

Project no: 269317

nSHIELD

new embedded Systems arcHItecturE for multi-Layer Dependable solutions

Instrument type: Collaborative Project, JTI-CP-ARTEMIS

Priority name: Embedded Systems

D4.2: Preliminary SPD Network Technologies Prototype

Due date of deliverable: M18 –2013.02.28

Actual submission date: M18 – 2013.02.28

Start date of project: 01/09/2011 Duration: 36 months

Organisation name of lead contractor for this deliverable:

University of Genova, UNIGE

 Revision [Version 2.0]

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2012)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services) X

CO Confidential, only for members of the consortium (including the Commission Services)

Page ii Version 2.0

Document Authors and Approvals

Authors
Date Signature

Name Company

Kresimir Dabcevic UNIGE 04/02/13

Lucio Marcenaro UNIGE 04/02/13

Virgilio Esposto SES 04/02/13

Ester Artieda INDRA 12/02/13

Iñaki Arenaza MGEP 20/02/13

Roberto Uritbeetxeberria MGEP 20/02/13

Iñaki Eguia Elejabarrieta TECNALIA 20/02/13

Arkaitz Gamino TECNALIA 20/02/13

Luca Geretti UNIUD 22/02/13

Antonio Abramo UNIUD 22/02/13

Kiriakos Georgouleas HAI 23/02/13

Dimitris Geneiatakis TUC 23/02/13

Georgios Hatzivasilis TUC 23/02/13

Alexandros Papanikolaou TUC 23/02/13

Konstantinos Rantos TUC 23/02/13

Harry Manifavas TUC 23/02/13

Andreas Papalambrou ATHENA 27/02/13

Dimitrios Serpanos ATHENA 27/02/13

Reviewed by

Name Company

Approved by

Name Company

Version 2.0 Page iii

Applicable Documents

ID Document Description

[01] TA nSHIELD Technical Annex

Modification History

Issue Date Description

V1.0 04.02.2013 First version of the document, by UNIGE

V1.1 12.02.2013 Add link layer security, by INDRA

V1.2 20.02.2013 Add Intrusino Detection for WSN, by MGEP

V1.3 22.02.2013 Added contribution by UNIUD

V1.4 23.02.2013 T-GPSR implementation, by HAI

V1.5 23.02.2013 Formatting, by UNIGE

V1.6 27.02.2013 ATHENA contribution added

V2.0 27.02.2013 Final proofreading and formatting, by UNIGE

Page iv Version 2.0

Executive Summary

This deliverable is focused on the detailed description of the network technologies that are currently under

development in work package 4, conforming to the preliminary architecture and the composability

requirements specified in deliverables D2.4 and D2.5. These technologies will be made available to the

application scenarios and can be used as building blocks for the project demonstrators. This deliverable

will be updated and refined in the second part of the project based on the final requests received from the

application scenarios and on the refined system architecture, metrics and composition strategy to be

followed.

Version 2.0 Page v

Contents

1 Introduction .. 13

2 SPD-driven Smart Transmission Layer 14

2.1 Smart Transmission Layer test-bed prototype 14

2.1.1 Basic description... 14
2.1.2 Prototype setup... 14
2.1.3 Remote control of the radio .. 17
2.1.4 Waveform analysis ... 19
2.1.5 Interference detection ... 20
2.1.6 Energy detection spectrum sensing ... 22

2.2 Algorithm for countering Smart Jamming Attacks in
centralized networks .. 23

2.2.1 Description .. 23

3 Distributed self-x models ... 27

3.1 Recognizing & modelling of denial-of-service attacks 27

3.1.1 Basic description of the DoS scheme operation 27
3.1.2 Architecture ... 27
3.1.3 Interface between modules .. 28
3.1.4 Algorithmic operation .. 29
3.1.5 Operation of the DoS attack detection scheme in the

simulator ... 30

3.2 Model-based framework for dependable distributed
computation .. 33

3.2.1 Artifact descriptors .. 34
3.2.2 Data types ... 34
3.2.3 Data communication ... 36
3.2.4 Data conversion .. 37

4 Reputation-based resource management technologies 38

4.1 Reputation based Secure Routing .. 38

4.2 nSHIELD Reputation scheme .. 38

4.2.1 Trusted GPSR implementation ... 44
4.2.2 Intrusion Detection in Wireless Sensor Networks 62

5 Trusted and dependable connectivity 69

5.1 Link layer security .. 69

5.1.1 Creating a root CA for the whole WSN (nSHIELD) 69
5.1.2 Proposed solution ... 73
5.1.3 Algorithms implementation ... 74
5.1.4 Test programs ... 76
5.1.5 Analysis results ... 77

Page vi Version 2.0

5.2 Secure communication protocols on the network layer 79

5.2.1 Scheme prerequisites ... 79
5.2.2 Compressed IPsec ESP and AH... 81
5.2.3 Compressed IPsec ESP with AES in CCM* mode 82
5.2.4 Experimental results .. 85

5.3 Access control in Smart Grid networks 86

6 References ... 89

Version 2.0 Page vii

Figures

Figure 2-1: STL - OMBRA v2 nSHIELD Power node - system architecture 15

Figure 2-2: STL - Implementations of SWAWE HH and the nSHIELD Power node 16

Figure 2-3: STL - Smart Transmission Layer test bed implementation .. 16

Figure 2-4: STL - Triggered TRAP messages for a turn on - log on - change waveform sequence on
HHs .. 18

Figure 2-5: STL - SBW waveform in the frequency domain - max hold ... 19

Figure 2-6: STL - VULOS waveform in the frequency domain - max hold 20

Figure 2-7: STL - BER and Link quality level vs. interference amplitude of interfering pulse signal 21

Figure 2-8: Link quality level vs. interference amplitude for different interfering signals 22

Figure 3-1: DoS Attack Detection Algorithm ... 27

Figure 3-2: DoS attacks – fields composing the message ... 28

Figure 3-3: DoS Attacks - wireless MiXim network ... 33

Figure 4-1: Reputation technologies - Animated example of the proposed reputation and trust
scheme by NAM .. 44

Figure 4-2: Trusted GPSR - Active Message type position in 802.15.4 Frames 46

Figure 4-3: Trusted GPSR - TinyOS interfaces .. 47

Figure 4-4: Trusted GPSR - Components wiring with provided and used interfaces in T-GPSR
implementation .. 48

Figure 4-5: Trusted-GPSR - Beacon Frame format .. 49

Figure 4-6: Trusted-GPSR - Network layer header .. 49

Figure 4-7: Trusted GPSR - Reputation frame ... 51

Figure 4-8: Trusted GPRS - Debug statements in the output file of a TOSSIM simulation. 60

Figure 4-9: Trusted GPSR - Daintree sensor network analyser ... 61

Figure 4-10: Trusted GPSR - frames capture from Daintree SNA ... 61

Figure 4-11: Trusted GPSR - Sensor node monitoring using terminal application and Uprintf 62

Figure 4-12: IDS - schematic .. 63

Figure 5-1: Link layer security - Generated certificate .. 71

Figure 5-2: Link layer security - generated certificate ... 72

Page viii Version 2.0

Figure 5-3: Link layer security - Energy consumption on transmission ... 78

Figure 5-4: Link layer security - Energy consumption on reception .. 78

Figure 5-5: Network layer security - LOWPAN_IPHC base format ... 79

Figure 5-6: Network layer security - IPv6 Compressed Datagram .. 79

Figure 5-7: Network layer security - LOWPAN_NHC encoding .. 80

Figure 5-8: Network layer security - LOWPAN_NHC format for IPv6 Extension header 80

Figure 5-9: Network layer security - LOWPAN_NHC_AH header encoding 81

Figure 5-10: Network layer security - LOWPAN_NHC_ESP header encoding 81

Figure 5-11: Network layer security - ESP payload .. 82

Figure 5-12: Network layer security - LOWPAN_NHC_ESP Header format 83

Figure 5-13: Network layer security - 1st Block ... 83

Figure 5-14: Network layer security - Flags Byte .. 84

Figure 5-15: Network layer security - 13 byte nonce filed ... 84

Figure 5-16: Network layer security – security level byte structure ... 84

Figure 5-17: Network Layer Security - processing speed measurements .. 86

Figure 5-18: Network layer security - Energy consumption measurements 86

Figure 5-19: Smart Grids - Security Setup class for DLMS Cosem .. 88

Tables

Table 2-1: STL - HH's Parameters that may be remotely controlled via SNMP 17

Table 2-2: STL - HH's Parameters that may be TRAPped via SNMP .. 18

Table 3-1: DoS Attacks – simulation results ... 33

Table 4-1: Reputation technologies - Features of the reputation & trust scheme and their supported
implementations ... 40

Table 4-2: Trusted GPSR - SPD Level and implemented algorithms in the trust module 53

Table 5-1: Link layer security - Energy consumption .. 78

Table 5-2: Network layer security - security level field values .. 84

Table 5-3: Network layer security - Comparison of packet overhead ... 85

Version 2.0 Page ix

Programing Listing

Program listing 1: SJA – basic jamming algorithm for naïve and tracking jammers 23

Program listing 2: SJA - Jamming implementation ... 24

Program listing 3: SJA - adaptive frequency jammer ... 24

Program listing 4: SJA - Reputation attacking jammer ... 25

Program listing 5: SJA - frequency switching algorithm ... 25

Program listing 6: SJA - reputation mechanism ... 26

Program listing 7: SJA - trajectory altering mechanism .. 26

Program listing 8: SJA - list of identified jammers .. 26

Program listing 9: DoS attacks - code example .. 30

Program listing 10: DoS attacks - structure of DoS InputPower ... 30

Program listing 11: DoS Attacks - generating traffic ... 32

Program listing 12: Repositories fragment of a YAML artifact descriptor ... 34

Program listing 13: DDC - YAML artifact descriptor of a type .. 35

Program listing 14: DDC - Types and repositories fragment of a YAML artifact descriptor 35

Program listing 15: DDC - YAML artifact descriptor of a type for an x-y couple of reals 36

Program listing 16: Reputation technologies – receiving new direct knowledge (DK) 41

Program listing 17: Reputation technologies – returning weight of transaction result (DK) 41

Program listing 18: Reputation technologies – transaction grading (DK) ... 41

Program listing 19: Reputation technologies – calculating new trust and reputation (DK) 42

Program listing 20: Reputation technologies – receiving new indirect knowledge (IK) 42

Program listing 21: Reputation technologies – calculating new trust and reputation (IK) 42

Program listing 22: Reputation technologies – creating new indirect knowledge (IK) 42

Program listing 23: Reputation technologies – sending new indirect knowledge (IK) 43

Program listing 24: Trusted GPSR - Max neighbour’s array .. 52

Program listing 25: Trusted GPSR - TinyOS AMSnoopingReceiver interface 53

Program listing 26: Trusted GPSR - Indirect trust array ... 53

Program listing 27: Trusted GPSR - Greedy forwarding .. 54

Page x Version 2.0

Program listing 28: Trusted GPSR - Next node selection mechanism for SPD level = 1 55

Program listing 29: Trusted GPSR – Next node selection mechanism for SPD level=2, 3 56

Program listing 30: Trusted GPSR - Indirect trust calculation ... 56

Program listing 31: Trusted GPSR - Routing attacks .. 57

Program listing 32: Trusted GPSR - Python script used in TOSSIM simulations (simtest.py) 59

Program listing 33: IDS - initialization of the global constants .. 64

Program listing 34: IDS - obtaining α and β for the reputation table and γ and δ for confidence table
 ... 64

Program listing 35: IDS - updates from second hand information .. 65

Program listing 36: IDS - node lookup... 65

Program listing 37: IDS - updating first hand data table .. 66

Program listing 38: IDS - updating reputation table .. 66

Program listing 39: IDS - updating trust table ... 67

Program listing 40: IDS - deviation test ... 67

Program listing 41: IDS - update on inactivity timer .. 68

Program listing 42: Link layer security - establishing OpenSSL environment 69

Program listing 43: Link layer security - generating private key .. 69

Program listing 44: Link layer security - filling in the certificate request .. 70

Program listing 45: Link layer security - certificate request ... 70

Program listing 46: Link layer security - creating RSA private key ... 71

Program listing 47: Link layer security - filling in certificate request .. 71

Program listing 48: Link layer security - issuing certificate ... 71

Program listing 49: Link layer security - revoking the node's certificate ... 73

Program listing 50: Link layer security - CTR algorithm .. 74

Program listing 51: Link layer security - CBC-MAC algorithm .. 75

Program listing 52: Link layer security - CCM algorithm ... 76

Program listing 53: Link layer security - encrypting and sending the packet 77

Version 2.0 Page xi

Glossary

Please refer to the Glossary document, which is common for all the deliverables in nSHIELD.

Page xii Version 2.0

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 13 of 91

1 Introduction

The nSHIELD project proposes a layered architecture to provide intrinsic SPD features and functionalities
to embedded systems. In this layered architecture, building on top of the node functionalities defined in
the WP3, Work Package 4 deals with implementation of the SPD functionalities at the network layer.

The workload encompassed in work package four is divided into four complementing work tasks:

• T4.1 Smart Transmission Layer;

• T4.2 Distributed self-x models;

• T4.3 Reputation-based resource management technologies;

• T4.4 Trusted and dependable Connectivity

Each of the tasks places focus on independent development and application of different SPD technologies
at the network layer. As such, the technologies’ performance will at first be evaluated on an individual
basis, categorized with respect to their complexity and suitability for the proposed SPD levels and
capabilities of different node classes. This will provide an output useful for merging the contributions into a
system consisting of a set of mutually-collaborating approaches.

Deliverable D4.2 provides a technical perspective on the developed Network prototypes, focusing on the
development platforms and technologies, whereas the complimentary deliverable D4.3 presents an
overview of the prototypes’ operational characteristics, as well as the results that have reached
demonstrable level.

D4.2 is structured as follows:

1. Introduction – overview of the document

2. SPD-driven Smart transmission layer – describes details of the hardware implementation of the
Smart Transmission Layer prototype, with the corresponding developed and tested functionalities
(section 2.1), as well as pieces of software describing the proprietary C++ network simulator used
for development of the anti-jamming mechanisms (section 2.2).

3. Distributed self-x models – provide means for reducing vulnerabilities present in unmanaged and
hybrid managed/unmanaged networks. Two prototypes are presented: Recognizing & modelling
of denial-of-service attacks and Model-based framework for dependable distributed computation.

4. Reputation-based resource management technologies – schemes for reputation-based
cooperation enforcement and scalable resource management based on distributed mechanisms
aiming at identifying malicious users and performing a secure routing through secure paths.
Technical details of two prototypes are given: Reputation based secure routing and nSHIELD
Reputation scheme.

5. Trusted and dependable Connectivity - algorithms for provisioning security on link and network
layers are presented, as well as the access control methods in Smart Grid networks.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 14 of 91 Version 2.0

2 SPD-driven Smart Transmission Layer

SPD-driven Smart Transmission Layer is a set of services deployed at the network level designed for
nSHIELD SDR-capable Power nodes, whose goal is ensuring smart and secure data transmission in
critical channel conditions. For achieving this, concepts of Software Defined Radios and Cognitive Radios
are being utilized.

Along with the section 2.1 of the deliverable D4.3, the preliminary prototype is described in the following
section.

2.1 Smart Transmission Layer test-bed prototype

2.1.1 Basic description

The proposed Smart Transmission Layer SDR/CR test bed prototype consists of a number (currently: 2,
but to-be-increased to 3) of Secure Wideband Multi-role - Single-Channel Handheld Radios (SWAVE
HHs), each interconnected with the OMBRA v2 multi-processor embedded platform (nSHIELD Power
node).

2.1.2 Prototype setup

SWAVE HH (from now on referred to as HH) is a fully operational SDR radio terminal capable of hosting a
multitude of wideband and narrowband waveforms.

Maximum transmit power of HH is 5W, with the harmonics suppression at the transmit side over -50 dBc.
Superheterodyne receiver has specified image rejection better than -58 dBc. The receiver is fully digital; in
VHF, 12-bit 250 MHz analog to digital (AD) converters perform the conversion directly at RF, while in
UHF, AD conversion is performed at intermediate frequency (IF). No selective filtering is applied before
ADC. Broadband digitized signal is then issued to the FPGA, where it undergoes digital down conversion,
matched filtering and demodulation.

HH has an integrated commercial Global Positioning System (GPS) receiver, but also provides the
interface for the external GPS receiver. GPS data is available in National Marine Electronics Association
(NMEA) format and may be outputted to the Ethernet port.

Radio is powered by Li-ion rechargeable batteries, however may also be externally powered through a
12.6V direct current (DC) source. Relatively small physical dimensions (80x220x50 mm), long battery life
(8 hours at the maximum transmission power for a standard 8:1:1 duty cycle), and acceptable weight
(960g with battery) allow for portability and untethered mobile operation of the device.

Hypertach expansion at the bottom of HH provides several interfaces, namely: 10/100 Ethernet; USB 2.0;
RS-485 serial, DC power interface (max 12.7V), and PTT.

The radio provides operability in both Very High Frequency - VHF (30 - 88 MHz), and Ultra High
Frequency - UHF (225 - 512 MHz) band. The software architecture of the radio is compliant with the
Software Communications Architecture (SCA) 2.2.2 standard. Following that, HH provides support for
both legacy and new waveform types. Currently, two functional waveforms are installed on the radio:
SelfNET Soldier Broadband Waveform (SBW) and VHF/UHF Line Of Sight (VULOS), as well as the
waveform providing support for the Internet Protocol (IP) communication in accordance with MIL-STD-
188-220C specification. Currently installed waveforms are described and analysed in more details in
section 2.1.4.

The considered power node – OMBRA v2 platform – is composed of a small form factor System-on-
Module (SOM) with high computational power - developed by Selex ES - and the corresponding carrier
board. It is based on an ARM Cortex A8 processor running at 1GHz, encompassed with powerful
programmable Xilinx Spartan 6 FPGA and Texas Instruments TMS320C64+ DSP. It can be embodied
with up to 1 GB LPDDR RAM, has support for microSD card up to 32 GB, and provides interfaces for

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 15 of 91

different RF front ends. Support for IEEE 802.11 b/g/n and ANT protocol standards are proffered.
Furthermore, several other external interfaces are provided, i.e. 16 bit VGA interface; Mic-in, line-in and
line-out audio interfaces; USB 2.0; Ethernet; and RS-232 serial. The node is DC-powered, and has
Windows CE and Linux distribution running on it. System architecture of the Power node is shown in
Figure 2-1: STL - OMBRA v2 nSHIELD Power node - system architecture

Figure 2-1: STL - OMBRA v2 nSHIELD Power node - system architecture

Connection to HH is achieved through Ethernet, as well as serial port. Ethernet is used for the remote
control of the HH, using SNMP. For the serial connection, due to different serial interfaces - RS-232 and.
RS-485, a RS-232-to-RS-485 converter is needed. Serial connection is used for transferring the spectrum
snapshots from HH to Power node. More details on remote control and spectrum sensing are given in
sections 2.1.3 and 2.1.6.

Figure 2-2 shows the implementations of HH and Power node which, once interconnected, are referred to
as SDR-capable Power node.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 16 of 91 Version 2.0

Figure 2-2: STL - Implementations of SWAWE HH and the nSHIELD Power node

The current test bed prototype is composed of two SDR-capable Power nodes. A coaxial RF bench was
implemented for the frequency range of interest. Because of the high output power of the radios, two
programmable attenuators had to be included in the coaxial path, and were programmed to their
maximum attenuation value - 30dB. Agilent 778D 100 MHz - 2GHz dual directional coupler with 20dB
nominal coupling was placed between the attenuators, allowing for sampling and monitoring the signal of
interest. Agilent E4438C vector signal generator was connected to incident port of the coupler, with the
purpose of injecting noise/interference signal to the network. Agilent E4440A spectrum analyser was
connected to the coupler's reflected port, facilitating the possibility of monitoring the RF activity.

Implementation of the test bed is shown in Figure 2-3.

Figure 2-3: STL - Smart Transmission Layer test bed implementation

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 17 of 91

2.1.3 Remote control of the radio

Using Simple Network Management Protocol v3 (SNMP v3), several parameters of the HH radio may be
externally controlled. For achieving this, SNMP manager has to be installed and running on the Power
node. The host (Power node) and the agents (HHs in the network) are connected through an Ethernet
hub, and need to be on the same domain.

By utilizing three basic SNMP commands: GET, SET and TRAP, it is possible to: read the current value of
the parameter, set a new value, or issue a message/warning if the current value satisfies a condition,
respectively.

The controllable parameters and their corresponding features are stored in a Management Information
Base (MIB), which is loaded into the host's SNMP manager. MIB table contains all the definitions that
define properties of the controllable parameters, and describes each object identifier (OID), which is a
sequence of integers, with a more easily understandable (from a human operator's perspective) string.

The list of the parameters that may be controlled externally, with the corresponding input data types and
the SNMP commands that may be invoked is given in Table 2-1. ManageEngine MibBrowser Free Tool
was used as the SNMP manager running on the Power node.

