Modeling of Wireless Communication Systems using MATLAB

Dr. B.-P. Paris Dept. Electrical and Comp. Engineering George Mason University

last updated September 23, 2010

Wireless Communications

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fadir

Statistical Characterization of Channels 000000 00000000000000000

Part I

The Wireless Channel

The Wireless Channel

Characterization of the wireless channel and its impact on digitally modulated signals.

- From the physics of propagation to multi-path fading channels.
- Statistical characterization of wireless channels:
 - Doppler spectrum,
 - Delay spread
 - Coherence time
 - Coherence bandwidth
- Simulating multi-path, fading channels in MATLAB.
- Lumped-parameter models:
 - discrete-time equivalent channel.
- Path loss models, link budgets, shadowing.

Outline

Part III: Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Learning Objectives

- Understand models describing the nature of typical wireless communication channels.
 - The origin of multi-path and fading.
 - Concise characterization of multi-path and fading in both the time and frequency domain.
 - Doppler spectrum and time-coherence
 - Multi-path delay spread and frequency coherence
- Appreciate the impact of wireless channels on transmitted signals.
 - Distortion from multi-path: frequency-selective fading and inter-symbol interference.
 - The consequences of time-varying channels.

	©2010, BP. Paris	Wireless Commun	ications	5
Pathloss and Link Budget	From Physical Propagation to N 000000000000000000000000000000000000		Statistical Characterization of Chanr oooooo ooooooooooooooooooooooooooooo	nels

Outline

Part III: Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

From Physical Propagation to Multi-Path Fading

Path Loss

Path loss L_P relates the received signal power P_r to the transmitted signal power P_t:

$$P_r = P_t \cdot \frac{G_r \cdot G_t}{L_P},$$

where G_t and G_r are antenna gains.

- Path loss is very important for cell and frequency planning or range predictions.
 - Not needed when designing signal sets, receiver, etc.

Path Loss

- Path loss modeling is "more an art than a science."
 - Standard approach: fit model to empirical data.
 - Parameters of model:
 - ► *d* distance between transmitter and receiver,
 - *f_c* carrier frequency,
 - h_b , h_m antenna heights,
 - Terrain type, building density,

Example: Free Space Propagation

• In free space, path loss L_P is given by Friis's formula:

$$L_{P} = \left(\frac{4\pi d}{\lambda_{c}}\right)^{2} = \left(\frac{4\pi f_{c}d}{c}\right)^{2}$$

Path loss increases proportional to the square of distance d and frequency f_c.

► In dB:

$$L_{P(dB)} = -20 \log_{10}(rac{c}{4\pi}) + 20 \log_{10}(f_c) + 20 \log_{10}(d).$$

• Example: $f_c = 1$ GHz and d = 1km

$$L_{P(dB)} = -146 \text{ dB} + 180 \text{ dB} + 60 \text{ dB} = 94 \text{ dB}$$

	©2010, BP. Paris	Wireless Commun	ications 9
Pathloss and Link Budget ○○○○○ ○○○○○	From Physical Propagation to N 000000000000000000000000000000000000		Statistical Characterization of Channels 000000 0000000 000000000000000000000

Example: Two-Ray Channel

- Antenna heights: h_b and h_m .
- Two propagation paths:
 - 1. direct path, free space propagation,
 - 2. reflected path, free space with perfect reflection.
- Depending on distance d, the signals received along the two paths will add constructively or destructively.
- Path loss:

$$L_{P} = \frac{1}{4} \cdot \left(\frac{4\pi f_{c}d}{c}\right)^{2} \cdot \left(\frac{1}{\sin(\frac{2\pi f_{c}h_{b}h_{m}}{cd})}\right)^{2}.$$

For $d \gg h_b h_m$, path loss is approximately equal to:

$$L_P \approx \left(\frac{d^2}{h_b h_m}\right)^2$$

 Path loss proportional to d⁴ is typical for urban environment

Okumura-Hata Model for Urban Area

- Okumura and Hata derived empirical path loss models from extensive path loss measurements.
 - Models differ between urban, suburban, and open areas, large, medium, and small cities, etc.
- Illustrative example: Model for Urban area (small or medium city)

$$L_{P(dB)} = A + B\log_{10}(d),$$

where

	©2010, BP. Paris	Wireless Commun	ications 11
Pathloss and Link Budget ○○○○○ ●○○○○	From Physical Propagation to M		Statistical Characterization of Channels 000000 0000000 000000000000000000000

Signal and Noise Power

Received Signal Power:

$$P_r = P_t \cdot \frac{G_r \cdot G_t}{L_P \cdot L_R},$$

where L_B is implementation loss, typically 2-3 dB.

(Thermal) Noise Power:

$$P_N = kT_0 \cdot B_W \cdot F$$
, where

- k Boltzmann's constant (1.38 · 10^{-23} Ws/K),
- \sim T₀ temperature in K (typical room temperature, $T_0 = 290$ K),
- ► \Rightarrow $kT_0 = 4 \cdot 10^{-21}$ W/Hz = $4 \cdot 10^{-18}$ mW/Hz = -174 dBm/Hz,
- \triangleright B_W signal bandwidth,
- F noise figure, figure of merit for receiver (typical value: 5dB).

Signal-to-Noise Ratio

- The ratio of received signal power and noise power is denoted by SNR.
- From the above, SNR equals:

$$SNR = rac{P_t G_r \cdot G_t}{kT_0 \cdot B_W \cdot F \cdot L_P \cdot L_R}.$$

- SNR increases with transmitted power P_t and antenna gains.
- SNR decreases with bandwidth B_W, noise figure F, and path loss L_P.

	©2010, BP. Paris	Wireless Commur	ications	13
Pathloss and Link Budget	From Physical Propagation to N 000000000000000000000000000000000000		Statistical Characterization o 000000 0000000 00000000000000000000	of Channels

- For the symbol error rate performance of communications system the ratio of signal energy E_s and noise power spectral density N₀ is more relevant than SNR.
- Since $E_s = P_r \cdot T_s = \frac{P_r}{R_s}$ and $N_0 = kT_0 \cdot F = P_N/B_W$, it follows that

$$rac{E_s}{N_0} = \mathrm{SNR} \cdot rac{B_W}{R_s},$$

where T_s and R_s denote the symbol period and symbol rate, respectively.

