
 

Issue 14  Page i 

 

 

Project no: 269317 

 

nSHIELD 

 

new embedded Systems arcHItecturE for multi-Layer Dependable solutions 

Instrument type: Collaborative Project, JTI-CP-ARTEMIS 

Priority name: Embedded Systems 

 

 

D2.3: Preliminary System Architecture Design 

 

Due date of deliverable: M9 –2012.05.30 

Actual submission date: M12 -2012.08.03 

 

Start date of project: 01/09/2011     Duration: 36 months 

 

 

Organisation name of lead contractor for this deliverable:  

Hellenic Aerospace Industry, HAI 

 

        Revision [Issue 14] 

 

 

 

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2012) 

Dissemination Level  

PU Public  

PP Restricted to other programme participants (including the Commission Services)  

RE Restricted to a group specified by the consortium (including the Commission Services)  

CO Confidential, only for members of the consortium (including the Commission Services) X 



 

Page ii  Issue 14 

Document Authors and Approvals 

Authors 
Date Signature 

Name Company 

Nikolaos Priggouris  HAI   

Nikos Pappas  HAI   

Hans Thorsen T2D   

Christian Gehrmann SICS   

Lorena de Celis AT   

Jacobo Domínguez AT   

Andrea Fiaschetti UNIROMA1   

Renato Baldelli SE   

Harry Manifavas TUC   

Konstantinos Rantos TUC   

Alexandros Papanikolaou TUC   

Konstantinos Fysarakis TUC   

Georgios Hatzivasilis TUC   

Vincenzo Suraci UNIROMA1   

    

Reviewed by   

Name Company   

    

    

Approved by   

Name Company   

    

 

 

 

 

 

 

 

 

 

 

 



 

Issue 14  Page iii 

Modification History 

Issue Date Description 

Draft A 22.03.2012 First issue for comments, Table of Contents 

Issue 1 14.05.2012 Comments from ACO, TUC, ATHENA and SICS 

Issue 2 06.06.2012 Terms, Methodology and Architecture from HAI 

Issue 3 22.06.2012 Modifications from HAI in ToC after phone call discussions 

Issue 4 06.07.2012 1
st
 version of Network Layer Architecture by HAI 

Issue 5 06.07.2012 Suggestion for slightly modified architecture definitions and approach, SICS 
and T2D 

Issue 6 11.07.2012 1
st
 version of Node Layer by ACORDE 

Issue 7 13.07.2012 2
nd

 of Node Layer Functionalities by ACORDE 

Issue 8 17.07.2012 Definition of Overlay by SE, UNIROMA1 

Issue 9 20.07.2012 Update Node Layer section by ACORDE, 

Update architecture definition strategy by proposing a 4 view approach for 
each layer  

Preliminary information regarding interfaces sections 

Issue 10 23.07.2012 Incorporate part of TUC contribution 

Issue 11 26.07.2012 Section 5 additions/modifications 

Issue 12 27.07.2012 Update of section 7 (interfaces) 

Issue 13 30.07.2012 Incorporate comments /corrections from ACORDE 

Issue 14 03.08.2012 Middleware & Overlay contributions added,  

Final Version 

 



 

Page iv  Issue 14 

Contents 

 

1 Executive Summary .................................................................... 8 

2 Introduction ................................................................................. 9 

3 Terms and Definitions .............................................................. 10 

4 Design methodology ................................................................. 12 

4.1 Architecture Design Process ........................................................ 12 

4.2 Design Considerations .................................................................. 14 

4.2.1 Distributed vs. Centralized Approach .................................................. 14 
4.2.2 Service oriented architecture .............................................................. 14 
4.2.3 Middleware considerations .................................................................. 15 
4.2.4 Evolving from interfaces to contracts .................................................. 15 
4.2.5 Interconnectivity of embedded devices ............................................... 16 

4.3 Requirements on Architecture ...................................................... 17 

5 From pSHIELD to nSHIELD ...................................................... 19 

6 nSHIELD Architecture ............................................................... 20 

6.1 nSHIELD Overall Architecture ....................................................... 20 

6.2 Node ................................................................................................ 24 

6.2.1 Logical View and Services Description ............................................... 25 

6.3 Network ........................................................................................... 28 

6.3.1 Logical View and Services Description ............................................... 28 
6.3.2 Development View .............................................................................. 31 

6.4 Middleware ..................................................................................... 33 

6.4.1 Logical View and Services Description ............................................... 34 

6.5 Overlay ............................................................................................ 36 

6.5.1 Logical View and Services Description ............................................... 36 
6.5.2 Development and Deployment view ................................................... 38 

7 Interfaces ................................................................................... 40 

7.1 Internal ............................................................................................ 40 

7.2 External ........................................................................................... 41 

7.3 Components ................................................................................... 41 

8 Application Scenarios Realization ........................................... 43 

9 Conclusions .............................................................................. 44 

10 References ................................................................................. 45 

 

 



 

Issue 14  Page v 

 

Figures 

 

Figure 3-1: the four functional layers of an nSHIELD system........................................................... 11 

Figure 4-1: process of Architecture definition in the nSHIELD case ................................................ 12 

Figure 6-1: Conceptual Architecture of the nSHIELD system (Physical view) ................................. 21 

Figure 6-2: Architecture of an nSHIELD aware cluster ..................................................................... 22 

Figure 6-3: Architecture of an nSHIELD subsystem ......................................................................... 22 

Figure 6-4: Conceptual Architecture of nSHIELD System (Hierarchical logical view) ...................... 23 

Figure 6-5: Internal architecture of nSHIELD ESDs with respect to the 4 functional layers ............. 24 

Figure 6-6: nSHIELD’s Node Layer Services ................................................................................... 25 

Figure 6-7: nSHIELD’s Network/Communication Layer Services .................................................... 29 

Figure 6-8: nSHIELD’s Network/Communication Layer Services (Logical View) ............................. 33 

Figure 6-9: SHIELD Middleware services and functionalities ........................................................... 34 

Figure 6-10: SHIELD Middleware services and functionalities ......................................................... 37 

Figure 6-11:  nSHIELD SPD Security agent architecture ................................................................. 38 

 

 

Tables 

 

Table 4-1: Requirements .................................................................................................................. 17 

Table 6-1: SPD features [node layer] ............................................................................................... 24 

Table 7-1: information flows between the various nSHIELD layers (within a device) ...................... 40 

Table 7-2: information flows between the various nSHIELD layers (between different ESDs) ........ 41 

 

 

 

  



 

Page vi  Issue 14 

Glossary 

 

Please refer to the Glossary document, which is common for all the deliverables in nSHIELD. 

 

 

 

 

 

 

 

 

 

 



 

Issue 14  Page vii 

  

 



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 8 of 47  Issue 14 

1 Executive Summary 

D2.3 is the first of the three deliverables concerning System Architecture (the other two are D2.4 and 
D2.7) inside nSHIELD WP2, “Scenarios, requirements and system design”. It is an internal deliverable 
and as denoted by its title, the main objective is to set the framework for the description of nSHIELD 
System Architecture. According to nSHIELD DoW’s specifications, D2.3 prepares the way for the 
definition of a formal and conceptual overall system architecture, to address Security, Privacy and 
Dependability (SPD) in the context of Embedded Systems (ESs) as “built in” rather than as “add-on” 
functionalities, proposing and perceiving with this strategy the first step towards SPD certification for 
future ESs. The methodology for achieving this is prescribed in chapter 4, but in a few words the 
procedure incorporates taking into account and further process aspects such as SHIELD terminology 
framework, basic requirements, pSHIELD background, metrics, technology status and use cases. 

 

  



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 9 of 47 

2 Introduction  

The main goal of nSHIELD is to advance evolution of technology in the production of Embedded Systems 
(ESs), ensuring that security, privacy and dependability (SPD) can be strengthened in the context of 
integrated and interoperating heterogeneous services, applications, systems and devices. To this end, the 
definition of functional system architecture is one of the most critical project tasks. 

nSHIELD Architecture will be comprised by those modules that will implement SPD functionalities and 
provide SPD services. It is desirable that these services are transparently (to the external user) embedded 
in the four described layers, the coordination of which is presupposed for the successful discovery, 
orchestration and provision of functionalities. In particular, the correspondence between the 
aforementioned layers and the functionalities mostly implemented by SPD modules are:  

 At node layer, intelligent hardware and firmware SPD 

 At network layer, secure, trusted, dependable and efficient data transfer based on self-
configuration, 

 self-management, self-supervision and self-recovery 

 At middleware layer, secure and efficient resource management, inter-operation among 
heterogeneous networks 

 At overlay layer, composability 

The document’s structure is as follows: 

After the first two introductory chapters, a section is dedicated to define the most important nSHIELD 
system terms. 

Then, chapter 4 introduces the adopted design methodology, including the architecture design process, 
topics under consideration and a basic set of requirements linked to system architecture. 

Chapter 5 includes a description of the transitional process from pSHIELD to nSHIELD, highlighting more 
useful background knowledge than a framework with continuity. 

In this document, emphasis is given to chapter 6, which illustrates the attempt to outline an overall 
architecture scheme and provide the first views on the four layers of nSHIELD stack. 

Chapter 7 of interfaces will be analysed in subsequent deliverables, whereas at this point the importance 
of a clear definition of interfaces is depicted, along with a first attempt of categorization of interfaces and 
identification of open issues to be resolved. 

Similarly chapter 8 including the validation of architecture through the implementation of the four 
predefined application scenarios is transferred for the next deliverable versions.   

   
A brief conclusive chapter (9) summarizes the findings and status of nSHIELD architectural design.   

   

  



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 10 of 47  Issue 14 

3 Terms and Definitions  

The general terms and definition listed in [1] and [3]  apply also here. For completeness and facilitation of 
reading we restate the most important of them properly adapted to the nSHIELD case.   

Embedded system (ES): is a microprocessor based system that is embedded as a subsystem, in a 
larger system (which may or may not be a computer system) which may include hardware and/or 
mechanical parts. Embedded Systems are usually designed to perform one or a few dedicated functions 
often with real-time computing constraints. This is in contrast to a general purpose computer system (i.e. a 
personal computer) that is designed for openness and flexibility in order to meet a wide range of end-user 
needs.   

Middleware: Middleware is software that has been abstracted out of the application layer for a variety of 
reasons [10]. The line between middleware and application software is often blurred. Generally, 
middleware provides services to software applications beyond those available from the operating system. 
It can be described as a kind of "software glue" [11] that make it easier for software developers to perform 
communication and input/output, by hiding operational system’s details from the application developer, so 
they can focus on the specific purpose of their application. 

According to [10] in an embedded system middleware can be defined as system software that typically 
sits on either the device drivers or on top of the OS, and can sometimes be incorporated within the OS 
itself. It acts as a mediator between application software and the kernel or device driver software. But can 
also mediate and serve different application software. Specifically, middleware can be seen as an 
abstraction layer generally used on embedded devices with two or more applications in order to provide 
flexibility, security, portability, connectivity, intercommunication, and/or interoperability mechanisms 
between applications. One of the main strengths in using middleware is that it allows for the reduction of 
the complexity of the applications by centralizing software infrastructure that would traditionally be 
redundantly found in the application layer. 

There are many different types of middleware elements, including message oriented middleware (MOM), 
object request brokers (ORBs), remote procedure calls (RPCs), database/database access, and even 
networking protocols that run above the device driver layer and below the application layers of the OSI 
model. They can be categorized as: 

 general-purpose, meaning they are typically implemented in a variety of devices, such as 
networking protocols above the device driver layer and below the application layers of the OSI 
model, file systems, or some virtual machines such as the JVM. 

 market-specific, meaning they are unique to a particular family of embedded systems, such as a 
digital TV standard-based software that sits on an OS or JVM. 

nSHIELD system: an nSHIELD system can be seen as a system composed of a set of interconnected 
embedded systems that can seamlessly interact through appropriate interfaces that provide at least 
specific security, privacy and dependability (SPD) functionalities.    

nSHIELD Architecture (nSA): describes the overall architecture of an nSHIELD enabled system that is 
comprised of functional entities (i.e. a software functionality, a middleware service, an abstract object, etc) 
and physical entities (e.g. a hardware component). 

Inheriting from the pSHIELD case nSHIELD defines four main functional layers: node, network, 
middleware and overlay, which represent a set of four functional sub-systems that are specified by a set 
of elements, functional entities and interfaces:  

 Node Layer: This layer is composed of standalone and/or connected devices elements like 
sensors, actuators or more sophisticated ES devices, which may perform smart transmission. 
Generally it includes the hardware components that constitute the physical part of the nSHIELD 
system.   



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 11 of 47 

 Network Layer is a heterogeneous layer composed by a common set of protocols, procedures, 
algorithms and communication technologies that allow the communication between two or more 
nodes as well as as with the external world. 