Table 2-1: STL - HH's Parameters that may be remotely controlled via SNMP

Parameter Type SNMP commands

File Transfer Activation string SET/GET

File Transfer Type string SET/GET

FTP User Name string SET/GET

FTP Password string SET/GET

FTP Address string SET/GET

Login Username string SET/GET

Login Password string SET/GET

Transmit Power integer SET/GET

Transmitter On/Off integer SET/GET

Currently Installed Waveform string seq GET

Waveform’s MIB Root string GET

Waveform Status ION/OFFI integer SET/GET

Audio Message I n string SET/GET

Create New Waveform string SET/GET

Activate Preset string SET/GET

Activate Mission File string SET/GET

Audio Output Gain float SET/GET

Battery Charge Percentage integer GET

File Download Status integer GET

Trap Receiver's IF Address string SET/GET

Zeroize All Crypto Keys integer SET/GET

Crypto Key Loaded integer GET

System End Boot [failed /
succeeded / in progress]

integer GET

Accordingly, Table 2-2 provides list of the parameters that may be TRAPped, with the short description of
the conditions under which TRAPping messages are issued.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 18 of 91 Version 2.0

Table 2-2: STL - HH's Parameters that may be TRAPped via SNMP

Parameter Description

NET Radio OK
The notification is triggered when the visibility of

the radio network is acquired

NET Radio FAIL
The notification is triggered when the visibility of

the radio network is lost

Critical Alarm
The notification is triggered when the 1111 has

sustained a critical operational error

End Boot
The notification is triggered when successful

boot-up of the HU has been verified

End File Download
The trap notifies end of the procedure of file

download. indicating whether it was successful

Low Power
The notification is triggered when the battery

charge falls below a pre-declined limit

Create Waveform OK
The notification is triggered when the waveform is

successfully created

Create Waveform FAIL
The notification is triggered when the waveform

creation has failed

The process of turning on the HHs with respective IP addresses 10.31.44.210 and 10.31.44.201, logging
in, changing the waveform type (SBW is automatically loaded on radios upon booting) to VULOS, and
then changing it back to SBW, results in triggering the sequence of TRAP commands denoted in Figure
2-4.

Figure 2-4: STL - Triggered TRAP messages for a turn on - log on - change waveform sequence on
HHs

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 19 of 91

2.1.4 Waveform analysis

As previously stated, there are currently two functional waveforms installed on SWAVE HHs: SBW and
VULOS. Having a wideband spectrum analyser allows for monitoring the waveforms and analysing their
parameters.

SBW is a wideband multi-hop Mobile Ad-hoc NETwork (MANET) waveform, supporting operation in the
225 - 512 MHz part of the UHF band. The waveform provides self-(re)configurability and self-awareness
of the network structure and topology, for up to 50 nodes and up to 5 hops. Furthermore, possibility of
simultaneous streaming of voice and data services is provided, with prioritization for voice streaming (in
case of exceeded bandwidth). Allocated channel bandwidth is adjustable - up to 5 MHz - with channel
spacing of up to 2 MHz SBW uses a fixed digital modulation technique.

Self-awareness is exercised by monitoring the network topology for changes every n seconds (monitor
interval is adjustable). Two Quality of Service (QoS) monitoring mechanisms are provided: Bit Error Rate
(BER) Test, and the statistics data for the transmitting/receiving side. These mechanisms provide means
for analysing and comparing the quality of communication in regular and impaired channel conditions.
More in-depth analysis of these features is presented in section 2.1.5.

Figure 2-5 shows envelope shape and properties of the SBW waveform, for the maximum signal
bandwidth (5 MHz) and 1/10th of the maximum transmit power (-3 dBW), in frequency domain.

Figure 2-5: STL - SBW waveform in the frequency domain - max hold

VULOS is a narrowband single-hop waveform designed for short-distance voice or data communication. It
supports operation in both VHF (30-88 MHz) and UHF (225-512 MHz) frequency bands. The waveform
allows for choosing between two analog modulation techniques: Amplitude Modulation (AM) and
Frequency Modulation (FM), which may be configured on-the-fly, alongside with the modulation index.
Channel bandwidth is adjustable up to 25 kHz, with channel spacing also adjustable up to 25 kHz.
Furthermore, the VULOS waveform is able to utilize both digital and analog voice Coder-Decoders
(CODECs) installed on the radio.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 20 of 91 Version 2.0

Figure 2-6 shows envelope shape and properties of FM-modulated VULOS waveform with the 25 kHz
bandwidth, transmitted at 1 dBW in VHF band (30 MHz).

Figure 2-6: STL - VULOS waveform in the frequency domain - max hold

Waveform analysis will have an important SPD application - by creating a database of waveform types
that are occurring in the system, it will be possible to identify potentially malicious or misbehaving users.

2.1.5 Interference detection

Various Denial of Service (DoS) attacks - and in particular jamming attacks - have for a long time been
posing - and continue to pose - significant security threats to radio networks. Radiofrequency (RF)
jamming attacks refer to the illicit transmissions of RF signals with the intention of disrupting the normal
communication on the targeted channels. RF jamming is a known problem in modern wireless networks,
and not an easy one to counter using traditional “hardware-based” equipment. Additionally, Software
Defined Radios and Cognitive Radios bring the prospect for further improvement of the jamming
capabilities of the malicious users. They also offer the possibility of developing advanced protection- and
counter-mechanisms.

One of the main focuses of the SPD-driven Smart Transmission Layer is precisely providing safe and
reliable communication in jamming-polluted environments. Momentarily, advanced jamming and anti-
jamming algorithms are studied separately, and simulated using the proprietary simulator presented in
section 2.2. As the prototype matures, these strategies will also be demonstrated on the real-life prototype
described in this section.

The vector signal generator is presently used as means for creating disturbances in the communication
channel, emulating a simple RF jammer. A set of measurements demonstrating how different types of
created interfering signals influence the performance of the communication on the channel was done.

In the first set of measurements, aim is at showing the correlation between Bit Error Rate (BER) and the
radio's built-in Link Quality metric. Link quality is HH's built-in QoS feature, and is represented by an
integer in the range of [0-200]. The measurements are done with HHs having their signal bandwidths set
to the maximum value (5 MHz), and repeated for two transmitting powers: -12dBW and 4 dBW. Created

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 21 of 91

interfering signal is a pulse signal, created at the same frequency as the frequency of the channel used for
communication between radios (225 MHz). Amplitude of the created interfering signal varies. The results
are presented in Figure 2-7.

Figure 2-7: STL - BER and Link quality level vs. interference amplitude of interfering pulse signal

BER percentage is shown in the first half of the Y-axis (0-100), whereas Link quality level stretches
throughout the whole Y-axis (0-200). The BER curves are mutually similarly shaped, with the expected
offset due to differing transmission powers of the radio. The same goes for the link quality curve shapes.
As can be seen, occurrence of errors at the receiving side (area where BER > 0) corresponds to Link
quality levels in the range of [90-120]. As expected, 100% BER corresponds to the link quality of 0,
meaning the communication has become impossible.

In the second set of measurements, different types of interfering signals are created by the signal
generator, namely: pulse signal as in the first measurement set; Real Time I/Q Baseband Additive White
Gaussian Noise (AWGN) with the effective bandwidth of 5 MHz; Real Time I/Q Baseband AWGN with the
effective bandwidth of 1 MHz, and a GSM signal. Once again, central frequency of all of the interfering
sources is the same as the frequency of the channel that the radios use for communication (225 MHz).
The results are shown in Figure 2-8.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 22 of 91 Version 2.0

Figure 2-8: Link quality level vs. interference amplitude for different interfering signals

As expected, pulse signal has the best interfering capabilities, due to the fact that it has the most
concentrated power, and importantly that it has been created at the exact frequency as the main carrier
frequency of the transmitted signal. Even with small frequency offsets, interfering impact of the pulse
signal would drop significantly. For the same reason, addition of AWGN results in higher link degradation
in cases of smaller allocated bandwidth, due to the higher power density. The vector signal generator is
only able to produce an AWGN signal of amplitude up to 20 dBm, hence the measurements for the higher
values were not done.

It should be noted that the results presented in this subsection are of a reference, instead of an absolute
value at this stage, the intention was not placed upon emulating real-life interferers, but rather at
performing the initial study of the interference detection functionalities of the SWAVE HHs.

2.1.6 Energy detection spectrum sensing

Obtaining information of the current spectrum occupancy is paramount for the Cognitive Radios to be able
to opportunistically access spectrum, but may also aid them in recognizing anomalous or malicious
activity by comparing the current state to those stored in their databases. There are three established
methods for CRs to acquire knowledge of the spectrum occupancy: spectrum sensing,
geolocation/database, and beacon transmission. HH has a capability of performing energy detection
spectrum sensing.

Every 20 seconds, 8192 samples from the ADC are transmitted over the RS-485 port this is functionality
hard-coded in the HH's FPGA. Each sample is transmitted in two bytes: first byte containing the 6 most
significant bits (MSBs), with 2 bits sign extension on the left. Second byte contains the 8 LSBs. In total,
16384 characters are transmitted, making up for the interpretation of a 16-bit word. Currently, there is not
a synchronization pattern however the idle interval between the two transmissions may be used to e.g.
perform analysis of the received data. Transmission of a full window takes approximately 2 minutes.

The signal at the HH's FPGA input is a sample of raw spectrum. Raw samples are stored in a RAM buffer
internal to the FPGA, and output through HH's fast serial port to the Power node, where they can be
processed.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 23 of 91

Due to the high speed of the ADC (250 MHz), serial port speed (114200 bit/s is supported in the
asynchronous mode) is not sufficient for the true real-time transfer; in addition processing capabilities of
the Power node would be completely devoted to the processing of received signal, leaving no room for
higher level applications. Power consumption would be heavily affected, too.

Adopted solution is to perform a quasi-real-time acquisition, i.e. to collect a large “snapshot” of incoming
spectrum, i.e. tens of kilo-samples, and to transfer the snapshot to the Power node. When the snapshot
has been transferred, a new collection may start. This is sufficient for proper analysis of the majority of RF
scenarios: in practice, only fast pulsed signals might be completely missed.

Future hardware enhancements are expected to make real-time spectrum acquisition possible.

2.2 Algorithm for countering Smart Jamming Attacks in centralized
networks

2.2.1 Description

Improved radio capabilities of Cognitive Radios also bring advanced possibilities with respect to attackers’
actions and complexity levels, starting with the possibility of jamming multiple frequencies and larger
frequency bands by self-reconfiguring their transmission parameters ”on-the-fly”. Such advanced
jammers, operating in SDR Networks and CR Networks are from now on referred to as “Smart” or
“Intelligent” jammers [1].

The jamming strategies and the proposed counter-measures have been described in Section 2.2 of D4.3.
Here, the most important corresponding parts of the simulator (C++ code) are provided:

The basic jamming algorithm for two jammer types: naïve (motion model “MB_DEFAULT”) and tracking
(motion model “MB_FOLLOW) is given as follows:

double jammer::Jam(double idealRSS, isip::ipoint nodePos, double nodeFrequency)
{
 double jammedRSS = 0.0;
 bool isJammed = IsJammed(idealRSS, nodePos, nodeFrequency, jammedRSS);
 isip::ipoint position_JAM = GetCurrentPosition();
 double d_RN_JAMMER = position_JAM.DistanceTo(nodePos);
 if (d_RN_JAMMER<GetSensingRadius() && (m_pMotionModel->GetMotionBehaviour() ==
motionModel::MB_FOLLOW))
 {
 isip::ipoint newSpeed = nodePos - position_JAM;
 double newSpeedX = (double)newSpeed.x/sqrt(double(newSpeed.AbsSqr()));
 double newSpeedY = (double)newSpeed.y/sqrt(double(newSpeed.AbsSqr()));
 m_pMotionModel->SetSpeed(isip::ipoint((int)(newSpeedX+0.5*(newSpeedX>0?1:-1)),
 (int)(newSpeedY+0.5*(newSpeedY>0?1:-1))));
 }
 else if (m_pMotionModel->GetMotionBehaviour() == motionModel::MB_FOLLOW)
 {
 m_pMotionModel->ResetSpeed();
 m_pMotionModel->SetMotionBehaviour(motionModel::MB_DEFAULT);
 }
 return jammedRSS;
}

Program listing 1: SJA – basic jamming algorithm for naïve and tracking jammers

Jamming occurs whenever the node gets within the pre-defined jamming radius of the jamming entity:

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 24 of 91 Version 2.0

bool jammer::IsJammed(double idealRSS, isip::ipoint nodePos, double nodeFrequency,
double &jammedRSS)
{
 bool isJammed = false;
 jammedRSS = idealRSS;
 isip::ipoint position_JAM = GetCurrentPosition();
 double d_RN_JAMMER = position_JAM.DistanceTo(nodePos);
 if (d_RN_JAMMER<GetSensingRadius())
 {
 if (GetJamFrequency() == nodeFrequency)
 {
 jammedRSS = 0;
 isJammed = true;
 }
 }
 return isJammed;
}

Program listing 2: SJA - Jamming implementation

Higher-order adaptive frequency jammer is able to perform spectrum sensing in order to selectively jam
frequencies of interest. Its jamming algorithm is denoted as follows:

bool adaptiveFreqJammer::IsJammed(double idealRSS, isip::ipoint nodePos,
double nodeFrequency, double &jammedRSS)
{
 bool isJammed = false;
 jammedRSS = idealRSS;
 isip::ipoint position_JAM = GetCurrentPosition();
 double d_RN_JAMMER = position_JAM.DistanceTo(nodePos);
 if (d_RN_JAMMER<GetSensingRadius())
 {
 if (GetJamFrequency() != nodeFrequency)
 {
 SetJamFrequency(nodeFrequency);
 }
 if (GetJamFrequency() == nodeFrequency)
 {
 jammedRSS = 0;
 isJammed = true;
 }
 }
 return isJammed;
}

Program listing 3: SJA - adaptive frequency jammer

Finally, reputation-attacking jammer as the most sophisticated considered jamming entity, inherits the
characteristics of “tracking” and “adaptive frequency” jammer, and is also able to deceive the reputation
algorithm with a certain probability:

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 25 of 91

bool reputationAttackingJammer::IsJammed(double idealRSS, isip::ipoint nodePos,
double nodeFrequency, double &jammedRSS, double Deceivesuccess)
{
 bool isJammed = false;
 jammedRSS = idealRSS;
 isip::ipoint position_JAM = GetCurrentPosition();
 double d_RN_JAMMER = position_JAM.DistanceTo(nodePos);
 if (d_RN_JAMMER<GetSensingRadius())
 {
 if (GetJamFrequency() != nodeFrequency)
 {
 SetJamFrequency(nodeFrequency);
 }
 if (GetJamFrequency() == nodeFrequency)
 {
 jammedRSS = 0;
 isJammed = true;
 }
 if ((rand()%Deceivesuccess)==0)

SetTXPower(0);
 }
 return isJammed;
}

Program listing 4: SJA - Reputation attacking jammer

The three considered (collaborating) anti-jamming algorithms – frequency switching [2]; reputation
mechanism and trajectory altering – are presented as follows:

double node::ChooseRandAmongst(std::vector<double> AvailableNumbers, double CurrentNumber)
{
 std::vector<double> temp;
 for (size_t i=0; i<AvailableNumbers.size(); i++)
 {
 if (AvailableNumbers[i] != CurrentNumber)
 temp.push_back(AvailableNumbers[i]);
 }
 return theRNG.Generate(temp);
}

void node::ChangeTXFrequency()
{
 SetTXFrequency(ChooseRandAmongst(m_vAvailTxFrequencies, m_dTxFrequency));
}

Program listing 5: SJA - frequency switching algorithm

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 26 of 91 Version 2.0

void radioSimulator::ReputationUpdate(std::map<std::string, bool> mNodesLost)
{

for (std::map<std::string, bool>::iterator it = mNodesLost.begin();
 it != mNodesLost.end(); ++it)

{
 if (!it->second)
 continue;
 const isip::radio::node* pNode = GetNode(it->first);
 std::vector<isip::radio::node*> vNeighbour = GetNeighbouringNodes(

pNode->GetUUID(), pNode->GetSensingRadius());
 for (unsigned int i=0; i<vNeighbour.size(); i++)
 {
 vNeighbour[i]->SetReputation(vNeighbour[i]->GetReputation()-1);
 }

}
}

Program listing 6: SJA - reputation mechanism

void radioSimulator::AvoidJammer(std::vector<isip::radio::node*> listofidentifiedjammers)
{

for (std::vector<isip::radio::node*>::iterator Iterator = m_vRadioNodes.begin();
 Iterator != m_vRadioNodes.end(); ++Iterator)

 for (int i=0; i<listofidentifiedjammers.size(); i++)
 {
 if ((*Iterator)->GetUUID()==listofidentifiedjammers[0]->GetUUID())
 continue;
 isip::ipoint jammercoordinates = listofidentifiedjammers[0]

->GetCurrentPosition();
 isip::ipoint nodescoordinates = (*Iterator)->GetCurrentPosition();
 std::vector<isip::ipoint> vJamPos;
 vJamPos.push_back(jammercoordinates);
 (*Iterator)->SetJammersPosition(vJamPos);
 }

return ;
}

Program listing 7: SJA - trajectory altering mechanism

The AvoidJammer algorithm is triggered when the cognitive entity decides, based on the reputation level,
that a certain node exhibits malicious behaviour. Then, it stores its ID into a list, used for keeping track of
its future behaviour and monitoring its position:

std::vector<std::string> radioSimulator::ReturnListOfIdentifiedJammers()
{
 std::vector<std::string> retvector;
 for (unsigned int i=0; i<m_vListofidentifiedjammers.size(); i++)
 {
 retvector.push_back(m_vListofidentifiedjammers[0]->GetUUID());
 }
 return retvector;
}

Program listing 8: SJA - list of identified jammers

Performances of the included algorithms are presented in deliverable D4.3.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 27 of 91

3 Distributed self-x models

Distributed self-x models provide means for reducing vulnerabilities present in unmanaged and hybrid
managed/unmanaged networks.

3.1 Recognizing & modelling of denial-of-service attacks

3.1.1 Basic description of the DoS scheme operation

Denial of Service (DoS) attacks aim to deplete resources of the target, either in physical or computational
resources (node) or capacity, bandwidth and normal operation (network). An overview of DoS attacks and
the theoretical approach that was followed to detect them has been given in the related section of
deliverable D4.3. In the following section, more technical details will be given related to the DoS detection
mechanism that has been designed as well as its ongoing implementation.

3.1.2 Architecture

The DoS attack detection mechanism involves cooperation between components belonging to all three
layers on the nSHIELD architecture. However, the principal algorithmic operation is considered to be a
network process and is therefore described in the network related documents.

The scheme can be seen as an algorithmic operation which is fed with inputs from various components
and provides a set of results relating to the identification of a DoS attack that is underway.

DoS Attack Detection

Algorithmic Operations
Data

Input Results

Statistical

Analysis

Pattern

Matching

Reconfiguration

Information

Identification of

DoS Attack

Power

Consumption

CPU usage

Communication

Parameters

Network Traffic

Figure 3-1: DoS Attack Detection Algorithm

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 28 of 91 Version 2.0

As is evident from the figure, the algorithmic operations are fed data input which comes from different
components, described below. The data input is analysed and used in order to provide the result of the
algorithm which leads to attack identification and issue of reconfiguration commands.

3.1.2.1 Components

The components of the system correspond to software processes in the simulation architecture. In order
to simulate the algorithms it was important to identify the basic system components which would be
implemented as discrete functions. A proper organization of components leads to efficient and simple
operation. The components identified in the system are the following, organized in two types:

3.1.2.2 Input modules

a. Power unit monitoring module. This is a process which runs in the power unit module and
provides information related to power consumption.

b. CPU monitoring module. This is a process which provides CPU usage information and can
typically be considered a service of the operating system.

c. Communication monitoring module. This is a process which provides information from the
physical transmission such as signal strength.

d. Network traffic module. This module has access to the data packets exchanged and can sample
either complete packets or specific parts in the content or header.

3.1.2.3 Algorithmic modules

There are two algorithmic software processes in the system, the Statistical analysis algorithm and the
Pattern matching algorithm.

a. Statistical analysis algorithm

This software process communicates with all four input modules, reads and processes that
information.

b. Pattern matching algorithm

This software process communicates with the network traffic module. Its task is to sample network
packets and compare them with the signature database.

3.1.3 Interface between modules

Communication between the input modules and the algorithmic modules is made with the exchange of
messages. A typical message is composed of the following three fields: Node ID, Timestamp and
Payload. The Node ID identifies the node that is reporting the information and the Timestamp identifies
the exact timing of the sampled information. These two fields are common for all messages originating
from all modules. The third field, called the payload, contains the actual information being reported and is
different for each of the modules.

Node ID Timestamp Payload

Figure 3-2: DoS attacks – fields composing the message

The payload is as follows for the four different types of messages.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 29 of 91

• Power consumption payload: contains the power consumption wattage at the timestamp sampling
time in mW.

• CPU usage payload: contains the current CPU usage percentage and number of running
processes at the timestamp sampling time.

• Communication parameters payload: contains the incoming and outgoing bitrate, the number of
established connections as well as the number of other nodes to which there are established
connections at the timestamp sampling time.

• Network traffic payload: contains complete data packets (typically TCP/IP) or headers of the
packets, depending on mode of operation, which can be fed to the pattern matching algorithm.

3.1.4 Algorithmic operation

The statistical analysis algorithm receives messages from input modules and correlates inputs in order to
detect whether an anomaly is taking place. The algorithm can produce an output by examining any
number of input message types from 1 to 4. The algorithm is based on simple but multi-parameter
statistical analysis.

Typical communication patterns produce highly predictable hardware and software response. For
example, a typical communication scenario of a certain number of interacting nodes and amount of
exchanged traffic corresponds to specific amount of CPU usage and power consumption. If there is a
deviation from this correlation, a DoS attack may be under way.

A score is calculated by making each correlation, after which the scores of all correlations are added. If
the total score is above the predetermined threshold, then a DoS attack warning is issued.

The pattern matching algorithm receives messages from the network traffic module which contains either
header of data packages or complete data packages. The algorithm analyses the data and tries to detect
patterns in the provided traffic according to a pre-determined attack pattern database. The database is
composed of known risks such as malicious software or known network protocol vulnerabilities. Whether
the operation is in header of full payload analysis depends on the mode of operation which in turn
depends on the available node resources.

