

Table 5-1: Smartcard request command format

Header Data

CLA INS P1 P2 Length

Class where
the command

lies

The
command

itself

Command
first

parameter

Command
second

parameter
Data Length Additional Data

The command can be issued towards the smartcard using the underlying communication of the terminal
and the smartcard terminal (e.g. serial communication).

For every command issued toward to the smartcard there is a response which its format illustrated in the
following table.

Application

SC-API-
functionaliy

Comm-API

SC-Reader

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 55 of 83

Table 5-2: Smart card response command format

Data Response Status

The data returned by the smartcard
Show the result of the requested command ,whether the

command is successful or failed, and the reason of failure

5.3.2 Smartcard File System and Data “Storage”

Smartcards file system structure is similar to those used in operating system. Particularly the ISO-7816
part 4 defines the structure of the file system as illustrated in the following figure. The master file (MF) can
be considered as the root directory, while the dedicated and elementary files are the directories and the
data file, in UNIX like operating system, correspondingly.

Figure 5-12: The logical structure of file system in Smartcards

• In smartcards different kind of data can be stored either dynamically or statically, though their
capacity is limited. For example, users’ data or cryptographic keys for secure transactions can be
stored. The header in data files defines also the access control rights. Every directory creates a
security domain inheriting the security policy of its parent. The files in the smartcard can be
protected with multiple ways:

• Different PIN

• Message authentication code

• Access control restrictions (read, write permissions)

• Digital signatures

• This depends on the features incorporated in the smartcard.

5.3.3 Secure services with smart cards

Depending on the type and the manufacturer the smartcards support a number of cryptographic features,
including:

 On-card generation of symmetric keys and public key algorithms key pairs

 Digital signatures (based on public key algorithms)

 Symmetric encryption and decryption

 External authentication (host to card)

 Internal authentication (card to host)

 Message authentication code

 Hash functions

Master file

Dedicated File

Elementary

Dedicated

Elementary File

Dedicate File

Elementary

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 56 of 83 Final

Further, smartcards enable protected mode for highly sensitive data, which requires commands to be
authenticated and integrity protected either with symmetric or asymmetric keys.

5.3.4 Building Secure Communications

In order to build trust among different type of nodes on the nSHIELD architecture we can exploit the
benefits of smart cards and the cryptographic schemes they implement. Considering, the nSHIELD
architecture where decentralized components are interacting not only with each other but also with
centralized ones, depending on the type of the device and the employed scenario; there is a need for
integrating security and interoperability. In this context, we rely on [14] for building secure communication
channels among different devices. We should mention that smart cards currently are used in various
applications, where proof-tamper devices are need for the provision of security services.

In the proposed scheme in order to issue a smart card the related component (e.g. micro node) should
create a request for issuing a smart card. This request will include the serial number of the component
and will be forwarded to the central authority. If needed, depending on the type of service, the central
authority will check the register status of the requested component and afterwards will generate a new
smart card. In the new smart card will be installed the following information:

 Node’s serial number.

 Node’s secret key.

 Node’s id.

 Node’s auth key.

The generation of secret keys will be based on the following types:

Encryption-Key = AES-256 (Central Mother Key XOR Node’s Serial Number)

Auth-Key = AES-256 (Central Mother Key XOR Node’s ID)

We should note that in this scheme we assume that the central authority has also a TPM for generating
the secret keys in a secure way for the issued tokens, while all the smart cards are issued by a (trusted)
central authority. The generated keys will be unique since they are related with node’s serial number,
which is unique.

The node, as a smart card is issued can exploit its security feature for providing confidentiality, integrity
or/and authenticity services. The provided services depend on the application. For instance, if there is a
requirement to provide confidentiality services to the data sent to the central authority the following
procedure will be take place:

• The node will send the data to the smart card.

• The smart card encrypts the provided data, using the secret-key installed into the smart card
during the registration and forwards them to the node.

• The node sends to the central authority the encrypted data and its serial number.

• The central authority generates in the TPM the corresponding secret key using the serial number
sent by the node. Note that the key is not “extracted” from the TPM.

• The TPM decrypts the data and send and acknowledgement to the node.

A very similar approach will be followed when an authentication is needed. Particularly:

1. The node will send to the smart card a random number that will be used as the data require
validation.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 57 of 83

2. The smart card using the Auth-Key and the random data generates the MAC and forwards it to
the node.

3. The node sends to the central authority the MAC including the random number and its id.

4. The central authority generates in the TPM the corresponding auth key using the id.

5. The central authority using the auth-key produces a new MAC and compares it with the one
received by the node. If those two MACs are matched the central authority sends to the node a
successful response otherwise a failure occurs.

These procedures can be combined in order to provide confidentiality and authenticity services
simultaneously, depending on the requirements.

5.4 Access Rights Delegation

Within the scope of 3.2 (WP3, Task 2) an approach to delegation of access rights has been investigated.
In a network of offline trusted embedded systems, a node need to be able to authenticate another node
requesting some privileges, but also to determine what – if any – privileges should be granted. A model
for doing this has previously been developed by the project partner (Telcred), but this model assumes that
all access rights are issued by a central trusted authority and does not support delegation.

This solution can be adopted in the “People Identification at the stadium” scenario, both for the
identification of people at the turnstile and for identification and access granting to the personnel of the
stadium.

5.4.1 Problem Statement

In an offline PACS (Physical Access Control System), there is no continuous exchange of information to
verify and allow a user through a series of doors, whereas this is a common feature in an online PACS.
Current offline systems are unable to force a user to follow a certain designated route, e.g. Room A
should be accessed before entering room B. This project explores a model to enforce such a route, by
using delegation of some authority from the main administrative system to the offline locks.

5.4.2 The Concept of “Path Array”

The developed artefact consists of a construct known as Path Array aka PA. Path Array is an array that

can be one or multi-dimensional based upon the administrator requirements. PA consists of Lockid stored

into each index of the array that needs to be accessed by the user in a sequence. Administrator is
responsible to implement path array onto the user’s smart card before handing it over to the user.

Ticket that is stored in the flash memory of the smart card contains the PA. After the formation of mutual

trust between the Lock and Card, Lock makes use of the remaining contents inside the Ticket for

decision making.

Figure 5-13: Path Array Design

•Door
ID

i=0

•Next
door ID

i=1

•Next
door ID

i=2

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 58 of 83 Final

The figure above shows the outline of PA. PA consists of Lockid stored at each index (i = 0, 1, 2...). PA

holds the Lockid that should be accessible by a user in a sequence. Server digitally signs the PA stored

inside the Ticket. Index i value starts from 0 and increments each time a user passes a door or a

turnstile. This index value points to the Lockid that the user needs to visit. Hence, the contents of the

Ticket will be as follows.

Figure 5-14: Ticket along with Path Array

5.4.3 Mechanism of the Artefact

After the creation of trust between the entities of offline PACS, Lock now processes the contents of PA,

and then checks for its own ID at the current index i, if it is found then Lock performs three steps as

follows,

 Increment index i

 Generate HMAC and write it to Card

 Grant access to the user

If the Lockid present at index i does not correspond to Lock own id, it then it denies the access and logs

the user action.