 Middleware Layer includes the software functionalities that enable: 
o basic services to utilize underlying networks of embedded systems (like service discovery 

and composition) 
o basic services necessary to guarantee SPD 
o execution of additional tasks assigned to the system (i.e. monitoring functionality) 

Middleware layer software is installed and runs on nSHIELD nodes with high computing power 

 Overlay Layer: is a logical vertical layer that collects (directly or indirectly) semantic information 
coming from the Node, Network and Middleware layers and includes the “embedded intelligence” 
that drives the composition of the nSHIELD components in order to meet the desired SPD level.   
It is comprised of software routines running at application level. 
 

Figure 3-1 provides a conceptual picture of the four functional layers of nSHIELD system together with a 
number of important SPD properties that must be considered. As it becomes evident from the figure  this 
properties (i.e. energy) cannot be regarded to be part of a single layer but rather they impose cross-layer 
constraints and requirements. 

 

 

Figure 3-1: the four functional layers of an nSHIELD system 

 

  

MIDDLEWARE

NETWORK

NODE

OVERLAY
C

O
M

M
U

N
IC

A
TI

O
N

EN
ER

G
Y

IN
TR

U
SI

O
N

…

TH
R

EA
T 

/ 
A

TT
A

C
K



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 12 of 47  Issue 14 

4 Design methodology 

The design methodology describes the process that will be followed and the design 
decisions/considerations made. These design decisions and/or strategies may affect the overall system 
and its higher-level structures while they provide insight into the key abstractions and mechanisms used in 
the system architecture.  

4.1 Architecture Design Process 

The architecture definition activities are based on a slightly modified Embedded Systems Development 
Lifecycle Model [17] and are depicted in Figure 4-1. Based on the initial system concept defined in the 
technical annex and the identified basic nSHIELD scenarios a preliminary list of requirements was derived 
that drove the initial creation of the nSHIELD architecture. The present deliverable (D2.3) details this initial 
version of this architecture which is also largely influenced from the pSHIELD project experience. A 
subsequent version of the deliverable will update and refine the nSHIELD architecture based on additional 
feedback from involved stakeholders and while additional requirements become available from nSHIELD 
deliverable D2.2 on “Preliminary System Requirements and Specifications” [3]. A Reference Architecture 
will be provided in D2.4, whereas the final version of the architecture (defined in D2.4) will form the basis 
for the subsequent system development activities (prototypes) that will be performed in WP3, WP4 and 
WP5.    

As it becomes evident requirements and architecture influence one another. Requirements are the main 
input for the architectural design process since they explicitly represent the stakeholders’ needs and 
desires and also state the architecture constraints. On the other hand during the architecture design one 
has to take into considerations what is possible and look at the requirements from a risk/cost perspective.    

 

Figure 4-1: process of Architecture definition in the nSHIELD case    

For the architecture definition both functional and non-functional requirements (performance, security, 
reliability, testability etc.) should be examined. In order to define the architecture a top down approach is 
suggested where initially the entire nSHIELD system is considered and its physical and logical topology is 
described. After the overall architecture is adequately described we proceed with the analysis of the 4 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 13 of 47 

functional layers starting from the list of provided services and going as deep as to define basic hardware,  
software or other types of elements that implement these services. The level of details for each functional 
layer may differ but it is essential that in all cases information is provided at least regarding the available 
services, their possible interactions and interdependencies as well as the information that flows between 
the nSHIELD layers. 

Regarding the description of the nSHIELD functional layers, the adopted methodology is based on a 
“viewpoints driven” approach. The principles and recommended practices described in IEEE 1471 [18] 
and its successor IEEE ISO/IEC 42010:2007 [19] should be followed. Based on these standards a 
number of different views that can be used to provide a sufficient description of the architecture within 
each layer are defined. A view should be regarded as a representation of the whole system from the 
perspective of a related set of concerns. Each view is actually governed by one architecture viewpoint 

which is in effect a specification for an architecture view (the view has to conform to its viewpoint).  

A number of different architecture frameworks exist in system and software engineering that conform to 
the “viewpoints driven” approach each one seeking to establish a common practice for creating, 
interpreting, analysing and using architecture descriptions within particular domains for sufficiently 
representing a system. Examples of such frameworks include MODAF [20] and DODAF [21], developed 
initially for describing systems of defence domain, TOGAF [22] that targets enterprise information 
architectures, 4+1 Architecture View model [24] for software intensive systems, RM-ODP [23] for the 
standardization of open distributed processing systems and many others.   

For nSHIELD a number of 4 views are proposed for describing each one of the 4 functional layers. The 
proposed views are influenced by the 4+1 Architecture View model which although initially defined to 
address purely software systems  it provides a quite intuitive and well defined approach for describing all 
nSHIELD layers in a uniform manner.  

For modelling the various views related information the Universal Modelling Language (UML) developed 
by the Object Management Group (OMG) is proposed. UML defines notations and semantics for 
describing in an intuitive visual manner (UML diagrams) both behavioural and structural elements of a 
system’s architecture. 

The views selected to be used for describing the nSHIELD layers are: 

 Logical view: The logical view is concerned with the functionality that the layer. This diagram 
should provide an overview of the services and capabilities offered at each layer. In most cases 
UML class diagram should be used. 

 Development view: The development view illustrates a system from a programmer's perspective 
and is concerned with software management. A combination of the UML Component diagram and 
Package diagram can apply in this case. 

 Process view: The process view deals with the dynamic aspects of the system, explains the 
system processes and how they communicate, and focuses on the runtime behaviour of the 
system. UML Diagrams to be used include behaviour diagrams like Activity diagram, Sequence 
diagram or State diagram. 

 Physical view: The physical view depicts the system from a system engineer's point-of-view. It is 
concerned with the topology of software components on the physical layer, as well as the physical 
connections between these components. This view is also known as the deployment view. UML 
Diagrams used to represent physical view include the Deployment diagram while component 
diagrams can also be utilized. 

Although not all of the above views may be fully applicable to each of the 4 nSHIELD functional layers the 
use of the architecture structures described above is expected to facilitate overall design by providing a 
separation of concerns since it is generally pretty difficult to reflect all the information about the system 
(layer in our case) in only one type of structure. However, it should be denoted that the various structures 
are different perspectives of the same system, and therefore are not completely independent of each 
other. This means that at least one element of a structure may be represented as a similar element or 
some different manifestation in another structure, and it is the sum of all of these structures that makes up 
the architecture of the nSHIELD system. 



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 14 of 47  Issue 14 

4.2 Design Considerations 

nSHIELD continues and improves the results of pSHIELD project [1]. The overall SHIELD concept aims at 
addressing Security, Privacy and Dependability (SPD) in the context of Embedded Systems (ESs) as 
“built in” rather than as “add-on” functionalities, proposing and perceiving with this strategy the first step 
towards SPD certification for future ES. Therefore an nSHIELD System can be described as a set of 
interacting and interconnected embedded systems each one providing specific composability capabilities 
and SPD Functionalities. In the following subsections we will briefly set out a number of considerations 
that should be taken into account and might drive some important selections during nSHIELD system 
architecture definition.  

4.2.1 Distributed vs. Centralized Approach 

An nSHIELD system is comprised of heterogeneous devices combining several hardware and software 
components such as content, applications, displays, etc. Such devices will share their content with other 
users usually over a network. The nSHIELD project aims at providing a framework that ensures security, 
privacy and dependability for applications that may execute over a highly distributable network of 
embedded nodes. The distribution can be considered to occur on two different levels: on a conceptual 
level where information is distributed and on an implementation level where system components are 
distributed. In the latter case, the management of distributed components can occur in a centralized or 
decentralized manner. 

A centralized approach is based upon a centralized component or server for several types of information 
and services, which provide requested information to the applications running on several devices. This 
approach decouples the acquisition of information (content, user-related information, context, device 
properties, etc.) from the processing of this information. These applications can actively request the 
desired information from the server or passively be notified about changes. The server collects all 
information from accordant acquisition components and provides it to interested applications. A 
centralized approach suffers from restricted scalability while the problem of privacy rises, since all user-
related information is bundled and stored in one place.  

Instead of maintaining all information and services in one centralized place, a distributed approach holds 
the information at several places to avoid potential bottlenecks. Small devices maintain the information 
required by the application and process it directly. This approach requires the device to have the 
capability to store and process all of the necessary data, which may not be efficiently achieved for a 
simple device with restrictions concerning space, weight, or energy consumption. The decentralized 
approach circumvents the lacking scalability of the centralized approach and allows finer control on the 
way device information is published and protected. On the other hand, the sharing of information while 
preserving privacy is an issue. 

In nSHIELD due to diversity and nature of applications that need to be supported the distributed approach 
seems preferable. This will ensure scalability while the use of appropriate middleware and overlay 
services will ensure a service architecture that encapsulate the complexities and privacy issues that may 
arose.     

4.2.2 Service oriented architecture 

In general embedded devices/systems tend to be secluded and isolated without providing easy ways to 
add a custom interface to them. This was due to the fact that they are regarded as processor based 
systems designed to provide dedicated tasks in comparison to “big” computer systems (i.e. servers) that 
are designed to be open and extensible. In addition to that, embedded devices usually have certain 
limitations in terms of resources like memory, power and communication infrastructure. The current trends 
of convergence of computing and communication have partly addressed some of these limitations by for 
example making embedded systems capable of communicating using different wired and/or wireless 
technologies. However, embedded systems are still mainly seen as vendor-specific and task-oriented 
products, and not as components that can be easily manipulated and reused. Therefore, considerable 
steps are further needed in order to make embedded systems more accessible.  



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 15 of 47 

Borrowing ideas and concepts from software systems design, the architecture approach adopted for 
nSHIELD proposes to apply, as a first step, a component-based paradigm in nSHIELD where 
embedded devices are initially regarded as components with strictly defined interfaces. In a second step, 
the architecture should also adopt service-oriented computing principles. In service-oriented computing, 
services are basic building blocks for application development. Services are self-describing and open 
components that support rapid and seamless access and integration. Services are offered by service 
providers and they are used by service consumers. Therefore, the main architectural units in service-
oriented computing are service description, service discovery and service consummation. This means that 

the potential nSHIELD architecture should consider at least: 

 Ways to describe the services (required or provided) 

 Ways to discover them 

 Means and infrastructure to enable their usage 

Addressing the above will require modifications/enhancements at the node level since embedded systems 
need to provide additional functionalities (i.e. in order to be discovered or composed). These 
functionalities can be implemented in most cases as an extra software add-on module that runs on the 
embedded node. An important requirement though is to minimize the needed changes in incumbent 
systems employing legacy nodes, without compromising their ability to be part of a future nSHIELD 
system. This is not a simple task since legacy embedded nodes may have limitations, such as lack of 
operating system or of enough memory, that does not allow the deployment of even a minimal set of 
additional software capabilities. As it will become evident in chapter 0 (section 6.1), the proposed 
architecture has addressed that by introducing the notion of an nSHIELD subsystem which prescribes a 
cluster-like architecture. This enforces that at least one embedded system node with advanced SPD 
functionalities must be present in each cluster. This node can be configured to act as proxy or provide 
adapter functionality for the rest devices that do not have the ability to directly expose enhanced 

functionalities.      

4.2.3 Middleware considerations 

The service-oriented architecture prescribes the need of an appropriate middleware, a kind of framework 
that will support service description, discovery and consummation. Indeed nSHIELD systems can include 
distributed devices and therefore it is essential to have middleware that makes it easier to write distributed 
applications and takes care of all the networking code and messaging required. Today there are many 
service architectures proposed. The most prominent of them are Web Service Architecture [7] and the 
OSGi Service Platform [4], while there are other approaches like JINI services [6] or Open Grid Service 
Architecture (OGSA) [5]. More traditional approaches include the Common Object Request Broker 
Architecture (CORBA) [12] and Microsoft’s proprietary Distributed Component Object Model (DCOM) [13]. 
Although the majority of them were initially developed to address general purpose computer systems, 
their basic principles could possible apply in embedded systems too. A thorough study is needed in order 
to identify what kind of description is needed for embedded systems and how to modify the way 
embedded systems are designed in order to be able to access and use them in a service-like architecture.  

4.2.4 Evolving from interfaces to contracts 

The first task that needs to be solved, in order to provide a service-oriented architecture for embedded 
systems, is to propose a way for uniform specification of systems that would constitute such architecture. 
Although, it is a great challenge to come up with a specification scheme that is both general and 
lightweight, it is impossible to provide a meaningful interface specification of an open component without 
considering the context-of-use in a particular application environment. Therefore, the issues that are 
conceptually important when trying to specify a component, be it a general purpose software component, 
a web server, or an embedded system will be initially marked. After the basic issues are covered the 
peculiarities of embedded systems specification will be considered. 