A code example can be given as follows. The most important part in the algorithmic operation is the pre-
calculation of cofactors that can correlate the various parameters. These cofactors can be calculated by
measurements (or simulation) in typical networking scenarios. As seen in the example, the
generateCommStats method generates a snapshot of the current network environment by relating
bitrates, number of connections and number of peers. This information, processed with the help of the
calculated cofactors, is fed to the statAnalysis method which checks to see if the measured power and
processing loads correspond to the current network status snapshot.

float generateCommStats (int nodesNum, int connectionsNum, float inBitrate, float outBitrate)
{
 bitrateScore = (inBitrate * inCofactor) + (outBitrate * outCofactor);
 nodeScore = nodesNum * nodeCofactor1;
 connectionScore = connectionsNum * connectionsCofactor2;
 commTotalTrafficScore = bitrateScore + nodeScore + connectionScore;
 commNetworkComplexityScore = (nodesNum * nodeCofactor2) + (connectionsNum *
 connectionsCofactor2);
}

int statAnalysis (float powerConsumption, float CpuUsage struct commStats *)
{
 powerScore = powerconsumption * powerCofactor;
 cpuScore = CpuUsage * cpuCofactor;
 commStat1 = commStats.commTotalTrafficScore;
 commStat2 = commStats.commNetworkComplexityScore;

 if ((powerScore + cpuScore) > (commStat1 * threshold1))
 {

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 30 of 91 Version 2.0

 printf ("Node load is above expected for current traffic amount");
 }

 if ((powerScore + cpuScore) > (commStat2 * threshold2))
 {
 printf ("Node load is above expected for current number of connected peers");
 }
}

Program listing 9: DoS attacks - code example

3.1.5 Operation of the DoS attack detection scheme in the simulator

The chosen simulation environment for the development of the system is OMNet++. OMNeT++ is a
modular, component-based C++ simulation library and framework, for building network simulators. It was
chosen because it allows for creation of network models but also for inserting full custom code to modify
operation.

The network simulation is set up as a discrete time event simulation. This allows simulating network
events with their corresponding timestamps as the algorithms operate. We build the whole scheme as an
OMNET++ model that is composed of various components, corresponding to the components described
in the architecture above. For example, the messages exchanged between models have been mapped to
the message structure contained within OMNeT++

message DoSInputPower
{
 fields:
 int nodeID;
 int timestamp;
 int powercon;
}

Program listing 10: DoS attacks - structure of DoS InputPower

OMNeT++ also supports compound models which are components containing other components.
Compound models were used for the algorithmic operation composing of two distinct models.

In order to test the operation of the system, network traffic needs to be generated. In OMNeT++ this can
be easily performed using the highly customizable internal functions to generate traffic. These include
predetermined traffic patterns but also random patterns. This is a code example of how we generate traffic
on the simulator with many of the parameters being controlled by defined parameters on the project
properties.

#include "NetworkStackTrafficGen.h"
#include <cassert>
#include "Packet.h"
#include "BaseMacLayer.h"
#include "FindModule.h"
#include "NetwToMacControlInfo.h"
#include "AddressingInterface.h"
Define_Module(NetworkStackTrafficGen);

void NetworkStackTrafficGen::initialize(int stage)
{
 BaseLayer::initialize(stage);

 if(stage == 0)
 {
 world = FindModule<BaseWorldUtility*>::findGlobalModule();
 delayTimer = new cMessage("delay-timer", TRAFFIC_TIMER);
 arp = FindModule<ArpInterface*>::findSubModule(findHost());
 packetLength = par("packetLength");
 packetTime = par("packetTime");
 pppt = par("packetsPerPacketTime");
 burstSize = par("burstSize");

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 31 of 91

 destination = LAddress::L3Type(par("destination").longValue());

 nbPacketDropped = 0;
 BaseMacLayer::catPacketSignal.initialize();
 }
 else if (stage == 1)
 {
 AddressingInterface* addrScheme =
 FindModule<AddressingInterface*>::findSubModule(findHost());

 if(addrScheme)
 {
 myNetwAddr = addrScheme->myNetwAddr(this);
 }
 else
 {
 myNetwAddr = LAddress::L3Type(getId());
 }

 if(burstSize > 0)
 {
 remainingBurst = burstSize;
 scheduleAt(dblrand() * packetTime * burstSize / pppt, delayTimer);
 }
 }
 else
 {
 }
}

NetworkStackTrafficGen::~NetworkStackTrafficGen()
{
 cancelAndDelete(delayTimer);
}

void NetworkStackTrafficGen::finish()
{
 recordScalar("dropped", nbPacketDropped);
}

void NetworkStackTrafficGen::handleSelfMsg(cMessage *msg)
{
 switch(msg->getKind())
 {
 case TRAFFIC_TIMER:
 assert(msg == delayTimer);
 sendBroadcast();
 remainingBurst--;

 if(remainingBurst == 0)
 {
 remainingBurst = burstSize;
 scheduleAt(simTime() + (dblrand()*1.4+0.3)*packetTime*burstSize/pppt, msg);
 }
 else
 {
 scheduleAt(simTime() + packetTime * 2, msg);
 }
 break;
 default:
 EV << "Unkown selfmessage! -> delete, kind: "<<msg->getKind() <<endl;
 delete msg;
 break;
 }
}

void NetworkStackTrafficGen::handleLowerMsg(cMessage *msg)
{
 Packet p(packetLength, 1, 0);

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 32 of 91 Version 2.0

 emit(BaseMacLayer::catPacketSignal, &p);
 delete msg;
 msg = NULL;
}

void NetworkStackTrafficGen::handleLowerControl(cMessage *msg)
{
 if(msg->getKind() == BaseMacLayer::PACKET_DROPPED)
 {
 nbPacketDropped++;
 }

 delete msg;
 msg = NULL;
}

void NetworkStackTrafficGen::sendBroadcast()
{
 LAddress::L2Type macAddr;
 LAddress::L3Type netwAddr = destination;

 netwpkt_ptr_t pkt = new netwpkt_t(LAddress::isL3Broadcast(netwAddr) ? "TRAFFIC->ALL" :
"TRAFFIC->TO", LAddress::isL3Broadcast(netwAddr) ? BROADCAST_MESSAGE : TARGET_MESSAGE);

 pkt->setBitLength(packetLength);
 Packet appPkt(packetLength, 0, 1);
 emit(BaseMacLayer::catPacketSignal, &appPkt);
 pkt->setSrcAddr(myNetwAddr);
 pkt->setDestAddr(netwAddr);

 if(LAddress::isL3Broadcast(netwAddr))
 {
 macAddr = LAddress::L2BROADCAST;
 }
 else
 {
 macAddr = arp->getMacAddr(netwAddr);
 }

 NetwToMacControlInfo::setControlInfo(pkt, macAddr);
 sendDown(pkt);
}

Program listing 11: DoS Attacks - generating traffic

In order to simulate parameters specific to wireless embedded systems, MiXiM models were used. MiXiM
is an OMNeT++ modelling framework created for mobile and fixed wireless networks offering detailed
models of radio wave propagation, interference estimation, radio transceiver power consumption and
wireless MAC protocols.

As seen in the following picture, a wireless MiXiM network can be setup using the graphical user interface
of the simulator that contains a certain amount of nodes, a traffic generation module as well as a module
that records statistics of all the operations.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 33 of 91

Figure 3-3: DoS Attacks - wireless MiXim network

Simulation runs have been made for a number of traffic patterns and configurations. The evaluation of
results is difficult to be made before a working hardware prototype is created. The following average
values of detection accuracy were derived after a significant number of runs.

Table 3-1: DoS Attacks – simulation results

CPU

abnormalities
Power

abnormalities
Traffic

abnormalities

Detection Accuracy 70% 60% 50%

False positives 15% 20% 15%

The detection accuracy refers to the percentage of simulation runs (with different parameters) where the
inconsistent parameter was correctly detected. The False positive refers to the percentage of simulation
runs where an alarm was issued without any real abnormality present.

These numbers, because of simulation confinements, do not correspond necessarily to real world data
and were all caused by programmed conditions. The significant next step will be the creation of a real
hardware prototype which will be based on the BeagleBone family of platforms. This will allow for real-
world calculation of needed cofactors as well as real-world fluctuation parameters which will further test
and evaluate the algorithm and the implementation.

3.2 Model-based framework for dependable distributed computation

Computation in a distributed environment introduces several complications compared to a “centralized”
approach. In particular, it becomes necessary to account for faults within the array of resources allocated
to the execution of a given application. Sometimes this requirement translates into the need to reconfigure
the flow of execution, so to guarantee that a task will correctly run to completion.

Our model-based framework, called Atta (after the ant genus) addresses this problem and several others
in the design and execution of distributed applications. A general overview of the framework is provided in
D4.3; in this document we cover some details, both internal and related to the interfacing. More in-depth
documentation can also be found within the public repository of the framework.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 34 of 91 Version 2.0

3.2.1 Artifact descriptors

An application in Atta is written using the dataflow paradigm, expressed as a graph comprising edges and
vertices: edges represent data, and vertices represent implementations. Implementations may be just
code sections to be executed, or they may represent a sub graph. Therefore we can see that the
description of an application may become rather complex. To tackle such complexity and also to simplify
abstraction/refinement development approaches, the descriptor of an application is hierarchical. This
means that we do not store the entire application graph within one descriptor file, but we rather let
descriptors reference other descriptors.

We generically define as an artifact an entity with information useful to define an Atta application. Artifacts
are declared using descriptor files, which provide the basic information that Atta [3] needs to deploy, build
and run applications. The two most important artifacts are data types and vertex implementations. For
example, the descriptor file of a vertex implementation may specify the script that must be run to build the
library (more on that in the following).

Practically, artifact descriptors are text files that use the YAML language [4]. YAML has been chosen
because it offers a natural syntax with almost no overhead, since it relies on indentation: this is important
to keep descriptor files readable, compared for example to XML or even JSON. Readability is not to be
taken lightly, if we consider that designers must write their own descriptors to create an Atta-compliant
distributed application; while IDE tools may mitigate the complexity of maintaining descriptors, manual
editing always offers the maximum insight and control over the design process. Software libraries exist for
several programming languages to automatically parse and produce YAML documents.

repositories

- name: myartifactname

 control: git

 entry: 'git@mysite.com:myself/myproject.git'

 path: myproject/path/to/myartifactname

 version: 477125dbe78fe0a51be2486d8902b49ec2161450

 mirrors:

 - 'git@thirdsite.com:myname/myproject.git'

 - 'git@fourthsite.com:othername/someproject.git'

Program listing 12: Repositories fragment of a YAML artifact descriptor

In Program listing 12, an example of a fragment of a descriptor is shown, which only lists the repositories
element for an artifact. This example also illustrates our concept of repository, i.e., a remote location
where we can find a versioned repository containing an artifact. The fragment shows the coordinates of
the repository, that includes a version control system (Atta supports Git/Subversion/Mercurial
repositories), an entry URL, a path within the repository and the version of the content. In addition,
optional mirror entries are provided for redundancy purposes.

By design, a repository identifies one specific artifact; the descriptor for the remote artifact can be found
as an artifact.yaml file at the root of the repository path. In other terms, it is possible to have one
versioned repository with all the required artifacts organized into directories, and declare repository entries
for each remote artifact of interest.

3.2.2 Data types

As explained before, the two main artifacts in Atta are data types and vertex implementations, since their
composition allows defining a dataflow application graph. Data types are the most delicate aspect of a
distributed computation framework, since they represent the “glue” that connects the different parts of an
application. Our ultimate goal is to define complex types through which implementations can communicate
in a safe and practical way.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 35 of 91

artifact: datatype

name: town

fields:

- name: name

 type: text

- name: loc

 fields:

 - {name: province, type: text}

 - {name: region, type: text}

 - {name: state, type: text}

 - {name: coords, type: real, array:
'2:3'}

- name: props

 type: text

 array: ':,2'

Program listing 13: DDC - YAML artifact descriptor of a type

An artifact definition of a data type is provided in Program listing 13. Here we see that there exist some
built-in types, namely boolean, byte, real and text; these types are sufficient to describe simple types, but
to do more we must compose them. Consequently the town data type is a composite type featuring both
scalars and multi-dimensional arrays. More than that, it is hierarchically composite: the loc field is itself a
composite type and it is declared inline.

When we reference a repository pointing to this artifact as in Program listing 12, i.e., when we have an
external declaration of a type, we provide a custom name that may override the name of the artifact. In
fact, the name field in the artifact descriptor is optional: this choice is due to the fact that externally
declared types are reusable and may have a different name in different domains; also, it is preferable to
have all type names explicit within a descriptor. If we consider the descriptor fragment of Program listing
14, where the xy field references a custom type, the type name corresponds to a repository name within
the repositories element of the same descriptor file. The types element is where internal declaration of
types are provided: when the validity of a type is restricted to the artifact declaring it, we can save
ourselves the burden of setting up and referencing a repository.

repositories:

- name: 2Dcoordinates

 control: svn

 entry: 'http://mysite.com/someproject'

 path: types/xy

 version: 19

types:

- name: 3Dcoordinates

 fields:

 - {name: xy, type: 2Dcoordinates}

 - {name: z, type: real}

Program listing 14: DDC - Types and repositories fragment of a YAML artifact descriptor

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 36 of 91 Version 2.0

artifact: datatype

fields:

- {name: x, type: real}

- {name: y, type: real}

Program listing 15: DDC - YAML artifact descriptor of a type for an x-y couple of reals

3.2.3 Data communication

The Atta architecture, as explained in D4.3, consists of six different kinds of nodes, also called roles.
Those roles that directly involve the communication of application data are worker nodes (wnodes),
synchronization nodes (snodes), and persistence nodes (pnodes).

The array of snodes is currently implemented using Apache ZooKeeper [5]. ZooKeeper is a replicated
synchronization service with eventual consistency. It is robust, since the persisted data is distributed
between multiple nodes (this set of nodes is called an ensemble) and one client connects to any of them
(i.e., a specific server), migrating if one node fails; as long as a strict majority of nodes are working, the
ensemble of ZooKeeper nodes is alive.

More in detail, a master node is dynamically chosen by consensus within the ensemble; if the master
node fails, the role of master migrates to another node. The master is the authority for writes: in this way
writes can be guaranteed to be persisted in-order, i.e., writes are linear. Each time a client writes to the
ensemble, a majority of nodes persist the information: these nodes include the server for the client, and
obviously the master. This means that each write makes the server up-to-date with the master. It also
means, however, that you cannot have concurrent writes. As for reads, they are concurrent since they are
handled by the specific server, hence the eventual consistency: the view of a client is outdated, since the
master updates the corresponding server with a bounded but undefined delay.

The guarantee of linear writes is the reason for the fact that ZooKeeper does not perform well for write-
dominant workloads. In particular, it should not be used for interchange of large data, such as media. The
advantage that ZooKeeper brings to Atta is to be able to robustly listen for events and to issue them to all
listeners. In addition, it can be used as an arbiter for consensus algorithms, like those related to
scheduling and load balancing. For example, a very important event to listen to is the completion of a
transaction to the pnodes, signalling the availability of data returned by a vertex implementation.

While a ZooKeeper ensemble could also be used as a set of pnodes, linear writes would be detrimental
for heavy data streams. For the maximum generality, we consequently envision pnodes to be nodes of a
distributed (replicated) database. The current DBMS of choice is MySQL Cluster, which offers both SQL
and “NoSQL” APIs; the second one is particularly useful for the persistence of custom data structures
such as all Atta data types. It is important to say that the framework may accommodate a different
persistence technology with a rather simple change of driver library. On the contrary, Apache Zookeeper
is to be considered a consolidated choice that will be replaced only if a more efficient and versatile
solution is identified. Both snodes and pnodes are not by themselves “Atta-aware”, in the sense that they
operate as generic services with which wnodes can interact; all the logic required to interface with
snodes/pnodes resides within wnodes.

In terms of reliability, we purposefully avoided any single-point-of-failure situation that may arise in a
distributed environment. Wnodes “push” the data they produce to the pnodes, and “pull” the data they
need to consume from the pnodes. This decoupling shields from node failures and allows saving data as
soon as it is produced. Compare this approach to the opposite one, where data is simply transferred from
producers to consumers: as soon as one link of the chain breaks, the application needs to be restarted
from scratch since we have not saved any “snapshot” of the application state.

It could be argued that this methodology introduces inefficiencies, and it is certainly such a case.
However, we believe that a paradigm shift is necessary to be able to address the intrinsic problems in a

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 37 of 91

distributed environment. This is especially true for mobile ad-hoc networks, where connectivity and
autonomy are relevant obstacles to collaboration.

3.2.4 Data conversion

We remind here that Atta is a Java framework that supports applications written in different languages.
This generality implies the following: interprocess communication is required to transfer data between the
middleware and any process that runs the code for a vertex. Also, since vertex implementations run on
platforms with different data type precisions; even the “same” data types may have different
representations among the wnodes. While a common representation is available at middleware level due
to the platform-independent type system of Java, it is still necessary to account for the specific platform.

To account for these problems, Atta employs Apache Thrift [6], a Remote Procedure Call framework for
heterogeneous services. Given a generic representation of a service and the data types of its
arguments/return, Apache Thrift produces source files for client and server implementations. These
source files can be used to perform cross-language remote communication.

Our current use of Apache Thrift within Atta is for interprocess communication: all the vertexes that are
executed on a wnode have their own process, and each process exchanges data with the Atta
middleware using Thrift. It must be noted that we can extend this approach for inter-wnode data
communication with no effort. This would allow the exchange of application data between wnodes directly,
bypassing pnodes. While such a choice would decrease the communication latency, we would break our
guarantees of data persistence against node failures. It is still being investigated how to properly offer the
best of the two worlds in an autonomic way.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 38 of 91 Version 2.0

4 Reputation-based resource management
technologies

4.1 Reputation based Secure Routing

In distributed systems, each entity must depend on its neighbours to carry out a transaction and
accomplish full communication among all participants. Routing protocols [7] are implemented for this
purpose. Their basic functions are routing and forwarding. Routing is the process of establishing a
communication path between two end nodes. Forwarding is the transmission of the traffic through the
selected path. Most routing protocols base the routing process on distance metrics among a path’s nodes.
The protocol selects the shortest path.

Reputation-based schemes [8] are used in wireless networking to provide secure routing functionality.
Due to the open medium and the dynamic entrance of new nodes to such networks there must be a way
to establish trust relationships to avoid malicious entities. Reputation is formed by a node’s past behaviour
and reveals its cooperativeness. A node with high reputation can be considered as trustworthy. Legitimate
nodes depend mostly on trustworthy entities to accomplish communication tasks, like routing and
forwarding. Also low reputation can reveal selfish or malicious entities and is used for intrusion detection.
Legitimate nodes try to avoid such entities and not serve their traffic.

A common approach for implementing secure routing functionality is the integration of a routing protocol
with a reputation scheme. Reputation and trust information are included in the decision making process
along with the distance metrics. For the routing process, the goal is the selection of short paths with well-
reputed nodes. Thus, legitimate entities avoid malicious ones. For the forwarding process, the goal is to
serve only legitimate entities and isolate the malicious or selfish ones.

Many reputation-based schemes for secure routing have been proposed and each one provides
protection against a set of security attacks and vulnerabilities. The schemes embody features to form
reputation and trust. These features add complexity and process overhead to the pure routing protocol.
The basic trade-off that is encountered is between security and performance. As security goes high, the
overhead to support the level of security goes also high and the system becomes more complex. The
selection of the proper scheme depends on the application properties. Networks with ultra-constraint
devices cannot support heavy reputation-based schemes that offer high levels of security. A network
manager has to apply one of the proposed implementations without having the ability to adapt the scheme
to its application’s needs.

4.2 nSHIELD Reputation scheme

For nSHIELD network layer, we implement a novel module reputation-based scheme that can act as a
general purpose scheme for a wide range of applications. The basic idea is to identify the common
components of reputation-based schemes and provide an abstract framework. We identify eleven
components where each one of them serves a specific functionality. For every component we propose a
set of features that implements the component’s functionality. The segmentation of the scheme into
components enables the dynamic deployment and extension of the scheme. As new features and trends
are proposed in the field of reputation-based schemes, we can simple implement these features in the
components container.

The network manager selects which components are active and the exact set of features that implements
them. During the selection process, a designer could model the combination of more than one feature for
some components. The designing options can range from ultra-lightweight schemes to heavily secure
ones. The selection decision will be either static at deployment time or dynamic at run time, if such
operation is supported. Also, heterogeneous nodes could utilize different features for some components.

The eleven components are:

1. Knowledge type

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 39 of 91

2. Transaction evaluation

3. Transaction grading

4. Reputation evaluation scope

5. Reputation calculation

6. Notification strategy

7. Notification scope

8. Indirect trust evaluation

9. Punishment strategy

10. Initialization and re-entrance strategy

11. Path selection

Knowledge type is categorized as direct and indirect. Direct knowledge is the direct opinion that an entity
possesses about other entities and is determined by their previous transactions or observations of certain
factors. Indirect knowledge is the opinion that other entities possess about the investigated entity.

Transaction evaluation defines the result of a transaction and decides what will happen next. Simple
evaluation denotes the transaction result (success or fail) and proceeds to the next step (transaction
grading component). Congestion windows and communication channel observation can be used as a
tolerance mechanism if failures occur during periods of traffic congestion and bad channel conditions
respectively. Another option is the rerouting of a failed transaction.

The transaction grading defines the exact value that is applied for the examined transaction, after the
transaction evaluation component execution. Simple and gradual grading is implemented.

The reputation evaluation scope indicates which parts of the network are about to be examined by the
reputation scheme. Three categories are considered: node, path and community of nodes.

The reputation calculation determines the current reputation value of the examined entity. Four formulas
are supported. The simple summation is the summation of the transaction grading values. The reputation
fading stores a small history of grading values. The values are weighted according to time and reputation
fades – indicating that most recent values are considered more important. The reputation normalization
defines a statistical normalization of the reputation history, where the extreme values are ignored. The
reputation fading of the normalized history combines the two approaches to achieve higher level of
security.

