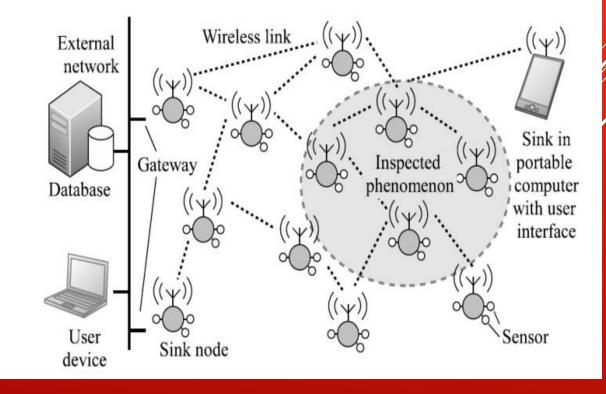

WIRELESS TECHNOLOGIES

Bluetooth, ZigBee and ANT

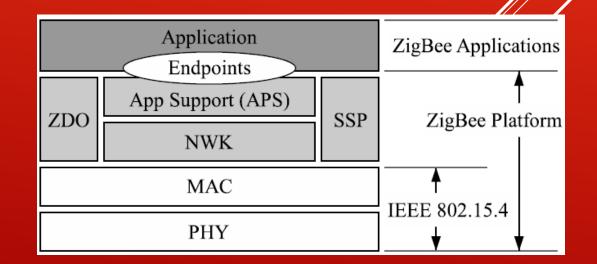
Thomas Aasebø


OVERVIEW

- What are wireless sensor networks?
- What are personal area networks?
- What are these networks typically used for?
- ► Bluetooth, ZigBee and ANT

WIRELESS SENSOR NETWORKS

- ► What is a **sensor node**?
- What is a sensor network?
- Potential applications?
- What are low-power WSNs, and what are their characteristics?
- ► Examples


WIRELESS PERSONAL AREA NETWORKS

- ► What is a **Personal Area Network**?
- ► Potential applications?
- ► Examples

ZIGBEE - INTRODUCTION

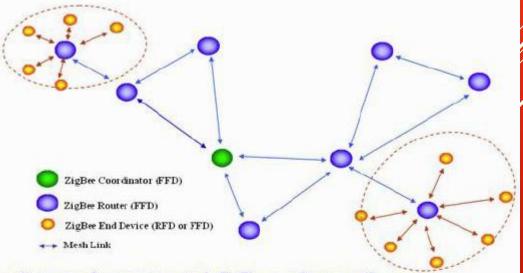
- ► What is **ZigBee**?
- Who created it? Who owns the technology?
- ► Why the strange **name**?
- ► What is it primarily **used** for?

ZigBee° Alliance

		Wi	-FI	Ch.	1					1	WI-F	7(Ch.	6						WI-	FI (ch.	11					
	F		21	11		14		2	100	2	17		18		61		R		21		3	12		24		25		26
2402 MHz	2404 MHz 2406 MHz	2408 MHz	2410 MHz	2414 MHz	2418 MHz	2420 MHz	2424 MHz	2426 MHz			2434 MHz				2444 MHz 2446 MHz		2450 MHz	2452 MHz	2456 MHz	2458 MHz	2462 MHz	2464 MHz	2468 MHz	2470 MHz	2472 MHz	2474 MHz	2478 MHz	2480 MHz
							B	AN	Ð	•	co	v	EF	A	GI	c	D	A'	ГА	R	АT	Е				NN IBH		_
	(2.4	40	H	z		I	S 3	И		W	0	rk	İv	vid	e	-	2:	50	kh	ps	;		1	1.	26		
	(86	81	MI	Ξz)					E	u	ro	pa				2() k	bp	s		10 H 1		(I		
	(91	51	MI	Iz)	I	SN	4		A	m	ier	ic	as			4() k	bp	s				1-	10		