5.4.3.1 Incrementing Index i

The path array PA contains lock ids stored inside it. Only the relative matching Lock is allowed to

increment i value by one. At the time of generation of Ticket by the Server, it also generates a HMAC

to be used by the first lock in the PA. The Lock located at the first index of PA makes use of this HMAC to

ensure that no illegal modifications are done on the smart card. The Index of PA starts from the value 0.
For instance, consider the below path array. This path array consists of lock ids B, A and C which should
be followed in that order by the user.

Figure 5-15: Ticket Incrementing the index value

B A C

i = 0

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 59 of 83

In the figure above, the current value is 0 and PA[0]=B. Only the lock with id ‘B’ can increment the i value
further.

5.4.3.2 Generating Hash using HMAC

Lock creates the HMAC after incrementing the i value. HMAC stands for Hash Based Message Authentic
Code. It calculates the message authentic code using a cryptographic hash function and shared secret
key. In the offline PACS scenario, geographically dispersed locks securely exchange the messages
among them by using message digest. HMAC is necessary in offline PACS scenario to ensure the
integrity of smart card contents. The process of creating HMAC is as shown in the formula below.

 () (() ())

where:

 K is the shared secret key

 m is the message to be protected

 opad is outer padding (0x5c5c….)

 ipad is inner padding (0x3636….)

 H is the cryptographic hash function (MD5, SHA etc.)

 || is concatenation

 is the exclusive-OR operation

The locks inside the facility were pre-installed with keyshared. Concatenating the keyshared with Lockid

generates the secret key keysecret. Message m in this context indicates the current index i value, and the

rest of them use default parameters.

While hash generation, keysecret = keyshared || Lockid.

 Generation of HMAC is as following:

Figure 5-16: Process of HMAC creation

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 60 of 83 Final

In the above figure, H can be any hash algorithm.

5.4.3.3 Generating Hash by the Locks in the Sequence

The overall concept of the artefact is to enforce the user through the path specified by the administrator.
The user should attend this path in sequence. Hence, if one lock grants access to the user, which is
present at index zero of PA i.e., PA[0], then the next lock in the sequence, which is available at PA[1]
should be able to prove that the user has already passed through the door mentioned at PA[0].Verification
of the hash value generated by the lock present at PA[0] solves the above issue.

When the user presents his smart card at a Lock mentioned in the PA, the lock allows access only if it

has confirmed that the user has already been allowed access by an earlier lock. During the verification

process of HMAC Lock always uses the previous index for key generation and while in a hash generation

process it uses its own Lockid. Current lock initially checks i value.

Scenario 1: If i=0

Then the lock knows that it is the first lock in the order. It then checks whether the value present at PA[0]
matches its own lock id. If the id is not equal to its own id, it will log the user activity and deny the access.

Lock has the authority to perform further actions if the value at PA[0] matches its own id. It then verifies

the HMAC stored by the Server on the Card, to make sure that nothing has been changed illegally. It

will then increment i value by one and will generate HMAC by using the secret key keysecret. In this

scenario, keysecret results from concatenating the keyshared with its own Lockid.

Scenario 2: If i>0

If i value is greater than zero, then lock confirms that the user has already accessed some doors in the
sequence. Hence, it will confirm its own authority that it can change the contents of the card by looking up

for its own lock id, and then generates hash to verify the hash stored by the earlier lock. Now, the Lock

increments i value by one and generate a new hash to be used by the next lock in the series.

Verification steps by current lock in action are as follows,

• Step 1: reads current i value

• Step 2: Looks up present at PA[i]

• Step 3: If the value of own =PA[i], then proceed to step 4 else go to step 10

• Step 4: Verify the HMAC hash stored on smart card (generated by previous lock)

• Step 5: If the hash can be verified, continue else go to step 10

• Step 6: Increment i value by one

• Step 7: Generate new HMAC

• Step 8: Replace the old HMAC with generated HMAC to be used by next lock

• Step 9: Allow access and stop

• Step 10: Deny access and log user activity onto the card

Using above procedure the n
th
 lock will verify that the user has accessed the (n-1)

th
 lock, and this process

continues with all the locks.

5.4.4 Smart Card and biometric data

Smart cards, among the others, can be used to store very sensitive data as those of biometric data (e.g
images) in that way in which only authorized entities are entitled to get access to them. Biometric data
provide high confidence with regard to the user identification and authentication because of their in

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 61 of 83

heritage properties. This means that the complexity to reproduce biometric data that belong to a specific
entity is very high. Storing biometric data in smart cards can be used in order to achieve two factors
authentication. This is because the biometric data can be stored securely in smart card in such a way that
only the holder of the card can gain access to the biometric data.

5.4.5 Face Recognition Smart Card Support

To build trust among different types of nodes on the nSHIELD architecture we can exploit the benefits of
smart cards and the cryptographic schemes they implement. In the nSHIELD architecture where
decentralized components are interacting not only with each other, but also with centralized ones, there is
a need for integrating security and interoperability. In this context, we exploit the advantages of smart
cards to enable different types of nodes to provide the following security services:

• Allow the secure key management required for establishing secure channels between different
nodes.

• “Anonymous” Authentication e.g., between the sensor and central or other distributed
components in the train network.

• Protecting message integrity, for sensor data in the train network among the node and the central
system.

In this context, smart cards as mentioned in D3.2 can be used in order to implement an off-line access
rights delegation relying on Physical Access Control System. In this scenario the smart card will be used
to:

• Generate the session key

• Generate the HMAC

• Store the Path Access

Furthermore, in order to increase the confidence which the service has to provide to the users about their
claims regarding their identities, biometric data such as users images can be stored to the smart card and
validated every time users trying to access a protected resource. For example, when a user tries to
access specific doors the nSHIELD node captures an image of the user and compare its biometric data
with those are stored in the smart card. This way, there is not a need to communicate with the central
directory for all the requests. To incorporate this approach to the nSHIELD architecture the following
figure depicts a high level approach for integrating smart cards security services in the scenario of face
recognition.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 62 of 83 Final

5.5 Interactions map

Figure 5-17: People Identification scenario interactions map

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 63 of 83

6 Integration of Avionics Scenario Components

6.1 OMNIA (Prototype 36)

OMNIA (Open Mission Network Integrated Architecture) is based on IMA and IMA2G concepts and
introduces, at some level, typical nSHIELD dependability aspects, such as interoperability, fault detection,
fault management, health monitoring and data integrity.

The idea behind OMNIA is to create an IMA platform composed by a network of several «Computer
Units»; these can be HW boards or computers, acting as IMA CU (Central Unit), RIU (Remote Interface
Unit) or both. Each unit acting as RIU is connected to the A/C (AirCraft) sensors. All units are “nodes” of a
network, being connected by means of a High Speed deterministic serial line.

The OMNIA platform introduces the Middleware software to provide platform level services. The
Middleware is implemented on top of the Operating System local to the hardware components. Its
purpose is to enable IMA2G typical interoperability, allowing the provision of the same service with the
same behaviour in such a way that it is independent from the physical location of the requesting
applications, i.e. the hardware component that hosts the application, independent from the hardware
component type, if applicable, and the Operating System hosted and independent from the location of the
requested hardware resources

Platform Services are classified at two levels according to their scope, which can be the overall platform
or a single hardware component; Platform Services include in fact Module Services. Platform Services are
also classified according to their privilege, whether they support Avionic applications or Platform
Management applications (including module management).