If indirect knowledge is supported, the trust calculation can categorize nodes as trusted, legitimate,
suspicious or malicious, based on their reputation value. Three types of notifications are supported:
positive, negative, and positive/negative.

The scope of the notification determines which nodes are about to receive a notification. Three scopes are
considered: broadcast, trusted/friends, and the misbehaving node (for negative notifications).

Indirect trust evaluation defines three formulas for evaluating the notifications that are received by other
nodes. With simple evaluation, the node processes all notifications the same. With deviation test, the
node checks if the notification it receives, deviates significantly from its direct knowledge. With the
weighted evaluation, the notifications that are sent by trusted nodes gain higher weight.

A punishment strategy defines the thresholds for marking suspicious and malicious nodes as well as the
type of punishment. Punishment types include the discarding from the routing process, the termination of
packet forwarding for the punished nodes, the combination of routing and forwarding punishment, and
warning messages to inform the other nodes (if indirect knowledge is supported).

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 40 of 91 Version 2.0

A re-entrance strategy may allow a punished node to re-enter the network with a default reputation value
under some conditions. The strategies that are currently supported are the periodic re-entrance after T
minutes, redemption, and no re-entrance.

Path selection indicates the criteria for deciding which path to choose during the routing process. We
support the shortest path, the most well reputed path and the shortest well reputed path.

Table 4-1: Reputation technologies - Features of the reputation & trust scheme and their
supported implementations

Parameters Implementations

Knowledge type
Direct (default)

Indirect

Evaluation scope

Node (default)

Path

Community

Indirect notification
type

No notification (default)

Positive

Negative

Positive/Negative

Transaction evaluation

Simple evaluation (default)

Rerouting

Congestion windows

Channel observation

Transaction grading
Simple grading (default)

Gradual grading

Reputation calculation

Simple summation (default)

Reputation Fading mechanism (Bayes or beta distribution)

Reputation normalization mechanism

Fading of the normalized reputation

Punishment strategy

Forwarding (default): stop forwarding packets for punished
nodes

Routing: stop including paths with punished nodes in the
routing process

Routing & forwarding: stop both including paths with
punished nodes in the routing process & forwarding their
packets

Send a warning message to inform the other nodes

Initialization & re-
entrance strategy

No re-entrance is allowed (default)

Periodic: allow a punished node to re-enter the network
with a default reputation after T minutes

Redemption: all bad ratings are recalled to neutral ones
after Rt minutes

Path selection

Reputed path (default)

Shortest path

Shortest reputed path

The most important operation of a reputation-based scheme is the calculation of reputation and trust. A
node continuously receives new pieces of knowledge both from its direct interaction with its neighbours
and the notifications from other nodes. There are two evaluation operations for direct and indirect

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 41 of 91

knowledge respectively. When new knowledge has been evaluated, the reputation and trust values are
updated. If the trust level of the node has changed, notifications can be sent.

The above sample of code implements the main interactions between the 11 components and reasoning
process for evaluating new pieces of knowledge.

For direct knowledge:

Program listing 16: Reputation technologies – receiving new direct knowledge (DK)

Program listing 17: Reputation technologies – returning weight of transaction result (DK)

Program listing 18: Reputation technologies – transaction grading (DK)

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 42 of 91 Version 2.0

Program listing 19: Reputation technologies – calculating new trust and reputation (DK)

For indirect knowledge:

Program listing 20: Reputation technologies – receiving new indirect knowledge (IK)

Program listing 21: Reputation technologies – calculating new trust and reputation (IK)

Program listing 22: Reputation technologies – creating new indirect knowledge (IK)

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 43 of 91

Program listing 23: Reputation technologies – sending new indirect knowledge (IK)

Other important operations are the path selection and the entrance of new or previously punished nodes.
When a new communication path is established, the scheme has to decide which nodes will be included.
Through the path selection component we can denote the selection strategy of the scheme. Also, if the re-
entrance strategy is enabled, it is periodically examined the case of permitting to punished nodes to re-
enter the network.

We implement a GUI to ease the framework’s configuration. All the aforementioned component and
parameters are described and the user can select the most appropriate for his network. Before the
configuration process is completed, all the parameters are presented to the user for a final confirmation.
To make our proposal more applicable and acceptable, we have pre-set the configuration options for
implementing the decision making process of well-known reputation and trust schemes for secure routing.
These schemes are the Watchdog and Pathrater [9], CONFIDANT [10], Improved CONFIDANT [11],
CORE [12], Reputated-ARAN [13], CSRAN [14], RFSN [15] and a Semi-distributed reputation-based
Intrusion Detection System for mobile Ad-hoc Networks [16].

The network designer is able to add functionality, increase the level of security and adopt the final scheme
to his needs. Moreover, the configuration parameters can be altered at runtime. Consider a scenario
where we have set the Watchdog and Pathrater scheme in a WSN with nSHIELD nano nodes. Then, the
overlay layer becomes aware of an emergence situation and informs the overlay security agents to
increase the security level of the underling networks. The security agent, who manages the examined
WSN, checks its policy and informs the sensor nodes to increase their security. The policy orders a
specific set of actions, like lowering the threshold for malicious nodes and applying the routing and

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 44 of 91 Version 2.0

forwarding punishment strategy. The WSN is conformed to the new policy, becomes stricter with
misbehaving nodes and isolates the malicious ones. Similarly, when the emergence situation is over, the
overlay security agents can set the underling networks back to their normal form.

We integrate the Dynamic source routing (DSR) protocol with our trust and reputation-based scheme. The
DSR is implemented in NS2 and C++ and our scheme extends this implementation. DSR is designed for
wireless mesh networks. Most of the trust and reputation systems that are examined in this paper extend
this protocol. DSR performs well in static and low-mobility environments. The routing overhead is
proportional to the length of the path. The network animator (NAM) is used for demonstrating different
application scenarios.

The figure below, illustrates a demonstration scenario with NAM. The pre-defined parameters for
implementing the decision making process of CONFIDANT are selected. Nodes 0 and 4 communicate
through the secure routing protocol. Node 0 sends packets to node 4. Nodes 1 and 3 are legitimate
intermediates. Node 2 is a malicious intermediate, which tries to perform a black hole attack to the routing
protocol. The circles are route requests and their circumference reveals a node’s transmission range. The
route [0, 2, 4] is initially selected as the shortest path (all nodes start with a default neutral reputation
value). As node 2 begins to drop packets, node 0 lowers node’s 2 reputation value. When the reputation
reaches the malicious threshold, node 0 denotes node 2 as malicious. Then selects the other path [0, 1, 3,
4], which doesn’t’ include the punished node 2, continues the communication with node 4 and counters
the attack. The scheme improves the performance of DSR under attacks as fewer failures occur and the
communication isn’t obstructed.

Figure 4-1: Reputation technologies - Animated example of the proposed reputation and trust
scheme by NAM

From the pre-defined schemes, CONFIDANT implements the most robust reputation-only system,
applicable to nano nodes. To even increase the security level for this type of devices, we can easily
extend the scheme with gradual grading and negative/positive notifications (instead of simple grading and
negative notifications). Furthermore, these configurations can take place at runtime to efficiently counter
attacks that target the reputation scheme, like ballot- and topology-based attacks.

4.2.1 Trusted GPSR implementation

The purpose of the Reputation and Trust component is to guarantee a robust routing operation by
bypassing or even isolating nodes with malicious behaviour. This section presents a more detailed
investigation of the reputation and trust scheme prototype developed for TinyOS-based platforms. For
clarity reasons an introduction of some TinyOS concepts is included prior to a more detailed analysis of

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 45 of 91

source code points of importance. Finally some tools used for debugging and validation of proper routing
operation are presented at the end of this section.

4.2.1.1 TinyOS Components and Interfaces

TinyOS is an open-source small footprint operating system targeting networked sensors developed at
Berkeley University and used in hundreds of research projects up until now. TinyOS applications are
written in nesC (network embedded system C), which is C with some additional language features for
components and concurrency. A nesC application consists of one or more components assembled, or
wired, to form an application executable. A sensor node (mote) runs only one executable at a time which
consists of all components needed for this application. Components define two scopes: one for their
specification which contains the names of their interfaces and one for their implementation. Specification
is a code block that declares the interfaces the component provides and uses. The provided interfaces
are intended to represent the functionality that the component provides to its user in its specification while
the used interfaces represent the functionality the component needs to perform its task in its
implementation. For every function that a component provides in its specification an implementation must
be defined, so other components can call it. Conversely, every used function depends on some other
components which provide their implementation. TinyOS applications are constructed on two types of
components: modules and configurations. Modules provide the implementations of one or more
interfaces. Configurations are used to assemble other components together by connecting interfaces used
by components to interfaces provided by others. Every nesC application is described by a top-level
configuration that wires together all the components inside.

The set of interfaces a component uses and provides defines its signature. Interfaces are bidirectional:
they specify a set of commands which are functions to be implemented by the interface’s provider, and a
set of events which are functions to be implemented by interface’s user. A single component may use or

provide multiple interfaces and multiple instances of the same interface.

A component can only reference variables from its own, local namespace and can’t access variables in
any other components. However a component can declare that it uses a function defined by another
component. The composition of nesC programs involves writing components and wiring users to
providers. As this occurs at compile time, runtime allocation or storing function pointers in RAM is not
required. A nesC program knows the complete call graph at compile time.

TinyOS applications are built on static resource allocation, meaning that memory allocation for the
network, sensors, UART and other OS services is done at compile-time. This also helps in better
composition since components reserve the amount of memory they need, making total memory
requirements checkable at compile-time. Although there are situations where this can lead to RAM waste
it offers another level of protection against bad use of dynamic resource allocation.

4.2.1.2 Tasks and Scheduler

TinyOS has two basic computational instructions: asynchronous events and tasks. Tasks in TinyOS are a
form of deferred procedure calls that enable components to perform general purpose background
processing in an application. A task is a piece of code the execution of which will start later from the
TinyOS scheduler. The post operation places the task on the internal task queue which is processed in
FIFO order. A task cannot be preempted from another task and completes before the next task starts
running. Tasks are allowed to be preempted only by hardware interrupts. For this reason, lengthy
operations must be dispatched to a series of separate tasks which execute a part of the whole operation.
Every long-running application can be written as split-phase operation. In a split-phase system when a
program calls a long-running operation the call returns immediately and the called abstraction issues a
callback when it completes. Two separate phases of execution are present under this scheme, execution
invocation and completion. For example:

//start phase (e.g. send();)
//completion phase (e.g. sendDone();)

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 46 of 91 Version 2.0

Although split-phase code is more complex than sequential code it offers certain advantages in memory
usage and system responsiveness. Situations where an application needs to take some action and the
system is blocked by a lengthy task are avoided. Split-phase interfaces are a mechanism to achieve a
form of execution parallelism in TinyOS.

The TinyOS 2.x scheduler is implemented as a component that provides the Scheduler interface. The
Scheduler interface has commands for initialization and running tasks and is used by the operating
system to execute tasks in the appropriate order. The scheduler follows a simple FIFO policy but this can
change by replacing the default scheduler with one that implements a different scheduling policy like
Earliest Deadline First or Rate Monotonic scheduling. Otherwise if two tasks run in a particular order, it
can be enforced by the earlier task posting the later task. The default TinyOS scheduler implementation is
the module SchedulerBasicP. McuSleep function called by this module can be used to put microcontroller

in low-power mode when no tasks are waiting in the queue.

TinyOS functions that can preemptively run are labeled with the async keyword: they run asynchronously
with regards to tasks. A function that isn’t asynchronous is synchronous (or sync). By default, commands
and events are sync. Interface definitions specify whether their commands and events are async or sync.
On the other hand all interrupt handlers are async and they cannot include any sync functions in their call
graphs. The only way to execute a sync function within an interrupt handler is to post a task.

The main benefit of using tasks is the prevention of race conditions. Preemptive execution can modify the
state of an underneath ongoing calculation which can cause a system to enter an inconsistent state. For
this reason, TinyOS code must be kept synchronous whenever possible and async code should be used
only if time is very important or if it might be used by something whose timing is important. NesC provides
a mechanism which prevents preemption of the executed code through the use of atomic statements.
Atomic statements are used to implement mutual exclusion, e.g. updating concurrent data structures.
Atomic sections are implemented by disabling interrupts.

4.2.1.3 TinyOS Communication Interfaces

Being concentrated in network-centric devices TinyOS provides structures and interfaces to abstract the
underlying communication services such as sending and receiving packets. In TinyOS, the basic network
abstraction is active message a single hop unreliable packet. Active messages have a destination
address, can provide synchronous acknowledgements and can be of variable length up to a fixed
maximum size. A type field is also included which is essentially a protocol identifier for components built
on top of this abstraction. It must be noted that active messages is an abstraction that can be used with
different standard or proprietary MAC protocols. In case of IEEE 802.15.4 MAC, TinyOS Frames by
default have the format of Figure 4-2 where 6lowpan is the NALP code to identify that this is a TinyOS
packet (value 0x3F) and AM Type is a single byte field which indicates of active message type of the
packet.

Figure 4-2: Trusted GPSR - Active Message type position in 802.15.4 Frames

Packet level communication in TinyOS has three basic classes of interfaces. Packet interfaces for
accessing message fields and payloads, Send interfaces for transmitting packets and Receive interface
for handling packet reception events. Depending on whether the protocol has a dispatch identifier field the
Receive and Send interfaces may be parameterized in order to support multiple higher-level clients.
Packet and AMPacket are the two basic interfaces of the first class. The Packet interface provides access
to data payload. AMPacket provides additional handling such as setting and reading source and
destination addresses and active message type. For active messages communication AMSend is the
interface used for packet transmission to a specific destination AM address (with 0xFFFF denoting
broadcast). TinyOS components that use the AMSend interface can simply send network packets using

the command:

command error_t send(am_addr_t addr, message_t* msg, uint8_t len);

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 47 of 91

after setting source and destination addresses in am_addr_t structure, filling transmission buffer payload
in message_t structure and setting packet length. Similarly a user of Receive interface has to write

handling code to the event

event message_t* receive(message_t* msg, void* payload, uint8_t len);

which denotes the reception of a new frame. The user can handle all received packet header and payload
information using msg and payload structures (usually working on a copy of payload).

4.2.1.4 Implementation of GPSR prototype with Trust and Reputation enhancements

During source code prototype development a number of new TinyOS interfaces where implemented to
enable trust-aware multi-hop communication for sensor nodes (Figure 10). GPSRNeighborhood provides
a number of commands for handling neighbouring nodes. Apart from start command to enable split-phase
operation startDiscovery is used to enable periodic beacon messages broadcasting. UpdateNeighborList
is called every Beacon period to remove from my neighbours list the nodes from which beacon messages
haven’t received after a number of periods. AddNeighbor is responsible for adding a node in the structure
of one node’s neighbours if there is enough room to do so and if the address of this node isn’t already
stored in the list. There are also a number of functions for accessing the neighbours list (GetNeighbor,
GetNeighborById, GetSpecNeighbor) and for getting and setting parameters of operation like the total
number of packets received from a node, the number of them that has been acknowledged, the number of
packets that this node has successfully forwarded, the remaining energy and RSSI level of this node and
its involvement in the reputation scheme.

<<RoutingProtocol>> <<GPSR>> <<GPSRNeighborhood>>

<<LocationManagement>><<IndirectTrust>>

Init()

send_AL_Packet()

Init()

sendMsg()

get_own_position()start()

stop()

removeFromITTable()

calculateIndirectTrust()

receive_AL_Packet() receiveMsg()

start()

startDiscovery()

UpdateNeighborList()

GetNeighbor()

GetNeighborById()

GetSpecNeighbor()

AddNeighbor()

increaseNoi()

getNoi()

increasepktsFwd()

getpktsFwd()

increaseForwFails()

getForwFails()

getEtx()

getRSSI()

increaseRssiNoi()

getRssiNoi()

getRemEnergy()

increasenoRepMsg()

getnoRepMsg()

Interface Name

command

event

Figure 4-3: Trusted GPSR - TinyOS interfaces

RoutingProtocol and GPSR interfaces provide commands for sending routing and GPSR packets and
callback functions that must be implemented when receiving the corresponding event [17]. The distinguish

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 48 of 91 Version 2.0

between these two interfaces has to do with the fact that RoutingProtocol is a higher level component
used by top level components which need multi-hop routing functionality whereas GPSR is the component
providing a specific routing behaviour based on Greedy Perimeter Stateless Routing [18] enhanced with
trust. In the future other routing algorithms could be used and configured to be active instead of GPSR.
Functionality related to reputation based scheme is provided from IndirectTrust interface while
LocationManagement interface can give the current position of the node which in the case of current
implementation is a fixed value but in future versions could be the output of a GPS device for mobile
nodes.

For the Trusted-GPSR (T-GPSR) prototype presented in this section the interactions between the different
TinyOS components is presented in Figure 4-3. Apart from the new interfaces described above, standard
TinyOS interfaces for sending, receiving and handling packets, queuing, timer functions and voltage
reading have been used.

ApplicationLayerC

<<RoutingProtocol>>
<<LocationManagement>>

<<Boot>>

<<Timer>> (App

Layer)

RoutingProtocolC

<<GPSR>>

<<GPSRNeighborhood>>

<<LocationManagement>>

<<IndirectTrust>>

<<RoutingProtocol>>

GPSRC

<<GPSRNeighborhood>>

<<LocationManagement>>

<<IndirectTrust>>

<<AMSend>>

<<AMPacket>>

<<Receive>>

<<Receive>> (Snoop)

<<Packet>>

<<PacketAcknowledg

ements>>

<<Random>>

<<Queue>> (Receive)

<<Queue>> (Send)

<<Pool>>

<<GPSR>>

IndirectTrustC

<<GPSRNeighborhood>>

<<AMSend>>

<<Receive>>

<<Packet>>

<<Queue>>

<<Pool>>

<<Timer>> (Ind Trust)

<<SplitControl>>

<<IndirectTrust>>

LocationManagementC

<<LocationManagement>>

GPSRNeighborhoodC

<<IndirectTrust>>

<<LocationManagement>>

<<AMSend>>

<<Receive>>

<<Packet>>

<<Queue>>

<<Pool>>

<<Timer>> (Beacon)

<<SplitControl>>

<<PacketField>>

<<Read>> (energy)

<<GPSRNeighborhood>>

Module

Provided interfaces

Used interfaces

Figure 4-4: Trusted GPSR - Components wiring with provided and used interfaces in T-GPSR
implementation

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 49 of 91

4.2.1.5 Frame formats

1. Beacon Frame

GPSR is based on proactive beaconing broadcasted at periodic intervals with the purpose for
each node to advertise its existence and its coordinates in its neighbourhood. On receiving a
beacon frame from a neighbour, node stores this information (address and coordinates of the
neighbouring node) in a local table. In greedy mode of GPSR operation the node that is
geographically closest to the destination will be chosen from the set stored in the neighbours
table. An extension to standard GPSR included in this implementation is the transmission of the
current energy level of the node which can help in routing decisions by avoiding nodes whose
energy has dropped below a certain threshold.

The frame format of the beacon message is presented in Figure 4-5.

pos_x pos_y addr_id voltage

2 bytes 2 bytes 2 bytes 2 bytes

Figure 4-5: Trusted-GPSR - Beacon Frame format

where:

o pos_x: X coordinate of the node expressed in 2-bytes range

o pos_y: Y coordinate of the node expressed in 2-bytes range

o addr_id: unique identity of the node

o voltage: current voltage value of the node

2. Network Layer Header of data frames

Each time a node wants to send information about sensor values, services available or
configuration parameters a data packet is created which besides the payload information must
have filled the network layer header which in the case of T-GPSR presented in this section has
the format of Figure 4-6. Destination identity and (x, y) coordinates are of primary importance as
are used as means of identification of final destination arrival and for geographic forwarding
decisions. A significant number of network layer header fields is occupied from various perimeter
mode location coordinates (a detailed description of perimeter mode operation in GPSR is
presented in [18]) as this mode of operation is more complicated and more information for
geographically select the next neighbour is needed. It must be noted also that all the fields after
the Len field presented in Figure 4-6 are optional and their primary use in this implementation is
the increase of debugging and observation capabilities during network operation.

prev_id dest_id dest_x dest_y enterPerim_x enterPerim_y enterFace_x enterFace_y

fEdgeStart_x fEdgeStart_y fEdgeStop_x fEdgeStop_y Flag Len source_x source_ypkt_id

hops hc

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

10 bytes

1b 1b

1b

source_id

2 bytes

Figure 4-6: Trusted-GPSR - Network layer header

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 50 of 91 Version 2.0

where:

o source_id: identity of the node created the packet

o prev_id: Identity of previous node

o dest_id: Identity of the final destination node

o dest_x: X coordinate of the final destination node

o dest_y: Y coordinate of the final destination node

o enterPerim_x: X coordinate when first time entering in perimeter mode

o enterPerim_y: Y coordinate when first time entering in perimeter mode

o enterFace_x: X coordinate when entering in a new face in the planar graph in perimeter
mode

o enterFace_y: Y coordinate when entering in a new face in the planar graph in the
perimeter mode

o fEdgeStart_x: X coordinate of the starting point of the current edge in perimeter mode

o fEdgeStart_y: Y coordinate of the starting point of the current edge in perimeter mode

o fEdgeStop_x: X coordinate of the end point of the current edge in perimeter mode

o fEdgeStop_y: Y coordinate of the end point of the current edge in perimeter mode

o Flag: Flag bits for mode of operation (greedy or perimeter) and content type

o Len: payload length

o pkt_id: packet sequence number

o source_x: X coordinate of the node created the packet

o source_y: Y coordinate of the node created the packet

o hops: 10 bytes space for storing identities that this node has traversed

o hc: hop count indicating the number of hops so far

3. Reputation frame

In order to include the opinions of other nodes about the trustworthiness of a certain node a
reputation frame is broadcasted at periodic intervals with the structure and fields presented in
Figure 14. The frame has a fixed length presenting information from seven neighbouring nodes. If
more neighbours exist information will be split with neighbours after this value included in every
second transmission. The number of entries for which valid information exists is included at the
beginning of the reputation frame as well as an increasing counter field. Only first-hand evidence
is included containing information about the number of interaction with this neighbouring node, its
forwarding behaviour, the link quality between this node and the neighbour expressed in packet
reception ratio and received signal strength, the remaining energy of the neighbour and its
experience in reputation messages. After reception of a reputation frame a node will examine the
identities advertised from this neighbour and will store information only for nodes that are also
neighbours with the node receiving the frame (1 hop neighbours). This is due to the nature of
GPSR in which data messages are forwarded to the neighbouring node which is closest to the
destination and when trust is included to the trusted node that is closest to the destination.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 51 of 91

seq_no entries neighbor_id1 noi1 fwd1 etx1 rssi1 remEn1 repNo1

neighbor_id7 noi7 fwd7 etx7 rssi7 remEn7 repNo7

2 bytes 2 bytes

2 bytes

1 b1 b 1 b 1 b 1 b 1 b 1 b

1 b 1 b 1 b 1 b 1 b 1 b

Figure 4-7: Trusted GPSR - Reputation frame

where:

o seq_no: increasing counter of reputation messages

o entries: number of valid entries for this reputation frame

o neighbor_id1: identity of the node for which transmitting node has first-hand evidence

o noi1: number of interactions between transmitting node and neighbour 1 expressed in the
range 0 – 100.

o fwd1: forwarding behaviour of neighbour 1 measured from transmitting node expressed in
the range 0 – 100.

o etx1: packet reception ratio measured from packets acknowledged from transmitting node
when interacting with neighbour 1 expressed in the range 0 – 100.

o rssi1: received signal strength Indication for neighbour 1 as measured in transmitting
node expressed in the range 0 – 100.

o remEn1: remaining energy of Neighbour 1 known in transmitting node expressed in the
range 0 -100

o repNo1: number of reputation messages the transmitting node has received from
neighbour 1 expressed in the range 0 - 100.