A component’s interface usually describes the functionality exposed by a component (provided interface). 
In a more general case the interface can also include information on behaviour requested by the 
component (required interface). In theory this information will be enough for a client to decide how to use 
a component. However knowing how to use a component is only one thing. In safety-critical systems, as 



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 16 of 47  Issue 14 

is the case for a great portion of embedded systems, a client should be aware what and how a component 
will deliver, too. This means that a component’s interface must be augmented with additional information 
that relates to non-functional properties such as security, dependability, performance etc. Such an 
extended interface can be regarded as a kind of contract. There is an elaborate effort to introduce 
contracts into modern software engineering [8] [9]. Contracts are considered a good prospect to have 
when building a service-oriented architecture since: 

 Equipping components with contracts facilitates reuse and makes it much safer. 

 Contracts can help in comparing and choosing between similar components. 

 Contracts fit perfectly as semantically extended service descriptions, which allow treating 
components as services. 

 Adding composition behaviour to contracts can help with automated component composition. 

One of the major problems of developing contracts for embedded systems is the fact that “embedded 
system” does not cover just one concept or class of devices. Instead, “embedded systems” means a 
whole range of devices from very small low power singles solutions up to large multiprocessor systems. 
Compared to commercial-off-the-shelve (COTS) computers, embedded systems are typically 
characterised by limitations in resources such as CPU cycles, storage, power and software. 

4.2.5 Interconnectivity of embedded devices  

In terms of interconnectivity it is not possible to assume that each embedded system is able to 
communicate using some standard communication protocols because in general this is not needed to fulfil 
the needs of the application. Therefore, new communication schemes such as service oriented 
architectures have to obey that fact and should not try to force the usage of a specific high-level protocol 
for each device. On the other hand, such architecture would make no sense without the ability to interact 
“somehow” with all kinds of devices. Considering embedded systems in terms of communication 
capabilities we can classify them to the following four (4) categories [14]: 

 No communication capabilities (n-ESD): In very limited application domains devices are used 
that only interact with their physical environment and have no possibility to exchange information 
with other devices. Such a device is completely isolated and cannot be included into any kind of 
communication architecture therefore we will not consider it during architecture specification. 

 Proprietary physical communication capabilities (pp-ESD): these devices (which are the 
majority today) are systems that are able to interchange information using proprietary methods 
both at physical and logical layer. This ability does not necessary mean that the device is 
“networked”, it is sufficient that it is able to deliver data to other systems. Examples here are 
control systems in cars for, e.g., airbags, engine, comfort functions or the braking system. 

 Proprietary logical communication capabilities (pl-ESD): With increasing complexity devices 
may use standard communication techniques at the physical level (e.g., Ethernet) or both at 
physical and transport level (e.g., Ethernet and IP) and a proprietary protocol above that to 
interchange data with other systems that use the same technology. Example here is, e.g., the 
remote control of some cameras using Ethernet links. 

 Full communication capabilities (f-ESD): includes embedded systems that implement the full 
communication architecture and are able to interact with all other systems of the architecture. 

In nSHIELD we should consider embedded nodes that may belong to any of the latter three classes and 
the envisaged service architecture should cater for providing the necessary middleware and network layer 
functionality to address all three cases. The architecture should promote a platform-independent 
communication mechanism to the extent that this is possible. Existing approaches to provide service 
oriented connectivity to embedded devices with heterogeneous characteristics include the Hydra 
middleware [15] and Prism-MW [16]. The former offers an easy-to-use web service interfaces for 
controlling any type of physical device irrespective of its network technology such as Bluetooth, RF, 
ZigBee, RFID, WiFi, etc. Moreover, Hydra incorporates means for Device and Service Discovery, 
Semantic Model Driven Architecture, P2P communication, and Diagnostics while it provides distributed 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 17 of 47 

security and social trust components that can ensure security and trustworthiness of Hydra enabled 
devices and services. Prism-MW on the other hand is described as middleware targeted at applications in 
highly distributed, resource constrained, heterogeneous, and mobile settings. Its key properties are its 
native, and flexible, support for architectural abstractions (including architectural styles), efficiency, 
scalability, and extensibility. Implementations exist in both C and Java programming languages.          

4.3 Requirements on Architecture  

The methodology adopted (D2.2) identifies two major categories, namely Functional and SPD 
Requirements. Furthermore, these two groups are internally discriminated according to Scenarios (4 
Application Domains) and in a more low level according to Layers (4 nSHIELD Layers). From the wide set 
of requirements identified in nSHIELD (an on-going procedure), a registration of the most 
influential/related to system architecture follows hereafter. This is just a first incomplete refinement of 
previously mentioned and new attributes, trying to capture the rationale behind the interactive association 
of requirements and architecture. 

Table 4-1: Requirements 

REQUIREMENT ID DESCRIPTION 
MODULE/ 

SUBSYSTEM 

REQ_D2.1.1_0501.A 
The SHIELD middleware shall offer discovery 
functionalities 

Middleware 

REQ_D2.1.1_0502.A 
The SHIELD middleware shall be able to 
compose SHIELD components 

Middleware 

REQ_D2.1.1_0503.A 

The SHIELD middleware shall be able to 
orchestrate, according to defined policies, the 
composition of SHIELD components 

Middleware 

REQ_D2.1.1_0504.A 
The SHIELD middleware shall be able to retrieve 
information from SHIELD components 

Middleware 

REQ_D2.1.1_0505.A 
The SHIELD middleware shall be able to enforce 
decisions into SHIELD components 

Middleware 

REQ_D2.1.1_0506.A 
The SHIELD middleware shall be able to interface 
with heterogeneous legacy component 

Middleware 

REQ_D2.1.1_0507.A 
The SHIELD overlay shall be able to elaborate 
feasible system configurations 

Overlay 

REQ_D2.1.1_0508.A 
The SHIELD middleware shall implement secure 
Discovery 

Middleware 
SPD 

REQ_D2.1.1_0509.A 
The SHIELD middleware shall implement trusted 
Composition 

Middleware 
SPD 

REQ_D2.1.1_0510.A 
The SHIELD middleware shall verify core services 
integrity 

Middleware 
SPD 

REQ_D2.1.1_0210.A 
An nSHIELD node should provide vitality checking 
capabilities 

Node 

REQ_D2.3_0100.A 
An nSHIELD node should provide cryptographic 
transmission capabilities 

Node 

REQ_D2.3_0200.A 
nSHIELD should guarantee message sequencing 
between nodes  

Network/ 
Middleware 

REQ_D2.3_0201.A 
nSHIELD should guarantee message delivery 
between nodes 

Network/ 
Middleware 

REQ_D2.3_0202.A 
nSHIELD should guarantee message integrity 
between nodes 

Network/ 
Middleware 

REQ_D2.3_0203.A 
nSHIELD should provide mechanisms for time 
constrained data delivery  between nodes 

Network/ 
Middleware 



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 18 of 47  Issue 14 

REQ_D2.1.1_21120.A 
nSHIELD should provide capabilities for checking 
authenticity of received data 

Network/ 
Middleware/ 

Overlay 

REQ_D2.3_0300.A 
nSHIELD should provide capabilities for 
authorized access to a node 

Network 
/Middleware 
/Application 

REQ_D2.3_0204.A 
nSHIELD shall be able to support heterogeneous 
transmission technologies 

Network 

REQ_D2.3_0101.A 
nSHIELD nodes shall be able to implement TPM 
modules 

Node 

REQ_D2.3_0102.A 
nSHIELD low cost nodes shall implement 
asymmetric cryptography 

Node 

REQ_D2.3_0103.A 
nSHIELD nodes shall implement lightweight HW 
and SW crypto technologies 

Node 

REQ_D2.3_0205.A 
Cryptographic protocols should guarantee data 
integrity 

Network/Node 

REQ_D2.3_0104.A 

nSHIELD nodes should be able to perform self-re-
configurability and self-recovery of sensing and 
processing tasks (for no energy-constrained 
nodes) 

Node 

 

  



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 19 of 47 

5 From pSHIELD to nSHIELD  

Some of the small milestones towards the definition of the nSHIELD System Architecture design are 
summarized at the following: 

 Exploring interdependencies between applications and architectures 

 Including critical elements and covering SPD application requirements 

 Developing the 4 functional layers, composed from HW and SW modules 

 Taking into account reconfigurability, tailoring overall system needs 

 Defining interfaces, interconnecting different SPD modules 

 Connecting layers, ensuring secure routing of information 

 Producing a composable architecture, that meets the requirements of desirable SPD levels 
 

pSHIELD acted as a feasibility study and in some terms was used to propose, test or implement a subset 
of the expected SHIELD structures and functionalities. The composability of foreseen SHIELD 
technologies was investigated only to design level. A basic set of preliminary metrics was used to validate 
the first basic functionalities. A bunch of use cases was presented, loosely connected and with different 
levels of implementation, to evaluate, at a first stage, the suggested architectural framework. These 
paradigms mainly stemmed from a single application scenario. The core of a high dependable reference 
Architecture was designed, incorporating innovative, modular and composable elements, leaving to 
nSHIELD its refinement and further development. 

The outcome of this effort is based on a conceptual architectural model, synthesized incrementally from 
newly introduced components. Three different types of Embedded Devices were proposed, with 
hierarchically increased processing capabilities. The notion of a pSHIELD Subsystem was introduced. 
Combinations of subsystems constitute a pSHIELD System Architectural scheme. Additionally, a set of 
internal modules, functionally critical for the system, were defined (e.g. pSHIELD Proxy, pSHIELD Adapter 
and Security Agent). Detailed descriptions can be found on pSHIELD deliverable D2.3.2 “System 
Architecture Design”. 

In nSHIELD we plan to manage pSHIELD background as a useful but non-committing substructure. A 
wider set of technologies will be used to realise SPD composability. Metrics will be updated and 
expanded, whereas work plan foresees the evaluation of system’s performance through four complex 
application scenarios. Requirements and Architecture will be placed in close interaction. Interfaces used 
by nSHIELD components to interact with neighbouring or remote world shall be clearly defined. The 
objective is to result in the design of the nSHIELD Architecture that will provide or encompass: 

 Requirements, Metrics, Scenarios, Technology Status and Advancement  

 Functionalities successfully addressing Security, Privacy and Dependability (SPD) in the context 
of Embedded Systems (ESs) 

 A functional model of 4 layers 
o Node: intelligent hardware and firmware SPD 
o Network: trusted data transfer 
o Middleware: resource management, service discovery and network interoperation 
o Overlay: composability orchestrated by the Security Agent modules  

 Logical and physical interfaces facilitating the internal and external communication and overall 
system effectiveness 
 

  



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 20 of 47  Issue 14 

6 nSHIELD Architecture  

This chapter focuses on providing detailed information regarding the nSHIELD system architecture. The 
nSHIELD architecture is considered and analysed following the design consideration and overall strategy 
described in section 0.  Two different aspects are considered. Initially, in section 6.1, an overview of the 
overall nSHIELD system, seen as a network of interconnected embedded devices, is provided trying to 
elaborate on the various types of ESDs that are supported and the hierarchical nature of the network. 
Sections 6.2 to 6.5  address individually the 4 functional layers comprising nSHIELD.  

Note that for this first version of the nSHIELD architecture document, only the logical view is available for 
all functional layers. This view provides mainly information regarding the major services and capabilities 
supported by each layer. While activities on requirements analysis and architecture specification are still 
in progress, additional views will become available in future versions of the architecture definition 
document (nSHIELD deliverables D2.4 and D2.7 according to the Technical Annex). For some layers 
additional views do exist (i.e. a development view does exist for the network layer).                

6.1 nSHIELD Overall Architecture  

A nSHIELD system is expected to primarily consist of medium to high power embedded devices that are 
equipped with all the needed SPD functionalities and can seamlessly interact through appropriate service 
oriented interfaces.   

However, as already mentioned in section 4.2 (design considerations) an nSHIELD enabled system may 
include legacy embedded devices (L-ESD) with: 

 significant resources constraints, such as lack of operating system or of enough memory that 
does not allow the deployment of even a minimal set of additional software (SPD) capabilities 

 proprietary physical (pp-ESD) or logical (pl-ESD) communication capabilities that do not allow 
direct interconnectivity to a service oriented architecture (essentially do not directly support the 
nSHIELD network protocols or middleware services)   

In order to address that, the proposed architecture introduces 3 additional types of embedded devices that 
are: 

 nSHIELD Embedded System Device (nS-ESD): This is the basic element of the nSHIELD 
network. It implements the minimum SPD capabilities that relate to the 3 first layers of the 
nSHIELD functional architecture (node, network and middleware).     

 nSHIELD Embedded System Device Gateway (nS-ESD GW): In terms of SPD capabilities this 
type of device could be regarded as identical to the nS-ESD. However, it may provide some 
enhanced capabilities in terms of interconnectivity that will allow L-ESDs of type pp-ESD and pl-
ESD to overcome communications issues and interact through the nSHIELD middleware

1
. These 

devices may exist at the border between an nSHIELD network of devices and a network of 
Legacy embedded systems.   