Figure 6-1: OMNIA Platform Services

More specifically, the “nodes” selected to create the OMNIA network are:

• The NAMMC (New Aircraft & Mission Management Computers)

• The APM460 processor module (stand alone)

• The NSIU (New Sensor Interface Unit)

• More types could be added in future

The NAMMC, including HW and Equipment SW, is a SES product, flying on board several types of
aircrafts, able to host the customer Flight Management applications. It is currently completing the
certification process. It mounts APM460 processor modules and is able to interface with the A/C sensors
by means of IO boards (e.g. the DASIO). In the OMNIA platform the NAMMC can act as CU or RIU or
both.

The APM460 stand alone can act as CU

The NSIU is a SES computer currently at development stage. It can act as CU or RIU in the OMNIA
platform

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 64 of 83 Final

Figure 6-2: OMNIA network

For the nSHIELD avionic dependable demonstrator, as depicted in the previous figure, it is proposed to
configure the OMNIA platform with two or more CU/RIU equipment (NAMMC or NSIU or simulated
NAMMC/NSIU) in order to simulate the on-board avionics on a UAV. This configuration can be changed to
include more “nodes” if necessary.

A SW middleware based on DDS architecture, with a unique service bus, will be used to “virtualise” the
physical connection of the A/C sensors enabling interoperability within the OMNIA platform as it will
allow the OMNIA platform “nodes” to access the sensor resources independently from the actual physical
connection.

Health monitoring and fault management within the OMNIA platform are performed at “node” level by
means of continuous built in tests. Integrity of sensors data will be handled at OMNIA middleware level

For the nSHIELD demonstrator the OMNIA system will be able to provide the main aircraft
mission/navigation functionalities with all the relevant check either relating to the data integrity exchanged
and to the integrity of the OMNIA system (e.g. fail, reconfiguration).

6.2 Gateway (Prototype 21)

nS-ESD-GW is a SHIELD framework pivotal component. This component has been introduced to foster
the interconnection of nodes and to ease the SHIELD employment. Thus, in the context of the
Dependable Avionic application scenario, this component will be employed to ease the integration and
interconnection of the OMNIA framework to nSHIELD nodes, middleware and overlay as well. The nS-
ESD-GW will exploit the flexibility of the SoC (Zynq) to provide appropriate interfaces towards the OMNIA
components. The Zynq consists of a hybrid architecture composed by a dual-core Cortex ARM A9 and a
7-series Xilinx FPGA. The Zynq is an innovative SoC characterized by a powerful ecosystem that greatly
simplifies the development process and shrinks the time to market.

The nS-ESD-GW has been designed following a modular approach; this enables the tight partitioning and
isolation between internal components involved to implement security, communication and monitoring
functions. Furthermore the modularization eases the adaptation process of nS-ESD-GW to the avionic
scenario.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 65 of 83

Figure 6-3: nS-ESD-GW HW architecture

As shown in Figure 6-3, the nS-ESD-GW is constituted by several modules hereafter specified:

 Dual core Cortex ARM A9 in asymmetric multiprocessing (AMP) configuration. Each
processor is configured to run its own software and, in particular, a Linux distribution runs on
CPU1 while bare metal applications run, as parallel threads, on CPU2.

 Encrypt/Decrypt IP core. This component has been developed as FPGA-based module to
assure high flexibility and performances. The presence of this block guarantees the confidentiality
and the security of data.

 Coordination module. It provides balancing functionality according to the SPD level. To assure
the required level of security and dependability, it dynamically adapts its configuration and
resources used.

 Memory. It stores dynamic data blocks which contain: the status of OMNIA’s components, the
status of the nS-ESD-GW, SPD levels received by the nSHIELD Middleware, operational mode
and freshness information.

 Middleware Interface Controller. It is constituted by different sub-components: interfaces,
mechanisms of digital signature check, fault detection and the data integrity. In the context of the
avionic scenario, it represents the interface between the nS-ESD-GW and the nSHIELD
Middleware through the SDR cognitive radio.

 Legacy nodes Interface Controller. Similar to the Middleware Interface controller, this
component has been subdivided into sub-modules to manage the data integrity, the fault
detection and the messages conversion. In the context of avionic demonstrator, it represents the
interface between the nS-ESD-GW and the OMNIA platform.

 Additional peripherals. The nS-ESD-GW also offers a set of common ready-to-use interfaces
as: UART, general purpose I/O, VGA and HDMI.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 66 of 83 Final

As previously mentioned, Cortex ARM A9 processors are in AMP configuration; this mechanism allows to
run an operative system and bare metal applications with the possibility of loosely coupling those
applications via shared resources. Figure 6-4 depicts the software layered architecture designed.

Figure 6-4: nS-ESD-GW SW partitioning

According to this configuration, the Linux operative system is responsible for:

• Audit

• Graphical user interface for monitoring

• nSHIELD Middleware management application

The bare metal applications are responsible for:

• XML parsing and filtering

• Recording / system dump

• Dynamic reconfiguration

6.2.1 n-ESD-GW Gateway SPD features

The nS-ESD-GW is a component defined into the SHIELD framework. Its scope is to foster the
interconnection of legacy nodes building up a SHIELD cluster. As constituted, the cluster will inherit from
the ns-ESD-GW several SPD features; in particular the cluster will have:

• Security: Mechanism for encrypted communication. The cluster nodes will leverage on
encryption/decryption methods provided by nS-ESD-GW to exchange messages with other
SHIELD components.

• Security: Mechanisms for data and message integrity. These mechanisms will ensure the
accuracy and the consistency of the exchanged messages.

• Dependability: Mechanism for Fault detection. They are obtained by the means of fault tree logic
and decision support systems.

Dependability: Mechanism for internal Cluster reconfiguration. Getting information about the nodes
status, current faults and context, the system is able to identify a new nodes configuration and eventually
apply it to the nodes cluster.

In Figure 6-5 a logical architecture of functionalities provided by the Gateway is outlined.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 67 of 83

Figure 6-5: nS-ESD-GW Functionalities

The nS-ESD-GW encompasses several communication policies. These policies specify and regulate
interrogations (interval, priority, broadcast, unicast, etc), type of messages to be dispatched and/or to be
accepted (message alive time, timeout, etc) and the Gateway operational modes. The policies are not
upgradeable, avoiding by design the risk of malicious attacks. In accordance to the policies of the
nSHIELD framework, the nS-ESD-GW is able to evaluate the SPD level provided by the Middleware and
to change its operational mode. This means that the Gateway is able to:

• Increase/decrease the rate of the messages read/write to OMNIA

• Enable/disable cryptographic modules

• Increase/decrease the writing of the logfile concerning the audit function

The nS-ESD-GW encompasses two distinct Data Freshness methods. Stored data can be updated
periodically or upon system requests. The update time interval is controlled by an internal configurable
register. A dedicated set of registers are used to store information about the data freshness. Specifically,
the number representing the amount of time since data have been stored is saved into a specific register
of the Gateway and it is available as output.

