Oslo Activities related to the Secure Connected Trustable Things

Christian Johansen

University of Oslo cristi@ifi.uio.no

@

19th SWITS Seminar within the Framework of the Swedish IT Security Network for PhD students 3-4 June 2019, Karlstad

I will present:

- 3 projects: SCOTT, IoTSec, MeasurEGrid
- 7 research topics

Main people involved, from Oslo (others mentioned further):

Olaf Owe

Josef Noll

Manish Shrestha

Farzane Karami

Shukun Tokas

Tore Pedersen

Namrah Azam

2/23Maunya Moghadam

Toktam Ramezani Elahe Fazeldehkordi

- 3 years project, financed in part by JU ECSEL and National governments research council
- 57 partners from 12 countries (EU + Brazil)
- total budget ca.39 M€, EU support 10.5 M€, national 12.5 M€

- 3 years project, financed in part by JU ECSEL and National governments research council
- 57 partners from 12 countries (EU + Brazil)
- total budget ca.39 M€, EU support 10.5 M€, national 12.5 M€
- Coordinated by Virtual Vehicle Institute in Austria;
 - Technology Coordinator: University of Oslo (UiO)
- NO partners: UiO; OsloMet;

Eye Networks; TellU; Telenor;

Smart Innovation Norway; Wolffia

- 3 years project, financed in part by JU ECSEL and National governments research council
- 57 partners from 12 countries (EU + Brazil)
- total budget ca.39 M€, EU support 10.5 M€, national 12.5 M€
- Coordinated by Virtual Vehicle Institute in Austria;
 - Technology Coordinator: University of Oslo (UiO)
- NO partners: UiO; OsloMet; Eye Networks; TellU; Telenor; Smart Innovation Norway; Wolffia
- 15 Industrial Use Cases / Pilots
- 4 Technology Lines with
 - ca. 50 Tech. Building Blocks
- Norway: Managin 5 BBs:
 - BB24.A Managed Wireless
 - BB24.I Semantic ABAC (UiO)
 - BB24.L Network slicing
 - BB26.F Measurable Security (UiO)
 - BB26.G Privacy labels (UiO)

UiO works on:

- Managed Wireless
 - Together with Eye Networks to detect faults in wireless infrastructure and to redress them remotely. Applied to home and office environments.
- Network slicing
 - Together with OsloMet and Telenor to provide wireless security based on SDN-style of network separations, applied to 5G technology and for IoT to have basic connectivity.
- WP30 Open Innovation Arena
 - Managing the innovation activities of SCOTT (not technical)
 Josef has very good experience with such technology transfer
- Semantic ABAC and Measurable security are mentioned later.
- Links: http://scott-project.eu NO site: https://its-wiki.no/wiki/SCOTT:Home

Josef Noll Maunya Doroudi Moghadam Hamed Arshad

Toktam Ramezani

IoTSec – Security in IoT for Smart Grids

- 5 years project, financed in part by Norwegian Research Council
- total budget ca.32 MNOK until 2020
- Coordinated by University of Oslo
- 6 founding partners (+ ca. 10 associated): UiO; Norwegian Computing Centre; Simula research labs; NTNU@Gjøvik; eSmart Systems; Smart Innovation Norway;

• Link: https://its-wiki.no/wiki/IoTSec:Home

Josef Noll Olaf Owe

eldehkordi Namr

Namrah Azam

IoTSec – Security in IoT for Smart Grids

- 5 years project, financed in part by Norwegian Research Council
- total budget ca.32 MNOK until 2020
- Coordinated by University of Oslo
- 6 founding partners (+ ca. 10 associated): UiO; Norwegian Computing Centre; Simula research labs; NTNU@Gjøvik; eSmart Systems; Smart Innovation Norway;
- Working on:
 - Smart Grid distribution net security;
 - SmartMeter communication security with Norwegian Energy Directorate (NVE)
 - Adaptive security;
 - Formal modelling and verification
 - Human aspects in security
- Link: https://its-wiki.no/wiki/IoTSec:Home

Josef Noll

Olaf Owe

Namrah Azam

MeasurEGrid – Measurable security and privacy for services on the Smart Electricity Grid

- 4 years project, financed in part by Norwegian Research Council and eSmart Systems (in Halden)
- 1 PhD student hired: Manish Shrestha (finishing 2020)

links

www.mn.uio.no/its/english/research/projects/measuregrid/

Manish Shrestha

Josef Noll

Davide Roverso

MeasurEGrid – Measurable security and privacy for services on the Smart Electricity Grid