CHARACTERISTICS

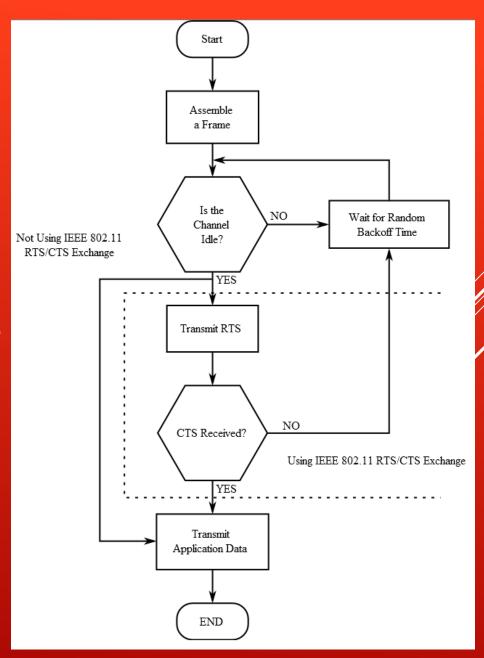
- To provide flexibility, three unlicensed bands are used depending on location 2.4 GHz, 915 MHz and 868 MHz.
- Sixteen channels are allocated in the 2.4 GHz band, each channel being 2 MHz wide and requiring 5 MHz of spacing.
- The 2.4 GHz band provides up to 250 kbit/s, 915 MHz provides up to 40 kbit/s and 868 MHz provides a data rate up to 20 kbit/s.
 - ► Throughput is expected to be around 10 to 115.2 kbit/s.
- ► Direct-sequence spread spectrum(DSSS) coding is utilized.
 - ▶ In the 868 and 915 MHz bands, **binary phase-shift keying** (BPSK) is used.
 - Offset quadrature phase-shift keying (OQPSK) that transmits two bits per symbol is used in the 2.4 GHz band.


TRANSMITTER OUTPUT POWERS

- Output power is minimum 0.5 mW (-3dBm) and can be increased to approximately 10 dBm depending on regulation.
 - ► Mostly used with 0 dBm.
 - ► Typical range between **10-100m**, depending on power and usecase.
- Receiver sensitivity is around -92 dBm for 868/915 MHz and -85 dBm for 2.4 GHz.

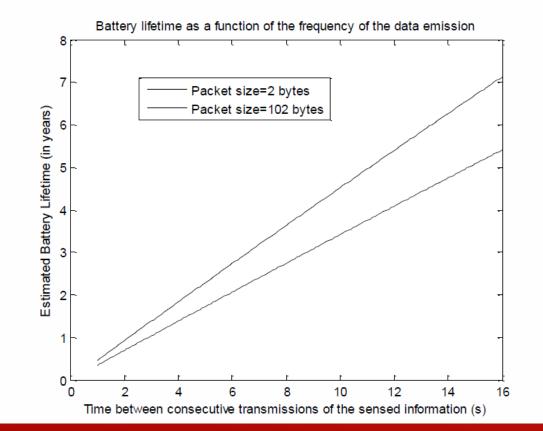
NODE TYPES AND TOPOLOGIES

► Full Function Device


- ► FFD contains the entire protocol and can be the **network coordinator**
- Reduced Function Device
 - RFD contains only the bare minimum of the protocol. Typically used as switches or as sensors. Objective is to reduce cost and power consumption.
- Supports star and mesh topologies (or a combination of both)
 - ► A network can contain up to **255 members**, where one is the coordinator.
 - ▶ The coordinator initiates, terminates and routes communication.
- In a star network, all the nodes communicate directly with a coordinator.
- In a mesh network, only FFDs can participate. There is still only one coordinator.

- <u>Star</u> networks support a single ZigBee coordinator with one or more ZigBee End Devices (up to 65,536 in theory)
- <u>Mesh</u> network routing permits path formation from any source device to any destination device

INTERFERENCE


- Uses carrier sense multiple access with collision avoidance – CDMA/CA.
 - ► ACK messages are transmitted without this mechanism.
- ZigBee PRO Nodes can request that the coordinator change frequencies due to interference (frequency agility).
 - This, however, obviously only works if the request gets through.