The confidentiality and the security of private information are ensured through the adoption of
encryption/decryption modules for the data writing. A non-volatile memory is used to store long-term data.
While the Gateway is running in a secure mode the data processed and algorithms are stored as
encrypted. Also, a mechanism of digital signature check is applied during the communication with nodes
in order to detect any malicious attempt to open a non-trusted communication channel.

6.2.2 Gateway nS-ESD-GW

Table 6-1 reports requirements covered by the nS-ESD-GW.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 68 of 83 Final

Table 6-1: nS-ESD-GW Verification cases

ID
nSHIELD

Requirement
Mean of

verification
Description

T.1
REQ_ND02

Data Freshness
A

The nS-ESD-GW encompasses two distinct Data
Freshness methods. Stored data can be updated
periodically or upon system requests. The update time
interval is controlled by a configurable parameter. The
system is endowed by a set of registers that contain
information about the data freshness.
[A] – A number representing the amount of time since
data have been stored is saved into a specific register
of the Gateway and it is available as output.

T.2
REQ_ND03

Digital Signatures
A, T

A mechanism of Digital Signature check is applied to
communicate with legacy nodes.
[A] – Once a legacy node is elected as trusted, its
status is written into the data memory.
[T] –A non-trusted node, or a node that is not capable
of sharing a trusted digital signature, will be detected
by the Gateway and any attempt to open a
communication channel will refused.

T.3
REQ_ND04

Policy updates
D

The nS-ESD-GW is endowed by several
communication policies. These policies specify and
regulate the interrogations (interval, priority, broadcast,
unicast, etc.), the messages to be dispatched and
accepted (message alive time, timeout, etc.) and the
Gateway modes.
[D] – Policies are not upgradeable, avoiding by design
the risk of malicious attacks.

T.4
REQ_ND14

Storage of private
information

A, D

The confidentiality and the security of private
information is ensured through the adoption of
encryption/decryption blocks for the data writing. A non-
volatile memory is the support for the storage of long-
term information.
[A] – During the secure operational mode execution all
data that are stored into the memory are encrypted.

T.5
REQ_ND21

Dynamic security
behaviour

A

In accordance to the policies of the nSHIELD
framework, the nS-ESD-GW is able to evaluate the
SPD level provided by the Middleware and to change
its operational mode. This means that the Gateway is
able to:

 Increase/decrease the rate of the messages
requests sent to legacy nodes;

 Enable/disable cryptographic modules;

 Increase/decrease the writing of the log file
concerning the audit function.

[A] – As consequence of the operational mode
changing, log files are stored into the memory with a
different rate. Likewise, data saved into the non-volatile
support are encrypted if the status of the Gateway
requires a more accurate behaviour.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 69 of 83

T.6
REQ_ND23

Hardware/Software
co-design

D

The platform used to develop the nS-ESD-GW
prototype is a chip that integrates hybrid architecture
composes by a dual-core ARM Cortex A9 and a 7-
Series Xilinx FPGA. This allows the possibility to use a
specific design flow that speed up the entire
development process and permits the coexistence, on
the same device, of hardware-software co-design
techniques.

T.7

REQ_ND24
Situational-aware
and context-aware

SPD

D

With the aim to optimize Gateway’s performances, a
coordination module is able to provide a services
balancing according to the SPD level.
[D] – A module that provides fault detection and SPD
evaluation encompasses the nSHIELD algorithms. It
consists of several software modules and some FPGA-
based IP processing blocks.

6.3 SPD-driven Smart Transmission Layer (Prototype 9)

Communication between the UAV and the control center shall be based on utilization of the capabilities of
the highly-reconfigurable, computationally unconstrained nSHIELD SDR/Cognitive-capable node, that is,
its Smart Transmission Layer functionality, developed within the task T4.1.

Role of the Smart Transmission Layer is providing reliable and efficient communications even in critical
channel conditions by using adaptive and flexible algorithms for dynamically configuring and adapting
various transmission-related parameters. Namely, for the purposes of the Dependable Avionics
demonstrator, the following will be exercised and demonstrated:

• Basic network functionalities:

o network entry;

o node authentication;

o internode communication;

o topology awareness(number of nodes, mutual visibility, connection, location);

o reconnection of a node after power cycle/link loss;

o choice of operating frequencies in accordance with the predefined frequency plan

• Waveform and channel interoperability - by using the appropriate software tools, we shall be able
to model different kinds of waveforms and emulate different channel conditions

• Jamming detection and counteraction - By measuring link channel quality, and performing
consistency checks between SNR-PER and SNR-location, a decision on whether jamming takes
place can be taken. In this case, a security counter-algorithm shall be deployed. The algorithm
shall encompass the following functionalities (which of them shall be exercised at a given moment
depends on the SPD level imposed by the overlay):

o moving to a new frequency

o changing physical or logical waveform parameters, i.e. modulation, bit-rate, transmit
power, FEC and MAC protocols

o selecting a different waveform for transceiving

Basic demonstrability of the secure and dependable communication can be depicted by the following
scenario:

1. A wireless node-to-node communication between the two communication modules (one is placed
on the vehicle and one on the ground as the control center) is initiated on a chosen frequency in
VHF/UHF band. SPD level is set to maximum (10), meaning that all transmission parameters,

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 70 of 83 Final

such as modulation, channel coding, etc., are set to provide the highest resilience to possible
interference. Visualization of the link quality is provided on the control center.

2. Jamming disturbances on the channel that is momentarily used for communication are created
using another SDR. Jamming power is gradually increased (with SDRs, this is fairly easy to do
on-the-fly), until the control center and the onboard-radio decide that the interference level is too
high for the normal communication to continue. Link quality is adequately depicted at the control
center (possibility of creating some sort of visual/audio “alert” message).

3. Both radios change their operating frequency according to a pre-defined scheme. Non-interfered
communication takes place once more, and the satisfying link quality is restored.

4. SPD level is changed (e.g. to 5). Several transmission parameters may now be changed (e.g.
higher-order modulation techniques, reducing no. of transmitted redundant bits, etc.), which
typically reduce robustness but allow for a higher data rate.

5. Steps 2) and 3) are repeated.

The hardware platform consists of two cooperating entities. Secure Wideband Multi-role – Single-Channel
Handheld Radio (SWAVE HH) is used as a RF front end and as the secondary processing platform,
whereas OMBRA v2 is used as the primary processing platform. SWAVE HH and OMBRA v2 can be
connected either through a high speed serial connection or through a USB/Ethernet, depending on the
required throughput. OMBRA v2 needs to be plugged into a carrier board providing electrical interfaces
towards radio and external instrumentation and power supply.

Sketch of the complete platform is as follows:

Figure 6-6: Smart transmission layer platform

SWAVE HH is SCA 2.2.2 compatible, and supports reconfiguration of all of its transmission parameters
on-the-fly. It is capable of operating in the complete VHF and UHF bands.

OMBRA v2 is a powerful embedded platform equipped with a GPP, DSP and FPGA, being suitable for
highly-demanding computational tasks.