                                                      

1
 This type of adapter functionality may be described as: 

 Translator like behaviour: Intercepts service requests and transforms them into a logical format 
that an L-ESD can understand. Physical conversion is not needed since the L-ESD uses a 
standard physical communication medium. Therefore transformation concerns mainly translation 
of service requests at middleware layer and above 

 Proxy like behaviour: Transforms service requests into the physical and logical format that an L-
ESD can understand and vice versa. This mainly provides support for legacy devices with non-
standard physical communications. Therefore transformation concerns also network layer 

 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 21 of 47 

 nSHIELD SPD Embedded System Device (nS-SPD-ESD): This is a node which provides a full 
implementation of the core services required by the overlay layer. Essentially this node does not 
need to be an embedded device since overlay services are application level and therefore a 
general purpose computing unit can host them. However, in order to promote a more clear design 
we will consider nS-SPD-ESD as an enhanced nS-ESD embedded platform that hosts also a 
security agent component (a software module that provides the necessary overlay interface and 
will be analysed in details in section 6.5).  

Therefore nSHIELD can be regarded as a network consisting of nSHIELD and Legacy embedded devices 
having a physical architecture similar to the one depicted in Figure 6-1. The L-ESDs since they do not 
understand nSHIELD middleware services they need a gateway nSHIELD device in order to participate in 
the nSHIELD system. 

nSHIELD Network

Legacy Network

Legacy Network

ns-ESD

ns-ESD
ns-ESD

ns-ESD

GW

ns-ESD

ns-ESD

GW
ns-ESD

ns-ESD

L-ESD

L-ESD
L-ESD

L-ESD

L-ESDL-ESD

ns-SPD-ESD

ns-SPD-ESD

 

Figure 6-1: Conceptual Architecture of the nSHIELD system (Physical view) 

Through Figure 6-1 it is difficult to visualize and understand many of the nSHIELD concepts related to the 
4 defined functional layers. Therefore in the following paragraphs we will try to provide some additional 
information and diagrams that will make some of nSHIELD aspects more evident.   

First of all we define the concept of an nSHIELD aware cluster (see Figure 6-2). This is a set of ESDs that 
includes (at a minimum) one embedded node with at least nS-ESD GW capabilities. The nS-ESD GW 
provides, to the L-ESDs, the appropriate functionality to interface with the nSHIELD middleware.  External 
to the cluster nSHIELD devices are not aware of the internal cluster structure unless this has been 
provided as part of a requested service (at middleware or overlay layers). In general the nS-ESD GW at 
this level is responsible for providing proxy or adapter services for L-ESDs. The “Legacy Network or 
Middleware” cloud abstracts the physical and/or logical communication capabilities between the nS-ESD 
GW and the various L-ESDs.   

An nSHIELD subsystem may contain one or more nS-ESD (or nSHIELD aware clusters) and at least
2
 one 

nS-SPD-ESD capable node that will provide support for nSHIELD overlay services to the underlying 

                                                      

2
 Actually the normal case is that only one nS-SPD-ESD device should be present at the nSHIELD 

subsystem level. This is due to the fact that the nS-SPD-ESD hosts the Security Agent component which 
is responsible for monitoring, gathering metadata and generally controlling all underline nSHIELD 
subsystem’s devices. The Security Agent must be uniquely identified by all nS_ESD nodes that provide 
information to it. Therefore, the presence of more than one SPD Security Agent might cause problems 
and is only justified by the need of solving scalability or availability issues. 



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 22 of 47  Issue 14 

elements. The conceptual architecture of an nSHIELD subsystem is depicted in Figure 6-2.  The 
“nSHIELD Middleware/Network” cloud abstract all the network infrastructure and basic services supported 
by the nSHIELD middleware. 

 

Figure 6-2: Architecture of an nSHIELD aware cluster 

 

Figure 6-3: Architecture of an nSHIELD subsystem 

Putting everything together the overall conceptual architecture of an nSHIELD system is illustrated in 
Figure 6-4 . The “nSHIELD Overlay” cloud abstract all the SPD and other capabilities as defined for the 
overlay layer. Figure 6-4 demonstrates the hierarchical structure of an nSHIELD network of devices 
consisting actually of 3 tiers. If we consider a top down approach these tiers can be described as the 
nSHIELD System (the overall picture including everything), the nSHIELD Subsystem (a group of ns-ESD 
devices that are controlled by a nS-SPD-ESD node) and the nSHIELD aware Cluster (a group of L-ESD 
devices controlled by a nS-ESD GW node) 

The figure should be regarded more as a logical architecture for the nSHIELD system. Although the nodes 
correspond to the physical embedded devices that exist in the system, the various clouds attempt to 
abstract the interfaces and the way devices exchange SPD related information. They provide a hint on the 
functional layers involved when the various types of nSHIELD nodes communicate. The ns-SPD-ESD 
devices interact through the nSHIELD overlay interface while the ns-ESD (GW) nodes interact via the 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 23 of 47 

provided nSHIELD middleware services. The nSHIELD network borderline is also depicted in order to 
ease the association with Figure 6-1.    

 

Figure 6-4: Conceptual Architecture of nSHIELD System (Hierarchical logical view)  

It must be noted that the types of nodes described above consist a logical categorization. In terms of node 
capabilities the nSHIELD nodes can be discriminated to: 

1. Nano nodes  

2. Micro/personal nodes 

3. Power nodes 

Nano nodes are typically small ESD with limited hardware and software resources, such as wireless 
sensors. Micro/Personal nodes are richer in terms of hardware and software resources, network access 
capabilities, mobility, interfaces, sensing capabilities, etc. Power nodes offer high performance computing 
in one self-contained board offering data storage, networking, memory and multi-processing. These three 
nSHIELD node types, which are also prescribed in the Technical Annex, cover a variety of different ESDs, 
offering different functionalities and SPD capabilities. While an nS-ESD can map to either a nano, micro or 
power node, the nS-SPD-ESD type should preferably be implemented as a power node since overlay 
services may require some significant computing capabilities including the ability to process multiple 
requests.   

Having defined the overall architecture and following a top down analysis approach the next step is to 
refine the internal architecture of the nS-ESD (GW) and of the nS-SPD-ESD. This is done in Figure 6-5 
where apart from the functional layers, some coarse grained information on the nSHIELD related data and 
control flows is also depicted. More fine grained information on these flows will be provided in section 0 
which focuses on the interfaces.   



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 24 of 47  Issue 14 

 

Figure 6-5: Internal architecture of nSHIELD ESDs with respect to the 4 functional layers 

6.2 Node  

As defined in the TA, the node layer should provide SPD intrinsic capabilities through the creation of an 
intelligent hardware and software platform consisting of different kinds of intelligent ES nodes. The main 
SPD features are summarized in the following table: 

Table 6-1: SPD features [node layer] 

Security 

 TPM and Smartcard 

 Lightweight HW and SW crypto technologies     

 Asymmetric cryptography for low cost nodes      

 Intrinsically secure ES firmware             

Privacy 

 Automatic Access Control    

 Data compression techniques         

 Lightweight HW and SW crypto technologies             

 Asymmetric cryptography for low cost nodes                         

Dependability 

 Power Supply Protection 

 Self-re-configurability and self-recovery of sensing and 
processing tasks  

 Easy and Dependable interfaces with sensors 

 Embedded camera array auto-calibration and auto 
configuration techniques 

 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 25 of 47 

In previous deliverable of this task [3], the main requirements for each layer have been defined and 
described. In this section based on the functional and SPD requirements, a description of the expected 
node layers services will take place followed by appropriate diagrams that will provide further insight on 
the hardware (and software) architecture that should be adopted in order to support the specified 
capabilities.  

6.2.1 Logical View and Services Description 

Based on Table 6-1, a list of services, which are implemented at node level, can be identified. Figure 6-6 
provides a logical view of all possible services while more details on them is provided in the next 
paragraphs. 

 

Control access 

service

Crypto 

technologies 

service

Power supply 

management

Specific 

components 

service

Data integrity 

service

TPM service

Information 

privacy service

Status monitor 

service

Node layer services
 

Figure 6-6: nSHIELD’s Node Layer Services  

6.2.1.1 Power Supply Management 

This module should be design for managing power sources, providing protection against blackouts, etc. 

The power supply module of the nSHIELD node should: 

 Be able to provide a continuous power supply source, without any cut in time neither in the 
power, voltage or current levels, to correctly bias the devices  

 Monitor and prevent any system power supply risk, which might affect to the node behaviour  

 In case of failure of any of the countermeasures, being able to protect all the electronics and 
devices, in order to avoid further damages into the system  

The nSHIELD the NMP-SPD nodes should have power-supply circuits with security and dependability 
features. Depends on the capabilities of the nSHIELD node, this should: 

 Support alternative power modes, depending on the specific application and environmental 
conditions (e.g. vibration generator, micro-solar cells). 

 Be self-powered. 

 Support mechanisms to protect itself from any power supply failure. 

 Be able to support remote powering, at least to some modules of the device, allowing some 
functionality to become operational in case of power failure. 

 Have provisions for future alternative power sources including super-capacitors and wireless 
power schemes. 



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 26 of 47  Issue 14 

6.2.1.2 Status Monitor Service 

This module will be the responsible for collecting the status of each individual component in the node, and 
providing SPD-relevant parameters and measurements to upper layers. It also checks on system health 
status for self-recovery, self-reconfiguration and self-adaptation. 

A nSHIELD node should monitor its performance parameters and report alert or alarm conditions to the 
external systems when the defined thresholds are overrun. 

Other responsibilities of this module should be to control the fails situations, meaning that node failures 
are, to an acceptable extent, halting and signalled. Also, a nSHIELD node should have the capability of 
performing a complete self-test of all its functions. 

An nSHIELD node shall be able to provide situational-aware and context-aware SPD services. 

6.2.1.3 TPM Service 

The technology around the TPM has been developed for few years now through the Trusted Computing 
Group (TCG)'s initiative. Initially driven by its application for the PC platforms, the component could 
provide interesting functionalities to a large panel of devices and in particular to embedded systems. For 
nSHIELD nodes, the TPM module should be extended mainly in order to have inexpensive 
implementation to allow widespread use and also should be extended in order to implement additional 
mechanisms to improve product endurance and increase product lifespan. 

Depend on the node capabilities this module could include more capabilities like: 

 Utilize the TPM remote attestation functionality to ensure the integrity of a node prior to resource 
allocation. 

 Be compliant with global export control regulations in order not to restrict international trade with 
TC platforms (PCs).  

 Implement additional cryptographic protocols (e.g. elliptic curves) 

 Extend TPM key generation functionality to include key generators and key parameters that 
depend on the context available. 

 Add some specialized/dedicated commands (e.g. to further develop on-the-fly encryption) 

 Have alternative communication interfaces, better adapted to the embedded applications that the 
LPC (low pin count) currently supported. 

 Also should be recommended an improved global architecture of the embedded SW of the TPM 
to support future evolution of cryptographic/hash 

Be able to enter into a low power state without compromising its security 

6.2.1.4 Data integrity 

Since the node is the basic component of the nSHIELD architecture, security issues in firmware will be 
explored as well as the techniques to make it intrinsically secure. Some points to take care about are: 

 

 Code execution 

 Intrinsically secure ES firmware  

 Data Freshness 

 Secure firmware upgrade  

 Secure boot  

 Protection against Side-Channel Attacks (SCA) 

 Physical/tamper resilience 

6.2.1.5 Control Access Service 

Access control and denial of service mechanisms are in charge of preventing non authorized/malicious 
entities to access the physical resources of the ES nodes that can be reached over the network.  



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 27 of 47 

There are several ways to implement access control in a network, depending on the “intelligence” of the 
nodes, the memory capabilities and the predefined profiles. Those methods are based on:  

1. Profile authentication: If the node has some characteristics, it can join to the network.  
2. Access Code (programmable or configurable): Typical password access, based on memory data, 

switch configuration, or any other procedure  
3. Predefined topology: Only pre-established nodes can join to the network, like MAC filtering in a 

Wi-Fi 

The node layer of the nSHIELD architecture should provide basic access control mechanisms to the 
higher layers and support secure authentication protocols. 

Depend on the capabilities of the nSHIELD node, some other features should be offered by this module: 

 Verification of digital signatures even in cases where a trusted third party is not available. 