POWER CONSUMPTION

- Typically uses one or two AA batteries, peak current consumption can be up to 40 mA.
- For most uses, batteries will last several years. This depends on frequency of transmission, and packet size.

Expected Battery lifetime (in optimal conditions) of a mote as a function of the frequency of data emission for two different sizes of sensed data (battery capacity is assumed to be 1,200 mAh).

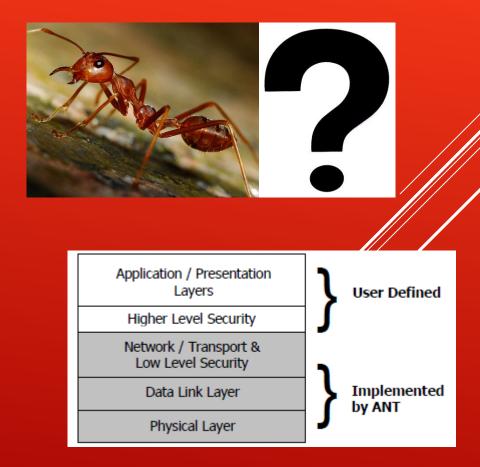
ZIGBEE PRO

- ZigBee has two stack profiles, ZigBee and ZigBee Pro.
- ZigBee Pro is optimized for larger networks, but may require more memory and be more expensive.

	7:-0	7:		
Feature	ZigBee Feature Set	ZigBee PRO Feature Set		
Network Scalability	Easily supports networks of hundreds of devices	Advanced support for networks of thousands of devices		
Fragmentation	0	X		
Frequency Agility	0	X		
Channel Selection	X	X		
Automated Device Address Management	X	X+		
Group Addressing	X	X+		
Wireless Commissioning	X	X+		
Centralized Data Collection	X	X+		
Device Maintenance & Network Recovery	X	X		
Group Broadcasts	X	X		
Compatibility	Devices can participate in ZigBee and ZigBee PRO networks	Devices can participate in ZigBee and ZigBee PRO networks		
AES128 Encryption/ Authentication/ Trust Centers	x	×		
IEEE 802.15.4 Physical Radio	x	×		
Global Operation in 2.4 GHz plus 915MHz Americas / 868 MHz Europe	x	×		
Single-hop Extended Range - up to Hundreds of Meters	x	×		
Reliable Self-Healing Mesh Network	X	X		
Ultra Low-Power, Long Battery Life	X	X		
Low Cost	X	X		
Network Traffic Load	Average	Increased		
	-			

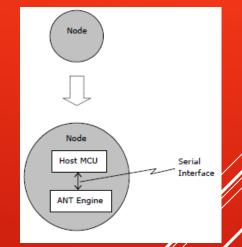
Legend:

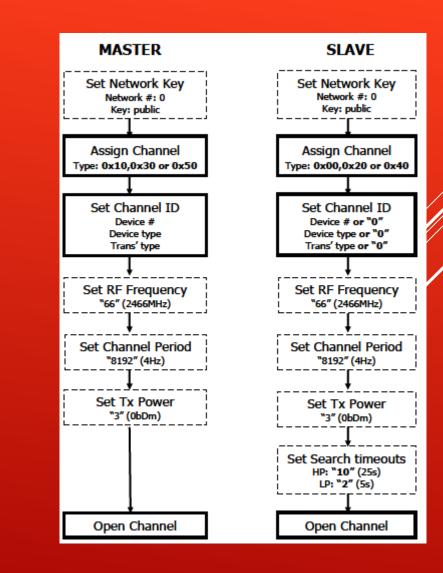
X - Standard


+ - Optimized

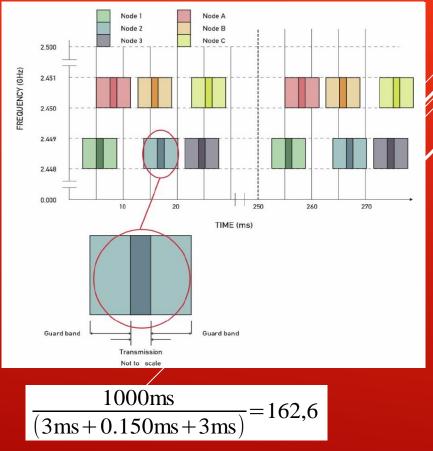
0 - Optional

ANT - INTRODUCTION

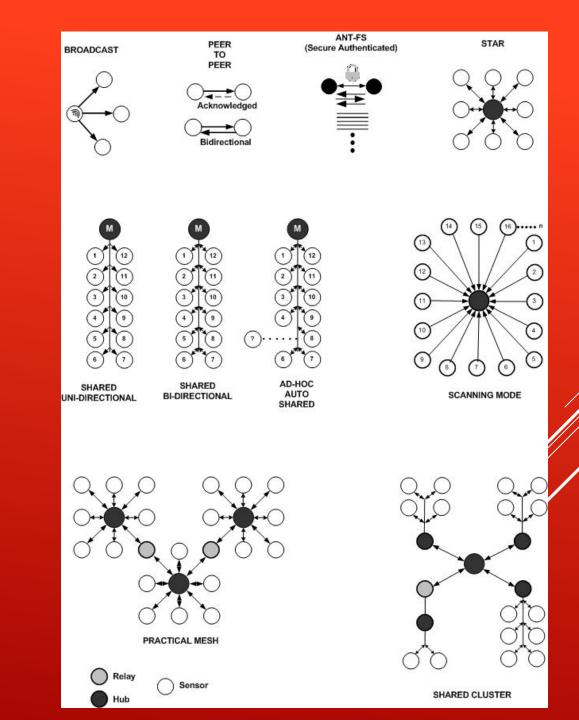

- What is ANT?
- ► Who **created** it? Who **owns** the technology?
- ► Why the **name** ANT?
- ► What is it primarily **used** for?


CHARACTERISTICS

- Operates in the 2.4 GHz band.
- ANT uses virtual channels, and the RF frequency is an 8 bit variable which accepts numbers from 0 to 124. This gives us a range from 2400 MHz to 2524 MHz, with the physical channels being 1 MHz wide.
 - Multiple virtual channels can coexist on a single RF frequency, depending on the frequency of transmission.
 - ► The channels will adapt their transmission timeslots automatically.
 - ▶ There is **no central clock**, each node just starts transmitting and adjusts if needed.
- Supports data rate of 1 Mbp/s.
 - Actual throughput usually around 20kbp/s.
- Has a function called SensRcore, where an application can be stored on the chip itself – making it require no external resources but power.
- ► Modulation: GFSK.


ANT CHANNELS

- The use and configuration of ANT is based on channels, and each ANT node connects to other nodes through dedicated channels. Each node can participate in up to 8 channels.
- There are usually two nodes per channel, but you can configure it to be a shared channel with multiple participants.
- Every channel needs at least one slave and one master.
 - ► The master **transmits** data, and the slave **receives**.
 - A node can be configured to be both a slave and a master simultaneously, but this has to be on different channels.


INTERFERENCE

- ANT uses a selfadjusting isochronous TDMA technology in order to avoid collisions from other radios in the 2.4 GHz band.
- ANT nodes will begin to transmit at the chosen interval, but will adjust their timeslots if interference is discovered.
- Since each radio only transmits for less than 150 µs, each 1 MHz frequency can be divided into several hundred timeslots depending on message frequency.
- ANT has frequency agilitity as well, and will change frequencies if too much interference is detected.
- Example: number of available timeslots in a channel with 1Hz message frequency and 3ms guard bands, assuming 150 µs transmit time.

TOPOLOGIES

- ANT supports from basic and peer to peer to complex practical mesh network topologies.
- No coordinator or network level master is required to accomplish complex topologies.
- An ANT shared channel is able to operate 65533 nodes.