- 4 years project, financed in part by Norwegian Research Council and eSmart Systems (in Halden)
- 1 PhD student hired: Manish Shrestha (finishing 2020)
- Working on:
 - Smart Grid Security Classification;
 - Applied to Smart Home Energy Management Systems;
 - Using the Multi-metrics approach to Measurable Security (see Josef)
 - Using the tool NOR-STA (from Gdansk University)
 - Extending ANSSI methodology with details about Connectivity and Protection mechanisms

Catastrophic	Class A	Class D	Class E	Class F	Class F
Major	Class A	Class B	Class D	Class E	Class F
Moderate	Class A	Class B	Class C	Class E	Class E
Minor	Class A	Class B	Class B	Class C	Class D
Insignificant	Class A	Class A	Class A	Class B	Class C
Impact / Exposure	E1	E2	E3	E4	E5

• links

www.mn.uio.no/its/english/research/projects/measuregrid/

Josef Noll

Davide Roverso

Christian Johansen

Table 5: Exposure evaluation: Connectivity (Sec. 3.1) vs. Protection Level

PL1	E4	E4	E5	E5	E5
PL2	E3	E3	E4	E4	E4
PL3	E2	E2	E3	E3	E3
PL4	E1	E1	E2	E2	E2
PL5	E1	E1	E1	E1	E1
Protection /	C1	C2	C3	C4	C5
Connectivity			0.5	C7	0.5

Measurable security, privacy, and dependability

- Josef has promoted during several projects (pSHIELD; nSHIELD; IoTSec)
- Multi-metrics for compositional measuring of SPD of complex syst.

Measurable security, privacy, and dependability

- Josef has promoted during several projects (pSHIELD; nSHIELD; IoTSec)
- Multi-metrics for compositional measuring of SPD of complex syst.
- Some Outcomes:
 - A book Info: ISBN 9781138042759 from CRC Press
 - PhD defended + seeral MSc theses
 - Adopted in the SCOTT project

Wireless Personal Communications April 2015, Volume 81, <u>Issue 4</u>, pp 1359–1376 | <u>Cite as</u>

Multi-Metrics Approach for Security, Privacy and Dependability in Embedded Systems

MMMM

Authors and affiliations

Iñaki Garitano 🖂 , Seraj Fayyad, Josef Noll

Authors

Article

13 Downloads Citations

The SHIELD Methodology

Edited by Andrea Fiaschetti 🔹 Josef Noll Paolo Azzoni 🔹 Roberto Uribeetxeberria

Semantic Attribute Based Access Control

Hamed Arshad

- Is PhD student in the Reliable Systems group at UiO
- Working with SCOTT on the Semantic ABAC tech.block

Josef Noll

Christian Johansen

13 / 23

Semantic Attribute Based Access Control

- Hamed Arshad
 - Is PhD student in the Reliable Systems group at UiO
 - Working with SCOTT on the Semantic ABAC tech.block
- Combining Semantic technologies with Attribute Based Access Control
 - Attributes for: *subjects, resources, context, action*, have values
 - Are mutable, e.g., nrFilmViews++
 - Are used to define a Role (dynamically):
 Position=Doctor AND Speciality=Cardeology

Josef Noll

Semantic Attribute Based Access Control

- Hamed Arshad
 - Is PhD student in the Reliable Systems group at UiO
 - Working with SCOTT on the Semantic ABAC tech.block
- Combining Semantic technologies with Attribute Based Access Control
 - Attributes for: *subjects, resources, context, action*, have values
 - Are mutable, e.g., nrFilmViews++
 - Are used to define a Role (dynamically): Position=Doctor AND Speciality=Cardeology
- Ontology reasoning to:
 - Combine equivalent terminology Doctor == Lege
 - Infere complex policies "Adult" can be inferred from "DriverLicence" or "Age > 18"

Josef Noll

Christian Johansen

• Extending the XACML architecture

• Adding a component to the architecture

Attribute Based Encryption with Enforcible Obligations using Intel SGX

- Hamed did internship at Chalmers and started work with Gerardo and Pablo on
 - OB-ABE: Adding <u>enforcible obligations</u> over arbitrary ABE schemes
 - Adding Ontology reasoning to ABE

Hamed Arshad

Pablo Picazo-Sanchez (Chalmers/Gothenburg)

Gerardo Schneider

Christian Johansen (Chalmers/Gothenburg U.)

16/23

Attribute Based Encryption with Enforcible Obligations using Intel SGX

- Hamed did internship at Chalmers and started work with Gerardo and Pablo
 on
 - OB-ABE: Adding <u>enforcible obligations</u> over arbitrary ABE schemes
 - Adding Ontology reasoning to ABE
- More on <u>OB-ABE</u>:
 - Uses hardware security guarantees from Intel SGX to enforce before decryption the execution of Obligations like: sendEmail; notifyBySMS; log;
 - All clients much have CPUs with Intel SGX enabled
 - Properties :
 - A) Enforcible Obligations (proven using ProVerif)
 - B) Backward Compatibility
 - C) Conservative Extenssion (wrt. ABE Sec. Props.)