4.2.1.6 Storage data structures

Two main data structures are used for keeping information based on which routing decisions will be taken.
The first one is an array of MAX_NEIGHBORS size

where:

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 52 of 91 Version 2.0

Program listing 24: Trusted GPSR - Max neighbour’s array

Fields of the m_neighbors array are updated in every beacon reception and can also be updated from all
modules that use GPSRNeighborhood interface using accessor functions defined in it (Figure 10). Two
fields deserve further analysis: Firstly forwFails field which indicates that transmitting node has received a
MAC acknowledgement indicating successful delivery. This is achieved using TinyOS
PacketAcknowledgements interface. In every unicast transmission requestAck command is used:

error = call PacketAcknowledgements.requestAck(msg);

After completing the transmission reception of acknowledgement in due time is examined using wasAcked
command:

if(call PacketAcknowledgements.wasAcked(p_bufPtr))

If packet acknowledgement fails forwFails field is increased and the node reattempts to transmit the same
frame up to a maximum value of MAC retries. In this way a node has a direct estimate of link quality which
can be used alone or in conjunction with RSSI estimation to select a neighbouring node with good link
quality.

Secondly the packet forwarding field (pktsFwd) which is crucial for the identification of undisrupted routing
operation and detection of black-hole and grey-hole routing attacks. For this functionality the TinyOS
AMSnoopingReceiverC.Receive interface is used in which the receive event is signalled whenever the
packet layer receives an active message of the corresponding AM type regardless of destination address.
Inside the event the prev_id field of the T-GPSR header is examined if equals the address of the node
that received the frame and in case of equality there is evidence that the next node has performed the
forwarding functionality appropriately. pktsFwd field of this neighbour is increased in m_neighbors table.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 53 of 91

Program listing 25: Trusted GPSR - TinyOS AMSnoopingReceiver interface

The second important data structure defined in IndirectTrust component is an array of MAX_IT_ENTRIES
for storing reputation information

where

Program listing 26: Trusted GPSR - Indirect trust array

Each time a reputation frame is received the opinion of neighbouring node (identified by neighbor_id) for
each one of its entries (target_node_id) is updated (or added if does not previously exist).

4.2.1.7 SPD Levels and Trust calculation

When programming a sensor node a parameter specifying the SPD level of the node is set according to
the values of Table 4-2.

Table 4-2: Trusted GPSR - SPD Level and implemented algorithms in the trust module

SPD Level Implemented Algorithms

1 (lowest) -

2 (low) Direct Trust [Algorithm A4 in D4.3]

3 (medium) Weighted DT (Direct Trust) + ID (Indirect Trust) [A4 + A5 in D4.3]

4 (high) Reputation based IDS algorithm, [A6 + A7 in D4.3]

Setting the SPD level affects the decision taken for the selection of the next node. Looking in more detail
inside the code every time a data packet is received from a node using the standard Receive TinyOS
interface the node puts the frame in the receive queue and calls the Process task where processing in the
frame is performed to determine if final destination has been reached. In the case of final destination

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 54 of 91 Version 2.0

arrival the node must pass the packet payload to the upper layer otherwise it has to select the next
neighbour to forward this packet. Forward task is responsible to perform this functionality.

When SPD_LEVEL=0 next node will be selected purely geographically. The node will traverse all its
neighbours stored in the m_neighbors table and will compare their distance to the final destination taken
from the dest_x, dest_y parameters of the routing header of the packet received. The neighbour node
whose distance to the final destination is shorter will be selected as the next node. The following code
snippet from Forward task highlights this operation.

Program listing 27: Trusted GPSR - Greedy forwarding

In this mode of operation the node is unable to avoid malicious nodes that disrupt routing like black-hole
and grey-hole attackers.

When SPD_LEVEL=1 next node is selected using a weighted sum of distance and direct trust. Firstly the
neighbours table is traversed to find the neighbour whose distance is closer to the destination (minimum
distance). In the next iteration of neighbours table a distance metric is calculated as the fraction of
minimum distance to current node distance:

min

A,B
A,B

(A,B)

d
D =

d

with D taking values in the range [0, 1].

Direct trust is calculated using a weighted sum of packet forwarding, link quality and remaining energy.
Packet forwarding value has been stored in my neighbours table using the
AMSnoopingReceiverC.Receive interface as analysed in the previous section. Direct trust is calculated

as:

EWRSSIWETXWFWDT Erssietxf

where:

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 55 of 91

 F is packet forwarding

 ETX is packet delivery ratio

 RSSI is the received signal strength indicator

 E is the remaining energy of the neighbour

and fW , etxW , rssiW , EW weighting factors with 1 Erssietxf WWWW

Finally, next node is selected by calculating neighbour value
BANV ,

using the formula:

BA

dt

BA DWDTWNV ,, (1)

with 1 dt WW

The code snippet below represents the actions described above in source code format

Program listing 28: Trusted GPSR - Next node selection mechanism for SPD level = 1

Next node selection is performed according to the routingFunction value which is equivalent to formula (1)
above. Using this SPD_LEVEL if the node closer to the destination is an attacker will initially have the
greatest value of routingFunction due to distanceMetric value which is equal to 1, but as packet
forwarding fails the total value of routingFunction variable will become less compared to more distant

nodes. At this point a trusted node will be selected as next hop, bypassing the routing attack.

In the case of SPD_LEVEL=2 the opinion of other nodes that interact with my neighbours will be taken
into account. This is helpful in cases when my previous experience with the node under examination is
limited. In this case Total Trust will be calculated as the weighting sum of Direct and Indirect Trust:

ITWDTWTT ITDT

and next node is selected by calculating neighbour value using the formula:

BA

dt

BA DWTTWNV ,,

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 56 of 91 Version 2.0

For the Indirect Trust calculation the table it_values will be traversed to extract the reputation values that
neighbours have transmitted for the node under examination.

Program listing 29: Trusted GPSR – Next node selection mechanism for SPD level=2, 3

Where calculateIndirectTrust is responsible for it_values table traversal, the finding all the entries for the
node under examination and the calculation of the weighted sum using the weights passed as parameters
to the function.

Program listing 30: Trusted GPSR - Indirect trust calculation

Finally when SPD_LEVEL=4 only reputation messages that don’t deviate from a beta distribution function
are accepted as valid reputation messages. This way every time neighbours advertise false reputation
messages either by praising or accusing the behaviour of the node under examination they will be isolated
from participating in indirect trust calculation and the network will be robust to bad-mouthing attacks.

4.2.1.8 Fabrication of Routing Attacks

When programming a node the ATTACKER command line parameter is specified indicating the behaviour
of the node. ATTACKER=0 indicates a normal non-malicious node. ATTACKER=1 indicates black-hole
node, while ATTACKER=2 indicates a grey-hole node. The code snippet (from GPSR component which is
responsible for packet forwarding when destination hasn’t yet been reached) presented below presents
the section that suspends the proper packet forwarding operation, withholding the packets every time in
the case of black-hole attacker and according to a random pattern in the case of grey-hole attacker.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 57 of 91

Program listing 31: Trusted GPSR - Routing attacks

Programming a node with parameter ATTACKER=3 leads to a node that praise all its neighbours giving
the maximum values for all the parameters in the reputation frame while parameter ATTACK=4 leads to a
node that transmits false accusations for all its neighbours by minimizing the values for all the parameters
in the reputation frame. These represent two kinds of bad-mouthing attacks that the reputation scheme
should be able to counteract.

4.2.1.9 Trusted Routing Testing and Debugging Tools

T-GPSR TinyOS source code was tested using different topologies of sensor nodes. Crossbow IRIS mote
[19] was the platform used in the experiments. The mote is able to be customized for a particular
application with the use of the appropriate sensor board (i.e.: temperature, barometric, pressure,
acceleration, acoustic, magnetic, etc.) but in the case of this section routing behaviour was the first priority
of experimentation. A first tool where network behaviour can examined in TinyOS environment is the
simulator provided, TOSSIM (TinyOS SIMulator). In the experiments of T-GPSR both TOSSM simulations
and real hardware nodes were used. In order to be able to examine multi-hop routing in a small area
using real hardware a controlled topology was used where programmatically only certain nodes from the
sum of all nodes from which beacon messages are available are considered as neighbours. A short
description of the tools used that helped in the verification of T-GPSR correct behaviour follows.

1. TOSSIM simulation

During T-GPSR development extended simulations conducted in TOSSIM in order to validate the
reliability and successful implementation of the trust-aware routing solution in TinyOS. TOSSIM
provides flexibility during the TinyOS application development and debugging, as TinyOS code can be
compiled into the TOSSIM framework on a PC, instead of compiling it on a sensor mote. Thus,
algorithm testing and debugging is easily conducted in a controlled and repeatable way, isolated and
relieved from external factors, which may affect the smooth algorithm operation. TOSSIM simulates
entire TinyOS applications by replacing components with simulation implementations in several levels.
For example, TOSSIM offers packet-level or low-level communication simulation by replacing a
packet-level communication component in the former case, or replacing a low-level radio chip
component in the latter case.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 58 of 91 Version 2.0

TOSSIM network simulation is based on the network topology provided. Moreover, TOSSIM
radio simulation can be configured through a data set providing the propagation signal strengths
between any possibly communicating nodes, the noise floor and receiver sensitivity. Thus,
TOSSIM does not simulate only specific radio propagation models, but it can simulate a wide
range of radios and behaviours through a few low-level primitives. In addition, TOSSIM also
simulates the RF noise and, both self- and external, interference the WSN experiences
implementing the Closest Pattern Matching (CPM) algorithm. A noise trace is provided as input
to CPM, which then extracts a statistical model. This model can capture bursts of interference
and other correlated phenomena, such that it greatly improves the quality of the RF simulation.

TOSSIM is a discrete event simulator. Events are kept in an event queue, sorted by time, which
are pulled by TOSSIM and executed. Such simulation events can be hardware interrupts, high-
level system events or even tasks, so that task posting results in the task running in the near
future.

TOSSIM supports two programming interfaces, namely Python and C++.During T-GPSR testing
Python was used.

The scope of the validation of the TinyOS source code is summarised in the following:

 Verification of the routing protocol: The routing solution should be capable of selecting
the optimal path from the source to the destination node.

 Verification of the trust-aware solution: The trust-aware routing solution should be able
to detect and avoid any malicious nodes on the shortest path by traversing longer, yet
trusted, paths.

 Verification of the routing metrics enabled: T-GPSR implementation offers the ability to
include energy awareness and link quality observations in the routing module. Correct
behaviour of the routing module should be examined when these parameters are taken
into consideration.

Compiling a TinyOS application with the sim parameter ($ make iris sim) will build all the
libraries needed by TOSSIM as well as all the Python interfaces that interact with the library. A
Python script used for TOSSIM simulations has the format of the program listing below. The
details of using the simulator can be found in [20]. Network topology is loaded from a file which
contains lines of the format:

gain src dst g
gain 1 2 -54.0

which is translated as when node 1 transmits node 2 hears it at -54.0 dBm.

Using dbg inside TinyOS application source code enables the programmer to print debug
statements in the simulation environment, including inspection of current variables values. In
dbg statements an output channel has been defined as the first argument before the message
that will be presented in the output:

dbg("NeighborManagementC", "Node %d registered as a neighbour.\n", pBeaconMsg->m_id);

dbg statements proved to be a valuable tool during T-GPSR debugging providing useful
information about various variables values and revealing internal nodes’ behaviour.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 59 of 91

Program listing 32: Trusted GPSR - Python script used in TOSSIM simulations
(simtest.py)

Redirecting python script to a text file

$python simtest.py > simresults.txt

gives the programmer the ability to inspect network internals, nodes’ interactions and routing
correctness over a time interval of interest. Part of the output dbg statements after running the
python script above in TOSSIM simulator are presented in Figure 4-8.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 60 of 91 Version 2.0

Figure 4-8: Trusted GPRS - Debug statements in the output file of a TOSSIM simulation.

2. Daintree SNA Packet Sniffer

Daintree Networks SNA kit [21] is an IEEE 802.15.4 packet sniffer that includes the Sensor
Network Analyser (SNA) which is a packet filtering software application and the ATMEL-based
capturing device in hardware (Atmel STK 541) which is connected through USB, as depicted in
Figure 4-9.

The SNA combines a powerful protocol analyser with network visualization, measurements and
diagnostics for wireless embedded networks. It provides automatic display of network formation,
topology changes, and router and coordinator state changes allowing rapid detection of incorrect
network behaviour and identification of device or network failures. Furthermore, this tool
provides a powerful protocol decoder that allows drilling down to the packet, field and byte level,
as well as customizing options including filtering, labelling and color-coding for locating packets
of interest. The program was used to capture all the transmitted packets (beacon, data and
reputation packets, MAC acknowledgements) and their exact content was examined at byte
level to validate their correctness. Moreover multi-hop routing operation and paths followed can
easily be monitored with Daintree SNA. Additional parameters of monitoring provided by the tool
include observation of the timing behaviour of the network, packet forwarding delay and end-to-
end latency. A snapshot of the visualization window with 9 nodes running T-GPSR is depicted in
Figure 4-10.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 61 of 91

Figure 4-9: Trusted GPSR - Daintree sensor network analyser

Figure 4-10: Trusted GPSR - frames capture from Daintree SNA

3. Serial Communication

Serial communication between IRIS mote and PC is feasible using a 3.3V RS232 level shifter.
From the software point of view, Uprintf (defined in Uprintf.h) is a utility function that can be used
to print statements to a PC serial port terminal application in a similar way in which the well-
known C printf function prints statements in the PC standard output. Uprintf utilizes the UART0
port of the Atmel ATmega1281 microcontroller to communicate with a terminal application set to
57600, 8, N, 1 parameters. This function is based on the source code of an Atmel AVR utility
library which was adopted and modified to be included into TinyOS to overcome difficulties
encountered with the original printfUART function of TinyOS source code tree. Uprintf was a
valuable tool for monitoring execution flow and print variables from inside the source code of the

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 62 of 91 Version 2.0

microcontroller besides the burden of extra instructions added and the increased utilization of
the limited amount of RAM memory of the ATmega1281 microcontroller. A snapshot of the
terminal presenting values under examination in T-GPSR is depicted in Figure 4-11.

Figure 4-11: Trusted GPSR - Sensor node monitoring using terminal application and Uprintf

4.2.2 Intrusion Detection in Wireless Sensor Networks

4.2.2.1 Brief description

The proposed Intrusion Detection prototype consists of a number of wireless sensors running on Zolertia
Z1 mote (which is briefly described in section 5.1.2 of D4.3 [22]), using a 802.15.4 radio interfaces. For
our prototype, we have selected one of the available open source operating systems for wireless sensor
networks, namely Contiki-OS 2.6 (also briefly described in the same section mentioned before).

The algorithms used for the Bayesian reputation system should be easily ported to other hardware and
software platforms.

The Bayesian reputation Intrusion Detection strategies, and the proposed algorithms, have been
described in Section 4.3.3 of D4.3 [23]. Here, the most important corresponding parts of algorithm (C
code) for the preliminary prototype are provided.

4.2.2.2 Algorithms implementation

Given the hardware platform we have used to implement the prototype on it does not have a floating point
unit, floating point operations are not available by default. Even though software implementation can be
linked in, floating operations are very slow. For this reason, it has been decided to use fixed point
arithmetic using long (32 bit) integers. This allows for 2 decimal places (which is good enough for the
algorithms used, as it does not make them unstable due to lack of precision) and big enough values for

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 63 of 91

the j
 and j

parameters, as these can grow very large for very active nodes. In order to avoid
mistakes using fixed point arithmetic, several C pre-processor macros have been defined to hide all the
details. These are the FLOATVAL_XXX macros that appear in the code below.

The algorithm uses three different sets of values for each node it knows about:

 First-hand information: which consists of the Id of the node in question (we assume it is an integer

value in the demonstrator), plus the and parameters of the Bayesian distribution for first-

hand information.

 Reputation information: which consists of the Id of the node in question (we assume it is an

integer value in the demonstrator), plus the and parameters of the Bayesian distribution for

reputation information.

 Trust information: which consists of the Id of the node in question (we assume it is an integer

value in the demonstrator), plus the and parameters of the Bayesian distribution for trust

information.

The values for the nodes are kept in tables, addressed by the node ID value. As the hardware for the
demonstrator has rather tight memory constraints, it has been decided to use size-bounded tables for
those values. The maximum size of those tables is configurable via a constant in the source code, so we
can use bigger tables when running on more powerful hardware.

Figure 4-12: IDS - schematic

Contiki-OS already implements a linked list library that provides a set of functions for manipulating size-
bounded linked lists in a memory efficient way. As Contiki-OS source code is released under a 3-clause
BSD-style license, the code from the project can be used freely in both commercial and non-commercial
systems as long as the copyright header in the source code files is retained. This will allow us to port the
algorithm to other platforms with minimal effort by simply using the same linked list library.

Using that library, we will keep other nodes’ first-hand information, reputation and trust tables. As the lists
have a maximum fixed size, we will manage the entries in the tables using a simplified LRU (Least
Recently Used) strategy. Also, to simplify the management of the values and keep memory used low,
instead of using separate tables for each of the sets, we conflate all the values in a single table.

Also, since we need to decay first-hand information, reputation and trust on inactivity periods (as
explained in D4.3), we need to also keep the time of the last interaction with a given node. In this case we
do not need very precise timing for the inactivity periods (they are usually specified in the range of several
seconds or even minutes), so we use a value measured in seconds.

The first thing we need to do is initialize some global constants used by the algorithms, like the ID of the
node itself (to ignore second hand information data that is supposed to be sent by the node itself), the
various fading and merging factors, and the decision thresholds. These values can be changed at runtime
using several available functions. The values chosen initially (shown in the following piece of code) come
from [24].

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 64 of 91 Version 2.0

Void brt_init (nodeId_t ownId, interval_t inactivityPeriod)
{
 brt_myId = ownId;
 brt_reputationFading = brt_floatValMakeConst(0.9);
 brt_trustFading = brt_floatValMakeConst(0.9);
 brt_reputationMerging = brt_floatValMakeConst(0.1);
 brt_reputationThreshold = brt_floatValMakeConst(0.5);
 brt_trustThreshold = brt_floatValMakeConst(0.85);
 brt_devTestThreshold = brt_floatValMakeConst(0.5);
 brt_inactivityPeriod = inactivityPeriod;
 memb_init(&brt_nodeTableMem);
 list_init(brt_nodeTable);
}

Program listing 33: IDS - initialization of the global constants

Once the reputation system is initialized, each time a local (first hand) interaction occurs with a given node
(or set of nodes), we call the brt_updateEntries() function that implements the algorithm 7 described in
section 4.3.3 “Obtaining α and β for the reputation table and γ and δ for confidence table”.