 Allow security context establishment and sharing, allowing more efficient keys or key material to 
be exchanged, thereby increasing the overall performance and security of the subsequent 
communications. 

 Design mechanisms that improve its resilience to unauthorized information alteration (integrity). 

 Design mechanisms that improve its availability for authorized users. 

 Provide mechanisms that allow secure upgrading of the firmware from a remote site as well as 
local site. 

6.2.1.6 Crypto Technologies Service 

At node level cryptographic operations are expected to be performed by low-energy low-processing 
devices. The SW embedded on such a cryptographic component has a direct impact on its size, its costs, 
its speed as well as its power consumption. 

The nSHIELD Node layer should support lightweight HW and SW crypto technologies. The term 
lightweight crypto refers to algorithmic designs and implementations best suited to constrained devices. 
The nSHIELD Node layer should support asymmetric cryptography for low cost nodes and also should 
include an optimized hardware implementation for an ECC-based public-key authentication algorithm. 

In the nSHIELD the Elliptic Curve Cryptography should be implemented on energy constrained NMP-SPD 
nodes. 

This module, depends on the node computation capabilities, also should offer a key management options: 

 nSHIELD node shall offer key size parameterisation options that map the requirements of the 
specific application/scenario, based on the need for short, medium or long-term security. 

 nSHIELD node shall support a secure low-cost key distribution mechanism. The mechanism's 
parameters (e.g. algorithm, key length, usage, entropy etc.) will be defined by the security policy 
requirements, taking into consideration any restrictions that participating parties impose. 

 nSHIELD node may offer support for third-party key management services to compensate for the 
shortage of ES computational power in constrained 

 nSHIELD node shall support secure and dependable low-cost key distribution mechanisms for 
initialisation or re-keying. 

6.2.1.7 Information Privacy Service  

Nowadays, wearable and ubiquitous computing is emerging for embedding different kinds of sensory 
devices on the user’s body or on various items in the environment. This activity requires means to collect, 
store and label the data wirelessly and in a non-obtrusive way. Taking account the associated privacy 
risks, a nSHIELD node should generate cryptographic keys using the context available and feature 
privacy-aware management of location and other sensitive personal information, utilizing secure storage 
and sanitization mechanisms to be applied to such information prior to transmission. 

Another point in this subject is the continued advances in mobile networks and positioning technologies 
that have created a strong market push for location-based applications. Examples include location-aware 



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 28 of 47  Issue 14 

emergency response, location-based advertisement, and location-based entertainment. An important 
challenge in wide deployment of location-based services (LBSs) is the privacy-aware management of 
location information, providing safeguards for location privacy of mobile clients against vulnerabilities for 
abuse. Advances in sensing and tracking technology enable location-based applications but they also 
create significant privacy risks. 

Taking into account these risks, nSHIELD node should feature the necessary mechanisms for security 
token exchange to enable the issuance and dissemination of credentials within different domains. Also a 
nSHIELD node should incorporate provisions that ensure the long term storage of private information, not 
allowing the confidentiality of that information to be compromised even under fault conditions. 

Finally a nSHIELD node should feature privacy-aware management of location, utilizing secure storage 
and sanitization of such information prior to transmission. 

6.2.1.8 Specific Components Service 

This module is a custom module that should be designed depending on the specific requirements of the 
legacy nodes connections/interfaces. nSHIELD node internal interfaces and algorithms should be 
developed and communication protocols optimized in order to extend the minimal service period. The 
nSHIELD node should be disposed as an integral part of the smart sensors/actuators and therefore the 
communication needs no encryption. One example could be the camera array configuration. It is planned 
a study and implementation of a efficient camera autocalibration, thresholding and blob detection and 
tracking techniques. 

6.3 Network 

The network layer of the nSHIELD 4 layer architecture model includes a number of capabilities and 

services that relate mainly to: 

 Trusted and dependable connectivity  

 Smart SPD transmission 

 Other Network services 

The network layer functionalities according to what is prescribed in the nSHIELD TA does not address 
only functionalities related to layer 3 (network layer) of the OSI reference model like i.e. routing. In the 
architecture definition we should consider at network level functionalities and capabilities that relate also 
to physical layer transmission, security and integrity of transmitted data, device identity management, etc. 
that is broader communication layer capabilities. Therefore it would be better to describe it as 
Network/Communication layer.  

6.3.1 Logical View and Services Description 

Figure 6-7 provides a logical view of the Network/communication Layer of nSHIELD focusing on the 
services that should be supported. 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 29 of 47 

 

Figure 6-7: nSHIELD’s Network/Communication Layer Services 

6.3.1.1 Trusted and dependable connectivity  

Trusted and dependable connectivity should be regarded at two different levels: 

 A Trusted Network Routing Service 

 A Secure Data Exchange/Communication Service 

Trusted Network Routing Service 

In terms of network routing, an nSHIELD node should implement one or more trusted routing schemas 
(protocols). Considering a distributed approach, these protocols are based on trust models that consider a 
number of measurements (metrics) for routing purposes. Direct or indirect measurements

3
 can be taken 

into account for evaluating trust value for a node. Reputation-based schemas, relying on the combination 
of the trust value calculated locally with the trust values calculated by other nodes, are considered to 
provide higher protection than simple direct measurement based trust evaluation. Such schemas are 
mainly used in wireless networking to provide secure routing functionality. In distributed systems, where 
there is no central infrastructure to implement full communication among all participants, each individual 
entity must depend on its neighbors to carry out its transactions. Due to the open medium and the 
dynamic entrance of new nodes to such networks, there must be a way to establish trust relationships to 
avoid malicious users. Reputation is formed by a node’s past behavior and reveals its cooperativeness. A 
node with a high reputation level can be considered as trustworthy. Legitimate nodes depend mostly on 
trustworthy entities to accomplish communication tasks, like routing and forwarding. Furthermore, low 
reputation can reveal selfish or malicious entities and is used for intrusion detection. Legitimate nodes try 
to avoid such entities and do not forward their traffic. There are three main goals that a reputation-based 
scheme is trying to accomplish: 

                                                      

3
 Direct measurements are measurements performed by the node itself. All nodes in the network monitor 

the behavior of their adjacent nodes and compute a direct trust level for them based upon their sincerity in 
execution of the routing protocol. On the other hand, indirect measurements are the corresponding 
measurements performed by the other nodes. A combination of direct and indirect observations 
(reputation-based schema) provides higher protection than simple direct measurement based trust 
evaluation. 

   

 

Secure_Data_Communication_Service

Smart_SPD_Transmission_Service

Trusted_Routing_Service

General_Network_Services

SessionManagementDevice_Identity_Mgmt



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 30 of 47  Issue 14 

 To provide information to distinguish between a trustworthy entity and an untrustworthy one 

 To encourage entities to act in a trustworthy manner 

 To discourage untrustworthy entities from participating in the system 

A trusted routing service requires communication of control information between the nodes and thus the 
implementation of a specific protocol (type of messages, exchanged frequency, interactions, etc.). 
Moreover, it may affect the performance of the node, and network in general, since it will consume 
resources for transmission and processing. Networks with ultra-constrained devices may not be able to 
support heavy reputation-based schemas that offer high levels of security 

In general, the trusted routing schema is not supposed to completely replace the existing network routing 
protocol of the node. Rather it runs on top of legacy routing algorithms (i.e. IP), having the capability to 
modify the routing tables info based on the confidence level evaluated for its neighbours.      

The set of metrics considered for establishment of trust might be configurable based on 
requests/commands from higher layers (i.e. middleware). Generally these metrics should be a subset of 
the defined network layer SPD metrics. However nodes energy constraints or even policy constraints may 
also be taken into account.      

All nSHIELD devices should implement at least one trusted routing schema/protocol in common. 
Considering that multiple implementations of reputation-based protocols are available on a device we can 
think of an additional feature that enables the dynamic selection of a trusted protocol on request, or based 
on a set of SPD metrics. This will require the existence of an appropriate software control module that 
could handle all the necessary actions.           

Secure Data Exchange/Communication Service 

The network layer should provide mechanisms that allow for secure network access and safe exchange of 
data over the nSHIELD network. This may include: 

 Encryption schemes to enable protection (and integrity) of data 

 CRC encoding and checksum techniques to verify data integrity 

 Authentication schemes to verify identity of sender/receiver 

In order to confront security risks and ensure privacy and data integrity in all parts of the network, 
nSHIELD nodes shall implement Encryption schemes. The implementation of the specific nSHIELD 
encryption/decryption functionalities will be based on the evaluation and classification of cryptosystem 
attacks and the corresponding selection of cryptography type (e.g. Public Key Vs Symmetric). The 
cryptography framework is determined and handled by a key management scheme, charged with the 
generation, distribution, storage and use of keys. The key-certification mechanism is the most critical 
procedure in cryptosystems and highly interdependent to system architecture. The capability of nSHIELD 
devices to implement cryptography technologies comes with respective trade-offs, especially in reference 
with node resources, such as computational load, memory and energy. For the encryption of data in 
nSHIELD we foresee a dedicated component called Crypto Manager. 

Authentication is the complementary to encryption security component, vital especially in the context of 
wireless transmission. Compared to encryption, authentication seems to be more multifaceted in terms of 
selecting an appropriate scheme. It has to ensure that only authorized users exchange information, 
focusing in the verification of the sender’s (or receiver’s) identity. The network is protected against 
unauthorized access and use, usually through the use of credentials, such as passwords, keys or digital 
certificates. Again, the suggested nSHIELD authentication protocols will be based on the types of network 
entities and communications and the security requirements imposed. Authentication models perform their 
task through a sequence of exchanged messages between the involved parties (e.g. authenticated 
supplicant and authenticator). These messages contain keys, which are mathematically modified through 
an iterative process that leads the sender and receiver sharing eventually a common session key. For the 
processing of authentication mechanisms in nSHIELD we describe the establishment of dedicated 
Sessions, which are kept “alive” for a given time interval, so as to minimise the overhead that would 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 31 of 47 

otherwise be required for repeated session negotiation procedures. Data integrity mechanisms 
incorporated in the cryptographic protocol in use will ensure that no data modifications have taken place 
(both intentional and unintentional) during the session lifetime.  

6.3.1.2 Smart SPD transmission 

An nSHIELD node should support a service that allows smart (and secure) transmission of data based on 

SPD built-in features at node level. This is considered a communication layer feature that relates not only 

with the traditional network layer of the OSI model but also with the physical layer. The implementation of 

the smart SPD transmission service should be based on the basic principles of Software Design Radio 

(SDR) and Cognitive Radio (CR) systems. 

Through the smart SPD transmission service an nSHIELD device will be able to provide reliable and 

efficient communications even in critical (physical) channel conditions by using adaptive and flexible 

algorithms for dynamically configuring and adapting various transmission related parameters (i.e. type of 

modulation, type of coding, use of multiple antennas, used frequency, transmission power levels, 

bandwidth rate, etc.).      

6.3.1.3 Other Network Services 

At network layer, we should consider also a couple of additional services that although do not directly 
relate to SPD capabilities they are considered necessary in order to support communication within the 
nSHIELD network. These services are: 

 A Session Management Service 

 A Device Identity Management Service  

Session Management Service 

This service is responsible to keep track and manage sessions within the network communications inside 
the nSHIELD system. A session is set up or established at a certain point in time, and torn down at a later 
point in time. Sessions are possibly needed to support and synchronize stateful communication between 
nSHIELD devices where more than one messages are needed in each direction. 

Device Identity Management Service 

The role of this service is to provide a unified addressing schema for all embedded devices participating in 
an nSHIELD network. The implemented mechanism should permit the assignment and management of 
devices’ IDs independent of their physical addresses thus hiding the heterogeneity of the nodes. These 
assigned IDs can be utilized by other services within or outside the network layer. For example the service 
discovery service at middleware layer can return a set of such IDs uniquely identifying a device. Network 
services like the trusted routing service can exploit the unified addressing for enabling trusted routing 
among devices that use different addressing schemas.      

6.3.2 Development View 

The network/communication layer of nSHIELD cannot be regarded as an entity consisting purely of 
software modules and therefore a development view diagram cannot properly capture its aspects. The 
development view however, is used only to visualize a more fine grained view of the various entities 
involved for the realization of the services. These entities are not limited to software modules but may also 
include complete protocols or simple functions that perform a dedicated task. This is depicted in Figure 
6-8 where important dependencies between entities internal or external to the Network/communication 
layer are also drawn. Based also on the description of services, performed in section 6.3.1, a list of the 
elements that are required for the implementation of services that directly related to SPD capabilities is 
provided. For each such service we briefly state possible external or internal dependencies.  