Hamed Arshad

Pablo Picazo-Sanchez (Chalmers/Gothenburg)

Gerardo Schneider (Chalmers/Gothenburg U.)

Fig. 4: Decryption process of the OB-ABE scheme.

Wrappers for Secure Concurrent Objects

- Farzane Karami
 - Is PhD student in the Reliable Systems group at UiO
 - With main supervisor Olaf Owe
- Internship at Chalmers and started working with Gerardo as well

Farzane Karami

Gerardo Schneider (Chalmers/Gothenburg U.)

Christian Johansen

18 / 23

Wrappers for Secure Concurrent Objects

 Farzane Karami Is PhD student in the Reliable Systems group at UiO With main supervisor Olaf Owe 	Basic constructs $X := E$ $X := new C(\overline{E})$ $X := new_{Lev} C(\overline{E})$ $return E$
Internship at Chalmers and started working with Gerardo as well	<pre>if C th S [el S'] fi while C do S od</pre>
Information Flow security for Concurrent Object-Oriented languages with Futures 	$Call constructs$ $!M(\overline{E})$ $Q!M(\overline{E})$ $Q!O.M(\overline{E})$
 based on the Actor model of concurrency (e.g., Scala, Creol) 	Access constructs $Q?(\overline{X})$ [pupit Q2]: $Q2(\overline{X})$
 uses wrappers arround both objects and futures to manage the information flow at run-time 	Figure 2: Unified Synta
 This is a <u>trade-off</u> between Static-analysis which is restrictive and 	Q!lab. detectResult(a) lab

- Static-analysis, which is restrictive, and
 Dup time analysis, which is clow
- Run-time analysis, which is slow

Olaf Owe

Gerardo Schneider (Chalmers/Gothenburg U.)

Christian Johansen

7 Personnel d

Figure 8: Information flow security regarding wrappers.

prov

Person a

0?(r)

Object-Oriented and Privacy-by-Design

- Shukun Tokas
 - Is PhD student in the ConSeRNS interdisciplinary group at UiO
 - With main supervisor Olaf Owe
- Develop Object-Oriented programming languages
 - Extended with privacy specification concepts
 - Principals ; Purposes ; Access rights
 - And Proof techniques to guarantee privacy policy compliance
- Goal: "To help bridge the gap between GDPR and programmers"

Olaf Owe

Object-Oriented and Privacy-by-Design

- Shukun Tokas
 - Is PhD student in the ConSeRNS interdisciplinary group at UiO
 - With main supervisor Olaf Owe
- **Develop Object-Oriented programming languages**
 - Extended with privacy specification concepts
 - Principals ; Purposes ; Access rights
 - And Proof techniques to guarantee privacy policy compliance
- Goal: "To help bridge the gap between GDPR and programmers"
- Details:
 - Object Interfaces are the Principals; —
 - Latice of Purposes and Access rights are used to Annotate Methods
 - Type-and-effect system is used to prove compliance by static analysis

Olaf Owe

::= read | incr | rincr | write | selfbasic access rights A $A \sqcap A \mid A \sqcup A$ combined access rights (I, R, A) \mathcal{P} policy ::= $::= \{\mathcal{P}^*\} \mid \mathcal{P}s \sqcap \mathcal{P}s \mid \mathcal{P}s \sqcup \mathcal{P}s$ $\mathcal{P}s$ policy set \mathcal{RD} ::= purpose R^+ [where Rel [and Rel]*] purpose declaration $Rel ::= R^+ < R^+$ sub-purpose declaration

interface Doctor **extends** Nurse{

Void doctorTask(Patient p) :: \mathcal{P}_{Doc}

Security Ceremonies

- Concept coined in 2007 by Carl Ellison
- Two main aspects/challenges
 - Incorporating the Human as nodes
 - in such a way to make analysis and security proofs possible.
 - Composition of Protocols
 - in parallel, sequential, vertical, etc.
- Tore Pedersen from the Norwegian Defence Intelligence School does research in Behavioural Sciences
 - We focus on human models (e.g., persona)
 - How can these be used by formal methods?

Thank you for your Attention!

<u>Christian Johansen</u> University of Oslo cristi@ifi.uio.no

Olaf Owe

Josef Noll

Manish Shrestha

Farzane Karami

Toktam Ramezani

Elahe Fazeldehkordi

Shukun Tokas

Tore Pedersen

Namrah Azam

