

T7.3 (Dependable Avionic Systems) Lead Partner: Selex Galileo Partners: Alfatroll (Movation), UNIGE, SESM, S-LAB, HAI, Selex Galileo

About me..

Kristen Nygård **Ole Johan Dahl** Inventors of object oriented programming: Simula

Bård Sørbye R&D Norsk Data

Robert Cailliau Dave Walden www.co-inventor Internet/BBN

Tor Olav Steine R&D Norsk Data

www.norsk-data.no

T7.3 (Dependable Avionic Systems) nSHIELD Objective

- A dependable avionics system need to include the following attribute:
 - Reliability
 - -Availability
 - -Safety
 - -Confidentiality
 - -Integrity
 - Maintainability
- Focus areas: Security, Privacy and Dependability

From Annex B.2 – Dependable Avionic Computer

Todays situation:

"The demand for complex hardware & software systems has increased more rapidly than the ability to design, implement, test, and maintain them. ..."

Michael Lyu Handbook of Software Reliability Engineering, 1996

Today's situation:

Software complexity seems to be THE most significant challenge

What are desireable properties of Embedded Systems?

- a. Fast and predictable response in all situations
- b. Always deterministic results, situation based
- c. Complies with strict QA standards, e.g. DO178B/C
- d. Low development costs, yet adaptable to quick changes in requirements
- e. Low runtime footprint and software complexity.
- f. Certifiable in independent steps to save costs.
- g. Full scaleability in both functionality and performance, yet maintaining all of the above.

Is exponential growth in complexity necessary?

Functions added

16. desember 2007

Can IQ_Egine e.g. replace the well known PID regulators?

- On PID regulators: <u>http://enwikipedia.org/wiki/PID_controller</u>
 - We claim that IQ_Engine can be equipped with all the properties of a PID regulator, yet outperforming it with respect to fast repositioning.
- This example shows control movements of an acro pilot using large movements and quick contra to avoid the PID overshoot (e.g. 2:45 onwards): http://www.youtube.com/watch?v=J3NyptGJzLo
 - IQ_Engine control signals can be adjusted for:
 - P,I and D factors
 - Control surface positioning latency
 - Sensitivity of the individual control surfaces
 - General properties of the airframe (weight, maneuverability, etc).

Today's situation:

Software certification is a significant challenge

A certified version is required

The established standards for development of avionics are these: Software: DO-178B (USA)/ED-12 (Europe) and Hardware: DO-254 (USA)/ED-80 (Europe)

ED12B-C/DO-178B *Level A* is governing situations where a defect would result in catastrophic accident.

Certification is expensive, costing approx. \$40-50 per line of code *) One manufacturer estimates full UAV/RPA code of its new UAV to be 65mill lines of code... (50% more than Windows) *) Source: http://www.windriver.com/solutions/aerospace-defense/

DO 178B/ED 12 Software restrictions

- Compilers are limited to certified ADA or C,
- Operating system must be certified RTOS*
- Choice of hardware is limited (ARINC)
- Fully deterministic behaviour is required **
- No surplus code allowed, only net usable code (including subsystems) ***

* Real Time Operatins System
** Excludes Neural Networks
*** Excludes ordinary DBMS systems

DO-178B/EB 12 software projects involve this documentation:

- 1. Plan for Software Aspects of Certification (PSAC)
- 2. Software Development Plan (SDP)
- 3. Top-level Design Document for the RTOS (Arinc653)
- 4. Detailed Design Document for (Arinc653)
- 5. Tested software system executable as standalone system
- 6. Test suite for acceptance test and Q&S verification
- 7. Manuals & Certification Evidence
- 8. Regular Reporting of progress

Today's situation:

The functions needed are a significant challenge

Today's situation:

The proposed solution: USE a knowledge based system: IQ_Engine

IQ_Engine System Structure

IQ_Engine System Structure

- Knowledge can be made manually or automated on the ground
- The Knowledge is fragmented into maneageable pieces
- Off-line DB is used to create the online Database
- Search Engine gets input from real sensors and ground control station
- Search Engine enquiries the Knowledge database
- On-board Search Engine SW has to be certified
- On-bord DB has to be certified
- First certification has same cost of traditional SW certification
- Advantage: after a change, only incremental certification is required. Not necessary re-certify the full Search Engine (and DB)

More than an Autopilot

Only low level decisions

- Follows order
- Bone marrow driven reflexes
- Inner loop commands (ca50#/sec)

High level decisions

- Gives the autopilot orders
- Makes decisions based upon all

information avilable.

-Outer loop commands (ca 1#/sec)

...while maintaining simplicity!

IQ_Engine Agent

Alfatroll's IQ_Engine claims:

- a. Fast and predictable response in all situations
- b. Always deterministic results, situation based
- c. Complies with strict QA standards, e.g. DO178B/C
- d. Low development costs, yet adaptable to quick changes in requirements
- e. Low runtime footprint and software complexity.
- f. Certifiable in independent steps to save costs.
- g. Full scaleability in both functionality and performance, yet maintaining all of the above.

The Knowledge Base: ...not like this (trad. Case Based Rasoning):

¹⁾ Pat. granted

16. desember 2007

IQMotor vs traditional

Traditional

IQMotor

16. desember 2007

The nSHIELD project a staged approach

Phase 1 Basic Software setup	
	Phase 2 Test functionality in simulator

A total budget of Euro 150' does not cover the full development of IQ_Engine

IQ Engine Cost reduction when used in advanced solutions

Area	Software, standard development	IQ_E Knowledge Based development
Prototype module	100	120
Convert to embedded version	250	160
Production module, verified	350	240
Production module, certified	600	450
Updated version, certified	1200	650
Estimated lifetime costs	3600	1050
In percent:	100%	29%

Estimated cost savings: 71%

For systems without certification, estimated cost reduction: 50%

The key to solving complex systems Tor Olav Steine - tos@alfatroll.com

Source NASA

16. desember 2007