More in-depth technical details regarding the SPD-driven Smart Transmission Layer are provided in
deliverables D4.2 and D4.3

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 71 of 83

6.4 Reliable Avionic (Prototype 30)

This field incorporates Reliable Avionic Systems (No 30), covering the areas: Reliability, Availability,
Safety, Confidentiality, Integrity, and Maintainability. Alfatroll has proposed to demonstrate how these
extemely demanding objectives can be obtained by using its own, Knowledge Based Technology,
IQ_Engine. This has been approved at SES July 4th 2013 (Massimo Traverzone, Silvia Larghi, Tor O
Steine). The demo setup involves:

1. Using ordinary PC(s) for computer platform(s). Ordinary Windows laptops used. A demo will
probably be set up using one PC for Ground Control Station, and another to simulate the UAV(s).

2. Use any Ground Station suitable for the job. MAV GCS and/or QGCS are used. Both are tested.

3. Use any link. MAVlink has been selected. Can run both fixed wing and rotational wing, single or
multirotor. To be replaced by Omnia in a full implementation. This will not affect the basic
properties of the demonstrator much.

4. Use any flight simulator. We have selected a large fixed wing «UAV» for the purpose.

5. We chose to use IQ_Engine for all UAV on-board functions, albeit it is possible to use an existing
Autopilot and control it via the IQ_Engine Cognitive pilot.

The following image illustrates the final set-up of communications systems and IQ_Engine.

Figure 6-7: Basic Omnia framework for IQ_Engine demo

This is not the case at the current stage. Instead, the demo set-up involves the following components.
They include the Silent Wings flight simulator, flying a fixed wing motorglider (approximately the size of a
Predator), a MAVGCS Ground Control Station for Mission Planning and operational control, and the
IQ_Engine (not shown), controlling the simulator.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 72 of 83 Final

We suggest that the demo and test are split in two parts:

1. Demo and test of the above framework

2. A separate test of IQ_Engine and the application scenario.

Thus, this extremely ambitious task of demonstrating “Reliable Avionics System” can be performed on a
low budget (It may be worth reminding that the JSF fighter program seem to be exceeding 30 million lines
of code, and EADS next generation U(C)AV are indicated to include 65 million lines of on-board code). A
fully fledged demo of a Reliable Avionics System within the nSHIELD budget framework clearly is
impossible. Yet, Alfatroll claims that we can demonstrate a principle that can help reduce the complexity
of the on-board avionic systems considerably, thereby demonstrating how reliable systems can be
obtained while keeping the costs low.

For the demo, Alfatroll has chosen a solution where any airport covered by Silent Wings can be used
(including some in the Alps). We have chosen Notodden airport in Norway, since it is known to the
Alfatroll people, and it has a variety of mountainous terrain. The simulator can be influenced by both wind
and turbulence on a scale from NONE to STRONG:

Figure 6-8: IQ_Engine test set-up

The application scenario we are working towards is this:

1. UAV#1 loitering above Target (fixed or moving), monitoring and transmitting video to the ground.

2. UAV#1 fails, reports error, and returns to base.

3. UAV#2 takes over the tasks that were covered by UAV#1, as commanded by the GCS.

4. All the above involves Multi-UAV Ground Control Station, two instances of UAV, and the

functionality described. All while being true to the goals (to the left).

All this while maintaining: Reliability, Availability, Safety, Confidentiality, Integrity, and Maintainability.

The current status is this:

System development started September 15th (from partly finished prototype, after substantial planning
and preparations).

• We are on schedule.

Main points proven:

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 73 of 83

• Full functionality possible

• Compact code & Knowledge base

• Safe and reliable operation

• Almost all maintenance in the database, no complex software maintenance

The remaining work is scheduled and properly manned. Due to a limited budget, we are not anticipating to
implement the above in a real flying UAV, but we intend to demonstrate the functionality in a variety of
types of flying (simulated) platforms. The on-board software systems will be refined to demonstrate how
complex functions can be controlled by very compact software, with the functionality mostly reside in a
Knowledge Database. This is, according to Alfatroll, necessary in order to achieve the nSHIELD goals of
Reliable Avionic Systems architecture.

6.4.1 Areas of functionality to cover:

In order to demonstrate how IQ_Engine can contribute significantly to better reliability in avionics systems,
we intend to demonstrate some or most of these functions in the project:

Figure 6-9: Application areas that can be covered by IQ_Engine Cognitive Pilot

We are already working on a, b, c, of the listed tasks below, but will extend the list as far as possible
within the budget of the nSHIELD project.

a. Flight Operation are all normal tasks covered by an autopilot, such as bringing the plane safely

from waypoint to waypoint along the scheduled trajectory and at the designated time schedule

(dubbed 4D control)

b. Mission Progress, including necessary actions to be carried out at pre-defined locations or in

certain situations. The task includes contingency management, i.e. reactions to unexpected

events that may occur during the flight, such as icing, low on fuel, etc.

c. Contact with base, including reports back in the form of data streams and status messages, as

well as the ability to react promptly to orders from the ground station.

d. ATC relations. In the beginning, all communication with air traffic controllers (ATC) will most likely

be through the ground station controller. When ATC communications becomes message based

(Single European Sky specifies this), more and more can be handled directly by the unmanned

aircraft itself. Proper responses and reactions are expected by the on-board intelligent controller,

of course.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 74 of 83 Final

e. System Health. A major part of the responsibility of an autonomous system is to keep track of its

own operational status. System health can include such tasks as e.g.: Tank/Batteries – remaining

range compared to remaining mission, Icing on wings or sensors, Control responses, Electronic

systems status (temp, humidity..), Sensor status (visibility,…), Radio link quality, Engine status.

f. Detect Terrain. By following the plane’s movements in relation the the terrain below, the control

logic shall be able to avoid conflicts with terrain objects, controlled or prohibited airspace, tall

objects on the ground, etc. The plane shall also be able to react differently to corrective actions at

low level flight from normal high level flights.

g. Sensor info and collection. Sensor information is normally collected on-board or forwarded to

the ground control. If the sensors detect items of interest to the current mission (e.g. a hot spot in

the sea during search and rescue), this may cause the control logic to launch specific actions

(e.g. drop marker, go lower and take picture/video).

h. See and Avoid. This is the focus of many UAV producers at the time: to make systems that can

detect other air traffic or other obstacles in the same, non-segregated airspace, and react as if a

pilot was on-board. Using ADS-B and other sources, keeping track with traffic nearby is possible.

But visual and radar detection will always be less precise. For the project, we are going to receive

feed from http://www.flightradar24.com/33.59,35.78/7, place ourselves in an area with heavy

traffic, and let the IQ_Engine react as required according to safe detect and avoid, and the (ICAO

Annex 2) rules of the air.

Feed from FlightRadar around Rome looks e.g. like this:

Figure 6-10: Feed from FlightRadar, for demo of Detect&Avoid

Final comments:

If taken literally, the task of demonstrating “Reliable Avionics Systems” on a very limited budget within the
nSHIELD framework is next to impossible. We have, in cooperation with SES, chosen a middle road
solution which will focus on HOW reliable avionic systems can be achieved, by demonstrating this in a
small scale. The solution proposed include introducing a new technology which opens for hereto unknown
properties within software development for avionics.