 



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 32 of 47  Issue 14 

Secure Data Exchange/Communication Service  

Encapsulates/implements appropriate functions that perform: 

 Encryption of data to be send (data security) 

 Decryption of data received (data security) 

 Error-checking techniques i.e. (CRC encoding) of data send using protocols that do not inherently 
support that for their messages (data integrity) 

 Authentication\verification of data source or destination (communication security) 

Dependencies:  

The implementation of these functions may require support of external to the network layer modules. For 
example in most of the above cases there is a requirement for an entity that can provide cryptographic 
keys as well as for a mechanism to securely distribute them within a network of ESDs. 

Another identified dependency is with the Session Management Service in case authentication of both 
sender and recipient is needed.  

Trusted Network Routing Service         

Encapsulates/implements routing protocols that implement Reputation-based or Direct Trust algorithms. 

Dependencies: 

The trusted routing algorithm may relay on the value of metrics that are provided by another functional 
layers (most notably from node layer) 

Routing tables of existing routing protocols (i.e. IP) may be reused and modified by the trusted routing 
service.  

Device Identity Management Service may be contacted to provide unique nSHIELD IDs needed by the 
algorithms.  

Smart SPD transmission       

The service implies the existence of two important sub-elements: 

 A sensing module that is able to gather information that will permit to achieve awareness of the 

radio spectrum and physical layer capabilities as well as of a node’s resources. Information can 

be provided on a periodic or on demand basis and usually implies an interface with appropriate 

node layer services. The exact type and number of parameters to be considered for monitoring 

will depend on the sensing capabilities of the underlying hardware but also on requests from 

higher layers.   

 A reconfiguration/parameter adjustment module that can utilize the information gathered above 

and take decisions (reason) on reconfigurations or adjustments that need to apply regarding 

physical transmissions attributes and nSHIELD network layer configuration in general. The 

reasoning can be based on a set of provided (SPD) metrics according to the required QoS. 

Dependencies: 

The two modules may have inter-dependencies. 

External dependencies are not foreseen although both modules may need to interface with node layer 
components.   



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 33 of 47 

 

Figure 6-8: nSHIELD’s Network/Communication Layer Services (Logical View) 

6.4 Middleware 

The SHIELD Middleware is basically a software layer installed in the SHIELD nodes in different versions 
depending on the available HW capabilities (complex middleware for high capacity nodes, lightweight 
middleware for less-performing nodes). This software act as a glue for the different SPD services offered 
by the SHIELD system, (node, network and middleware layer itself) since it allows to: abstract, discover, 
compose and control them, by means of dedicated protocols, control algorithms and interfaces. 

The middleware component is a mandatory component to be supported by all types of nSHIELD nodes 
(nS-ESD, ns-ESD GW, nS-SPD-ESD). In the following section the logical view of the middleware will be 
provided, as well as some preliminary considerations on the development and deployment view. 

 

Network_Communication_Layer

Trusted_Routing_Service

ReputationBased

1..* «protocol»

DirectTrust

1..* «protocol»

Smart_SPD_Transmission_Service

SensingEngine

«SW module»

ReconfigurationEngine

«SW module»

General_Network_Services

SessionManagement

«SW module»

Device_Identity_Mgmt

«SW module»

Routing_Protocols

IP

«protocol»

Secure_Data_Communication_Service

Encryption_Decryption

«function»

CRC_Compute_Check

«function»

Authentication

«function»

Security_Crypto_Service

invovles:
- Spectrum data sensing: gather information to acquire radio 
awareness (i.e. a precise and concise representation of the 
radio environment)
- Node Layer data sensing:i.e. battery consumption at given 
transmission level



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 34 of 47  Issue 14 

6.4.1 Logical View and Services Description 

On a logical/functional point of view, the SHIELD Middleware is based on two categories of services: 

 Middleware Core SPD services, i.e. services available in a generic middleware and necessary to 
its correct behaviour, including services necessary to realise the dynamic composability of SPD 
functionalities (otherwise the middleware will not be a ‘SHIELD’ middleware) 

 Innovative SPD Services, i.e. services that provide (enriched) SPD functionalities and enable 
interoperability with legacy devices 

These sets may even overlap, in case a core service is enriched with SPD features (for example 
discovery is a core service, but it can become an SPD service by implementing a ‘secure discovery’) 

The list of the main middleware services is summarized in the following figure. This list may not be 
exhaustive since, during the prosecution of the project, more functionality could be added, depending on 
needs and possibilities. However the modular (plug&play) architecture of the middleware allows a 
seamless introduction of new services. 

.  

Figure 6-9: SHIELD Middleware services and functionalities 

6.4.1.1 (Secure) Service discovery  

This service allows any SHIELD Middleware Adapter to discover the available SPD functionalities and 
services over heterogeneous environment, networks and technologies that are achievable by the 
nSHIELD Embedded System Device (nS-ESD) where it is running. Indeed the pSHIELD secure service 
discovery uses a variety of discovery protocols (such as SLP

4
, SSDP

5
, NDP

6
, DNS

7
, SDP

8
, UDDI

9
) to 

                                                      

4
 IETF Service Location Protocol V2 - http://www.ietf.org/rfc/rfc2608.txt 

5
 UPnP Simple Service Discovery Protocol - http://upnp.org/sdcps-and-certification/standards/ 

6
 IETF Neighbour Discovery Protocol - http://tools.ietf.org/html/rfc4861 

7
 IETF Domain Name Specification - http://www.ietf.org/rfc/rfc1035.txt 

8
 Bluetooth Service Discovery Protocol 

SHIELD SPD Middleware

Service Discovery Service Composition Service Orchestration

Service Corepography

Handle communication of 
contracts, control commands 

and security policies

Semantic Repository
Management

System Monitoring
(measurement collecction)

Interpretation and 
enforcement of contracts, 

control commands and 
security policies

Service Repository
Management

Secure Service CompositionTrusted Service Discovery

http://www.ietf.org/rfc/rfc2608.txt
http://upnp.org/sdcps-and-certification/standards/
http://tools.ietf.org/html/rfc4861
http://www.ietf.org/rfc/rfc1035.txt


nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 35 of 47 

harvest over the interconnected Embedded System Devices (ESDs) all the available SPD services, 
functionalities, resources and information that can be composed to improve the SPD level of the whole 
system. In order to properly work, a discovery process must tackle also a secure and dependable service 
registration, service description and service filtering. The service registration consists in advertising in a 
secure and trusted manner the available SPD services. The advertisement of each service is represented 
by its formal description and it is known in literature as service description. The registered services are 
discovered whenever their description matches with the query associated to the discovery process, the 
matching process is also known in literature as service filtering. On the light of the above a SPD services 
discovery framework is needed as a core SPD functionality of a nSHIELD Middleware Adapter. Once the 
available SPD services have been discovered, they must be prepared to be executed, assuring that the 
dependencies and all the services preconditions are validated. In order to manage this phase, a service 
composition process is needed.  

6.4.1.2 (Trusted) Service composition  

This service is in charge to select those atomic SPD services that, once composed, provide a complex 
and integrated SPD functionality that is essential to guarantee the required SPD level. The service 
composition is an nSHIELD Middleware Adapter functionality that cooperates with the nSHIELD Overlay 
in order to apply the configuration strategy decided by the Control Algorithms residing in the pSHIELD 
Security Agent. While the Overlay works on a technology independent fashion composing the best 
configuration of aggregated SPD functionalities, the service composition takes into account more 
technology dependent SPD functionalities at Node, Network and Middleware layers. If the Overlay 
decides that a specific SPD configuration of the SPD services must executed, on the basis of the services’ 
description, capabilities and requirements, the service composition process ensures that all the 
dependencies, configuration and pre-conditions associated to that service are validated in order to make 
all the atomic SPD services to work properly once composed. 

Composition may be enriched by making it trusted. The proper service selection is difficult when there are 
many candidate services in a service repository. Usually the minimum requirements, like functional 
attributes, are satisfied by many services. Thus other non-functional features like trust should be 
introduced in the selection process. Trust refers to several factors such as quality, reputation, cost, 
availability and experience. The trust factors must be specified in service description to ease the service 
discovery phase. Trust is a complex factor and it can take many forms such as belief, honesty, 
truthfulness, competence, reliability and confidence or faith of the service provider, consumer, agents and 
service. Specific algorithms and procedures take cares of this aspect. 

6.4.1.3 Service orchestration  

This functionality is in charge to deploy, execute and continuously monitor those SPD services which have 
been discovered and composed. This is part of the SHIELD Middleware Adapter functionality. While 
service composition works “off-line” triggered by an event or by the SHIELD Overlay, service orchestration 
works “on-line” and is continuously operating in background to monitor the SPD status of the running 
services. 

This functionality performs basically the same tasks as the orchestration, with the main difference that in 
this approach there is no a single engine that takes the control of the entry point (centralized approach), 
and so that interactions are peer-to-peer. Control is not established by neither of the entry nor sequential 
points that are being processed. This enables the capacity to dynamically reorganise and be tolerant to 
unexpected happenings.   

6.4.1.4 Semantic Repository Management 

This service is responsible of managing any semantic information related to the SHIELD components 
(interface, contract, SPD status, context, etc.). The use of common SPD metrics and of a shared ontology 
to describe the different SPD aspects involved in guaranteeing a precise level of SPD, allows to dominate 

                                                                                                                                                                            

9
 OASIS Universal Description Discovery and Integration - http://www.uddi.org/pubs/uddi_v3.htm 

http://www.uddi.org/pubs/uddi_v3.htm


D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 36 of 47  Issue 14 

the intrinsic heterogeneity of the SPD components. Any semantic data is thus technology neutral and it is 
used to interface with the technology independent mechanisms applied by the SHIELD Overlay.  

6.4.1.5 Service Repository Management 

This functionality act as a database to store the service entries (e.g. the SPD components description of 
provided functionalities, interfaces, semantic references, etc.) used by the choreographer/orchestrator and 
by the enforcement engines to actuate decisions. Any SHIELD Node, Network or Middleware layer 
component can be registered here to be discovered. 

6.4.1.6 Handle communication of contracts, control commands and security policies 

This functionality is the direct link with the SHIELD Overlay and is responsible of sending ot it all the 
information necessary to take “intelligent” decision on composition of SPD functionalities to reach the SPD 
objectives. In some cases information of SPD components are sent to control algorithms, and in some 
others contract or policies are forwarded for more structured decision. 

6.4.1.7 Interpretation and enforcement of contracts, control commands and security policies 

The decisions taken by the SHIELD Overlay in terms of control commands, policies, enforcement actions 
and so on are received by the middleware and must be translated into ‘actions’ on the underlying systems 
(node, network and middleware layer itself) in terms of, for example, protocols activation, parameters 
configurations and so on. This is in charge of the interpretation and enforcement functionality. 

6.4.1.8 System monitoring (measurement collection) 

Together with services information and semantic information, also measurements could be provided to the 
Overlay to take composition decision. This task is in charge to a dedicated functionality (defined during 
the prosecution of the project) that can monitor both internal and/or external parameters. This is 
complementary to discovery functionality and, since it requires more resources, its feasibility on SHIELD 
different hardware. 

6.5 Overlay 

The Overlay is a logical vertical layer in charge of deciding, according to control algorithms or policies, 
which SPD functionalities should be activated/ deactivated and to tailor them in order to reach the SHIELD 
objectives (i.e. a desired SPD level). This layer is indeed a software routine running over the SHIELD 
Middleware and using the Middleware core services to collect information and actuate its decision. Its 
logical/functional view is described in the following. 

6.5.1 Logical View and Services Description 

The SHIELD Overlay offers five services, partially overlapped with the middleware ones. They are 
depicted in the following figure. 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 37 of 47 

 

Figure 6-10: SHIELD Middleware services and functionalities 

In particular System Monitoring and Handling of communication of contracts, control commands and 
security policies are also present in the middleware. This is not impossible, because all of them are 
software routines and the boundaries are not fixed. For the moment they are duplicated in both the 
elements and in the prosecution of the project the architectural analysis will decide on which layer they 
should be included. 

6.5.1.1 System monitoring 

This service is in charge to interface the Overlay layer with the Middleware layer, to retrieve sensed 
metadata from heterogeneous nSHIELD devices belonging to the same subsystem, to aggregate and 
filter the provided metadata and to provide the subsystem situation status to the context engine. 

6.5.1.2 Context enrichment  

This service is in charge to keep updated the situation status as well as to store and maintain updated any 
additional information exchanged with other SPD security agents that are meaningful to keep track of the 
situation context of the controlled nSHIELD subsystem. The situation context contains both status 
information and configuration information (e.g. rules, policies, constraints, etc.) that are used by the 
decision maker engine. 