 E_s/N_0

• Thus, E_s/N_0 is given by:

$$\frac{E_s}{N_0} = \frac{P_t G_r \cdot G_t}{kT_0 \cdot R_s \cdot F \cdot L_P \cdot L_R}$$

► in dB:

$$\begin{aligned} (\frac{E_s}{N_0})_{(dB)} &= & P_{t(dBm)} + G_{t(dB)} + Gr(dB) \\ &- (kT_0)_{(dBm/Hz)} - R_{s(dBHz)} - F_{(dB)} - L_{R(dB)}. \end{aligned}$$

Receiver Sensitivity

 All receiver-related terms are combined into receiver sensitivity, S_R:

$$S_R = rac{E_s}{N_0} \cdot kT_0 \cdot R_s \cdot F \cdot L_R.$$

► in dB:

$$S_{R(dB)} = (\frac{E_s}{N_0})_{(dB)} + (kT_0)_{(dBm/Hz)} + R_{s(dBHz)} + F_{(dB)} + L_{R(dB)}.$$

 Receiver sensitivity indicates the minimum required received power to close the link.

Outline

Part III: Learning Objectives

Pathloss and Link Budget

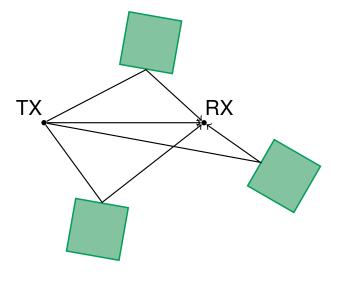
From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

17

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading


Wireless Communications

©2010, B.-P. Paris

Statistical Characterization of Channel

Multi-path Propagation

- The transmitted signal propagates from the transmitter to the receiver along many different paths.
- These paths have different
 - path attenuation a_k ,
 - path delay τ_k ,
 - phase shift ϕ_k ,
 - angle of arrival θ_k .
 - For simplicity, we assume a 2-D model, so that the angle of arrival is the azimuth.
 - In 3-D models, the elevation angle of arrival is an additional parameter.

Channel Impulse Response

- From the above parameters, one can easily determine the channel's (baseband equivalent) impulse response.
- Impulse Response:

$$h(t) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot \delta(t-\tau_k)$$

• Note that the delays τ_k contribute to the phase shifts ϕ_k .

Received Signal

 Ignoring noise for a moment, the received signal is the convolution of the transmitted signal s(t) and the impulse response

$$\boldsymbol{R}(t) = \boldsymbol{s}(t) * \boldsymbol{h}(t) = \sum_{k=1}^{K} \boldsymbol{a}_{k} \cdot \boldsymbol{e}^{j\phi_{k}} \cdot \boldsymbol{e}^{-j2\pi f_{c}\tau_{k}} \cdot \boldsymbol{s}(t-\tau_{k}).$$

- The received signal consists of multiple
 - scaled (by $a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k}$),
 - delayed (by τ_k)

copies of the transmitted signal.

Channel Frequency Response

- Similarly, one can compute the frequency response of the channel.
- Direct Fourier transformation of the expression for the impulse response yields

$$H(f) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot e^{-j2\pi f_\tau_k}.$$

- For any given frequency f, the frequency response is a sum of complex numbers.
- When these terms add destructively, the frequency response is very small or even zero at that frequency.
- These nulls in the channel's frequency response are typical for wireless communications and are referred to as frequency-selective fading.

Frequency Response in One Line of MATLAB

The Frequency response

$$H(f) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot e^{-j2\pi f \tau_k}.$$

can be computed in MATLAB via the one-liner

1 HH = PropData.Field.*exp(-j*2*pi*fc*tau) * exp(-j*2*pi*tau'*ff);

- Note that tau' *ff is an inner product; it produces a matrix (with K rows and as many columns as ff).
- Similarly, the product preceding the second complex exponential is an inner product; it generates the sum in the expression above.

Example: Ray Tracing

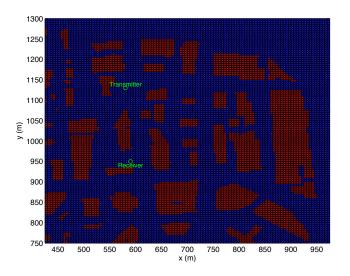


Figure: All propagation paths between the transmitter and receiver in the indicated located were determined through ray tracing.

MASON UNIVERSITY

	©2010, BP. Paris	Wireless Commur	nications	23
Pathloss and Link Budget ০০০০০ ০০০০০	From Physical Propagation to M		Statistical Characterization c oooooo oooooooooooooooooooooooooooo	f Channels

Impulse Response

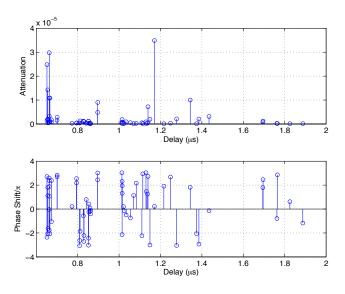


Figure: (Baseband equivalent) Impulse response shows attenuation, delay, and phase for each of the paths between receiver and transmitter.

Frequency Response

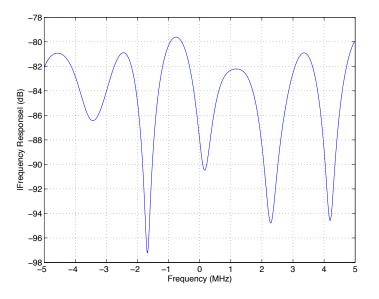


Figure: (Baseband equivalent) Frequency response for a multi-path channel is characterized by deep "notches".

GEORGE NIVERSITY

Implications of Multi-path

- Multi-path leads to signal distortion.
 - The received signal "looks different" from the transmitted signal.
 - This is true, in particular, for wide-band signals.
- Multi-path propagation is equivalent to *undesired* filtering with a linear filter.
 - The impulse response of this undesired filter is the impulse response h(t) of the channel.
- The effects of multi-path can be described in terms of both time-domain and frequency-domain concepts.
 - In either case, it is useful to distinguish between narrow-band and wide-band signals.