We check whether this particular update is for a first-hand interaction, and if so, we update the first-hand
information table and the reputation table for that node. And then test the reputation for the node. In case
that the reputation is outside of the threshold, we store the node’s ID in the misbehaved array the caller
has passed.

uint16_t brt_updateEntries(const nodeUpdateEntries_t *nodeUpdates,
 nodeId_t *misbehavedNodes, uint16_t entriesMax)
{
 uint16_t i, misbehaved, trustworthy;
 floatVal_t deviationTest;
 nodeExchangedData_t nodeData;
 nodeEntry_t *node, reportingNode;
 misbehaved = 0;
 if (nodeUpdates->updateType == brt_firsthand)
 {
 for (i = 0; i < nodeUpdates->count; i++)

{
 nodeData = nodeUpdates->nodeData[i];
 brt_updateFirsthandDataTable(nodeData.nodeId, nodeData.alpha, nodeData.beta);
 node = brt_updateReputationTable(nodeData.nodeId, nodeData.alpha,
 nodeData.beta, brt_firsthand);

 if (!brt_testReputationThreshold(node))

 {
 if (misbehaved < entriesMax)

{
 misbehavedNodes[misbehaved] = nodeData.nodeId;
 misbehaved++;
 }
 }
 }
 }
}

Program listing 34: IDS - obtaining α and β for the reputation table and γ and δ for confidence
table

The reason for doing so is that instead of triggering the alert process from inside the reputation algorithm
(which may know nothing about the framework it is running under), we simply hand the information back
to the caller which can better decide how to handle the alerting process.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 65 of 91

If on the other hand the updates are from second hand information [25], we first check that the updates
are not supposed to be from ourselves. This can happen if either our first hand data broadcasts are re-
broadcasted in our neighbourhood (to reach our two-hop neigh boughs), or a malicious node is trying to
impersonate us. In both cases, we can simply ignore the updates.

else if (nodeUpdates->updateType == brt_reported)
{
 if (nodeUpdates->reporterId == brt_myId)

{
 return 0;
 }
}

Program listing 35: IDS - updates from second hand information

In other case, we iterate over the nodes’ values that are contained in the updates. For each node’s values
we need to perform the deviation test for the reporting node (and update its trust accordingly), to see if we
will integrate the second hand information with our local values or not. If we do, we update the reputation
for the reported node and check whether the node is misbehaved or not (to report it back to the caller):

 reportingNode = brt_nodeLookup(brt_nodeTable, nodeUpdates->reporterId);
 if (reportingNode == NULL)

{
 reportingNode = brt_nodeAdd(brt_nodeTable, &brt_nodeTableMem,

nodeUpdates->reporterId, floatValOne,
floatValOne, floatValOne, floatValOne,
floatValOne, floatValOne);

 }
 for (i = 0; i < nodeUpdates->count; i++)

{
nodeData = nodeUpdates->nodeData[i];
deviationTest = brt_deviationTest(reportingNode, nodeData.alpha, nodeData.beta);

 if (deviationTest)
{
 brt_updateTrustTable(reportingNode, floatValOne, floatValZero);

 } else {
 brt_updateTrustTable(reportingNode, floatValZero, floatValOne);
 }

trustworthy = brt_testTrustThreshold(reportingNode);
if ((!deviationTest) || trustworthy)
{

 node = brt_updateReputationTable(nodeData.nodeId, nodeData.alpha,
 nodeData.beta, brt_reported);

 if (!brt_testReputationThreshold(node))
{
 if (misbehaved < entriesMax)

{
 misbehavedNodes[misbehaved] = nodeData.nodeId;
 misbehaved++;
 }
 }
 }
 }
} /* END: second hand information updates */
/* Tell the caller how many misbehaved nodes we are returning back */
return misbehaved;

Program listing 36: IDS - node lookup

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 66 of 91 Version 2.0

The code to update the first-hand information table, the reputation table and the trust (confidence) table
are shown below:

nodeEntry_t* brt_updateFirsthandDataTable(nodeId_t nodeId, floatVal_t alphaFirst, floatVal_t
betaFirst)
{
 nodeEntry_t *node;
 node = brt_nodeLookup(brt_nodeTable, nodeId);
 if (node == NULL)
 {
 node = brt_nodeAdd(brt_nodeTable, &brt_nodeTableMem, nodeId, floatValOne,
 floatValOne, floatValOne, floatValOne, floatValOne, floatValOne);
 }
 node->data.alphaFirst = FLOATVAL_ADD(FLOATVAL_MUL(brt_reputationFading,
 node->data.alphaFirst), alphaFirst);
 node->data.betaFirst = FLOATVAL_ADD(FLOATVAL_MUL(brt_reputationFading,
 node->data.betaFirst), betaFirst);
 SET_CURRENT_TIME_SEC(node->lastUpdate);
 brt_lruNode(brt_nodeTable, node);
 return node;
}

Program listing 37: IDS - updating first hand data table

nodeEntry_t* brt_updateReputationTable(nodeId_t nodeId, floatVal_t alphaRep, floatVal_t
betaRep, updateType_t update)
{
 nodeEntry_t *node;
 node = brt_nodeLookup(brt_nodeTable, nodeId);
 if (node == NULL)
 {
 node = brt_nodeAdd(brt_nodeTable, &brt_nodeTableMem, nodeId,
 floatValOne, floatValOne, floatValOne,
 floatValOne, floatValOne, floatValOne);
 }

 switch (update)
 {
 case brt_firsthand:
 node->data.alphaRep = FLOATVAL_ADD(FLOATVAL_MUL(brt_reputationFading,
 node->data.alphaRep), alphaRep);
 node->data.betaRep = FLOATVAL_ADD(FLOATVAL_MUL(brt_reputationFading,
 node->data.betaRep), betaRep);
 break;
 case brt_reported:
 node->data.alphaRep = FLOATVAL_ADD(node->data.alphaRep, FLOAT
 VAL_MUL(brt_reputationMerging, alphaRep));
 node->data.betaRep = FLOATVAL_ADD(node->data.betaRep, FLOAT
 VAL_MUL(brt_reputationMerging, betaRep));
 break;
 default:
 break;
 }
 SET_CURRENT_TIME_SEC(node->lastUpdate);
 brt_lruNode(brt_nodeTable, node);
 return node;
}

Program listing 38: IDS - updating reputation table

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 67 of 91

nodeEntry_t* brt_updateTrustTable(nodeEntry_t *node, floatVal_t gamma, floatVal_t delta)
{
 node->data.gamma = FLOATVAL_ADD(FLOATVAL_MUL(brt_trustFading, node->data.gamma), gamma);
 node->data.delta = FLOATVAL_ADD(FLOATVAL_MUL(brt_trustFading, node->data.delta), delta);
 SET_CURRENT_TIME_SEC(node->lastUpdate);
 brt_lruNode(brt_nodeTable, node);
 return node;
}

Program listing 39: IDS - updating trust table

The code for the deviation test is given as follows:

uint16_t brt_deviationTest(nodeEntry_t *reportingNode, floatVal_t alphaReported,
floatVal_t betaReported)
{

 floatVal_t reportingNodeExpectation;
 floatVal_t secondhandExpectation;
 uint16_t ret;
 reportingNodeExpectation = FLOATVAL_DIV(reportingNode->data.alphaRep,
 FLOATVAL_ADD(reportingNode->data.alphaRep, reportingNode->data.betaRep));
 secondhandExpectation = FLOATVAL_DIV(alphaReported, FLOATVAL_ADD(alphaReported,
 betaReported));
 if (reportingNodeExpectation < secondhandExpectation)
 {
 ret = (FLOATVAL_SUB(secondhandExpectation, reportingNodeExpectation) >=
 brt_devTestThreshold);
 }
 else
 {
 ret = (FLOATVAL_SUB(reportingNodeExpectation, secondhandExpectation) >=
 brt_devTestThreshold);
 }
 return ret;
}

Program listing 40: IDS - deviation test

As we have explained before we need to decay first-hand information, reputation and trust on inactivity
periods. That is why on every update of the first-hand information table, reputation table or trust table we
update the lastUpdate value of the node. We set a periodic inactivity timer, and when the timer expires we
call the brt_updateOnInactivityTimer() function:

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 68 of 91 Version 2.0

void brt_updateOnInactivityTimer(void)
{
 nodeEntry_t *entry;
 interval_t now, expiry;
 SET_CURRENT_TIME_SEC(now);
 if (now < brt_inactivityPeriod) {
 /* Prevent integer overflowing at system start */
 expiry = 0;
 } else {
 expiry = now - brt_inactivityPeriod;
 }
 for (entry = list_head(brt_nodeTable); entry != NULL; entry = entry->next)
 {
 if (entry->lastUpdate < expiry)
 {
 entry->data.alphaFirst = FLOATVAL_MUL(brt_reputationFading, entry->data.alphaFirst);
 entry->data.betaFirst = FLOATVAL_MUL(brt_reputationFading, entry->data.betaFirst);
 entry->data.alphaRep = FLOATVAL_MUL(brt_reputationFading, entry->data.alphaRep);
 entry->data.betaRep = FLOATVAL_MUL(brt_reputationFading, entry->data.betaRep);
 entry->data.gamma = FLOATVAL_MUL(brt_trustFading, entry->data.gamma);
 entry->data.delta = FLOATVAL_MUL(brt_trustFading, entry->data.delta);
 }
 }
}

Program listing 41: IDS - update on inactivity timer

There are also several helper functions to get the reputation or trust of a given node (expressed in the
sense defined by the Bayesian underlying approach), and the contents of the whole first-hand information
table. As stated in D4.3, we publish the first-hand information when at least one of the updated nodes is
considered misbehaved.

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 69 of 91

5 Trusted and dependable connectivity

5.1 Link layer security

Network Access Control (NAC) refers to methods used to authorize or deny network communications to
particular systems or users. In other words, our system before transmitting data through the network has
to ensure that new nodes can join to and leave from the network in a secure way.

As described in Deliverable D4.3 one of the protocols to manage NAC is EAP which uses certificates to
ensure the security and confiability of the system.

Firstly we are going to explain how to create a root CA for the whole WSN and after that we will analyse
the algorithms and results of the proposed solution.

5.1.1 Creating a root CA for the whole WSN (nSHIELD)

To perform the creation, request, issuing and signing certificates will be performed with openSSL library
installed on a Linux (Ubuntu) operating system.

First of all we have to establish the OpenSSL Environment for creating and issuing certificates.

Set up the relevant directories

mkdir -p ~/etc

mkdir -p ~/etc/ssl

mkdir -p ~/etc/ssl/private

chmod og-rwx ~/etc/ssl/private

mkdir -p ~/etc/ssl/certs

mkdir -p ~/etc/ssl/crl

mkdir -p ~/etc/ssl/newcerts

mkdir -p ~/tmp

Set up the location of your OpenSSL configuration file

export OPENSSL_CONF="/etc/ssl/openssl.cnf"

Add the location of your OpenSSL configuration file to your .bashrc

echo "/etc/ssl/openssl.cnf" >> ~/.bashrc

echo "export OPENSSL_CONF=\"/etc/ssl/openssl.cnf\"" >> ~/.bashrc

Create the random file

openssl rand -out ~/etc/ssl/private/.rand 1024

chmod og-rwx ~/etc/ssl/private/.rand

Program listing 42: Link layer security - establishing OpenSSL environment

After this set of commands, we have to modify the openSSL config file (/etc/ssl/openssl.cnf) and change
the default directory from “./demoCA” to “~/etc/ssl”.

1. Generating the private (and public) key
Create an RSA private key

openssl genrsa -des3 -out /etc/ssl/private/nshield.key 4096

openssl ec -des3 -out /etc/ssl/private/nshield.key 4096

chmod og-rwx /etc/ssl/private/nshield.key

Program listing 43: Link layer security - generating private key

2. Fill in the certificate request
A certificate request is a combination of your private key and your self-information in reality, in
order for the CA to verify its correctness and sign on it later. For this reason, you will be asked

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 70 of 91 Version 2.0

several questions relevant to this key, including your country, city, organization, department, the
certificate name, contact e-mail, and your applying valid period. Fill in them one by one.

If you want to use your root CA as the same server certificate for your server, fill in your server’s
full qualified domain name (FQDN, i.e. www.newshield.eu) as the certificate’s common name
here.

Fill in the certificate request

openssl req -new -key /etc/ssl/private/nshield.key -out /tmp/nshield.req

Program listing 44: Link layer security - filling in the certificate request

3. Issue the certificate
Root CA is the topmost CA. No further higher CA can issue a root CA. It has to be signed by
itself.

Root CA should never expire. Otherwise, all the certificates it had issued will need to be reissued,
and all of the relevant SSL programs will need to be reconfigured. So we set its valid period to
7305 days (20 years). If we do not set the valid period, it will be set to its default as 30 days (1
month).

The certificate request is not required after it is signed. We can safely delete it.

Sign its own certificate request

openssl x509 -req -days 7305 -sha1

 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \

 -signkey /etc/ssl/private/nshield.key \

 -in /tmp/myrootca.req -out /etc/ssl/certs/nshield.crt

Delete the certificate request

rm -f /tmp/nshield.req

Program listing 45: Link layer security - certificate request

To visualize in details the generated certificate you have to introduce the following sentence in the
command-line interpreter:

openssl x509 -in /etc/ssl/certs/nshield.crt -noout –text

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 ab:95:f3:88:30:04:5a:58
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=ES, ST=MADRID, O=INDRA, OU=WP4, CN=nSHIELD/emailAddress=ibarriv@indra.es
 Validity
 Not Before: Feb 12 15:48:27 2013 GMT
 Not After : Feb 12 15:48:27 2033 GMT
 Subject: C=ES, ST=MADRID, O=INDRA, OU=WP4, CN=nSHIELD/emailAddress=ibarriv@indra.es
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:ce:f8:d2:83:06:30:9e:bc:cf:f2:c1:9d:bc:23:
 45:fa:6a:c2:6e:01:f6:6e:bf:14:58:b3:fa:96:16:
 6c:f3:55:42:48:53:f0:b7:5b:34:cd:cc:6b:45:e8:
 ca:0f:5d:5d:13:cd:df:9a:47:9c:19:05:d7:6d:a0:
 59:92:99:a7:10:20:65:d6:59:0f:af:24:1f:d1:d9:
 2b:eb:68:cd:e4:50:8c:dd:62:02:1a:28:82:d2:62:
 5e:9c:66:af:60:a2:2b:4d:1c:4d:94:09:8b:fa:26:
 87:9b:6a:fe:7d:a1:4b:78:46:4e:9b:fb:0a:88:76:
 78:39:75:bf:f3:db:4d:68:ca:92:14:9a:3b:aa:3f:

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 71 of 91

 07:f8:37:63:fb:67:94:bf:6f:b0:1a:8a:13:9c:82:
 33:4e:44:47:65:19:a3:b8:bd:9c:19:78:1f:20:f0:
 11:63:e1:99:66:4a:6c:48:f3:6f:20:17:4c:7c:35:
 f5:39:5e:a2:4d:93:d9:bc:56:e8:52:1f:2f:06:6c:
 c3:99:b6:d4:a0:f6:25:c8:15:b2:5b:6e:25:16:f3:
 8b:35:d6:8a:ed:1d:cb:d8:44:42:05:63:f9:da:97:
 92:d0:82:43:e1:58:a0:be:a8:85:a8:da:04:5c:b5:
 cd:85:54:79:90:13:25:20:b6:92:7a:a4:1f:2a:55:
 a1:df
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 1B:9C:1E:C6:EC:F5:FC:37:3D:4E:40:96:CB:9F:B3:A0:BA:D1:6C:AB
 X509v3 Authority Key Identifier:
 keyid:1B:9C:1E:C6:EC:F5:FC:37:3D:4E:40:96:CB:9F:B3:A0:BA:D1:6C:AB

 X509v3 Basic Constraints:
 CA:TRUE
 Signature Algorithm: sha1WithRSAEncryption
 37:39:41:8b:9e:36:fd:7e:7f:25:e6:30:3e:a1:aa:a4:53:26:
 be:2e:ee:b6:e3:d0:fb:5c:a1:e9:c3:d3:cc:a4:95:94:ac:ad:
 35:70:75:6e:c3:ad:54:a9:95:18:4e:76:e6:90:17:ec:3f:6b:
 c5:11:6a:bf:0d:40:18:b5:44:2f:b5:92:ee:3d:e5:7a:f4:d7:
 de:c1:de:4e:ca:03:7e:31:5a:1f:1b:46:55:47:f1:ec:cd:e5:
 bf:f2:5f:ec:c1:c0:8f:7a:3d:26:d6:0b:f9:4c:71:47:a9:ae:
 0b:d8:d9:ef:b7:66:02:b9:d7:8f:26:f5:e5:b3:40:c2:c9:f8:
 cf:2b:2b:b3:6a:a9:d7:75:d6:70:ed:ce:15:af:c3:2e:de:6c:
 c1:27:42:3a:1d:13:72:d4:6a:cf:32:5d:15:ae:a0:90:a4:1f:
 c9:c8:9b:75:7c:b4:9c:a2:f5:b3:89:34:22:58:ac:3a:b5:bd:
 a4:7f:91:1d:e8:b7:5b:4c:e2:17:24:14:90:de:b4:ba:d5:ed:
 0e:9c:82:7f:11:4b:60:ef:4c:3a:96:36:92:f8:74:34:04:8b:
 30:ed:56:46:64:ef:54:a4:9a:a5:18:0a:d5:24:f8:8c:18:0b:
 de:a1:1f:f7:7e:51:96:23:02:16:81:23:79:63:dd:86:d7:90:
 86:19:1a:e6

Figure 5-1: Link layer security - Generated certificate

Creating certificates for nSHIELD’ nodes and signing them with the CA

1. Generating the private (and public) key
Create an RSA private key

openssl genrsa -out /etc/ssl/private/node1.key 2048

chmod og-rwx /etc/ssl/private/node1.key

Program listing 46: Link layer security - creating RSA private key

2. Fill in the certificate request
Fill in the certificate request

openssl req -new -key /etc/ssl/private/node1.key -out /tmp/node1.req

Program listing 47: Link layer security - filling in certificate request

3. Issue the certificate
Sign the certificate request

openssl x509 -req -days 3650 -sha1 \

 -extfile /etc/ssl/openssl.cnf -extensions v3_req \

 -CA /etc/ssl/certs/nshield.crt -CAkey /etc/ssl/private/nshield.key \

 -CAserial /etc/ssl/nshield.srl -CAcreateserial \

 -in /tmp/node1.req -out /etc/ssl/certs/node1.crt

Delete the certificate request

rm -f /tmp/node1.req

Program listing 48: Link layer security - issuing certificate

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 72 of 91 Version 2.0

To visualize in details the generated certificate you have to introduce the following sentence in the
command-line interpreter:

openssl x509 -in /etc/ssl/certs/node1.crt -noout –text

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 9d:3e:1f:b8:de:b9:07:94
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=ES, ST=MADRID, O=INDRA, OU=WP4, CN=nSHIELD/emailAddress=ibarriv@indra.es
 Validity
 Not Before: Feb 13 12:19:08 2013 GMT
 Not After : Feb 13 12:19:08 2014 GMT
 Subject: C=ES, ST=MADRID, O=INDRA, OU=FFD/RFD, CN=MACADDRESS/64-31-50-96-7A-16
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:db:c8:84:4b:42:15:5c:a8:a7:fd:6c:99:42:6f:
 73:02:47:93:2d:77:79:7a:64:40:57:d0:d1:bd:9f:
 0c:81:ba:cb:23:7b:75:c2:0a:d9:a7:7e:24:ff:ba:
 5c:0e:57:ed:ca:3a:db:a5:ff:48:a3:1c:9c:5f:cb:
 f5:c0:7f:ec:4e:ae:03:e3:07:05:55:7f:c5:ba:71:
 70:bb:f0:a6:97:14:91:6d:b2:69:92:9c:31:f5:de:
 7b:25:5d:1b:14:5f:92:59:63:fa:52:b0:70:db:8f:
 61:50:55:b6:18:c5:86:f3:98:d8:94:57:d8:a5:95:
 7e:f1:6b:c4:4f:1e:94:ae:84:51:fd:d1:8c:76:4a:
 a1:91:a5:8c:44:e7:07:13:81:7e:0b:06:52:d3:1e:
 5b:c8:88:da:10:31:1c:7b:02:0d:ee:e0:1a:36:7b:
 19:f5:3e:3e:41:c0:97:48:e0:73:a4:d5:e9:7e:4f:
 7d:74:af:f5:f8:d8:79:b3:cc:88:5c:b3:10:cd:b1:
 61:fe:42:52:c1:f6:fd:9a:5e:f7:49:8c:09:b5:fd:
 e5:67:a4:4f:5e:85:02:89:bc:e5:0a:85:38:77:80:
 2a:53:50:8c:6f:ce:ac:e6:db:c3:d8:f1:1b:02:9e:
 7f:e1:71:d6:40:a8:c3:73:2b:9b:c7:08:e5:72:b1:
 bb:c1
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Key Usage:
 Digital Signature, Non Repudiation, Key Encipherment
 Signature Algorithm: sha1WithRSAEncryption
 81:da:10:fa:5c:fd:fc:8b:e1:29:08:18:92:34:6a:7c:6f:a2:
 ad:37:5e:1c:da:8a:ec:40:81:4d:ed:51:31:56:b2:de:de:51:
 7e:d5:9b:83:88:a4:22:16:99:cc:bb:b7:e6:de:25:f1:ef:fb:
 19:ab:b6:48:64:99:07:04:db:64:8c:ce:bf:57:d8:3c:10:47:
 4b:76:36:0c:3b:a1:27:d7:ce:6d:02:95:db:3d:c2:7c:cb:e5:
 a2:22:1f:6b:2f:63:df:e9:8d:4c:79:7d:a6:76:48:32:08:e7:
 53:86:e4:1a:63:d7:e7:de:17:c8:7b:46:e8:9c:65:43:8d:db:
 43:58:98:74:f6:75:80:f1:a1:9c:48:e3:88:77:f5:7d:16:54:
 95:80:dd:35:68:c0:fd:84:73:91:ab:f3:d1:50:75:56:9b:59:
 5c:7a:55:bb:88:95:22:3e:05:21:4c:c4:00:a4:fb:ca:49:e3:
 d4:78:b7:61:19:a6:df:43:16:53:0b:bc:83:6b:14:7f:0d:85:
 3b:29:03:91:35:ff:9b:e3:74:d2:fd:6a:22:6a:37:90:60:b3:
 0d:2a:a5:bd:4c:6a:b1:62:a0:64:6f:c2:6a:87:46:a8:36:cc:
 f1:cd:36:25:fb:f2:e0:76:a3:b4:00:93:64:ff:d9:1d:37:e7:
 58:30:f9:ae

Figure 5-2: Link layer security - generated certificate

Note that the node certificate is issued by the CA (created before). Moreover, the full qualified domain
name (FQDN) for the node1 certificate, highlighted in red, corresponds to the MAC address of the node.
Moreover, in order to determine the roles of the nodes belonging to the network, we have to specify the
Organizational Unit of each node (highlighted also in red). Thanks to this field, for instance, will be allowed
the management of node policies in higher layers of nSHIELD project (middleware or application layers).