6.5.1.3 Decision making  

This functionality uses the valuable, rich input provided by the context engine to apply a set of adaptive 
(closed-loop, rule-based or policy based) and technology-independent algorithms. The latter, by using (as 
input) the above-mentioned situation context and by adopting appropriate advanced methodologies able 
to profitably exploit such input, produce (as output) decisions aiming at guaranteeing, whenever it is 

possible, target SPD levels over the controlled nSHIELD subsystem.  

6.5.1.4 Handle communication of contracts, control commands and security policies 

The decisions mentioned above are translated into a set of proper enforcement rules actuated by the 
nSHIELD Middleware layer all over the nSHIELD subsystem controlled by the considered SPD Security 
Agent. These rules are sent to the Middleware via this functionality 

SHIELD SPD Overlay

Handle communication of 
contracts, control commands 

and security policies

Context Enrichment

System Monitoring
(measurement collection)

Decision Making

Overlay Interaction Handling



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 38 of 47  Issue 14 

6.5.1.5 Overlay Interaction Handling 

Since the SHIELD System is supposed to be composed by hundreds of nodes and SPD functionalities, in 
order to improve overall performances it has been planned to cluster the system into segments (possibly 
standalone), each one managed by a single Security Agent (i.e. the software entity that performs Overlay 
tasks). Even if clusters are stand alone, interactions among them shall be foreseen to coordinate actions 
or to enrich the knowledge basis to take decision. This is in charge to the overlay interaction handling. 

6.5.2 Development and Deployment view 

In compliance with the overall nSHIELD Architecture depicted in Figure 6-4 and based on the internal 
structure of the nS-SPD-ESD node as depicted in Figure 6-5, the nSHIELD overlay functionality is 
implemented through a security agent component. This component actually controls a given nSHIELD 
Subsystem. Expandability of such framework is obtained by enabling communication between SPD 
Security Agents controlling different sub-systems through the provided overlay interface. Therefore, the 
presence of more than one SPD Security Agents is justified by the need of solving scalability issues in the 
scope of system-of-systems (exponential growth of complexity can be overcome only by adopting a 
hierarchical policy of divide et impera). Within an nSHIELD subsystem multiple security agents could be 
possible mainly for redundancy or high availability purposes (usually only one will be active).     

 
Each SPD Security Agent, in order to perform its work, exchanges carefully selected information with the 
other SPD Security Agents, as well as with the three horizontal layers (node, network and middleware) of 
the controlled nSHIELD subsystem. Each SPD Security Agent collects properly selected heterogeneous 
SPD-relevant measurements and parameters coming from node, network and middleware layers of the 
controlled nSHIELD subsystem. The SPD Security Agent is a software module and requires the mediation 
of the nSHIELD Middleware. Thus any actual communication between the Overlay and the three layers is 
performed passing physically through the middleware layer.  

 

SPD
SECURITY
AGENT

Other SPD SECURITY AGENT
Other SPD SECURITY AGENT

Other SPD SECURITY AGENT

SHIELD MIDDLEWARE LAYER

MONITORING
ENGINE

ENFORCEMENT
ENGINE

CONTEXT
ENGINE

DECISION MAKER
ENGINE

Sensed

metadata

Enforcing

rules

Exchanged

metadata

Decisions
Situation

status

Situation

context

 

Figure 6-11:  nSHIELD SPD Security agent architecture 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 39 of 47 

The heterogeneous data collected from the three horizontal layers (passing through the middleware layer) 
are abstracted and translated into technology-independent metadata. The resulting metadata (referred to 
as sensed metadata) are interpreted by the monitoring engine and stored in the context engine.  

 
The monitoring engine is in charge to interface the Overlay layer with the Middleware layer, to retrieve 
sensed metadata from heterogeneous nSHIELD devices belonging to the same subsystem, to aggregate 
and filter the provided metadata and to provide the subsystem situation status to the context engine. 

 
The context engine is in charge to keep updated the situation status as well as to store and maintain 
updated any additional information exchanged with other SPD security agents that are meaningful to keep 
track of the situation context of the controlled nSHIELD subsystem. The situation context contains both 
status information and configuration information (e.g. rules, policies, constraints, etc.) that are used by the 
decision maker engine. 

 
The decision maker engine uses the valuable, rich input provided by the context engine to apply a set of 
adaptive (closed-loop or rule-based) and technology-independent algorithms. The latter, by using (as 
input) the above-mentioned situation context and by adopting appropriate advanced methodologies able 
to profitably exploit such input, produce (as output) decisions aiming at guaranteeing, whenever it is 
possible, target SPD levels over the controlled nSHIELD subsystem.  

 
The decisions mentioned above are translated by the enforcement engine into a set of proper 
enforcement rules actuated by the nSHIELD Middleware layer all over the nSHIELD subsystem 
controlled by the considered SPD Security Agent.  

 

  



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 40 of 47  Issue 14 

7 Interfaces  

This section attempts to register and categorize the interfaces which occur in an nSHIELD system. The 
term is quite generic; In general as interfaces we should not consider physical interconnections (i.e. 
Ethernet, etc.). Rather the focus should be given in logical interconnectivity that includes mainly the data 
and information that flows or is exchanged within the nSHIELD system. and possibly to the APIs that are 
provided or required by the various nSHIELD software modules that exist at the 4 nSHIELD functional 
layers. Based on this approach interfaces should be considered on various levels depending on the type 
of elements that are involved: 

 Internal node interfaces: that address data and interactions that occur between the 4 
functional layers within a single ESD 

 External node interfaces: that address data and interactions that may occur between the 4 
functional layers of different ESDs  

 Components’ or intra-layer interfaces: that include the interfaces that may exist between the 
various components implementing an nSHIELD functional layer  
 

It must be noted that interfaces description addresses information and data exchange that is needed to 
address nSHIELD capabilities and support the foreseen SPD services. Therefore we do not consider 
application specific flows (i.e. sensor data).     

7.1 Internal 

This section describes the information that flows between layers within a device. For each functional layer 
brief information is provided regarding incoming and outgoing data flows in the following table. The () 
symbol in each layer of Table 6-1 denotes that the row cells provide outgoing information flows (towards 
the functional layers depicted as column titles).  

Table 7-1: information flows between the various nSHIELD layers (within a device) 

Provided 
interfaces 

Node layer Network layer Middleware layer Overlay layer 

Node layer 
() 

– 

Measurements (on request 

or periodically): 

 Metric values to be used by 
trusted routing service 
reputation based scheme 
(i.e. battery lifetime, RSSI) 

 Radio environment data to 
be used by smart 
transmission service (i.e. 
available resources, 
number of active users etc.) 

 
Secure Keys from crypto 

key generator module to be 
used from secure data 
communication service 

Measurements (On 

request or 
periodically to 
compute SPD 
metrics) 
TBD in more 
details 

 

– 

Network layer 
() 

Commands 

 To configure/ 
reconfigure 
transmission 
related parameters 
of the RF channel 
(smart 
transmission 
service) 

 ... 

– 

SPD metrics 

(available at 
network level) 
nSHIELD Device 
Unique Network Id 

  
TBD in more 
details 

– 



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 41 of 47 

Middleware 
layer () 

Commands (for 

composition or 
configuration of 
SPD modules) 
TBD in more 

details 

Commands 

 To control and configure 
(i.e. define the metrics 
used) the trusted routing 
schema used 

 To configure parameters 
related to data encryption 
(i.e. type of algorithm to be 
used 

 ... 
Other TBD 

– 

sensed (SPD) 
metadata 

TBD in more 
details 

Overlay layer 
() 

– – 

Rules for 
compostion and 

discovery 
TBD in more 

details 

– 

 

Table 7-1 consists a first approach in defining the type of information exchanged between the various 
nSHIELD functional layers within an embedded node. It is expected to be refined and detailed in future 
versions of the architecture deliverable. 

7.2 External 

This section describes the information that flows between layers of different devices. For each functional 
layer brief information is provided regarding incoming and outgoing data flows in the following table. The 
() symbol in each layer of Table 7-2 denotes that the row cells provide outgoing information flows 

(towards the functional layers depicted as column titles). 

Table 7-2: information flows between the various nSHIELD layers (between different ESDs) 

Provided 
interfaces 

Node layer Network layer Middleware layer Overlay layer 

Node layer  
() 

– – – – 

Network layer 
() 

– 

Control packets needed 
from applied trusting 

routing protocol 
Other TBD 

?? – 

Middleware 
layer 
() 

– – TBD TBD 

Overlay layer 
() 

– – TBD TBD 

 

Table 7-2 consists a first approach in defining the type of information exchanged between the various 
nSHIELD functional layers between different embedded nodes. The table currently does not provide much 
information. Most of its cells are empty and we include it mainly with the purpose to provide a first 
suggestion regarding between which functional layers information flows exist. It should be reviewed, 
refined and detailed in future versions of the architecture deliverable. 

7.3 Components 

Information regarding data flows and interfaces between components of a specific nSHIELD functional 
layer is not provided in this version of the architecture document. The present document provides only a 
preliminary version of the architecture, presenting in most cases only a logical functional view together 
with the description-analysis of the capabilities and services available in each layer. Therefore, no 
adequate information existed in order to proceed with a detailed specification of the interfaces between 



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 42 of 47  Issue 14 

the various elements implementing a specific layer. Information on components’ interfaces will be 
provided in future versions of the architecture deliverable while other views of the nSHIELD’s functional 
layers will become available.    

  



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 43 of 47 

8 Application Scenarios Realization 

Since this document provides only a preliminary definition of the nSHIELD architecture, it is in not possible 
to proceed, at this stage, with specific realizations of the system architecture based on the envisaged 
application scenarios. Currently, the 4 nSHIELD scenarios (Railroad Security, Voice/Facial Verification, 
Dependable Avionic System, Social Mobility and Networking) were used mainly to identify major needs, in 
terms of expected functionalities and SPD capabilities, and through them drive the definition of a generic 
architecture that could provide full support for them. The goal is the final reference architecture to be 
generic enough in order to support all possible application scenarios. If this is not possible, then future 
versions of the architecture deliverable will provide here detailed use cases that will facilitate the 
realization of the nSHIELD architecture for an application scenario. Such use cases may contain the 
following data: 

 Description 

 Involved persons (Users/Clients, Authorities, Personnel) 

 Services 

 Policies 

 Problems 

 Management 

 

  



D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 44 of 47  Issue 14 

9 Conclusions  

D2.3 reflects the efforts to yield a first preliminary nSHIELD architectural framework. This included setting 
the background knowledge, defining basic terms and work methodology, identifying substantial 
requirements and generally trying to take into account, to a big or lesser extent, all input available at this 
stage of the project.  

The outcome is the outline of an overall architecture scheme, starting from the definition of component 
devices. The proposed architecture introduces 3 new types of embedded devices: nS-ESD, nS-ESD GW 
and nS-SPD-ESD to address the definition of an nSHIELD system and its interaction with the rest of the 
world (through what we call legacy devices). Inversely, the hierarchical logical view of the conceptual 
architecture demands the introduction of two more group concepts: the nSHIELD Subsystem containing 
one or more nSHIELD Aware Clusters. To implement this scheme, in terms of physical nodes, the 
previously introduced three categories are preserved: Nano, Micro/Personal and Power Nodes.  

According to nSHIELD documents and work plan, the general architecture is decomposed to four 
functional layers, for each of which the logical view and a basic set of services are described. The Node 
layer provides SPD functionalities. The Network layer is charged with trusted connectivity and smart SPD 
transmission. The Middleware layer is responsible for all the stages of services management. Finally the 
Overlay layer based on the concept of Security Agent, controls subsystems, manages their 

communication and organizes the composability of different SPD technologies and modules. 