Example: Transmission of a Linearly Modulated Signal

- Transmission of a linearly modulated signal through the above channel is simulated.
 - ► BPSK,
 - (full response) raised-cosine pulse.
- Symbol period is varied; the following values are considered
 - $T_s = 30 \mu s$ (bandwidth approximately 60 KHz)
 - $T_s = 3\mu s$ (bandwidth approximately 600 KHz)
 - $T_s = 0.3 \mu s$ (bandwidth approximately 6 MHz)
- For each case, the transmitted and (suitably scaled) received signal is plotted.
 - Look for distortion.
 - Note that the received signal is complex valued; real and imaginary part are plotted.

Example: Transmission of a Linearly Modulated Signal

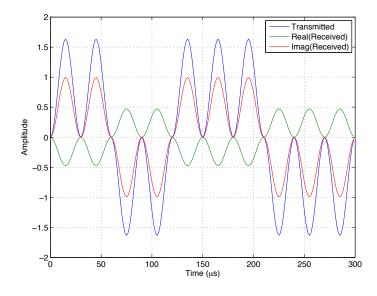


Figure: Transmitted and received signal; $T_s = 30 \mu s$. No distortion is evident.

Example: Transmission of a Linearly Modulated Signal

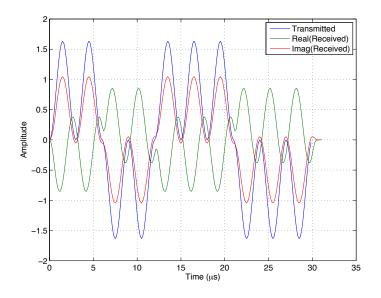


Figure: Transmitted and received signal; $T_s = 3\mu s$. Some distortion is visible near the symbol boundaries.

Mason NIVERSITY

Example: Transmission of a Linearly Modulated Signal

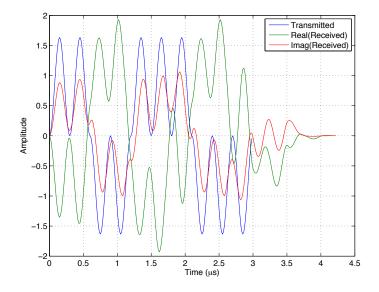


Figure: Transmitted and received signal; $T_s = 0.3 \mu s$. Distortion is clearly visible and spans multiple symbol periods.

Eye Diagrams for Visualizing Distortion

- An eye diagram is a simple but useful tool for quickly gaining an appreciation for the amount of distortion present in a received signal.
- An eye diagram is obtained by plotting many segments of the received signal on top of each other.
 - The segments span two symbol periods.
- This can be accomplished in MATLAB via the command plot(tt(1:2*fsT), real(reshape(Received(1:Ns*fsT), 2*fsT, [])))
 - Ns number of symbols; should be large (e.g., 1000),
 - Received vector of received samples.
 - The reshape command turns the vector into a matrix with 2*fsT rows, and
 - the plot command plots each column of the resulting matrix individually.

Eye Diagram without Distortion

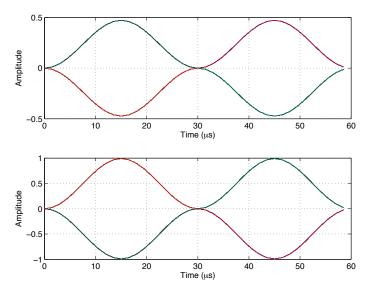


Figure: Eye diagram for received signal; $T_s = 30 \mu s$. No distortion: "the eye is fully open".

Eye Diagram with Distortion

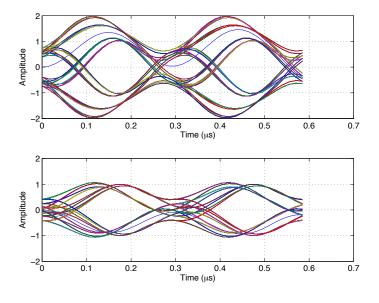


Figure: Eye diagram for received signal; $T_s = 0.3 \mu s$. Significant distortion: "the eye is partially open".

Inter-Symbol Interference

- The distortion described above is referred to as inter-symbol interference (ISI).
 - As the name implies, the undesired filtering by the channel causes energy to be spread from one transmitted symbol across several adjacent symbols.
- This interference makes detection mored difficult and must be compensated for at the receiver.
 - Devices that perform this compensation are called equalizers.

Inter-Symbol Interference

- Question: Under what conditions does ISI occur?
- Answer: depends on the channel and the symbol rate.
 - The difference between the longest and the shortest delay of the channel is called the delay spread T_d of the channel.
 - The delay spread indicates the length of the impulse response of the channel.
 - Consequently, a transmitted symbol of length T_s will be spread out by the channel.
 - When received, its length will be the symbol period plus the delay spread, T_s + T_d.

Rule of thumb:

- if the delay spread is much smaller than the symbol period $(T_d \ll T_s)$, then ISI is negligible.
- If delay is similar to or greater than the symbol period, then ISI must be compensated at the receiver.

Frequency-Domain Perspective

- It is interesting to compare the bandwidth of the transmitted signals to the frequency response of the channel.
 - In particular, the bandwidth of the transmitted signal relative to variations in the frequency response is important.
 - The bandwidth over which the channel's frequency response remains approximately constant is called the coherence bandwidth.
- When the frequency response of the channel remains approximately constant over the bandwidth of the transmitted signal, the channel is said to be flat fading.
- Conversely, if the channel's frequency response varies significantly over the bandwidth of the signal, the channel is called a frequency-selective fading channel.