ANT DATATYPES

- ANT supports three datatypes:
 - Broadcast sent every timeslot, no ACK
 - ► Acknowledged
 - Burst bursting data at max speed until it's all transmitted.
- Datatypes are application controlled, and any type can be used at will.
 - ► Exception: one-way channels.

Data Type	Channel Direction	Description	
Broadcast	Forward	Default Data Type. Broadcast messages sent every timeslot (unless otherwise requested) and will be retransmitted if ANT has not received any new data from the master's host MCU	
	Reverse	Broadcast messages optionally sent each channel timeslot. Only sent if specifically requested by the slave's host MCU. Sent only once, there is no retransmission	
Acknowledged	Forward	If requested, sent on the next channel timeslot If the data type isn't specified as Acknowledged or if no new data is provided before the next transmit time slot, the message is resent as Broadcast data type on the next channel time slot	
	Reverse	Acknowledged data types only sent when specifically requested by the slave's host MCU. Not re-transmitted	
Russt	Forward	A burst transfer will commence at start of the next timeslot. Bursts packets synchronize off each other	
Burst	Reverse	Burst data types only sent when specifically requested by the slave's host MCU. Not re-transmitted	

TRANSMITTER OUTPUT POWERS

- Transmitters can be configured with output powers between -20 and 0 dBm.
- ► Typical range at 0 dBm is around **30 meters** under ideal conditions.
- The percentage of payload data in a package is given by the developer to be 47%.

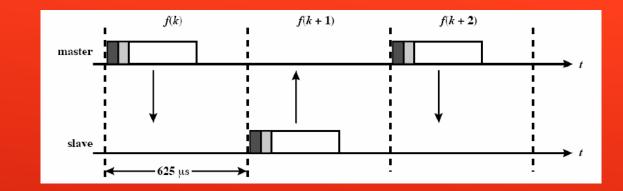
POWER CONSUMPTION

- Power consumption is directly proportional to message frequency.
 - Message frequency can be adjusted from 0.5 to 200 Hz.
- Usually runs on coin cell batteries. Expected lifetime is measured in years.

Quick Reference Data		
Message rate	0,5 – 200	Hz
Idle current consumption, no communications	2	μA
Peak current consumption RX mode	22	mA
Peak current consumption TX @ 0 dBm	16	mA
Average system current consumption per TX message 1	39,4	μA
Average system current consumption per RX message ¹	43,1	μA
Max # of simultaneous connections ²	>65000	connections
Maximum sustained transfer rate (all data – no overhead) ³	20	kbps
CR2032 Battery life in typical sensor application ⁴	15	years

 $^{\rm 1}$ 8 bytes payload data – no additional overhead required. Message interval of 2s $^{\rm 2}$ Using shared channel network

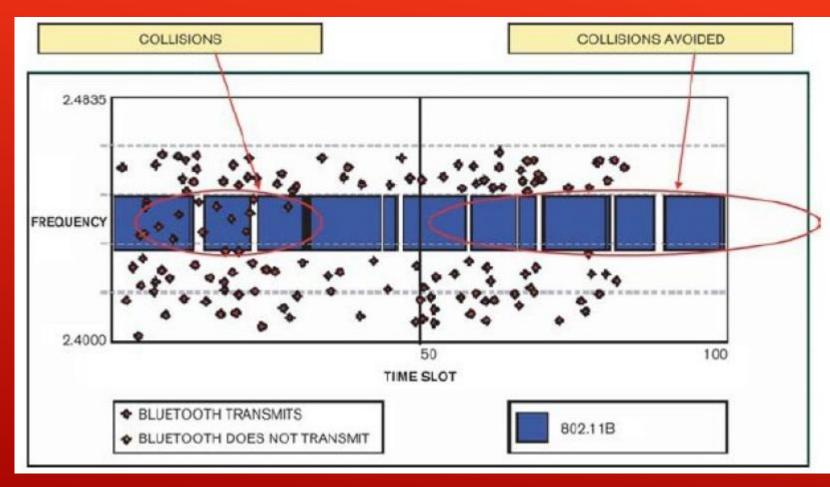
³ Transfer rates refers to data rate of the end application's message payload ⁴ Message interval of 2s, 1 hour/day usage (Unidirectional communication)