Conclusively, this document depicts formalized (as possible) system architecture and sets the technical 
challenges, the open issues and subsequent work plan. Continuing in T2.3 the proposed structure will be 
refined. Interfaces, mentioned here in a preliminary level, shall be clearly defined to validate the internal 
robustness and external communication of the system. As nSHIELD project aims at creating an impact on 
the SPD market of ESs, it is essential to link the theoretical architectural framework with real 
implementations, providing thus its proof of concept. In this context, nSHIELD Architecture will be realized 
through instances of the four application domains registered in the DoW and close interaction with the 
activities of WP6 (Platform integration, validation & demonstration) is deemed necessary 

  



nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 45 of 47 

10 References  

[1] The pSHIELD project web site http://www.pshield.eu/  
[2] pSHIELD-D2.3.2_System_architecture_design, pSHIELD project official deliverable, Jan. 2012 
[3] nSHIELD_D2.2_ Preliminary System Requirements and Specifications, nSHIELD project 

deliverable, May 2012 
[4] OSGi Alliance. Osgi service platform specification overview. http://www.osgi.org/resources/spec 

overview.asp, 2003. 
[5] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The physiology of the grid. 

http://www.gridforum.org/ogsi-wg/drafts/ogsa draft2.9 2002-06-22.pdf, 2003. 
[6] Sun Microsystems. Jini network technology. http://wwws.sun.com/software/jini/, 2003. 
[7] W3C. Web services architecture. http://www.w3.org/TR/2003/WD-ws-arch-20030808/, 2003 
[8] Bertrand Meyer. Contracts for components. Software Development, 2000. 
[9] Antoine Beugnard. Jean-Marc jezequel et al.  Making Components Contract Aware, IEEE 

Journal Computer archive Volume 32 Issue 7, July 1999 
[10] Tammy Noergaard, Embedded Systems Architecture, A Comprehensive Guide for Engineers 

and Programmers, Elsevier Inc. 2005 
[11] http://www.middleware.org/whatis.html 
[12] The official CORBA standard from the OMG group – http://www.omg.org/spec/CORBA/Current/ 
[13] DCOM Remote Protocol Specification – http://msdn.microsoft.com/library/cc201989.aspx 
[14] Nikola Milanovic, Jan Richling, Miroslaw Malek, Lightweight Services for Embedded Systems, 

Proceedings of the 2nd IEEE Workshop on Software Technologies for Embedded and 
Ubiquitous Computing Systems (WSTFEUS 2004), Vienna, Austria, 2004 

[15] The Hydra project – http://www.hydramiddleware.eu 
[16] Prism-MW - Architectural Middleware for Mobile and Embedded System –  

http://csse.usc.edu/~softarch/Prism/ 
[17] http://www.embeddedlibrary.com/Embedded_Science/Embedded_Systems/Embedded_System

s_Design_and_Development_Lifecycle.html 
[18] IEEE 1471 "Recommended Practice for Architectural Description of Software-Intensive 

Systems"  
[19] IEEE ISO/IEC 42010:2007, Systems and Software Engineering---Recommended practice for 

architectural description of software-intensive systems 
[20] Ministry of Defense Architecture Framework (MoDAF), 

http://www.mod.uk/DefenceInternet/AboutDefence/CorporatePublications/InformationManageme
nt/MODAF/ModafMetaModel.htm 

[21] Department of Defense Architecture Framework (DoDAF), 
http://dodcio.defense.gov/dodaf20.aspx 

[22] The Open Group Architecture Framework (TOGAF), http://www.togaf.info/ 
[23] ISO Reference Model for Open Distributed Processing (RM-ODP), http://www.rm-odp.net/ 
[24] 4+1 View Model, http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf 
[25] A. J. Goldsmith and S. B. Wicker, “Design Challenges for Energy-Constrained Ad Hoc Wireless 

Networks,” IEEE Wireless Communications Magazine, pp. 8–27, Aug. 2002. 
[26] S. Shakkottai, T. S. Rappaport, and P. C. Karlsson, “Cross-Layer Design for Wireless 

Networks,” IEEE Communications Magazine, vol. 41, no. 10, pp. 74–80, Oct. 2003 
[27]  D. Bertsekas and R. Gallager, Data Networks, 2nd ed. New Jersey: Prentice Hall, 1992. 
[28]  V. T. Raisinghani and S. Iyer, “Cross-Layer Design Optimizations in Wireless Protocol Stacks,” 

Computer Communications, vol. 27, pp. 720–724, 2004. 
[29] A. S. Tanenbaum, Computer Networks, 3rd ed. Prentice-Hall, Inc., 1996. 
[30]  L. Larzon, U. Bodin, and O. Schelen, “Hints and Notifications,” in Proc. IEEE Wireless 

Communications and Networking Conference (WCNC’02), Orlando, 2002. 
[31]  G. Xylomenos and G. C. Polyzos, “Quality of service support over multiservice wireless internet 

links,” Computer Networks, vol. 37, no. 5, pp. 601–615, 2001. 
[32] Q. Wang and M. A. Abu-Rgheff, “Cross-Layer Signalling for Next-Generation Wireless Systems,” 

in Proc. IEEE Wireless Communications and Networking Conference (WCNC’03), New Orleans, 
2003. 

[33] M. Conti, G. Maselli, G. Turi, and S. Giordano, “Cross-Layering in Mobile Ad Hoc Network 
Design,” IEEE Computer Magazine, pp. 48–51, Feb. 2004. 

http://www.pshield.eu/
http://www.middleware.org/whatis.html
http://www.omg.org/spec/CORBA/Current/
http://msdn.microsoft.com/library/cc201989.aspx
http://www.hydramiddleware.eu/
http://csse.usc.edu/~softarch/Prism/
http://www.embeddedlibrary.com/Embedded_Science/Embedded_Systems/Embedded_Systems_Design_and_Development_Lifecycle.html
http://www.embeddedlibrary.com/Embedded_Science/Embedded_Systems/Embedded_Systems_Design_and_Development_Lifecycle.html
http://www.mod.uk/DefenceInternet/AboutDefence/CorporatePublications/InformationManagement/MODAF/ModafMetaModel.htm
http://www.mod.uk/DefenceInternet/AboutDefence/CorporatePublications/InformationManagement/MODAF/ModafMetaModel.htm
http://www.togaf.info/
http://www.rm-odp.net/


D2.3 Preliminary system architecture design  nSHIELD 

 CO  

   

D2.3  CO  

Page 46 of 47  Issue 14 

[34] Soon-Hyeok Choi, Dewayne E. Perry and Scott M. Nettles: “A Software Architecture for Cross-
LayerWireless Network Adaptations”, The University of Texas at Austin Austin, Texas 

[35] Vijay T. Raisinghani, Sridhar Iyer: “Cross Layer Feedback Architecture for Mobile Device 
Protocol Stacks”, 

[36] Vineet Srivastava and Mehul Motani Srivastava: “Cross-Layer Design: A Survey and the Road 
Ahead”, IEEE Communications Magazine, Dec 2005. 

[37] Giovanni Giambene and Sastri Kota: “Cross-layer protocol optimization for satellite 
communications networks: A survey”, Int. J. Satell. Commun. Network. 2006 

[38] Qi Wang and Mosa Mi Abu-Rgheff: “A Multi-Layer Mobility Management Architecture Using 
Cross-Layer Signalling Interactions” 
http://www.cis.udel.edu/~yackoski/cross/qwang_epmcc03_paper.pdf 

[39] R. Winter et al., “CrossTalk: A Data Dissemination-Based Crosslayer Architecture or Mobile Ad 
Hoc Networks,” 

[40] V. T. Raisinghani and S. Iyer: “ECLAIR: An efficient cross layer architecture for wireless protocol 
stacks”, WWC2004, 

[41] Yana Bi, Mei Song, Junde Song: “Seamless mobility Using Mobile IPv6”,  
Publication Year: 2005  

[42] Shantidev Mohanty and Ian F. Akyildiz: “A Cross-Layer (Layer 2 + 3) Handoff Management 
Protocol for Next-Generation Wireless Systems” IEEE Transactions on Mobile Computing, vol. 
5, no. 10, Oct 2006 

[43] Melhus, I.,Gayraud, T., Nivor, F., Gineste, M., Arnal, F., Pietrabissa, A., Linghang Fan: “SATSIX 
Cross-layer Architecture” Publication Year: 2008 , Page(s): 203 – 207 

[44] Srivastava, V., Motani, M.: “The Road Ahead for Cross-Layer Design”, Publication Year: 2005 , 
Page(s): 551 – 560. 

[45] IETF: Policy Framework [Online], http://datatracker.ietf.org/wg/policy/charter/ 
[46] Verma D.C.: “Simplifying network administration using policy-based management”, IEEE 

Network, 2002, pp. 20-26 
[47] ETSI DES 282 001 V0.0.1 (2006-09) 
[48] M. Al-Kuwaiti et al., “A Comparative Analysis of Network Dependability, Fault-tolerance, 

Reliability, Security, and Survivability”, IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 
VOL. 11, NO. 2, SECOND QUARTER 2009 

[49] T. Charles Clancy, Nathan Goergen, “Security in Cognitive Radio Networks: Threats and 
Mitigation” 

[50] S.C.Lingareddy et al., “Wireless Information Security Based on Cognitive Approaches”, IJCSNS 
International Journal of Computer Science and Network Security, VOL.9 No.12, pp. 49-54, 
December 2009 

[51] Jan Peleska, “Formal Methods and the Development of Dependable Systems”\ 
[52] Martin ARNDT, “Towards a pan European architecture for cooperative systems”, ETSI Status on 

Standardization, 2009 
[53] AbdelNasir Alshamsi, Takamichi Saito, “A Technical Comparison of IPSec and SSL”, Tokyo 

University of Technology 
[54] Your Electronics Open Source, “Embedded Systems in SDR and Cognitive Radio”, 

http://dev.emcelettronica.com/ 
[55] V. Casola, A. Gaglione, and A. Mazzeo, A reference architecture for sensor networks integration 

and management, 2009. In IEEE Proceedings of GSN09, Oxford, July 2009 
[56] G. Wiederhold, Mediators in the Architecture of Future Information Systems, In IEEE Computer 

XXV(3), pp. 38-49, 1992 
[57] Kirk Martinez, Jane K. Hart, and Royan Ong. Environmental sensor networks. Computer, 

37(8):50–56, 2004 
[58] B. Warneke, M. Last, B. Liebowitz, and K.S.J. Pister. Smart dust: communicating with a cubic-

millimeter computer. Computer, 34(1):44–51, Jan 2001 
[59] V. Casola, A. De Benedictis, A. Mazzeo and N. Mazzocca, SeNsIM-SEC: security in 

heterogeneous sensor networks, May 2011, SARSSI2011 
[60] TinyOS Project, URL: http://www.tinyos.net 
[61] H.Wang, B. Sheng, C.C. Tan and Qun Li, WM-ECC: an Elliptic Curve Cryptograph Suite on 

Sensor Motes, Technical report,  Oct. 30, 2007 

http://www.cis.udel.edu/~yackoski/cross/qwang_epmcc03_paper.pdf
http://datatracker.ietf.org/wg/policy/charter/
http://dev.emcelettronica.com/
http://www.tinyos.net/


nSHIELD   D2.3 Preliminary system architecture design 

 CO  

 CO D2.3 

Issue 14  Page 47 of 47 

[62] Damasio A. (2000), “The feeling of what happens - body, emotion and the rise of 
consciousness”, Harvest Books 

[63] Brdiczka O., P.C. Chen, S. Zaidenberg, P. Reignier and J.L. Crowley (2006), “Automatic 
Acquisition of Context Models and its Application to Video Surveillance”, International 
Conference in Pattern Recognition, 1175-1178, DOI:10.1109/ICPR.2006.292 

[64] Marcenaro L., Oberti  F., Foresti G., Regazzoni C. (2001), “Distributed architectures and logical-
task decomposition in multimedia surveillance systems”, Proceedings of the IEEE (10) (October 
2001) 1419-1440 

[65] Moncrieff S., S. Venkatesh e G. West (2008), “Context aware privacy in visual surveillance”, 
International Conference in Pattern Recognition, 1-4, DOI:10.1109/ICPR.2008.4761616 

[66] Remagnino P. e G.L. FORESTI (2005) Ambient Intelligence: A New Multidisciplinary Paradigm, 
Machine Vision and Applications, IEEE Transactions on Systems, Man and Cybernetics - Part A, 
35, 1-6, DOI:10.1109/TSMCA.2004.838456 

[67] Velastin S., L. Khoudour, B.P.L. Lo, J. Sun and M.A. Vicensio-Silve (2004) Prismatica: A multi-
sensor surveillance system for public transport network, 12th IEE Road Transport Information 
and Control Conference, 19-25 

[68] Sarfraz Alam, Josef Noll, “Enabling Sensor as Virtual Services through Lightweight Sensor 
Description”, in the proceeding of fourth International Conference on Sensor Technologies and 
Applications (SENSORCOMM 2010), July 18 - 25, 2010 - Venice/Mestre, Italy, pp. 564-569, 
ISBN: 978-0-7695-4096-2 

[69] Sensor model language (SensorML). (2005)[online], 
http://www.opengeospatial.org/standards/sensorml 

[70] B. Adida, M. Birbeck (2008). RDFa primer: Bridging the human and data webs. [online] 
available: http://www.w3.org/TR/xhtml-rfda-primer 

[71] R. Khare (2006), Microformats: The next (small) thing on the semantic web? Internet Computing 
10(1), 68-75 

[72] B. Ostermaier, K. Romer, F. Mattern, M. Fahrmair, & W. kellerer (2010). A real-time search 
engine for the Web of Things. Proceedings of Internet of Things 2010, pp. 1-8 

 

 

http://www.opengeospatial.org/standards/sensorml
http://www.w3.org/TR/xhtml-rfda-primer