Example: Narrow-Band Signal

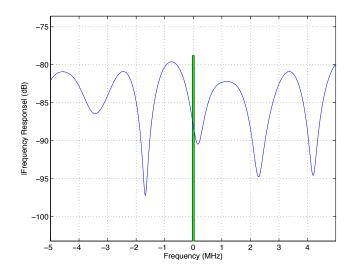


Figure: Frequency Response of Channel and bandwidth of signal; $T_s = 30 \mu s$, Bandwidth ≈ 60 KHz; the channel's frequency response is approximately constant over the bandwidth of the signal.

GEORGE NIVERSITY

Example: Wide-Band Signal

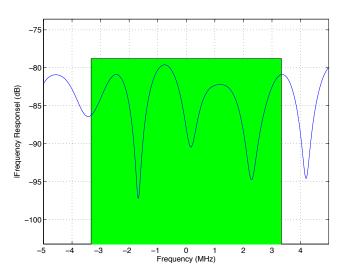
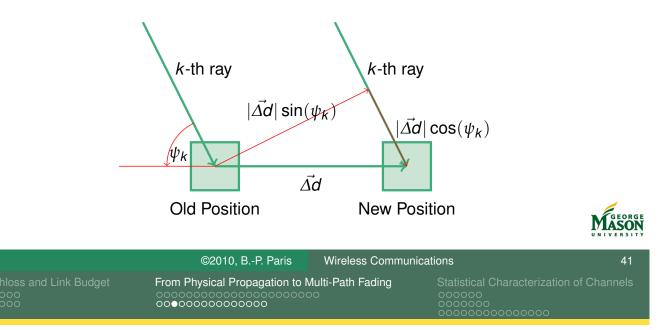


Figure: Frequency Response of Channel and bandwidth of signal; $T_s = 0.3 \mu s$, Bandwidth ≈ 6 MHz; the channel's frequency response varies significantly over the bandwidth of the channel.

Frequency-Selective Fading and ISI

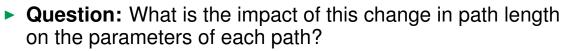
- Frequency-selective fading and ISI are dual concepts.
 - ISI is a time-domain characterization for significant distortion.
 - Frequency-selective fading captures the same idea in the frequency domain.
- Wide-band signals experience ISI and frequency-selective fading.
 - Such signals require an equalizer in the receiver.
 - Wide-band signals provide built-in diversity.
 - Not the entire signal will be subject to fading.
- Narrow-band signals experience flat fading (no ISI).
 - Simple receiver; no equalizer required.
 - Entire signal may be in a deep fade; no diversity.


Time-Varying Channel

- Beyond multi-path propagation, a second characteristic of many wireless communication channels is their time variability.
 - The channel is time-varying primarily because users are mobile.
- As mobile users change their position, the characteristics of each propagation path changes correspondingly.
 - Consider the impact a change in position has on
 - path gain,
 - path delay.
 - Will see that angle of arrival θ_k for *k*-th path is a factor.

Path-Changes Induced by Mobility

- Mobile moves by $\vec{\Delta d}$ from old position to new position.
 - distance: $|\vec{\Delta d}|$
 - angle: $\angle \vec{\Delta d} = \delta$
- Angle between k-th ray and $\vec{\Delta d}$ is denoted $\psi_k = \theta_k \delta$.
- Length of *k*-th path increases by $|\vec{\Delta d}| \cos(\psi_k)$.



Impact of Change in Path Length

- We conclude that the length of each path changes by $|\vec{\Delta d}| \cos(\psi_k)$, where
 - \$\psi_k\$ denotes the angle between the direction of the mobile and the k-th incoming ray.
- **Question:** how large is a typical distance $|\vec{\Delta d}|$ between the old and new position is?
 - The distance depends on
 - the velocity v of the mobile, and
 - the time-scale ΔT of interest.
- In many modern communication system, the transmission of a frame of symbols takes on the order of 1 to 10 ms.
- ► Typical velocities in mobile systems range from pedestrian speeds (≈ 1m/s) to vehicle speeds of 150km/h(≈ 40m/s).
- Distances of interest $|\vec{\Delta d}|$ range from 1mm to 400mm.

Impact of Change in Path Length

- We denote the length of the path to the old position by d_k .
- Clearly, $d_k = c \cdot \tau_k$, where *c* denotes the speed of light.
- Typically, d_k is much larger than $|\vec{\Delta d}|$.
- Path gain a_k : Assume that path gain a_k decays inversely proportional with the square of the distance, $a_k \sim d_k^{-2}$.
- Then, the relative change in path gain is proportional to $(|\vec{\Delta d}|/d_k)^2$ (e.g., $|\vec{\Delta d}| = 0.1$ m and $d_k = 100$ m, then path gain changes by approximately 0.0001%).
 - Conclusion: The change in path gain is generally small enough to be negligible.

	©2010, BP. Paris	Wireless Commun	ications	43
Pathloss and Link Budget ooooo ooooo	From Physical Propagation to N	0	Statistical Characterizati oooooo ooooooooooooooooooooooooooooo	on of Channels

Impact of Change in Path Length

- **Delay** τ_k : By similar arguments, the delay for the *k*-th path changes by at most $|\vec{\Delta d}|/c$.
- The relative change in delay is $|\vec{\Delta d}|/d_k$ (e.g., 0.1% with the values above.)
 - **Question:** Is this change in delay also negligible?

Relating Delay Changes to Phase Changes

• **Recall:** the impulse response of the multi-path channel is

$$h(t) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot \delta(t-\tau_k)$$

Note that the delays, and thus any delay changes, are multiplied by the carrier frequency f_c to produce phase shifts.

Relating Delay Changes to Phase Changes

 Consequently, the phase change arising from the movement of the mobile is

$$\Delta \phi_k = -2\pi f_c / c |\vec{\Delta d}| \cos(\psi_k) = -2\pi |\vec{\Delta d}| / \lambda_c \cos(\psi_k),$$

where

- λ_c = c/f_c denotes the wave-length at the carrier frequency (e.g., at f_c = 1GHz, λ_c ≈ 0.3m),
- ψ_k angle between direction of mobile and k-th arriving path.
- Conclusion: These phase changes are significant and lead to changes in the channel properties over short time-scales (fast fading).