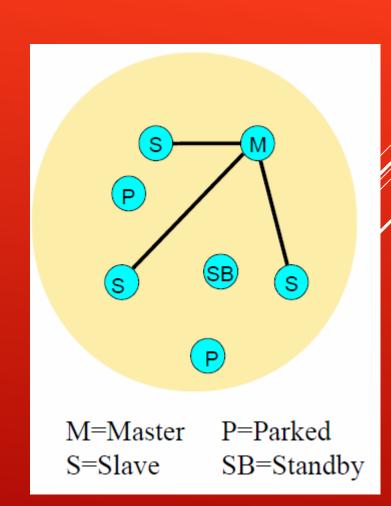
BLUETOOTH - INTRODUCTION

- ► What is **Bluetooth**?
- ► Who created it? Who owns the technology?
- Why the strange name and logo?
- ► What is it primarily **used** for?

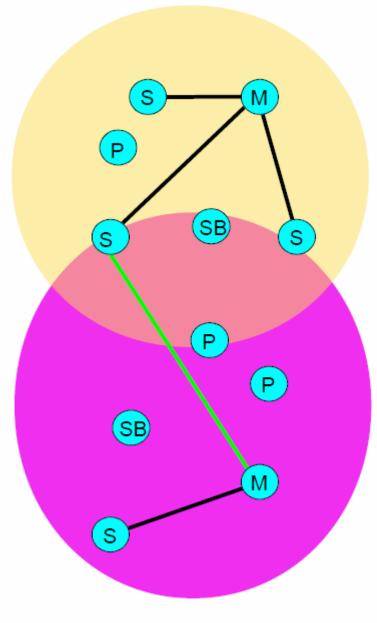
Audio Apps	Managen	ent Apps Phor		e Apps	Networking Apps	vCard	Application Layer		
		SDP	TOP	AT	AT BNEP		Ţ		
	Control	SDP	TCS			Middleware Layer			
Audio			L2CAP						
			Ī						
Baseband Transport Layer									
Radio									
Required Optional Not part of Bluetooth standard									


CHARACTERISTICS

- Operates in the **2.4 GHz** band
- Supports data rates up to 3 Mbps
 - Version 3.0 and up can run 24 Mbps over a collocated 802.11 link
- Uses Frequency Hopping spread spectrum (FHSS), which divides the frequency band into a number of channels (2.402 - 2.480 GHz yielding 79 channels – 1 MHz wide).
 - ► 32 advertising channels
- Radio transceivers hop from one channel to another in a pseudo-random fashion, determined by the master
- ► Supports up to 8 devices in a piconet (1 master and 7 slaves).
 - Piconets can combine to form scatternets


INTERFERENCE

- Adaptive frequency hopping
- Bluetooth will record which channels are busy, avoiding them in the future