Alfatroll claims this is the way to achieve the intended goals in nSHIELD.

http://www.flightradar24.com/33.59,35.78/7

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 75 of 83

6.5 Semantic model (Prototype 26)

Also for the avionic demonstrator, specific semantic models will be instantiated, following the procedures
defined in D5.3. As already described, the integration of this prototype in the common platform is done in
two ways:

i. By providing the components’ responsible with the “guidelines” to write down the Ontology model
for their component as well as the Domain Dependent Library

ii. By codifying this ontology into an xml file that can be parsed by the OSGI to extrapolate relevant
information.

6.6 Metrics (Prototype 27)

nSHIELD proposes 2 types of metric aggregation measurement. Both types of metrics are described in
document D2.8 Final Metric Specification.: Attack Surface Metric and Multi Metric approach. Both need an
integration procedure with respect the holistic nSHIELD platform.

This integration approach will be held by incorporating the aggregation formula to OSGI Middleware
nSHIELD Overlay, and in particular by embedding it in the semantic model used in the SHIELD
framework. This middleware will enable a container for aggregation formula and/or algorithm.

However it must be understood that both approaches have to be tuned by operator experts, so that
integration will be finished with both perspective: this one which will be automatically addressed and one
more manual one with the opinion of experts.

6.7 OSGI Middleware (Prototype 25)

Also for the avionic demonstrator, the OSGI framework is adopted to implement the SHIELD Middleware
(see section 4.8 for additional details on the Knopflerfish implementation adopted in the project).

On a deployment point of view, this framework is installed into a Notebook that is supposed to be part of
the Remote Control Unit. This PC is interfaced directly with the Intrusion Detection Bundle and
consequently with the Gateway and the rest of the avionic demonstrator; the first interconnection hop is
through a network (most likely an Ethernet LAN).

The interfaces with the Secure Discovery Bundle (in charge of populating the service databases) and the
Security Agent are internal and implemented directly in Java Language.

Additional interfaces will be implemented to allow seamless integration with the Reliable Avionic System
that will be used as an SPD functionality to be managed by the Overlay (in particular a functionality
improving the reliability of the overall system).

6.8 Control Algorithms (Prototype 20)

Also for the avionic demonstrator, the SHIELD control algorithms are the simplest prototype to be
integrated in the common platform, since they are embedded in the Middleware code and in particular
they are implemented in the Security Agent bundle. On a practical point of view, the control algorithms will
be a set of software instructions executed by the OSGI.

Also in this case this solution will allow decoupling between the control algorithm and the implementation
of the control action on the system (that is in charge to the Security Agent). Moreover, in case the OSGI
libraries will not be suitable to solve the composition (mathematical) problem, then the support of external
computational software tool can be foreseen, like, for example, Matlab, that could be easily called by the
Security Agent routines to solve the problems.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 76 of 83 Final

6.9 Middleware Intrusion Detection System (Prototype 22)

6.9.1 IDS prototype interfaces

In its current status, the preliminary IDS prototype has generic network interfaces for receiving and
forwarding requests that are to be filtered. In Figure 6-11, these bi-directional interfaces are denoted as
IF-2. The IDS prototype will receive and optionally forward messages without altering their content or re-
encapsulating them. In this sense, IF-2 is a homogeneous interface between the Middleware services and

the prototypes which use them.

It is however anticipated that TAP / TUN virtual network interfaces could be used to physically separate
and protect internal (Middleware services) and external (other components and networks besides
Middleware) network domains. These changes could mostly be implemented in a transparent manner for
the system components using middleware services, but may impact how connection methods towards
middleware services should be implemented. The design of the network domains and the connection
methods used will be studied at the time of integration with other Middleware components.

Using the IDS prototype requires setting up network infrastructure so that requests are received by the
gateway instead of the middleware services natively. For this purpose, the Intrusion Detection and
Filtering Module provides additional function call interfaces towards the Middleware services that
implement the use of the IDS – see IF-3 in Figure 6-11. At the time of integration, it needs to be
determined which Middleware services are to be protected against DoS/DDoS attacks, and which
operation mode of intrusion detection (blacklisting / whitelisting) is more beneficial to be used for each.
Use of IDS prototype for these services is straightforward: by adding a few lines of Java code to the
services, they can be enabled to use intrusion detection functionality.

The nSHIELD Overlay functionality will be responsible to monitor SPD properties and control desired SPD
level for the prototypes. The function interface IF-3 provides all functions for this purpose; for more details,
see next chapter.

Further information and source code for the IDS prototype is available in D5.2 [10] and D5.3 [11].

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 77 of 83

6.10 Interactions map

Ground Station

UAV1

Middlewar

e Services

Semantic Model

Multimetrics

Attack Surface Metrics

Protection Profile

26

27

28

31

IF-2, ...

Video wallMCU

(APM460)

RIU #1

(APM460)

GPS

RIU #n

(APM460)

I/O

Gateway

(ZedBoard)

IF - 1

ETH

(Reliable UDP)

21

ETH

(RTPS)

nS-ESD-GW
UAV n

Video wallMCU

(APM460)

RIU #1

(APM460)

GPS

RIU #n

(APM460)

I/O

Gateway

(ZedBoard)

IF - 1

ETH

(Reliable RTPS)
ETH (UDP)

21
nS-ESD-GW

IF-2, ...

SDR

(Ombra)

21

IF- 1 ETH (UDP)

nS-ESD-GW

SDR

(Ombra)

09

09

SDR

(Ombra)

21

IF- 1ETH (UDP)

nS-ESD-GW

09

SDR

(Ombra)

09

ETH

(RTPS)

ETH

(RTPS)

...

3636

IQ_Engine

(Autopilot &

Cognitive Pilot)

30

ETH

(Reliable UDP)

ETH (UDP)

...

3636

IQ_Engine

(Autopilot &

Cognitive Pilot)

30

ETH

(Reliable UDP)

ETH

(RTPS)

ETH

(RTPS)

ETH

(RTPS)

Flight

Simulator

Mission ground

terminal

22

IF-2, IF-3

Gateway

(ZedBoard)

Gateway

(ZedBoard)

Intrusion

Detection

Bundle

IF- 4 IF- 5Security

Agent
(IQ

Engine)

Middleware

Services

25, 32, ...
30(20) 33

Figure 6-11: Dependable Avionic scenario interactions

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 78 of 83 Final

7 Components of the General nSHIELD Framework

As explained in the introduction of this document, the integration methodology is structured on the
distribution and usefulness of individual prototypes in each scenario. The objective is to integrate
components in a common platform, after their validation and verification as standalone and collaborative
objects. The architecture of a common platform, consisting of tens of prototypes necessary to cover
different SPD requirements and levels, introduces designing generalities. Subsequently, there are
nSHIELD components not directly correspondent to one of the very specific use cases developed in the
scenarios. Additionally, there are prototypes matching the criteria and requirements of more than one
scenarios and therefore could be listed under the general nSHIELD prototype framework. This section
covers the description of these categories of prototypes.

7.1 Link Layer Security Prototype (Prototype 23)

Temperature, humidity and other kind of sensors are used on multiple situations to provide information
about the surrounding environment.

Sometimes this information is sensible and the link layer should provide authentication and integrity to
preserve data.

In order to show this features the prototype will communicate a mote with a base station where
information could be processed.

7.1.1 Link layer prototype interfaces

The link layer prototype developed could be connected to other systems through a gateway where
network layer security will be provided.