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 73 of 91

When a node has been compromised, we will have to revoke its certificate. But this can’t be done
automatically, should be performed by the administrator of the network.

Setting up the certificate revocation list

touch crlnumber && echo 01 > crlnumber

openssl ca -gencrl -out crl.pem

Revocating a node certificate

openssl ca -revoke certs/node2.crt

Using configuration from /etc/ssl/openssl.cnf

Enter pass phrase for /etc/ssl/private/nshield.key:

Adding Entry with serial number 9D3E1FB8DEB90795 to DB for

/C=ES/ST=MADRID/O=INDRA/OU=FFD/RFD/CN=MACADDRESS46-13-05-96-B7-61

Revoking Certificate 9D3E1FB8DEB90795.

Data Base Updated

Printing the revoked certificates (just 1 in that case)

openssl crl -in crl.pem -noout -text

Certificate Revocation List (CRL):

 Version 2 (0x1)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer:

/C=ES/ST=MADRID/O=INDRA/OU=WP4/CN=nSHIELD/emailAddress=ibarriv@indra.es

 Last Update: Feb 13 17:28:53 2013 GMT

 Next Update: Mar 15 17:28:53 2013 GMT

 CRL extensions:

 X509v3 CRL Number:

 1

No Revoked Certificates.

 Signature Algorithm: sha1WithRSAEncryption

 90:de:c3:a3:0d:d5:4c:5d:c2:8d:a0:1f:09:49:77:8e:50:66:

 5c:50:38:3a:e9:cb:5a:14:b1:65:41:ec:4c:43:06:f5:82:80:

 ef:1b:bf:3f:80:92:37:4b:38:a2:d0:02:6f:df:f9:dd:f9:9d:

 98:30:8d:73:ca:bc:df:1a:1e:c9:0e:b2:a4:7a:50:12:81:37:

 dc:2b:46:30:8f:51:28:6e:fe:ad:1d:bb:c9:05:b7:48:4f:d3:

 c1:81:75:49:71:42:13:31:1d:d7:60:a8:fa:92:64:a9:f8:70:

 96:5c:dc:9a:9e:00:dd:f4:cb:1b:1d:f4:34:fc:3c:40:d8:de:

 b0:71:3c:c7:29:48:58:6b:90:52:38:2f:44:cb:4d:fd:5a:28:

 59:22:87:a7:d6:5b:4b:78:7f:98:1d:82:d5:50:87:6b:e6:89:

 fd:94:48:47:de:bd:1f:08:a3:86:79:aa:93:bf:42:9c:23:f2:

 c8:c7:36:8a:02:f2:b8:7c:d9:8c:43:1a:a4:26:9a:1c:2f:f6:

 25:c7:ac:14:69:b1:a4:96:b3:94:53:f1:47:e1:76:bd:45:9b:

 e2:89:7d:67:d1:06:cc:90:d7:78:ac:08:88:07:e9:77:10:f3:

 32:2b:ca:60:20:7b:5c:b1:6c:33:51:d3:77:68:42:b7:77:d4:

 1c:b3:25:a2

Program listing 49: Link layer security - revoking the node's certificate

5.1.2 Proposed solution

IEEE standard 802.15.4 intends to offer the fundamental lower network layers of a type of wireless
personal area network (WPAN) which focuses on low-cost, low-speed ubiquitous communication between
devices. The emphasis is on very low cost communication of nearby devices with little to no underlying
infrastructure, intending to exploit this to lower power consumption even more.

Following D4.3, the proposed solution to give link layer security to the network is to use CTR, CBC-MAC
and CCM algorithms, which will be implemented over one of the most extended operating systems,
TinyOS 2.x. Concretely, the device to make the test will be a Zolertia Z1 mote which has a CC2420 chip.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 74 of 91 Version 2.0

If we analyse the characteristics of CC2420 we can check that it supports security operations such
ciphering, authentication and integrity and it is capable of performing these functions at the MAC level,
among which are included CTR (encryption), CBC-MAC (authentication and integrity) and CCM
(encryption + authentication and integrity). Each one of these based on AES (Advanced Encryption
Standard) 128 bit key.

Inside the RAM there is space to save two keys to make the operations but it will be throw the application
the way to select which one will be used.

5.1.3 Algorithms implementation

As mentioned on the previous paragraph, TinyOS is one of the most well-known operative systems for
motes. After the first version where TinySec was used to provide the link layer security, appeared the
IEEE 802.15.4 standard and was necessary to implement different algorithms to provide the security level
demanded.

Taking into account that the mote used to do test is a Zolertia Z1 with a CC2420 radio chip, the algorithms
on the tinyOS layer will be as follows, to be 802.15.4 compliant.

5.1.3.1 CTR

This algorithm is provided of the message to send, the identifier of the register where the key is stored on
the chip and the bytes it have to skip to do the ctr operation.

command error_t CC2420SecurityMode.setCtr(message_t* msg, uint8_t setKey, uint8_t setSkip)
{
 cc2420_header_t* hdr = (cc2420_header_t*)msg->header;
 security_header_t* secHdr = (security_header_t*) & hdr->secHdr;

 #if ! defined(TFRAMES_ENABLED)

(uint8_t*)secHdr += 1;
 #endif

 if (setKey > 1 || setSkip > 7)
 {
 return FAIL;
 }

 secLevel = CTR;
 keyIndex = setKey;
 reserved = setSkip;
 nonceCounter++;

 secHdr->secLevel = secLevel;
 secHdr->keyMode = 1; // Fixed to 1 for now
 secHdr->reserved = reserved; //skip in cc2420
 secHdr->frameCounter = nonceCounter;
 secHdr->keyID[0] = keyIndex; // Always first position for now due to fixed key Mode
 hdr->fcf |= 1 << IEEE154_FCF_SECURITY_ENABLED;

 return SUCCESS;
}

Program listing 50: Link layer security - CTR algorithm

5.1.3.2 CBC-MAC

This algorithm is provided of the message to send, the identifier of the register where the key is stored on
the chip and the bytes it have to skip to do the CBC-MAC operation and the size of the message
authentication code

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 75 of 91

command error_t CC2420SecurityMode.setCbcMac(message_t* msg, uint8_t setKey,
 uint8_t setSkip, uint8_t size)
{
 cc2420_header_t* hdr = (cc2420_header_t*)msg->header;
 security_header_t* secHdr = (security_header_t*)&hdr->secHdr;

 #if ! defined(TFRAMES_ENABLED)
 (uint8_t*)secHdr += 1;
 #endif

 if (setKey > 1 || (size != 4 && size != 8 && size != 16) || (setSkip > 7))
 {
 return FAIL;
 }

 if(size == 4)
 secLevel = CBC_MAC_4;
 else if (size == 8)
 secLevel = CBC_MAC_8;
 else if (size == 16)
 secLevel = CBC_MAC_16;
 else
 return FAIL;

 keyIndex = setKey;
 reserved = setSkip;
 nonceCounter++;

 secHdr->secLevel = secLevel;
 secHdr->keyMode = 1; // Fixed to 1 for now
 secHdr->reserved = reserved; //skip in cc2420
 secHdr->frameCounter = nonceCounter;
 secHdr->keyID[0] = keyIndex; // Always first position for now due to fixed key Mode
 hdr->fcf |= 1 << IEEE154_FCF_SECURITY_ENABLED;

 return SUCCESS;
}

Program listing 51: Link layer security - CBC-MAC algorithm

5.1.3.3 CCM

This algorithm is provided of the message to send, the identifier of the register where the key is stored on
the chip and the bytes it have to skip to do the CCM operation and the size of the message authentication
code

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 76 of 91 Version 2.0

command error_t CC2420SecurityMode.setCcm(message_t* msg, uint8_t setKey,
 uint8_t setSkip, uint8_t size)
{

cc2420_header_t* hdr = (cc2420_header_t*)msg->header;
security_header_t* secHdr = (security_header_t*)&hdr->secHdr;

#if ! defined(TFRAMES_ENABLED)
(uint8_t*)secHdr += 1;

#endif

if (setKey > 1 || (size != 4 && size != 8 && size != 16) || (setSkip > 7))
{

return FAIL;
}

if(size == 4)
secLevel = CCM_4;

else if (size == 8)
secLevel = CCM_8;

else if (size == 16)
secLevel = CCM_16;

else
return FAIL;

keyIndex = setKey;
reserved = setSkip;
nonceCounter++;

secHdr->secLevel = secLevel;
secHdr->keyMode = 1; // Fixed to 1 for now
secHdr->reserved = reserved; //skip in cc2420
secHdr->frameCounter = nonceCounter;
secHdr->keyID[0] = keyIndex; // Always first position for now due to fixed key Mode

hdr->fcf |= 1 << IEEE154_FCF_SECURITY_ENABLED;

return SUCCESS;
}

Program listing 52: Link layer security - CCM algorithm

5.1.4 Test programs

The first thing we have to do is to store the key value:

uint8_t key[16] =
{0x98,0x67,0x7F,0xAF,0xD6,0xAD,0xB7,0x0C,0x59,0xE8,0xD9,0x47,0xC9,0x71,0x15,0x0F};

After that we call to setKey to select the register where the key will be set.

call CC2420Keys.setKey(1, key);

To control when the setKey has finished we will use this event:

event void CC2420Keys.setKeyDone(uint8_t keyNo, uint8_t* skey)
{
 keyReady=1;
}

And when this event is signalled, we will call the instructions to encrypt and send the packet:

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 77 of 91

counter=1234; //Data to be transmitted

if(keyReady == 1)
{

radio_count_msg_t* rcm = (radio_count_msg_t*)call Packet.getPayload(&packet,

 sizeof(radio_count_msg_t));

if (rcm == NULL)
{

 return;
}

rcm->counter = counter;
call CC2420Security.setCtr(&packet, 0, 0);
//call CC2420Security.setCbcMac(&packet, 0, 0, 16);
//call CC2420Security.setCcm(&packet, 1, 0, 16);
call PacketLink.setRetries(&packet, 1);

call AMSend.send(AM_BROADCAST_ADDR, &packet, sizeof(radio_count_msg_t));
}

Program listing 53: Link layer security - encrypting and sending the packet

To check if the frames sent by the program are correct, we can sniff the radio channel and use a protocol
analyser or take one of the programs implemented by TinyOS, like Base Station which reads the data
received by radio and writes it on the serial port.

5.1.5 Analysis results

To make a correct analysis of the results, firstly we will focus on the frames obtained applying security
algorithms and without applying it, and finally we will focus on energy consumption.

Here we can see the same frame transmitted without security:

69 88 e3 22 00 ff ff 01 00 3f 00 00 0a e4 01 00 06 00 01 00 00 00 00 00 00 00 00 00 00
00
00 00 00 00 00 00 00 00 00 00 00 00 00

applying CTR algorithm

69 88 e3 22 00 ff ff 01 00 3f 00 00 0a e4 01 00 06 23 0d 15 6c ca cd 0c d4 ba 7e 17 a0
72 b6 ca 38 99 fa 1b 73 13 41 4e 92 6c 96 54 48 6e 20 c6 b4 09 f6 5c 98 ef a1 58 6d 61
fb e2 70 b1 5b 6b dc 85 1e f3 d3 eb 7c

applying CBC-MAC-4 algorithm

69 88 e3 22 00 ff ff 01 00 3f 00 00 0a e4 01 00 06 00 01 00 00 00 00 00 00 00 00 00 00
00
00 00 00 00 00 00 00 00 00 00 00 00 00 A2 80 87 59

and applying CCM-4 algorithm

69 88 e3 22 00 ff ff 01 00 3f 00 00 0a e4 01 00 06 23 0d 15 6c ca cd 0c d4 ba 7e 17 a0
72 b6 ca 38 99 fa 1b 73 13 41 4e 92 6c 96 54 48 6e 20 c6 b4 09 f6 5c 98 ef a1 58 6d 61
fb e2 70 b1 5b 6b dc 85 1e f3 d3 eb 7c B4 81 37 86

and it’s shown that the CTR algorithm ciphers the data, the second generates a MAC code and adds it at
the end of the frame maintaining the original data on the previous bytes and finally the CCM encrypts and
generates a MAC code.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 78 of 91 Version 2.0

Turning now to measured energy consumption on a transmitting device and on a receiver one and using
the most powerful method of security analysed in the study (CCM-16) and sending the same messages
using no security methods we have obtained the following results:

Table 5-1: Link layer security - Energy consumption

Without security CCM16

data (bytes) TX energy(mJ) RX energy(mJ) TX energy(mJ) RX energy(mJ)

60 0,6701 0,7259 0,7463 0,8819

70 0,7493 0,8117 0,8057 0,9521

80 0,8069 0,8741 0,8585 1,0145

90 0,8717 0,9443 0,9245 1,0925

Figure 5-3: Link layer security - Energy consumption on transmission

As we can see in the figure below, the energy needed to transmit the same quantity of data using security
is higher than if we don’t use security. This is because if we use security the sending and receiving times
are longer and with security is needed a processing time to transform plain data into secure data.

Figure 5-4: Link layer security - Energy consumption on reception

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

50 60 70 80 90 100

E
n

e
rg

y
 (

m
J

)

User data length (bytes)

Energy without
security

Energy CCM-16

0,6

0,7

0,8

0,9

1

1,1

1,2

50 60 70 80 90 100

E
n

e
rg

y
 (

m
J

)

User data length (bytes)

Energy without
security

Energy CCM-16

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 79 of 91

Reception results are more or less the same than in transmission mode because the quantity of data to
receive is higher on a secure mode due to the headers and process time.

According to the results we can conclude saying that the use of security modes on both, transmission and
reception processes are more expensive in the use of energy than programs that don’t use security to
send messages. But this cost is acceptable because the system protection is a great advantage on this
kind of communication.

5.2 Secure communication protocols on the network layer

5.2.1 Scheme prerequisites

Security at the network layer for networks adopting the TCP/IP stack is provided by the standardized
IPsec protocol, which typically inherits all IP’s characteristics and requirements. Deploying IPv6 in the
restricted environment of nSHIELD nodes using IEEE802.15.4 as the data link layer protocol for
transferring messages poses a major challenge. This is due to the very limited size of IEEE802.15.4
frames which is restricted to 127 octets

1
, hence not satisfying IPv6’s requirement for an MTU of at least

1280 octets. Such a limited frame length requires special handling to accommodate IPv6 datagrams. As
a result, the 6LoWPAN adaptation layer was introduced to act as a bridge between these two protocols
and reduce the large IPv6 header while considering restrictions in terms of computation power, memory,
bandwidth and energy. The solution is header compression which is defined in RFC 6282 [26].

More specifically, RFC 6282 defines an encoding format, namely LOWPAN_IPHC shown in the following
figure, for effective compression of IPv6 header fields. LOWPAN_IPHC consists of 2 or 3 octets where the
first three bits are the dispatch value, as it is defined in RFC 4944. The same RFC also defines a format,
namely LOWPAN_NHC, for next headers, while dedicated bits in LOWPAN_IPHC indicate whether the
next header is encoded using LOWPAN_NHC. In this case the encoded LOWPAN_NHC immediately
follows the compressed IPv6 header.

Figure 5-5: Network layer security - LOWPAN_IPHC base format

Following this compressed format, IPv6 header fields can be fully elided or placed immediately after the
LOWPAN_IPHC, either in a compressed form if the field is partially elided or literally as shown in the
figure below.

Figure 5-6: Network layer security - IPv6 Compressed Datagram

1
 The maximum MAC layer header size is 25 octets, hence leaving only 102 octets for the payload. If AES-CCM-128

is also used for protecting these messages, this leaves only 81 octets for upper layers. If no compression is used for
the IP and UDP headers, hence another 40 plus 8 bytes are needed respectively, only 33 bytes remain for the actual
data.

0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 | 1 | 1 | TF |NH | HLIM |CID|SAC| SAM | M |DAC| DAM |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
TF: Traffic Class, Flow Label NH: next header
HLIM: Hop Limit CID: Context Identifier
SAC: Source Address Compression M: Multicast compression
DAC: Destination Address Compression DAM: Destination Address Mode

+-------------+-------------+-------------+-----------------+--------
| LOWPAN_IPHC | In-line | LOWPAN_NHC | In-line Next | Payload
| Encoding | IP Fields | Encoding | Header Fields |
+-------------+-------------+-------------+-----------------+--------

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 80 of 91 Version 2.0

The proposed format can be used to compress header fields. Among them, the two addresses which “are
formed with an IID derived directly from either the 64-bit extended or the 16-bit short IEEE 802.15.4
addresses” [26]. Header compression is most effective when communicating with link-local addresses
where IPv6 address field can be reduced from 16 bytes down to 16 bits. If SAC is set, i.e. stateful,
context-based compression is used, and the SAM field has the binary value of 0b10, the first 112 bits of
the source address are elided and only 16 bits, which are carried in line, are used for the address, while if
SAM = 0b11, the address is fully elided. Therefore, the approach taken here to secure messages using
IPSEC is most applicable within the 6LoWPANnetwork. If a message crosses the borders of this network,
through a gateway, routable addresses have to be used instead

2
.

The NH field in LOWPAN_IPHC denotes whether the full 8 bits of the Next Header field are carried in line
(value 0), or the Next Header field is compressed and therefore the next header is encoded using
LOWPAN_NHC. LOWPAN_IPHC elides the IPv6 Next Header field when the NH bit is set to 1. The value
of IPv6 Next Header is recovered from the first bits in the LOWPAN_NHC encoding. As a result, the
structure of an IPv6 datagram compressed using LOWPAN_IPHC and LOWPAN_NHC is as shown in the
following figure (note that the “In-line IP fields” are uncompressed IP headers that follow the
LOWPAN_IPHC Encoding).

The encoding of LOWPAN_NHC is as shown in the figure below (note that according to IPv6, next header
can either be a Transport Layer protocol header (e.g. UDP) or an extension header (e.g. IPSEC) :

Figure 5-7: Network layer security - LOWPAN_NHC encoding

Looking specifically at IPv6 extension headers “the LOWPAN_NHC encodings” for IPv6 Extension
Headers are composed of a single LOWPAN_NHC octet followed by the IPv6 Extension Header [26].

The format of the LOWPAN_NHC octet for IPv6 extension header is shown in the figure below. Note that
the first 4 bits have the value of “1110”, according to the IANA registry created by RFC 6282:

Figure 5-8: Network layer security - LOWPAN_NHC format for IPv6 Extension header

The EID field identifies the IPv6 Extension Header that follows the LOWPAN_NHC byte. In the first
solution described below, both these values are used while the second only one is required leaving the
other for future use. NH has the same role as previously mentioned and is used to denote whether the
Full 8 bits of the Next Header, i.e. the extension header, are carried in-line (NH=0) or the Next Header
field is elided and the next header is encoded using LOWPAN_NHC (NH=1).

There are typically three options (initially proposed in [27] and [28]) to encode a new IPSEC header using
LOWPAN_IPHC:

1. One reserved EID slot is used to denote that an IPsec protocol header is to follow while the ID

bits of the encoded extension header (NHC ID) define whether next header refers to AH or ESP.

2
 IEEE802.15.4 devices may use either IEEE 64-bit extended addresses or 16-bit addresses that are unique within a

PAN.

+-----------------+---------------------------
| var-len NHC ID | compressed next header...
+-----------------+---------------------------

0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 | 1 | 1 | 0 | EID |NH |
+---+---+---+---+---+---+---+---+

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 81 of 91

2. Two LOWPAN_NHC encodings are introduced for AH and ESP respectively. This is the approach

taken in [27] where the authors used both reserved EID values for the new headers. In this case

the NHC ID bits are redundant.

3. A LOWPAN_NHC_IPSEC encoding which will be used to further introduce another

LOWPAN_NHC encoding, one for AH and one for ESP.

5.2.2 Compressed IPsec ESP and AH

Raza et. al. propose in [27] and [28] extension header encodings for AH and ESP. Although all the
aforementioned options regarding the use of the EID value are defined the authors preferred using both
reserved values to encode AH (EID=101) and ESP (EID=110). The format of the two header encodings is
as follows:

 LOWPAN_NHC_AH. The encoded header for AH is shown below.

Figure 5-9: Network layer security - LOWPAN_NHC_AH header encoding

The corresponding fields can take the following values:

o The first four bits in the NHC AH represent the NHC ID for AH, and are set to 1101.

o PL (Payload Length): If 0, the payload length is omitted. This length can be obtained
from the SPI value because the length of the authenticating data depends on the
algorithm used and are fixed for any input size. If 1, the length is carried in line after the
NHC AH header.

o SPI (security Parameter Index): If 0, the default SPI for the sensor network is used and
the SPI field is omitted. The default SPI value is set to 1. This does not mean that all
nodes use the same security association (SA), but that every node has its own preferred
SA, identified by SPI 1. If 1, the SPI is carried in line.

o SN (Sequence Number): If 0, a 16 bit sequence number is used and the leftmost 16 bits
are assumed to be zero. If 1, all 32 bits of the sequence number are carried inline.

o NH (Next Header): If 0, the next header field in AH will be used to specify the next header
and it is carried inline. If 1, the next header field in AH is skipped. The next header will be
encoded using NHC.

 LOWPAN_NHC_ESP. The encoded header for ESP is shown in below.