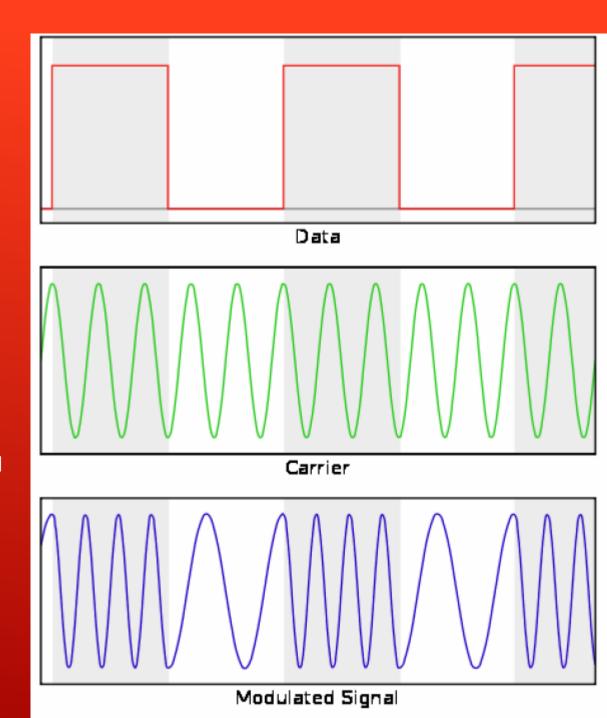

PICONETS

- A collection of devices that share a channel
- One unit will act as a master and the others as slaves for the duration of the piconet connection.
- ► Master sets the clock and hopping pattern (TDMA + TDD).
- ► Each piconet has a **unique hopping pattern/ID**.
- Each master can connect to 7 simultaneous or 200+ inactive (parked) slaves per piconet.

SCATTERNETS

- A Scatternet is the linking of multiple collocated piconets through the sharing of common master or slave devices.
- ► A device can be both a **master** and a **slave**.
- Radios are symmetric (same radio can be master or slave)
- Each piconet runs an individual instance of FHSS, making the chance of interference between overlapping piconets low. This combination gives a scatternet a form of CDMA with FHSS.

M=Master P=Parked S=Slave SB=Standby


TRANSMITTER OUTPUT POWERS

- Class 1: greatest distance (100m)
 - ▶ 1 mW (0dBm) to 100mW (+20dBm)
 - power control mandatory
- ► Class 2: (10m)
 - ▶ 0.25 (-6dBm) ~ 2.4mW (+4dBm)
 - power control optional
- ▶ Class 3: (1m)
 - ► lowest power, 1mW

MODULATION

- Gaussian frequency-shift keying
 - Uses two separate frequencies to transfer -1 and 1 (1 and 0).
 - ► Minimum **deviation** is 115 kHz.

POWER CONSUMPTION - ESTIMATES

Power varies with implementation – numbers based on 600 mAh battery and internal amplifier

- Standby current < 0.3 mA</p>
 - ► \rightarrow 3 months
- ► Voice mode 8-30 mA
 - ► →75 hours
- Data mode average 5 mA
 - ▶ (0.3-30mA, 20 kbit/s, 25%)
 - ► →120 hours
- ► May enter sleep mode with approximately **60 µA** power consumption.

BLUETOOTH LOW ENERGY

Implemented in Bluetooth v4.0

- Single mode/dual mode
- ► Not backwards compatible
- ► FHSS over 39 channels instead of 79
 - ► 3 advertising channels
- ► Peak current draw around 12.5 mA
 - ► Can operate on **coin cell** battery
- Efficiency: $\frac{Payload}{Total Length} = \frac{31}{47} = 0,66$
 - ► 66 percent efficient.

Classic Bluetooth vs. Bluetooth low energy

The table below shows a high level comparison between classic *Bluetooth (also known as Bluetooth* BR/EDR) and *Bluetooth* low energy technologies.

Technical specification	Classic <i>Bluetooth</i> technology	Bluetooth low energy technology					
Radio frequency	2.4GHz	2.4GHz					
Distance/Range	~10-100 meters	~10-100 meters					
Symbol rate	1-3Mbps	1Mbps					
Application throughput	0.7-2.1Mbps	305kbps					
Nodes/Active slaves	7	Unlimited					
Security	56 to 128 bit	128-bit AES					
Robustness	FHSS	FHSS					
Latency (from not connected state to send data)	100+ ms	<6ms					
Government regulation	Worldwide	Worldwide					
Certification body	Bluetooth SIG	Bluetooth SIG					
Voice capable	Yes	No					
Network topology	Point-to-point, scatternet	Point-to-point, star					
Power consumption	1 (reference value)	0.01 to 0.5 (use case dependent)					
Service discover	Yes	Yes					
Profile concept	Yes	Yes					
Primary use cases	Mobile phones, headsets, stereo audio, automotive, PCs etc.	Mobile phones, gaming, PCs, sport & fitness, medical, automotive, industrial, automation, home electronics etc.					