Illustration

- To quantify these effects, compute the phase change over a time interval $\Delta T = 1$ ms as a function of velocity.
 - Assume $\psi_k = 0$, and, thus, $\cos(\psi_k) = 1$.
 - $f_c = 1$ GHz.

<i>v</i> (m/s)	$ \vec{\Delta d} $ (mm)	$\Delta \phi$ (degrees)	Comment
1	1	1.2	Pedestrian; negligible phase change.
10	10	12	Residential area vehi- cle speed.
100	100	120	High-way speed; phase change signifi- cant.
1000	1000	1200	High-speed train or low-flying aircraft; receiver must track phase changes.

Wireless Communications

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

©2010, B.-P. Paris

Statistical Characterization of Channels

Doppler Shift and Doppler Spread

- If a mobile is moving at a constant velocity v, then the distance between an old position and the new position is a function of time, $|\vec{\Delta d}| = vt$.
- Consequently, the phase change for the k-th path is

$$\Delta \phi_k(t) = -2\pi v / \lambda_c \cos(\psi_k) t = -2\pi v / c \cdot f_c \cos(\psi_k) t.$$

- The phase is a linear function of *t*.
- Hence, along this path the signal experiences a frequency shift $f_{d,k} = v/c \cdot f_c \cdot \cos(\psi_k) = v/\lambda_c \cdot \cos(\psi_k)$.
- This frequency shift is called Doppler shift.
- Each path experiences a different Doppler shift.
 - Angles of arrival θ_k are different.
 - Consequently, instead of a single Doppler shift a number of shifts create a Doppler Spectrum.

Illustration: Time-Varying Frequency Response

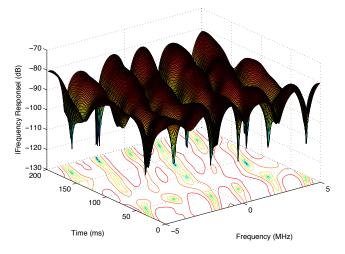


Figure: Time-varying Frequency Response for Ray-Tracing Data; velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency ≈ 33 Hz.

	©2010, BP. Paris	Wireless Commun	nications	49
Pathloss and Link Budget	From Physical Propagation to N		Statistical Characterizati ০০০০০০ ০০০০০০০ ০০০০০০০০০০০০০০০০০০০০০	on of Channels

Illustration: Time-varying Response to a Sinusoidal Input

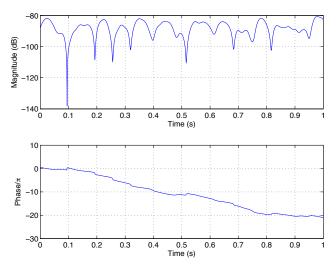


Figure: Response of channel to sinusoidal input signal; base-band equivalent input signal s(t) = 1, velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency ≈ 33 Hz.

Doppler Spread and Coherence Time

- The time over which the channel remains approximately constant is called the coherence time of the channel.
- Coherence time and Doppler spectrum are dual characterizations of the time-varying channel.
 - Doppler spectrum provides frequency-domain interpretation:
 - It indicates the range of frequency shifts induced by the time-varying channel.
 - Frequency shifts due to Doppler range from $-f_d$ to f_d , where $f_d = v/c \cdot f_c$.
 - The coherence time T_c of the channel provides a time-domain characterization:
 - It indicates how long the channel can be assumed to be approximately constant.
- Maximum Doppler shift f_d and coherence time T_c are related to each through an inverse relationship $T_c \approx 1/f_d$.

	©2010, BP. Paris	Wireless Commur	nications 51
Pathloss and Link Budget	From Physical Propagation to N	•	Statistical Characterization of Channels

System Considerations

- The time-varying nature of the channel must be accounted for in the design of the system.
- Transmissions are shorter than the coherence time:
 - Many systems are designed to use frames that are shorter than the coherence time.
 - Example: GSM TDMA structure employs time-slots of duration 4.6ms.
 - Consequence: During each time-slot, channel may be treated as constant.
 - From one time-slot to the next, channel varies significantly; this provides opportunities for diversity.
- Transmission are longer than the coherence time:
 - Channel variations must be tracked by receiver.
 - Example: use recent symbol decisions to estimate current channel impulse response.

Illustration: Time-varying Channel and TDMA

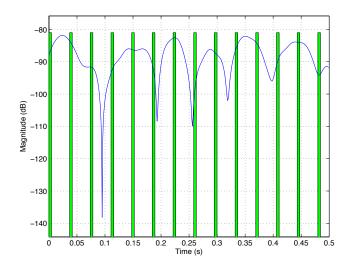


Figure: Time varying channel response and TDMA time-slots; time-slot duration 4.6ms, 8 TDMA users, velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency ≈ 33 Hz.

	©2010, BP. Paris	Wireless Commun	nications	53
Pathloss and Link Budget ০০০০০ ০০০০০	From Physical Propagation to N	0	Statistical Characterization 000000 0000000 0000000000000000	of Channels

Summary

- Illustrated by means of a concrete example the two main impairments from a mobile, wireless channel.
 - Multi-path propagation,
 - Doppler spread due to time-varying channel.
- Multi-path propagation induces ISI if the symbol duration exceeds the delay spread of the channel.
 - In frequency-domain terms, frequency-selective fading occurs if the signal bandwidth exceeds the coherence band-width of the channel.
- Doppler Spreading results from time-variations of the channel due to mobility.
 - The maximum Doppler shift $f_d = v/c \cdot f_c$ is proportional to the speed of the mobile.
 - In time-domain terms, the channel remains approximately constant over the coherence-time of the channel.

Outline

Part III: Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

	©2010, BP. Paris	Wireless Commur	nications	55
Pathloss and Link Budget	From Physical Propagation to M		Statistical Characte	rization of Channels
00000 00000	000000000000000000000000000000000000000		000000	

Statistical Characterization of Channel

- We have looked at the characterization of a concrete realization of a mobile, wire-less channel.
- For different locations, the properties of the channel will likely be very different.
- Objective: develop statistical models that capture the salient features of the wireless channel for areas of interest.
 - Models must capture multi-path and time-varying nature of channel.
- Approach: Models reflect correlations of the time-varying channel impulse response or frequency response.
 - Time-varying descriptions of channel are functions of two parameters:
 - Time t when channel is measured,
 - Frequency f or delay τ .

