Annual review ROME 2012

WP4 - Network

nSHIELD functional architecture

The SCOPE in synthesis

- The main objective of SPD Network is to provide Trusted and Dependable Connectivity to Embedded Systems through the implementation of a reconfigurable radio system capable:
 - of maintaining awareness of the operating scenario,
 - of detecting possible threats and counteracting in such a way to ensure communications integrity to the maximum possible extent by reconfiguring the single nodes and/or the system itself.
 - of smart-managing the crypto Keys in order to handle security in lightweight devices and in highly dynamical reconfigurable networks.

Activities Carried Out

- Main features needed for making the SHIELD SPD-Based Radio system working:
 - Reconfigurable radio components with waveform parameters (frequency, bandwidth, ...)
 - Sensing mechanism to acquire awareness about available/used resources
 - Different IDS approaches (misuse vs. anomaly detection, architecture) taking into account the requirements of sensor networks
 - Cognitive algorithms elaborating the available information and taking countermeasures decisions against the identified threats
 - Simulator development for studying and evaluating performances of the Security Aware Framework
 - Embedded platform adaptation to implement and validate SHIELD Security Aware Framework

Work progress of nSHIELD

- nSHIELD items that started to be:
 - detailed,
 - implemented,
 - tested
 - validated:
 - <u>Sensing</u>: awareness (active users, bandwidth, modulation, frequency, ...)
 - <u>Cognitive Manager</u>: decision making, reasoning, cross-layer optimization and resource allocation
 - <u>Radio</u>: adjust radio parameters according to cognitive manager (dynamically exploitation of available resources, ...)
 - <u>Networking</u>: spectrum-aware routing, cognitive transport protocols
 - Optimize the IDS architecture regarding distributed or centralized approaches or a combination of both
 - **<u>Reputation based IDS</u>** approaches are starting to be implemented
 - Key Management
 - Adaptation of the simulator

Work package - objectives

- Task 4.1 Smart SPD driven transmission
 - SE; SG; THYIA; TUC; UNIGE
- Task 4.2 Distributed self-x models
 - **ATHENA;** THYIA, TUC, UNIGE, UNIUD, SE
- Task 4.3 *Reputation-based resource management technologies*
 - HAI; SE, TECNALIA, INDRA, MGEP, TUC
- Task 4.4 Trusted and dependable Connectivity
 - ISL; SE, SCOM, TECNALIA, HAI, MGEP, THYIA, TUC

Smart SPD-driven transmission

- Goal: providing reliable and efficient communications even in critical (physical) channel conditions
 - Adaptive and flexible algorithms for dynamically configuring and adapting various transmission-related parameters
- Based on the Software Defined Radio (SDR) or Cognitive Radio (CR) technology
- Shall be SCA-compliant
- Security-aware framework
 - Deployment of different state-of-the-art technologies for detecting and countering reconfigurability-related and cognitive capability-related security issues and attacks

Smart SPD-driven transmission (2)

Software Communications Architecture (source: SCA 4.0 specification)

Smart SPD-driven transmission (3)

Security-aware framework (*source: nSHIELD deliverable 2.4*)

Smart SPD-driven transmission (4)

Trusted Network Routing Service (source: nSHIELD deliverable 2.4)

Distributed self-x models

- Goal: Providing network transmission technologies to support the dependable self-x technologies at the node level by means of Cognitive Radio technologies
- Self-x refers to:
 - Self-(re)configuration
 - Self-management
 - Self-supervision
 - Self-recovery
- Evaluation of risks has been performed so far, with the following types of attacks identified and analyzed:
 - Side channel attacks
 - Denial-of-Service (DoS) attacks

Reputation-based resource management technologies

- Goal: Using information of nodes' past behaviours in order to estimate the current trustworthiness level
- Reputation and trust based Intrusion Detection Systems for WSN
 - New distributed approach (vs. centralized in pSHIELD)
 - Agent based detection minimises the communication needs
 - Both anomaly and specification-based detection
 - Anomaly detection using a simpler model (to reduce CPU and power consumption)
 - Coupled with specification based detection to enhance efficiency

Reputation-based resource management technologies (2)

- Distributed detection
- Node monitors local activities
- If not sure about the nature of an activity, node contacts its neighbouring nodes
- Reputation and trust of a node set according to local and neighbouring information
- When anomalous activities are flagged locally, this information is broadcasted to the rest of the nodes

Trusted and dependable connectivity

- Goal: assuring communications integrity to the maximum possible extent
- Regarded at two levels:
 - Trusted Network Routing Service
 - Possibility of choosing between different routing schemes, based on the input of the reputation-based scheme
 - Secure Data Exchange/Communication Service
 - Encryption schemes to enable protection (and integrity) of data
 - Authentication schemes to verify identity of sender/receiver

ES Computational Hardware

PCB OMBRA-nSHIELD (18x68 mm) OMAP uP, Xilinx FPGA WCP (1K pieces) =~150 Euro Computational Power 5X

Carrier Board OMBRA-nSHIELD Example (40x80mm) PCB S

PCB Standard - PXA270 uP Size (110x130mm) WCP =~ 350Euro

The END

Thanks for your attention!