7.1.2 Link layer prototype SPD features

This nSHIELD link layer prototype is composed of several sensors which ensure their communications
thought CTR, CBC-MAC or CCM algorithms.

The main functionalities of this prototype are:

a) RF Module that supports the 802.15.4, based on the CC2420 that provides a wireless
communication link.

b) Authentication and confidentiality hardware capability

With this prototype some SPD functionalities that could be covered are listed below:

Table 7-1: Link Layer SPD features

Authentication
Applying CCM or CBC-MAC the receiver could be secure that
the data received is provided by the correct transmitter

Confidentiality
Applying CCM or CTR the data received will be encrypted and
only if the key is shared between RX and TX the data could be
correctly decrypted.

7.1.3 Link layer prototype environment

For the use case demonstration, the link layer control system can be integrated with other nSHIELD
components through a base station where data will be received.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 79 of 83

7.2 Protection Profile (Prototype 31)

The nSHIELD project has the ambition to be a commercial standard for Security, Privacy and
Dependability regarding embedded systems. At this purpose the idea of a Protection Profile (at the
moment only for middleware layer) is a first step to define a security problem definition and security
objectives for embedded systems.

As defined in D5.3 [11], a protection profile (PP) is a Common Criteria (CC) term for defining an
implementation-independent set of security requirements and objectives for a category of products, which
meet similar consumer needs for IT security. Examples are PP for application-level firewall and intrusion
detection system. PP answers the question of "what I want or need" from the point of view of various
parties. It could be written by a user group to specify their IT security needs. It could also be used as a
guideline to assist them in procuring the right product or systems that suits best in their environment.
Vendors who wish to address their customers’ requirements formally could also write PP. In this case, the
vendors would work closely with their key customers to understand their IT security requirements to be
translated into a PP. A government can translate specific security requirements through a PP. This usually
is to address the requirements for a class of security products like firewalls and to set a standard for the
particular product type.

Considering this PP definition it is evident that it is a particular type of prototype which is completely
divorced from the speech of the integration of the prototypes. On the contrary, it makes the rules or rather
the SPD requirements that must be met by prototypes Integration that make up an embedded system
aiming to be SHIELD compliant (as indicated above, at this time are shown only the SPD requirements
that the middleware of the system must meet).

7.3 Attack Surface Metrics (Prototype 28)

Attach Surface Metric approach starts from the following considerations:

1. A threat is the origin of the fault chain (fault -> errors -> failures) for the dependability concerns
and as the potential for abuse of protected assets by the system for security concerns.

2. The attacker is the threat agent; it is a malicious human activity or non malicious event.

3. An attacker uses nSHIELD's entry and exit points to attack the system.

So it was introduced an entry and exit point framework to identify three relevant factors: Porosity,
Controls, and Limitations.

An entry and exit point contribution to the attack surface reflects factors' likelihood of being used in
attacks. For example an entry point running a method with root privilege is more likely to be used in
attacks than a method running with non-root privilege. We introduce the notion of a damage potential-
effort ratio (der) to estimate porosity contribution.

A system’s attack surface measurement (Actual SPD Level) is the total contribution of the system’s
factors along the porosity, controls, and limitation.

Each supplier of a product or system that will be part of this demonstrator must provide the data needed
for the calculation of SPD level defined by the adopted metric approach.

These data will be provided by filling in an excel sheet which is being finalized and will contain all the
information necessary to Actual SPD level calculation.

All data collected will then be given as input to the middleware of the system which will be able to process
them in order to provide, in a dynamic way, the variable parameters values of the implemented security
features (controls) the values in order to allow the system to reach the desired “Actual SPD Level”.

The Attack surface metric approach definition and the details of data to be provided are contained in
deliverable D2.5 [10].

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 80 of 83 Final

7.4 Key Exchange Protocol (Prototype 02)

Integrating the Control Randomness Protocol requires interfacing with both the lightweight cryptographic
framework developed in the premises of the nSHIELD architecture as well as the network layer security
prototype.

Since CRP does not dictate how all the cryptographic keys are transferred to the receiver, the initial
transfer of all the keys is handled by the chosen public key cryptography scheme dictated by the network
security layer. The CRP dictates how all these keys are used and reused within a time frame composed of
many conventional sessions.

The underlying implementation of the CRP relies on the usage of a symmetric cryptographic algorithm as
well as a keyed hashing algorithm. During the implementation phase of the prototype, AES and HMAC-
SHA256 were used as reference algorithms. The actual choice of algorithms depends on each scenario
and on the availability of ciphers in the underlying cryptographic framework. The underlying framework
declares the availability of ciphers and the CRP implementation chooses based on the ranking of each
cipher in the list.

7.5 Recognizing Denial of Service (Prototype 13)

The DoS attack detection mechanism involves cooperation between components belonging to all three
layers on the nSHIELD architecture. However, the principal algorithmic operation is considered to be a
network process and is therefore described in the network related documents. The scheme can be seen
as an algorithmic operation which is fed with inputs from various components and provides a set of results
relating to the identification of a DoS attack that is underway.

7.5.1 Interfaces

In order for this prototype to be integrated, interfaces exist to communicate with appropriate processes.
The DoS attack defence prototype can be mainly considered to lie in the network layer and therefore
provides a network service. The various components of the software prototype need to be able to
communicate with components providing input information. These include interfaces for communication
with the Power unit module, OS calls for CPU monitoring information and access to the exchanged traffic
at the network protocol level.

7.5.2 Environment

The prototype was designed to be consisted of standard C/C++ libraries and therefore can be integrated
in all operating systems and environments.

7.6 Adaptation of Legacy Systems (Prototype 29)

7.6.1 Prototype interfaces

The software prototype of Adaptation Of Legacy Systems provides a mechanism that allows legacy
devices to be integrated into nSHIELD framework and make use of nSHIELD services. This is done by
using specific software adapters (OSGi bundles) that contain the semantic information necessary for the
discovery/composition procedure and that are able to communicate them.

The ad-hoc software is OSGi bundles in the nSHIELD side and in L-ESD side. The software in L-ESD
side provides discovering of the nSHIELD remote services and the software in nSHIELD side provides
advertising nSHIELD services for being remotely discovered.

Using this prototype for the nSHIELD services requires make use of R-OSGi bundle in both sides and in
nSHIELD side adding a few lines of Java code to the services so they can be advertised and being
remotely accessed.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 81 of 83

7.6.2 Prototype environment

This prototype was designed to become part of the Middleware services, thus the software routines for
each service to be used remotely by the Legacy Nodes are Knopflerfish OSGI Bundles.

D6.3: Prototype integration report nSHIELD

 RE

D6.3 RE

Page 82 of 83 Final

8 Conclusions

A first step of the integration process which is the object under investigation in this deliverable is the
systematic collection of all the prototypes/technologies developed throughout the project activities. At this
stage some prototypes are working as an initial proof of concept of a given technology running
independently from others and able to be verified through individual testing. The process of integrating the
large number of different prototypes in a unified framework is a challenging task due to their heterogeneity
and the complexity which is increased as the number of technologies increases. Another difficulty related
to source code integration is that parts of code are proprietary to protect business activities of the involved
partners.