Power Delay Profile

- The impulse response of a wireless channel is time-varying, h(t, τ).
 - ► The parameter *t* indicates when the channel is used,
 - The parameter τ reflects time since the input was applied (delay).
 - Time-varying convolution: $r(t) = \int h(t, \tau) \cdot s(t \tau) d\tau$.
- The power-delay profile measures the average power in the impulse response over delay τ.
 - Thought experiment: Send impulse through channel at time t₀ and measure response h(t₀, τ).
 - Repeat *K* times, measuring $h(t_k, \tau)$.
 - Power delay profile:

$$\Psi_h(\tau) = \frac{1}{K+1} \sum_{k=0}^{K} |h(t_k, \tau)|^2.$$

	©2010, BP. Paris	Wireless Commun	nications 57
Pathloss and Link Budget	From Physical Propagation to N 000000000000000000000000000000000000		Statistical Characterization of Channels

Power Delay Profile

- The power delay profile captures the statistics of the multi-path effects of the channel.
- The underlying, physical model assumes a large number of propagation paths:
 - each path has a an associated delay τ ,
 - the gain for a path is modeled as a complex Gaussian random variable with second moment equal to $\Psi_h(\tau)$.
 - If the mean of the path loss is zero, the path is said to be Rayleigh fading.
 - Otherwise, it is Ricean.
 - The channel gains associated with different delays are assumed to be uncorrelated.

Example

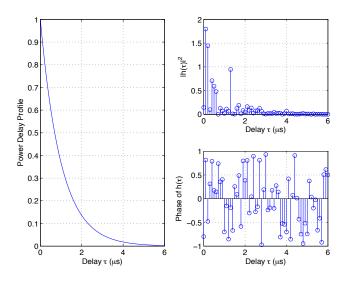


Figure: Power Delay Profile and Channel Impulse Response; the power delay profile (left) equals $\Psi_h(\tau) = \exp(-\tau/T_h)$ with $T_h = 1\mu$ s; realization of magnitude and phase of impulse response (left).

GEORGE NIVERSITY

	©2010, BP. Paris	Wireless Commun	ications	59
Pathloss and Link Budget	From Physical Propagation to N 000000000000000000000000000000000000		Statistical Characterization	n of Channels

RMS Delay Spread

- From a systems perspective, the extent (spread) of the delays is most significant.
 - The length of the impulse response of the channel determines how much ISI will be introduced by the channel.
- The spread of delays is measured concisely by the RMS delay spread T_d:

$$T_{d}^{2} = \int_{0}^{\infty} \Psi_{h}^{(n)}(\tau) \tau^{2} d\tau - (\int_{0}^{\infty} \Psi_{h}^{(n)}(\tau) \tau d\tau)^{2},$$

where

$$\Psi_h^{(n)} = \Psi_h / \int_0^\infty \Psi_h(\tau) d\tau.$$

- **Example:** For $\Psi_h(\tau) = \exp(-\tau/T_h)$, RMS delay spread equals T_h .
 - In urban environments, typical delay spreads are a few μ s. Mason

Frequency Coherence Function

 The Fourier transform of the Power Delay Spread Ψ_h(τ) is called the Frequency Coherence Function Ψ_H(Δf)

$$\Psi_h(\tau) \leftrightarrow \Psi_H(\Delta f).$$

- The frequency coherence function measures the correlation of the channel's frequency response.
 - **Thought Experiment:** Transmit two sinusoidal signal of frequencies f_1 and f_2 , such that $f_1 f_2 = \Delta f$.
 - The gain each of these signals experiences is H(t, f₁) and H(t, f₂), respectively.
 - Repeat the experiment many times and average the products H(t, f₁) · H^{*}(t, f₂).
 - $\Psi_H(\Delta f)$ indicates how similar the gain is that two sinusoids separated by Δf experience.

Coherence Bandwidth

- The width of the main lobe of the frequency coherence function is the coherence bandwidth B_c of the channel.
 - Two signals with frequencies separated by less than the coherence bandwidth will experience very similar gains.
- Because of the Fourier transform relationship between the power delay profile and the frequency coherence function:

$$B_c \approx rac{1}{T_d}.$$

• **Example:** Fourier transform of $\Psi_h(\tau) = \exp(-\tau / T_h)$

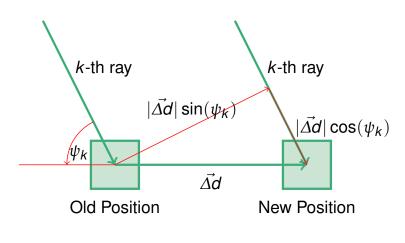
$$\Psi_H(\Delta f) = rac{T_h}{1+j2\pi\Delta fT_h};$$

the 3-dB bandwidth of $\Psi_H(\Delta f)$ is $B_c = 1/(2\pi \cdot T_h)$.

For urban channels, coherence bandwidth is a few 100KHz

Time Coherence

- The time-coherence function $\Psi_H(\Delta t)$ captures the time-varying nature of the channel.
 - **Thought experiment:** Transmit a sinusoidal signal of frequency *f* through the channel and measure the output at times t_1 and $t_1 + \Delta t$.
 - The gains the signal experiences are $H(t_1, f)$ and $H(t_1 + \Delta t, f)$, respectively.
 - Repeat experiment and average the products $H(t_k, f) \cdot H^*(t_k + \Delta t, f)$.
- Time coherence function measures, how quickly the gain of the channel varies.
 - The width of the time coherence function is called the coherence-time T_c of the channel.
 - The channel remains approximately constant over the coherence time of the channel.



