UNIVERSITY OF OSLO

ITS Talks, 6Jun2024

Energy Transition in a Norwegian Perspective

Josef Noll Professor Department of Technology Systems

UNIVERSITY OF OSLO

Wi må omstille energisystemet vårt og produsere store mengder ny fornybar kraft, skriver Ole Erik Almlid. Foto: Terje H.T. Andersen

"we need participation of all people if we want to succeed with the green transition - and intermediaries & municipalities are the key to success"

Why Norwegian Perspective?

- Yearly: 150-155 TWh
- Miljødirektoratet: 34
 TWh is needed for "55% reduction by 2030"
 - 22.6% increase
- Energikommisjonen: minst 40 TWh (26% increase)
- Are we asking the right questions?

Regjeringa med «realitetsorientering»: Ikkje nok kraft til klimamålet

Statsministeren har vitna om si tru på klimamålet. Nå erkjenner energiministeren at dei ikkje greier å skaffe nok kraft.

⊠ Håvard Nyhus Journalist

Publisert i går kl. 05:35

Source: nrk.no, 3Jun2024, Photo: Anders Martinsen, Agder Energi

Why Norwegian Perspective?

➡ Yearly:

- 223 TWh total energy¹
- 157 TWh electrical
 - 23-30% increase needed
 - 2023: <1 TWh new renewable
- CO neutral
 - increase: 66 TWh netto
 - incl. conversion loss 100 TWh
 - new business: ?? TWh

¹: total 338 TWh before losses and conversion

Source:Energeia-Solkraft, 2023

Where can the needed energy come from?

Decentralised ys Centralised

where can we get the growth?
3-4 times more energy in winter

Challenges of the Grid

- Grid enhancement & Edge Capacity
- Bottlenecks ("Flaskehalser")
- Edge customer aggregation
- Laws & regulations, e.g. EU/2023/2413

Sustainability and electrification

Source: Statnett LMA 2022

SITAS

2

The power is at the edge of the grid

The green transition

of society is about reducing greenhouse gas emissions, preserving and restoring nature, reversing environmental degradation and ensuring that the energy of the future comes from renewable sources.

The digital transition

of society consists all processes at all levels in society producing and applying infrastructure, services, applications and human behaviour that depend on digital representation of knowledge and computer power.

and municipalities & mediators are our partner to empower citizens

The role of private households

Why solar?
does not fit to Norway

Energy Consumption vs Solar Production (DESSI pilot house 108x)

Note: DESSI database on real-world data Pilot house in Oslo

Daily Solar Production, (Mean & StdDev)

Solar variability

daily variation

	min	max
Apr2024	5	100
May2024	22	108
Dec2023	0	14

120

ANDELSOLENERGIIKRAFTPRODUKSJON2022

Land	MW	GWh	%Total
Tueldand	<u> </u>	57(10	11 7 0/
Iyskiand	68451	27.010	11,7 %
Nederland	17 966	17 680	14,9 %
Storbritannia	14 289	13921	4,3 %
Danmark	3 940	2176	6,4 %
Sverige	2 212	1 507	0,9 %
Finland	607	633	1,0 %
Norge	320	225	0,1%

Kilde: IEA PVPS, IRENA, BP, Fraunhofer ISE.

Source:Energeia-Solkraft, 2023

Forget solar in Norway

Future Perspective

Costs & Readiness

SOLANLEGGISANDEFJORD12023

	kWh/m²	NOK/kWh
Hustak (22°)	221	0,69
Industritak (30°)	229	0,44
Fastbakkeinstallasjon (45°)	235	0,24
Én-akse bifacial	349	0,16

- Combination of solutions
 - Solar & Battery (autonomy)
 - Solar & Hydrogen
 - Solar & Thermal storage
- Societal aspects

ITS-talks - Energy Transition

Source: Energeia-Solkraft, 2023

Real world assessment Heat pump control

- Heat pump drives tank
 - Top: 240 I hot water
 - Bottom: 120 | floor heating
- Goal:
 - set temperature of water
 - price, convenience,

Optimising tank temperature

- 40% reduction electricity bill (Mar/Apr)
- reduced battery size (ongoing)
- user involvement

Conclusions

- Electrical energy usage in Norway
 - Need for 100-150 TWh more (by 2050)
 - Centralised solution not feasible (upgrade of the grid)
 - "the power is at the edge"
- Solar in combination
 - Sodium/salt batteries (daily variations)
 - Geothermal storage (seasonal storage)
- Societal aspects
 - Energy neighbourhood
 - from PV production to digital

15