

UiO Department of Technology Systems University of Oslo

TEK5530 - Measurable Security for the Internet of Things

L12 – Intrusion Detection

György Kálmán, UiO gyorgy.kalman@its.uio.no Josef Noll UiO josef.noll@its.uio.no

https://its-wiki.no/wiki/TEK5530

The Faculty of Mathematics and Natural Sciences

Intrusion Detection and Prevention

- What is an Intrusion Detection System
- Flavours of IDS
- Industrial case
 - □ Comparison to generic cases
 - → Physical process and safety
- Industrial examples
- Conclusion

Tek5530 Gy Kálmán, J. Noll

The Faculty of Mathematics and Natural Sciences

What is an Intrusion Detection System

- This is a practical example on fuzzy evaluation of different criteria and taking decisions by evaluating multi-dimension problems
- What is an intrusion: an attempt to break or misuse the system
- Might be internal or external source and can be physical, system or remote
- It is typically a set of entities distributed in the network and monitoring some network parameters

The Faculty of Mathematics and Natural Sciences

How an intrusion works

- Exploit different programming errors (e.g.: buffer overflow, no input validation)
- Unexpected input (e.g.: tamper with TCP checksum, fragmentation)
- Combination with creating special circumstances
- IDS need a baseline to work properly
- Baseline creation very much depends on the use
- We always assume, that they who attack behave differently

The Faculty of Mathematics and Natural Sciences

IDS flavours

- IDS can be based on:
 - Anomaly detection (heuristics) challenge is good training and right set of sensitivity
 - → Signature-based challenge is to deal with new attacks
 - Typically we use a combination
- Or by location:
 - → Host-based: the host os or application is running the logging, no additional hardware
 - → Network-based: filters traffic, independent of clients
- Distributed IDS e.g. AIProtection by Asus (TrendMicro)

The Faculty of Mathematics and Natural Sciences

IDS in industrial environments

- Two important factors: much more clean traffic baseline is possible and relation to physical process and safety
- We can't design a system to be secure forever count with failure: fail-safe, fail-operational, graceful state changes
- Tamper detection and evidence
- The only difference between systems that can fail and systems that cannot possibly fail is that, when the latter actually fail, they fail in a totally devastating and unforeseen manner that is usually also impossible to repair(1)
- In an industrial environment the assumption that attackers will behave differently is not necessarely true

The Faculty of Mathematics and Natural Sciences

IDS in industrial environments

- IDS is a system: evaluation of logs, evaluation of network traffic, maintenance on firewall and IDS infrastructure (software+taps)
- Getting a reaction is actually easier in the industrial environment: typical to have 24 hours staffing somewhere, also physical security and safety
- Challenges with shared infrastructure and suppliers
- Possible approach: whitelisting, stateful payload analysis (operational envelope)

The Faculty of Mathematics and Natural Sciences

Example rule

There are different ways, but take this snort rule as an example:

```
alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \
(content:"|00 01 86 a5|"; msg:"external mountd access";)
```


Tek5530 Gy Kálmán, J. Noll

The Faculty of Mathematics and Natural Sciences

Industrial attacks

- No difference here: injection, man-in-the-middle, replay etc.
- Long life, high utilization of equipment and legacy support open for more attacks then in an office case
- SCADA compared to DCS/PCS
- Resilience and restoration
- Because of the use of COTS products, you actually might use the very same exploits, like windows on HMI

The Faculty of Mathematics and Natural Sciences

Industrial examples, from ICS-CERT

Davis-Besse Nuclear Power Plant [2003]

- The Slammer worm penetrated a private computer network at Ohio's Davis-Besse nuclear power plant
- Disabled a safety monitoring system for nearly five hours
- Power plant was protected by a firewall
- In 1998 the same plant was hit by a tornado (natural disaster)

Tek5530 Gy Kálmán, J. Noll

The Faculty of Mathematics and Natural Sciences

Industrial examples, from ICS-CERT

Maroochy Shire Sewage Spill [2000]

- First recorded instance of an intruder that "deliberately used a digital control system to attack public infrastructure"
- Software on his laptop identified him as "Pumping Station 4" and after suppressing alarms controlled 300 SCADA nodes
- Disgruntled engineer in Queensland, Australia sought to win the contract to clean up the very pollution he was causing
- He made 46 separate attacks, releasing hundreds of thousands of gallons (264,000) of raw sewage into public waterways

Tek5530 Gy Kálmán, J. Noll

The Faculty of Mathematics and Natural Sciences

Industrial examples, from ICS-CERT

CSX Train Signaling System [2003]

- Sobig virus blamed for shutting down train signaling systems throughout the east coast of the U.S.
- Virus infected Florida HQ shutting down signaling, dispatching, and other systems
- Long-distance trains were delayed between four and six hours

Tek5530 Gy Kálmán, J. Noll

The Faculty of Mathematics and Natural Sciences

Conclusions on Intrusion Detection

- Intrusion Detection is an example, where a collection of parameters will serve as an input to a fuzzy system
- Industrial systems might be quite well suited for «sharp» heuristics
- The main difference is the physical process back (both plus and minus)
- Evaluation of the detection system is very much in line with the classification examples shown in previous lectures: one can define a set of metrics and analyise which level the system is can reach.

Tek5530 Gy Kálmán, J. Noll