Example: Isotropic Scatterer

- Old location: $H(t_1, f = 0) = a_k \cdot \exp(-j2\pi f_c \tau_k)$.
- At new location: the gain a_k is unchanged; phase changes by f_d cos(ψ_k)Δt:

$$H(t_1 + \Delta t, f = 0) = a_k \cdot \exp(-j2\pi(f_c\tau_k + f_d\cos(\psi_k)\Delta t)).$$

Example: Isotropic Scatterer

- The average of H(t₁, 0) · H^{*}(t₁ + Δt, 0) yields the time-coherence function.
- Assume that the angle of arrival ψ_k is uniformly distributed.
 - This allows computation of the average (isotropic scatterer assumption:

$$\Psi_{H}(\Delta t) = |a_{k}|^{2} \cdot J_{0}(2\pi f_{d}\Delta t)$$

Wireless Communications

65

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

©2010, B.-P. Paris

Statistical Characterization of Channels

Time-Coherence Function for Isotropic Scatterer

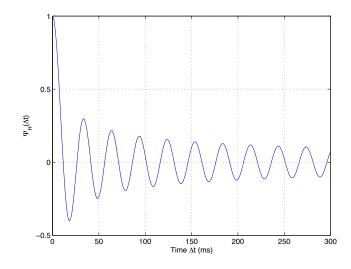


Figure: Time-Coherence Function for Isotropic Scatterer; velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency $f_d \approx 33$ Hz. First zero at $\Delta t \approx 0.4/f_d$.

Doppler Spread Function

• The Fourier transform of the time coherence function $\Psi_H(\Delta t)$ is the Doppler Spread Function $\Psi_d(f_d)$

$$\Psi_{\mathcal{H}}(\Delta t) \leftrightarrow \Psi_{\mathcal{d}}(f_{\mathcal{d}}).$$

- The Doppler spread function indicates the range of frequencies observed at the output of the channel when the input is a sinusoidal signal.
 - Maximum Doppler shift $f_{d,max} = v/c \cdot f_c$.

Thought experiment:

- Send a sinusoidal signal of
- The PSD of the received signal is the Doppler spread function.

Doppler Spread Function for Isotropic Scatterer

Example: The Doppler spread function for the isotropic scatterer is

$$\Psi_d(f_d) = rac{|a_k|^2}{4\pi f_d} rac{1}{\sqrt{1 - (f/f_d)^2}} ext{ for } |f| < f_d.$$

Doppler Spread Function for Isotropic Scatterer

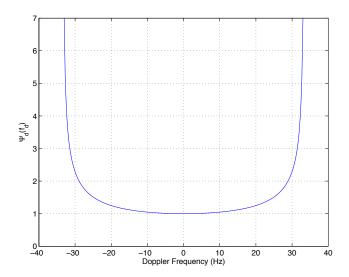


Figure: Doppler Spread Function for Isotropic Scatterer; velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency $f_d \approx 33$ Hz. First zero at $\Delta t \approx 0.4/f_d$.

	©2010, BP. Paris	Wireless Commun	ications	69
Pathloss and Link Budget	From Physical Propagation to N 000000000000000000000000000000000000		Statistical Characterizati ○○○○○○ ●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	on of Channels

Simulation of Multi-Path Fading Channels

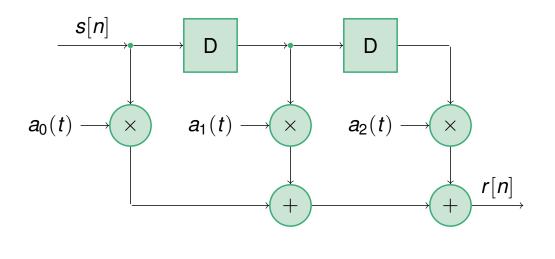
We would like to be able to simulate the effects of time-varying, multi-path channels.

Approach:

- The simulator operates in discrete-time; the sampling rate is given by the sampling rate for the input signal.
- The multi-path effects can be well modeled by an FIR (tapped delay-line)filter.
 - The number of taps for the filter is given by the product of delay spread and sampling rate.
 - Example: With a delay spread of 2µs and a sampling rate of 2MHz, four taps are required.
 - The taps should be random with a Gaussian distribution.
 - The magnitude of the tap weights should reflect the power-delay profile.

Simulation of Multi-Path Fading Channels

Approach (cont'd):


- The time-varying nature of the channel can be captured by allowing the taps to be time-varying.
 - The time-variations should reflect the Doppler Spectrum.

	©2010, BP. Paris	Wireless Commun	ications 71
Pathloss and Link Budget ০০০০০ ০০০০০	From Physical Propagation to N 000000000000000000000000000000000000		Statistical Characterization of Channels

Simulation of Multi-Path Fading Channels

- The taps are modeled as
 - Gaussian random processes
 - with variances given by the power delay profile, and
 - power spectral density given by the Doppler spectrum.

Channel Model Parameters

- Concrete parameters for models of the above form have been proposed by various standards bodies.
 - For example, the following table is an excerpt from a document produced by the COST 259 study group.

Tap number	Relative Time (μ s)	Relative Power (dB)	Doppler Spectrum
1	0	-5.7	Class
2	0.217	-7.6	Class
3	0.512	-10.1	Class
:	:		:
20	2.140	-24.3	Class

Channel Model Parameters

- The table provides a concise, statistical description of a time-varying multi-path environment.
- Each row corresponds to a path and is characterized by
 - the delay beyond the delay for the shortest path,
 - the average power of this path;
 - this parameter provides the variance of the Gaussian path gain.
 - the Doppler spectrum for this path;
 - The notation Class denotes the classical Doppler spectrum for the isotropic scatterer.
- The delay and power column specify the power-delay profile.
- The Doppler spectrum is given directly.
 - The Doppler frequency f_d is an additional parameter.