Starting from Chapter 3 the roadmap to construct a framework able to compose systems using different
SPD components while addressing functional and SPD application requirements is presented. This tool
which must also be architectural compliant and able to provide a SPD level assessment at every stage of
application operation will be further refined in the next version of this deliverable. Technologies needed to
be integrated to satisfy requirements set for railway security, people identification at the stadium and
reliable avionic have been identified and the interconnectivity among different components is presented in
Chapters 4-6. The use of the framework to construct all nSHIELD application demonstrators will be the
final goal of activities included in this task.

nSHIELD D6.3: Prototype integration report

 RE

 RE D6.3

Final Page 83 of 83

9 References

[1] S. McConell, “Code Complete: A Practical Handbook of Software Construction”, 2
nd

 Edition,

Microsoft Press, 2004.

[2] G. Myers, “The Art of Software Testing”, John Wiley, 1979.

[3] nSHIELD Technical Annex v2.4

[4] nSHIELD D2.2: Preliminary System Requirements and Specifications

[5] nSHIELD D2.5: Preliminary SPD Metric Specification

[6] nSHIELD D2.4: Reference System Architecture Design

[7] nSHIELD D3.3: Preliminary SPD Node technologies prototype Report

[8] nSHIELD D4.2: Preliminary SPD Network technologies prototype

[9] nSHIELD D4.3: Preliminary SPD Network technologies prototype Report

[10] nSHIELD, D5.2: Preliminary SPD Middleware and Overlay technologies prototype

[11] nSHIELD, D5.3: Preliminary SPD Middleware and Overlay technologies prototype Report

[12] Atta official web site: https://bitbucket.org/atta-all (2013)

[13] nSHIELD, D3.2: Preliminary SPD Node technologies prototype

[14] Deepak Tagra, Musfiq Rahman, Srinivas Sampalli: Technique for Preventing DoS Attacks on

RFID Systems. In 2010 International Conference on Software, Telecommunitaions and

Computer Networks (SoftCOM), pages 6-10. (2010)

[15] http://subversion.apache.org

[16] https://wiki.debian.org/Smartcards.

https://bitbucket.org/atta-all
http://subversion.apache.org/
https://wiki.debian.org/Smartcards

	1 Introduction
	2 Software Integration Methodologies
	2.1 Introduction
	2.2 Software Integration Approaches
	2.2.1 Phased / Incremental Integration
	2.2.2 Top-Down Integration
	2.2.3 Bottom-Up Integration
	2.2.4 Other Integration Approaches

	2.3 Version Control Systems
	2.3.1 nSHIELD SVN Repositories

	2.4 Software Integration Checklist

	3 nSHIELD Integration Approach
	3.1 Overall approach
	3.2 System composition

	4 Integration of Railway Scenario Components
	4.1 Control Algorithms (Prototype 20)
	4.2 Middleware Intrusion Detection System (Prototype 22)
	4.2.1 IDS prototype interfaces
	4.2.2 IDS prototype SPD features
	4.2.3 IDS prototype environment

	4.3 Reputation based Secure Routing (Prototype 16)
	4.3.1 Reputation-based Secure Routing Prototype Interfaces
	4.3.2 Reputation-based Secure Routing Prototype SPD features
	4.3.3 Reputation-based Secure Routing Prototype environment

	4.4 Offline Physical Access Control System (Prototype 05)
	4.4.1 oPACS prototype interfaces
	4.4.2 oPACS prototype SPD features
	4.4.3 oPACS prototype environment

	4.5 Network layer security (Prototype 24)
	4.5.1 Network layer prototype interfaces
	4.5.2 Network layer prototype SPD features
	4.5.3 Network layer prototype environment

	4.6 Metrics Approach (Prototype 27)
	4.7 Semantic model (Prototype 26)
	4.8 OSGI Middleware (Prototype 25)
	4.9 Security Agent (Prototype 33)
	4.10 Secure Discovery (Prototype 32)
	4.11 Automatic Access Control (Prototype 11)
	4.11.1 Automatic Access Control Prototype Interfaces
	4.11.2 Automatic Access Control Prototype SPD features
	4.11.3 Automatic Access Control Prototype environment

	4.12 Policy-based Access Control (PBAC) & Policy-based Management (PBM) (Prototype 19)
	4.12.1 Policy Based Access Control SPD & integration features

	4.13 Interactions map

	5 Integration of People Identification Scenario Components
	5.1 Face recognition (Prototypes 7 and 37)
	5.1.1 Face recognition modules
	5.1.1.1 Face Finder Module (FF)
	5.1.1.2 The ICAO module (ICAO)
	5.1.1.3 The face recognition module (FR)

	5.1.2 Smart card manager
	5.1.3 Smart card reader

	5.2 Dependable Distributed Computation Framework (Prototype 14)
	5.2.1 At a glance
	5.2.2 Repositories
	5.2.3 Types
	5.2.4 Behaviours
	5.2.4.1 Entry
	5.2.4.2 Ports
	5.2.4.3 Build
	5.2.4.4 Load

	5.2.5 Structures
	5.2.5.1 Vertices
	5.2.5.2 Edges

	5.3 Smart Card Security Services (Prototype 6)
	5.3.1 Communication with Smartcards
	5.3.2 Smartcard File System and Data “Storage”
	5.3.3 Secure services with smart cards
	5.3.4 Building Secure Communications

	5.4 Access Rights Delegation
	5.4.1 Problem Statement
	5.4.2 The Concept of “Path Array”
	5.4.3 Mechanism of the Artefact
	5.4.3.1 Incrementing Index i
	5.4.3.2 Generating Hash using HMAC
	5.4.3.3 Generating Hash by the Locks in the Sequence
	Scenario 1: If i=0
	Scenario 2: If i>0

	5.4.4 Smart Card and biometric data
	5.4.5 Face Recognition Smart Card Support

	5.5 Interactions map

	6 Integration of Avionics Scenario Components
	6.1 OMNIA (Prototype 36)
	6.2 Gateway (Prototype 21)
	6.2.1 n-ESD-GW Gateway SPD features
	6.2.2 Gateway nS-ESD-GW

	6.3 SPD-driven Smart Transmission Layer (Prototype 9)
	6.4 Reliable Avionic (Prototype 30)
	6.4.1 Areas of functionality to cover:

	6.5 Semantic model (Prototype 26)
	6.6 Metrics (Prototype 27)
	6.7 OSGI Middleware (Prototype 25)
	6.8 Control Algorithms (Prototype 20)
	6.9 Middleware Intrusion Detection System (Prototype 22)
	6.9.1 IDS prototype interfaces

	6.10 Interactions map

	7 Components of the General nSHIELD Framework
	7.1 Link Layer Security Prototype (Prototype 23)
	7.1.1 Link layer prototype interfaces
	7.1.2 Link layer prototype SPD features
	7.1.3 Link layer prototype environment

	7.2 Protection Profile (Prototype 31)
	7.3 Attack Surface Metrics (Prototype 28)
	7.4 Key Exchange Protocol (Prototype 02)
	7.5 Recognizing Denial of Service (Prototype 13)
	7.5.1 Interfaces
	7.5.2 Environment

	7.6 Adaptation of Legacy Systems (Prototype 29)
	7.6.1 Prototype interfaces
	7.6.2 Prototype environment

	8 Conclusions
	9 References