Figure 5-10: Network layer security - LOWPAN_NHC_ESP header encoding

 The corresponding fields can take the following values.

o The first 4 bits in the NHC ESP represent the NHC ID we define for ESP. These are set to
1110.

0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+

 LOWPAN_NHC_AH | 1 | 1 | 0 | 1 |PL |SPI| SN| NH|
+---+---+---+---+---+---+---+---+

 0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+

 LOWPAN_NHC_ESP | 1 | 1 | 1 | 0 |SPI| SN| - | NH|
+---+---+---+---+---+---+---+---+

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 82 of 91 Version 2.0

o SPI: If SPI = 0: The default SPI for the sensor network is used and the SPI field is
omitted. We set the default SPI value to 0.If SPI = 1: All 32 bits indicating the SPI are
carried in line after the NHC ESP header.

o SN: If SN = 0: A 16 bit sequence number is used. The leftmost 16 bits are assumed to be
zero. If SN = 1: All 32 bits of the sequence number are carried in line after the NHC ESP
header.

o NH: If NH = 0: The next header field in ESP will be used to specify the next header and it
is carried inline. If NH = 1: The next header field in ESP is skipped. The next header will
be encoded using NHC. This is only possible if hosts are able to execute 6LoWPAN
compression/decompression and encryption/decryption jointly.

5.2.3 Compressed IPsec ESP with AES in CCM* mode

This scheme focuses on the use of Advanced Encryption Standard (AES) algorithm in Counter with CBC-
MAC (CCM) mode on IPSEC ESP protocol to protect messages on the network layer and provide
confidentiality, integrity and data origin authentication. CCM mode is also the choice of preference for
IEEE802.15.4 message protection while a scheme to use it with IPSec Encapsulating Security Payload
(ESP) is defined in RFC 4309 [29].

AES-CCM has two parameters:

• M: the length in octets of the authentication data also known as Integrity Check Value - ICV. The
ICV is computed for the ESP header, Payload, and ESP trailer fields. Although M can take the
values of 4, 6, 8, 10, 12, 14, and 16 [30], RFC 4309 accepts the values of 8 and 16 and optionally
12 octets. IEEE 802.15.4 uses a value of 0, i.e. authentication is not used 4, 8 and 16. The
scheme described here adopts the same values as 802.15.4 as possible lengths of the
authentication data, i.e. 0, 4, 8, and 16 octets.

• L: The size of the length field in octets, where the length includes all of the encrypted data, which
also includes the ESP Padding, Pad Length, and Next Header Fields. Although CCM defines
values of L between 2 and 8 octets, RFC 4309 accepts only the value of 4. This value exceeds
the needs of 802.15.4 where the value of L is set to 2.

For AES_CCM mode the Payload found in a typical ESP header consists of the Initialization Vector,
followed by the Encrypted Payload and the Authentication Data, i.e. an encrypted ICV, also shown in the
figure below:

Figure 5-11: Network layer security - ESP payload

In this scheme for the encoding of the aforementioned values using LOWPAN_NHC only a single EID
value, i.e. value 101 is reserved for IPSEC, thus leaving the other available EID value for future use. The
NHC ID bits of the following LOWPAN_NHC are used to further distinguish among the different flavours.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Initialization Vector |
| (8 octets) |
+-+
| |
˜ Encrypted Payload (variable) ˜
| |
+-+
| |
˜ Authentication Data (variable) ˜
| |
+-+

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 83 of 91

Therefore, a LOWPAN_NHC_IPSEC header is proposed with the format shown in the following figure.

Figure 5-12: Network layer security - LOWPAN_NHC_ESP Header format

The above fields can convey within the NHC_ESP header all the necessary information for AES_CCM:

 SPI (Security Parameter Index): If SPI=0 the default SPI is used and the SPI is omitted. If SPI=1

all 32 bits are carried inline, following the ESP header (LOWPAN NHC ESP).

 AI (Address Inclusion): AES-CCM* offers the capability to include headers in the computation of

the authentication field, without encrypting them. This typically allows the inclusion of extra fields

to the payload header in the computation of the ICV. Such fields are the nodes’ addresses. If AI=1

the addresses are included in the computation of the authentication code, while if AI=0 they are

omitted.

 SN (Sequence Number): If SN=0 then the sequence number required to construct the 13-byte

Nonce field (see below), is inline and consists of 2 bytes, while the left most 16 bits are assumed

to be zero. If SN=1 all 32 bits (4 octets) are carried inline after the ESP header (LOWPAN NHC

ESP).

 PD (Padding): This field is used to denote whether padding is added to the data prior to being

encrypted, according to the ESP specifications [31] and RFC 4309 [29]. In contrast to ESP

specifications the Pad Length field is optional and must only be present if PD=1. In this case the

padding data must also be present while Padding, Pad Length and Next Header fields must be

concatenated prior to being encrypted, according to RFC 4309 [29].

 NH (Next Header): If NH=0, the Next Header field in ESP will be used to specify the next header

and it is carried inline. If NH=1, the Next Header field in ESP is skipped. The next header will be

encoded using NHC. This is only possible if hosts are able to execute 6LoWPAN

compression/decompression and encryption/decryption jointly.

Using AES in counter mode requires generating a sequence of counter blocks, based on an IV carried in
each packet [29]. These counter blocks are in turn used to generate the key stream. The AES counter
block has a length of 16 octets and comprises of a 1-byte Flags field, a 13-byte Nonce and a 2-byte
Length field (shown in

Figure 5-13) is the first block that has to be constructed for authentication purposes.

The counter block has a length of 16 octets and comprises of a 1-byte Flags field, a 13-byte Nonce and a
2-byte Length field (shown here is the first block that has to be constructed for authentication purposes).

BYTES 0 1-13 14-15

Flags Nonce Length field

Figure 5-13: Network layer security - 1st Block

The Flags field is in turn formatted as shown in the following figure:

0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+

 LOWPAN_NHC_ESP | 1 | 1 | 0 |SPI| AI| SN| PD| NH|
+---+---+---+---+---+---+---+---+

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 84 of 91 Version 2.0

Figure 5-14: Network layer security - Flags Byte

The 1-bit reserved field is reserved for future expansions and shall be set to '0'. The 1-bitAdata field is set
to '0' if l(a) = 0 and set to '1' if l(a) gt 0. The M field is the 3-bit representation of the integer (M - 2)/2 if M gt
0 and of the integer 0 if M = 0, in most-significant-bit-first order. The L field is the 3-bit representation of
the integer L - 1, in most-significant-bit-first order.

The13-byte Nonce field consists of the following:

BYTES 0-7 8-11 12

64-bit extended
Source Address

Sequence Number Security Level

Figure 5-15: Network layer security - 13 byte nonce filed

while the Security Level byte comprises of the following fields:

Figure 5-16: Network layer security – security level byte structure

Finally the Security Level Field can take the following values:

Table 5-2: Network layer security - security level field values

Security
Level

Security
level field
b2 b1 b0

Security
Attributes

Data
Confidentiality

Data
Authenticity

Encrypted
authentication tag
length, M octets

0 000 None OFF NO 0

1 001 MIC-32 OFF YES 4

2 010 MIC-64 OFF YES 8

3 011 MIC-128 OFF YES 16

4 100 ENC ON NO 0

5 101 ENC-MIC-32 ON YES 4

6 110 ENC-MIC-64 ON YES 8

7 111 ENC-MIC-128 ON YES 16

On top of the above, the IP Addresses Flag is used to denote whether the IP Addresses found in the IP
Header are included in the computation of the Authentication Data. If “IP Addresses Flag=0” the IP

BIT 0 – 2 3 - 7

Security Level Byte SECURITY LEVEL FIELD RESERVED

 0 1 2 3 4 5 6 7
+----------+-------+---+---+---+---+---+---+

 FLAGS | Reserved | Adata | M’ | L’ |
+----------+-------+---+---+---+---+---+---+

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 85 of 91

Addresses are not included while if “IP Addresses Flag=1” IP Addresses are part of the Authentication
Data, hence providing integrity to the IP addresses in a similar to AH approach. Obviously, the flag cannot
have the value of 1 if Data Authenticity is not used.

5.2.4 Experimental results

An implementation of IPsec with AES-CCM* was performed using the Contiki operating system and the
COOJA simulator, using Tmote Sky motes for the simulation setup. The IPsec headers were compressed
for 6LoWPAN in the manner presented above and Contiki’s µIP stack was modified accordingly. The AES
implementation used was the one provided by the MIRACL library [32].

Tmote Sky motes have a Texas Instruments MSP430 microcontroller, with 10 KB RAM and 48 KB Flash
memory [33]. Therefore, the msp430-size utility of the respective compiler toolchain can be used for
providing an estimate of the expected memory usage, both in terms of flash memory and stack (RAM)
size. The obtained values were approximately 45.5 KB for flash and 8 KB for RAM.

It is also worth emphasizing that COOJA is unable to simulate code that utilizes any AES implementation
on the mote’s hardware (in the case of the Tmote Sky, such functionality is provided by the CC2420 chip),
thus requiring a software implementation as well. By compiling the code twice (once using MIRACL’s AES
implementation and once using only the necessary statements that utilize the provided functionality of the
CC2420 chip) and comparing the two results, it was concluded that the one with the software AES
implementation is larger by approximately 2.6 KB and requires an additional 0.2 KB of RAM.

In order to get an idea of the imposed packet overhead, the proposed AES-CCM* scheme is compared to
compressed IPsec that uses the “traditional” approach of AH and ESP, as well as to 802.15.4. It should be
emphasized that 802.15.4 supports only link-layer security, which has the advantage of lower packet
overhead, at the expense of increased power consumption. The main difference among these three
schemes is that the ones using IPsec are able to offer end-to-end security, whereas the 802.15.4 inherent
link-layer security can only offer node-to-node security. The comparison results are summarized in Table
5-3

Table 5-3: Network layer security - Comparison of packet overhead

Security
Service

AES-CCM* Compressed IPsec 802.15.4

Attributes Overhead Attributes Overhead Attributes Overhead

Authentication

MIC-32
MIC-64

MIC-128

10
14
24

AH with HMAC-
SHA1-96

16
AES-CBC-

MAC-96
12

Encryption ENC 12 AES-CBC 12 AES-CTR 5

Both

ENC-MIC-32
ENC-MIC-64

ENC-MIC-128

10
14
24

AH with HMAC-
SHA1-96 and ESP

with AES-CBC
24

AES-CCM-
128

21

Finally, some processing speed and energy consumption measurements are presented in Figure 5-17
and Figure 5-18, respectively.

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 86 of 91 Version 2.0

Figure 5-17: Network Layer Security - processing speed measurements

Figure 5-18: Network layer security - Energy consumption measurements

5.3 Access control in Smart Grid networks

Due to many circumstances, power industry faces crucial irreversible changes. Classic schematics, i.e.
tariffs, begins to meet its limits, modern ecological power supplies have high rate of unpredictable supply
with changes in almost second’s intervals. Defined energy flow from large producer towards consumer is
significantly changed as distributed power supplies play more important role and production is moved on
the both, low and high voltage levels. Last, but not least, the idea of load characteristics, where basic
harmonics belong to small consumers and higher harmonics are related to high load is also obsolete.
Currently, the modern households use low input appliances, and we can rarely find appliance that

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 87 of 91

wouldn’t distort the energy network. At this place, it is necessary to mention this situation could remain (in
the best case) the same, but this is very optimistic view.

Communication channel is one of the most crucial elements of whatever solution. It serves for the data
exchange between single devices of Smart Grid. We are able to define two types of transmitted data: i)
data with need of defined latency (they are very short and their number is relatively low) ii) other data of
higher volume with noncritical delivery time in hours. In order to ensure functionality, it is necessary to
respect communication channel characteristics. It is not possible to extend the volume of transmitted data.
It is inevitable (and responsible) to consider necessity of transmitted data. Wherever, we can generate
whatever data volume, but we have to strictly ask: Cui bono (to whose benefit?)?

Realized pilot projects have a significant sense for development of modern communication modem that
use power lines for communication. Requirements for such modem were defined: i) reliability and
robustness of the transmitted data, and ii) communication rate and large volume data transmission.
Interoperability is definitely obligatory aim. Whatever interoperable protocol has to respect physical
characteristics of communication channel, the reverse process is excluded.

New device has to be also resistible against cyber criminality. The only encryption is not sufficient, it is
necessary to build the whole secured system with complete key management. There will be systems of
primary acquired data, subsequent processing systems, and control systems, as parts of the whole
system. Credible data transfer from meter to billing is crucial from the legal point of view. The
implementation of electronic signature is the only relevant tool how to solve this request. Therefore, such
a solution has to be find that brings satisfactory cryptographic robustness whilst not to burden original
message (and not decrease data channel throughput) too much.

New emerging technologies and devices for tele-controlling energy consumption across the Smart Grid
carry new threats and vulnerabilities that could be exploited by both internal and external agents. The
Smart Meter is a clear example of this: this device requires different network protocols (such as M&M,
PRIME and DLMS) for communicating towards the concentrator, and security is not being held as a
primary approach, but as an add-on solution.

Therefore, Smart Grid operators are including different devices across the network without being able to
manage security for preserving privacy and confidentiality in low power lines and sabotages in medium
power line. Operators not only need to protect their networks but also to know how security is being
transferred.

The prototypes will bring two scenarios (but just one of them will be analysed): the first one focuses on
low power line and is concerned with privacy and integrity mechanisms. The second one (out of scope but
considered for future work) focuses on medium power line and aims to protect the availability and integrity
for defending against cyber-sabotage.

Low voltage domain

TECNALIA certifies functionality in DLMS network layer for connection between devices in last mile.
Implementation of security in this layer is not yet established. Some control access mechanisms have
been specified by CENELEC in blue book for DLMS as referenced in the following picture by CLASS
security:

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 88 of 91 Version 2.0

Figure 5-19: Smart Grids - Security Setup class for DLMS Cosem

This class specifies both control access and encryption for assuring security in network layer
within low voltage domain in Smart Grid area. The objective of TECNALIA will be to analyse that this
implementation could be linked to nSHIELD focus. In Deliverable 4.3 these classes are specified more
detailed.

Second analysis will not be carried out in nSHIELD project. It is focused on the IEC 60870-5-104
Transmission Protocols, Network access for IEC 60870-5-101 using standard transport profiles (Future
Work).

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 89 of 91

6 References

[1] K. Dabcevic, L. Marcenaro and C. Regazzoni, “Reputation-based frequency switching algorithm for
defense against intelligent jamming attacks in centralized Cognitive Radio Networks,” in submitted for
IEEE International Conference on Sensing, Communication, and Networking 2013 (SECON 2013),
2013.

[2] P. Morerio, K. Dabcevic, L. Marcenaro and C. Regazzoni, “Distributed cognitive radio architecture
with automatic frequency switching,” in Complexity in Engineering (COMPENG) pp. 1 –4, 2012.

[3] Atta distribution, “Atta distribution and docs,” [Online]. Available: https://bitbucket.org/lgeretti/atta.
[Accessed 2013].

[4] “YAML Official Web Site,” [Online]. Available: http://yaml.org/. [Accessed 2013].

[5] “Apache ZooKeeper Official Documentation,” [Online]. Available:
http://zookeeper.apache.org/doc/current/. [Accessed 2013].

[6] “Apache Thrift Official Web Site,” [Online]. Available: http://thrift.apache.org/. [Accessed 2013].

[7] S. K. Singh, M. P. Singh and D. K. Singh, “Routing Protocols in Wireless Sensor Netwroks – A
Survey,” In International Journal of Computer Science & Engineering Survey (IJCSES), vol. 1, no. 2,
pp. 63-83, November 2010.

[8] H. G. and M. C., “Building Trust in Ad hoc Distributed Resource-sharing Networks Using Reputation-
based Systems,” in In 16th Panhellenic Conference on Onformatics PCI - pp. 416-421, Available on-

line via http://doi.ieeecomputersociety.org/10.1109/PCi.2012.28, 2012.

[9] S. Marti, T. J. Giul, K. Lai and M. Baker, “Mitigating Routing Misbehavior in Mobile Ad Hoc Networks,”
in Proceedings of the 6th Annual International Conference on Mobile Computing and Networking
(MobiCom’00), 2000.

[10] S. Buchegger and J. L. Boudec, “Performance Analysis of the CONFIDANT Protocol (Cooperation Of
Nodes - Fairness In Dynamic Ad-hoc NeTworks),” Proceedings of the 3rd ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’02), pp. 226-336, 2002.

[11] S. Ganeriwal, L. Balzano and M. Srivastava, “Reputation-based framework for high integrity sensor
networks,” In Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks
(SAN ’04), pp. 66-77, 2004.

[12] P. Michiardi and R. Molva, “Core: A Collaborative Reputation mechanism to enforce node
cooperation in Mobile Ad Hoc Networks,” in Communication and Multimedia Security Conference
(CMS’02), 2002.

[13] A. K. Trivedi, R. Arora, R. Kapoor, S. Sanyal and S. Sanyal, “A Semi-distributed Reputation-based
Intrusion Detection System for Mobile Adhoc Networks,” in arXiv:1006.1956v2, 2010.

[14] A. T. Rahem and H. K. Sawant, “Collaborative Trust-based Secure Routing based Ad-hoc Routing
Protocol,” International Journal of Modern Engineering Research (IJMER), vol. 2, no. 2, pp. 95-101,

Mar-Apr 2012.

[15] Y. Zhang, L. Xu and X. Wang, “A Cooperative Secure Routing Protocol based on Reputation System

D4.2: Preliminary SPD Network Technologies Prototype nSHIELD

 RE

D4.2 RE

Page 90 of 91 Version 2.0

for Ad Hoc Networks,” Journal of Communications, vol. 3, no. 6, pp. 43-50, November 2008.

[16] S. Madhavi and T. H. Kim, “An Intelligent Distributed Reputation Based Mobile Intrusion Detection
System,” International Journal of Computer Science and Telecommunications, vol. 2, no. 7, October
2011.

[17] A. Pirzada and C. McDonald, “Trust Establishment in Pure Ad-hoc Networks,” Wireless Personal
Communications, vol. 37, pp. 139-163, 2006.

[18] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” in In
Proceedings of the 6th ACM/IEEE Annual International Conference on Mobile Computing and
Networking (MoniCom’00) - pp. 243-254, 2000.

[19] MEMSIC Inc, “IRIS wireless measurement system,” [Online]. Available:
http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf.

[20] TinyOS, “TOSSIM simulator,” 10 05 2013. [Online]. Available: http://tinyos.stanford.edu/tinyos-
wiki/index.php/TOSSIM.

[21] Daintree Networks, “Sensor Network Analysez (SNA),” [Online]. Available:
http://www.daintree.net/sna/sna.php.

[22] K. Gerrigagoitia, R. Uribeetxeberria, U. Zurutuza and I. Arenaza, “Reputation-based Intrusion
Detection System for wireless sensor networks,” in Complexity in Engineering (COMPENG), 2012.

[23] A. Jsang and R. Ismail, “The beta reputation system,” in Proceedings of the 15th Bled Electronic
Commerce Conference (pp. 41-55), 2002.

[24] S. Buchegger and J. Y. L. Boudec, “A robust reputation system for mobile ad-hoc networks,” in in
Proceedings of P2PEcon, 2003.

[25] S. Ganeriwal, L. K. Balzano y M. B. Srivastava, «Reputation-based framework for high integrity
sensor networks,» ACM Transactions on Sensor Networks (TOSN), vol. 4, nº 3, p. 15, 2008.

[26] J. Hui, Ed. and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based
Networks,” Internet Engineering Task Force (IETF), RFC 6282.

[27] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt and U. Roedig, “Securing Communication in
6LoWPAN with Compressed IPsec,” in 7th IEEE International Conference on Distributed Computing
in Sensor Systems, Barcelona, Spain, 27-29 June 2011.

[28] T. V. a. U. R. S. Raza, “6LoWPAN Extension for IPsec,” in Interconnecting Smart Objects with the
Internet Workshop, Prague, Czech Republic, 25 March 2011.

[29] R. Housley, “Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating
Security Payload (ESP),” RFC 4309.

[30] D. Whiting, R. Housley and N. Ferguson, “Counter with CBC-MAC (CCM), RFC 3610,” September
2003.

[31] S. Kent, “IP Encapsulating Security Payload (ESP),” RFC 4303, 2005.

[32] CertiVox, “Multiprecision Integer and Rational Arithmetic C/C++ Library (MIRACL),” [Online].
Available: https://github.com/CertiVox/MIRACL. [Accessed 06 06 2013].

nSHIELD D4.2: Preliminary SPD Network Technologies Prototype

 RE

 RE D4.2

Version 2.0 Page 91 of 91

[33] Moteiv Corporation, “Tmote Sky – Ultra low power IEEE 802.15.4 compliant wireless sensor module
(datasheet),” 13 11 2006. [Online]. Available: http://www.snm.ethz.ch/
snmwiki/pub/uploads/Projects/tmote sky schematic.pdf.

[34] S. Buchegger and J.-Y. L. Boudec, “A Robust Reputation System for Mobile Ad-hoc Networks,” EPFL
IC Technical Report IC, 2003.

[35] J. O. Berger, “Statistical Decision Theory and Bayesian Analysis,” in Springer, second edition edition,

1985.

[36] A. Srinivasan, J. Teitelbaum and J. Wu, “Drbts: Distributed reputation based beacon trust system,” in
2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing [pp 277-283],

2006.

[37] S. Buchegger and J.-Y. L. Boudec, “A Robust Reputation System for Peer-to-Peer and Mobile Ad
Hoc Networks,” in In Proceedings of P2Pecon 2004, Harvard University, Cambridge MA, USA, June

2004.

[38] C. Tripp, “Impact of security mechanisms in IEEE 802.15.4 sensor operation,” 2009.