Toolbox Function SimulateCOSTChannel

The result of our efforts will be a toolbox function for simulating time-varying multi-path channels:

function OutSig = SimulateCOSTChannel(InSig, ChannelParams, fs)

Its input arguments are

	8 I	Inputs:	
	양	InSig	- baseband equivalent input signal
	90	ChannelParams	- structure ChannelParams must have fields
4	90		Delay – relative delay
	00		Power – relative power in dB
	양		Doppler – type of Dopller spectrum
	00		fd – max. Doppler shift
	응	fs	- sampling rate

	©2010, BP. Paris	Wireless Commun	ications 75	
Pathloss and Link Budget ০০০০০ ০০০০০	From Physical Propagation to N		Statistical Characterization of Channels	

Discrete-Time Considerations

- The delays in the above table assume a continuous time axis; our time-varying FIR will operate in discrete time.
- To convert the model to discrete-time:
 - Continuous-time is divided into consecutive "bins" of width equal to the sampling period, 1 / fs.
 - For all paths arriving in same "bin," powers are added.
 - This approach reflects that paths arriving closer together than the sampling period cannot be resolved;
 - their effect is combined in the receiver front-end.
 - The result is a reduced description of the multi-path channel:
 - Power for each tap reflects the combined power of paths arriving in the corresponding "bin".
 - This power will be used to set the variance of the random process for the corresponding tap.


```
Pathloss and Link Budget
```

4

Converting to a Discrete-Time Model in MATLAB

```
%% convert powers to linear scale
Power_lin = dB2lin( ChannelParams.Power);
%% Bin the delays according to the sample rate
5 QDelay = floor( ChannelParams.Delay*fs );
% set surrogate delay for each bin, then sum up the power in each bin
Delays = ( ( 0:QDelay(end) ) + 0.5 ) / fs;
Powers = zeros( size(Delays) );
10 for kk = 1:length(Delays)
Powers( kk ) = sum( Power_lin( QDelay == kk-1 ) );
end
```


	©2010, BP. Paris	Wireless Commun	ications 77
Pathloss and Link Budget	From Physical Propagation to N		Statistical Characterization of Channels

Generating Time-Varying Filter Taps

- The time-varying taps of the FIR filter must be Gaussian random processes with specified variance and power spectral density.
- To accomplish this, we proceed in two steps:
 - 1. Create a filter to shape the power spectral density of the random processes for the tap weights.
 - 2. Create the random processes for the tap weights by passing complex, white Gaussian noise through the filter.
 - Variance is adjusted in this step.
- Generating the spectrum shaping filter:

```
% desired frequency response of filter:
HH = sqrt( ClassDoppler( ff, ChannelParams.fd ) );
% design filter with desired frequency response
hh = Persistent_firpm( NH-1, 0:1/(NH-1):1, HH );
hh = hh/norm(hh); % ensure filter has unit norm
```


Generating Time-Varying Filter Taps

- The spectrum shaping filter is used to filter a complex white noise process.
 - Care is taken to avoid transients at the beginning of the output signal.
 - Also, filtering is performed at a lower rate with subsequent interpolation to avoid numerical problems.
 - Recall that f_d is quite small relative to f_s.

```
% generate a white Gaussian random process
2 ww = sqrt( Powers( kk )/2)*...
  ( randn( 1, NSamples) + j*randn( 1, NSamples) );
% filter so that spectrum equals Doppler spectrum
ww = conv( ww, hh );
ww = ww( length( hh )+1:NSamples ).';
7 % interpolate to a higher sampling rate
ww = interp( ww, Down );
% ww = interpft(ww, Down*length(ww));
% store time-varying filter taps for later use
@2010, B-P.Paris Wireles Communications 29
```

Time-Varying Filtering

- The final step in the simulator is filtering the input signal with the time-varying filter taps.
 - MATLAB's filtering functions conv Or filter cannot be used (directly) for this purpose.
- The simulator breaks the input signal into short segments for which the channel is nearly constant.
 - Each segment is filtered with a slightly different set of taps.

```
while ( Start < length(InSig) )
    EndIn = min( Start+QDeltaH, length(InSig) );
    EndOut = EndIn + length(Powers)-1;
5 OutSig(Start:EndOut) = OutSig(Start:EndOut) + ...
    conv( Taps(kk,:), InSig(Start:EndIn) );
    kk = kk+1;
    Start = EndIn+1;</pre>
```


Testing SimulateCOSTChannel

 A simple test for the channel simulator consists of "transmitting" a baseband equivalent sinusoid.

3	<pre>%% Initialization ChannelParameters ChannelParameters.fo</pre>		% COST model parameters % Doppler frequency	
	fs SigDur	= 1e5; = 1;	% sampling rate % duration of signal	
8		SigDur; % ti		
	Received = Simula	ateCOSTChannel(S	ig, ChannelParameters, fs)	;

	©2010, BP. Paris	Wireless Communi	cations	81
Pathloss and Link Budget ০০০০০ ০০০০০	From Physical Propagation to N 000000000000000000000000000000000000		Statistical Characterization o	f Channels

Testing SimulateCOSTChannel

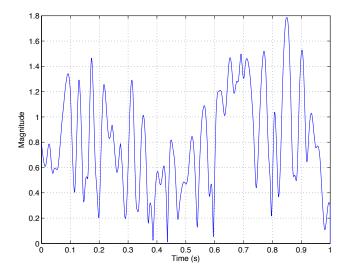


Figure: Simulated Response to a Sinusoidal Signal; $f_d = 10$ Hz, baseband equivalent frequency f = 0.

From Physical Propagation to Multi-Path Fading

Summary

- Highlighted unique aspects of mobile, wireless channels:
 - time-varying, multi-path channels.
- Statistical characterization of channels via
 - power-delay profile (RMS delay spread),
 - frequency coherence function (coherence bandwidth),
 - time coherence function (coherence time), and
 - Doppler spread function (Doppler spread).
- Relating channel parameters to system parameters:
 - signal bandwidth and coherence bandwidth,
 - frame duration and coherence time.
- Channel simulator in MATLAB.

	©2010, BP. Paris	Wireless Commun	ications	83
Pathloss and Link Budget ০০০০০ ০০০০০	From Physical Propagation to N 000000000000000000000000000000000000		Statistical Characterization	of Channels

Where we are ...

- Having characterized the nature of mobile, wireless channels, we can now look for ways to overcome the detrimental effects of the channel.
 - The importance of diversity to overcome fading.
 - Sources of diversity:
 - ► Time,
 - Frequency,
 - Space.
- Equalizers for overcoming frequency-selective fading.
 - Equalizers also exploit frequency diversity.

