

Project no: 269317

nSHIELD

new embedded Systems arcHItecturE for multi-Layer Dependable solutions

Instrument type: Collaborative Project, JTI-CP-ARTEMIS

Priority name: Embedded Systems

D5.3 Preliminary SPD Middleware and Overlay Technologies Report

Due date of deliverable: M18 – 2013.02.28

Actual submission date: M22 – 2013.06.30

Start date of project: 01/09/2011 Duration: 36 months

Organisation name of lead contractor for this deliverable:

Selex Electronic Systems, SES

 Revision [Final]

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2012)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Page ii Final

Document Authors and Approvals
Authors

Date Signature
Name Company

Andrea Morgagni Selex ES
Andrea Fiaschetti UNIROMA1
Balázs Berkes S-LAB
Baldelli Renato Selex ES
Andrea Lanna UNIROMA1
Inaki Arenaza MGEP
Panagiotis Soufrilas ATHENA
Kostas Rantos TUC
Kostas Fysarakis TUC
Alexandros Papanikolaou TUC
Dimitris Geneiatakis TUC
Harry Manifavas TUC
Nikos Pappas HAI
Gaetano Scarano UNIROMA1
Roberto Cusani UNIROMA1
Martina Panfili UNIROMA1
Andrea Lanna UNIROMA1
Silvano Mignanti UNIROMA1
Vincenzo Suraci UNIROMA1
Francesco Delli Priscoli UNIROMA1

Reviewed by
Name Company

Elisabetta Campaiola SES

Approved by
Name Company

Cecilia Coveri SES

Final Page iii

Applicable Documents
ID Document Description
AD1 TA nSHIELD Technical Annex
AD2 D5.1 Deliverable D5.1: SPD Middleware and Overlay Technologies Assessment
AD3 D2.4 Deliverable D2.4: Reference System Architecture Design
AD4 D2.5 Deliverable D2.5: Preliminary SPD Metric Specification

Modification History
Issue Date Description
Draft 0.1 14/01/2013 First version of ToC.
Draft 0.2 03/05/2013 All
Final 30/06/2013 Final review

Page iv Final

Executive Summary

This document reports the achievement of the first phase of the nSHIELD project with respect to
middleware technologies and prototypes.

The document is structured as follows:

1. Introduction: a brief introduction to the document contents

2. Achievements in the formulation of the SHIELD semantic technologies

3. Achievements in the development of the SHIELD core serviced at Middleware level

4. Deals with the progress in the definition of the SHIELD policies

5. Progress in the Overlay control algorithms

6. Brief conclusions

7. Link to the D5.2 prototypes

8. References

Final Page v

Contents

1 Introduction ... 14

2 Semantic Technologies .. 15

2.1 SHIELD semantic models ... 15

2.1.1 The SHIELD ontology ...22

2.1.2 The SHIELD Domain dependent library ...24

2.2 Semantic Intrusion Detection .. 26

3 SHIELD middleware core SPD services 30

3.1 SHIELD secure service discovery and delivery 30

3.1.1 Service Discovery concept ...30

3.1.2 Overview of Service Discovery protocols ...31

3.1.3 Service Location Protocol (SLP) ..32

3.1.4 SLP Message ...34

3.1.5 Security in SLP ...38

3.1.6 Secure Architecture for Service Discovery ...43

3.2 SHIELD trusted service composition .. 51

3.3 SHIELD monitoring, filtering and intrusion detection service
for interface protection ... 52

3.3.1 DoS Protection Subsystem ..52

3.3.2 Architecture Modules and Interfaces ..53

3.3.3 Metrics 60

3.4 Adaptation of legacy systems ... 61

3.4.1 Description ..61

3.4.2 SW adapters based on SLP ...63

3.4.3 Registering a service for remote access (service provider side)......................68

3.4.4 Connect to a remote peer and get the service (service consumer

side) ...69

3.5 SHIELD middleware protection profile definition &
certification .. 70

Page vi Final

3.5.1 Embedded systems security .. 70

3.5.2 What is a Protection Profile? .. 71

3.5.3 Why a protection profile? ... 72

4 SHIELD policy based management and access control 73

4.1 SHIELD policy based access control (PBAC) 73

4.1.1 Description ... 73

4.1.2 Architecture Modules and Interfaces ... 74

4.1.3 Implementation details ... 75

4.2 SHIELD policies definition ... 82

4.2.1 Description ... 82

4.3 XACML policy implementation for PBAC ... 88

4.3.1 RULE implementation .. 88

4.3.2 POLICY implementation .. 88

4.3.3 Policy Information Template .. 89

4.3.4 Rule- and Policy-combining algorithms.. 89

4.3.5 Policy examples ... 90

5 SHIELD Overlay .. 95

5.1 Proposed SHIELD Security Agents architecture 95

5.1.1 Description ... 95

6 Conclusions ... 104

7 Prototypes Table .. 105

8 References .. 106

Final Page vii

Figures

Figure 2-1: Semantic models of the SHIELD system ..15

Figure 2-2: Idea of sub-systems compositions ..15

Figure 2-3: Security Target contents ...16

Figure 2-4: Protection Profile context. ...17

Figure 2-5: Proposed approach to model SPD for ES ...18

Figure 2-6: Decoupling of the pSHIELD ontology into nSHIELD approach.19

Figure 2-7: Proposed abstracted approach to model SPD for ES. ..19

Figure 2-8: Example of technology abstraction ...20

Figure 2-9: Example of basic semantic in [8] ...21

Figure 2-10: Example of basic semantic in [13] ...21

Figure 2-11: SHIELD SPD Functionality Ontology: attributes ...22

Figure 2-12: SHIELD "Control Ontology" ...23

Figure 2-13: SHIELD "Limitations" Ontology ...23

Figure 2-14: SHIELD Domain Dependent Library E-R Diagram ...24

Figure 2-15: Semantic Intrusion Detection ..26

Figure 2-16: OntoIDPSMA MAS architecture ..27

Figure 3-1: SHIELD secure service discovery and Delivery ..30

Figure 3-2 – Example of Service Discovery architecture ...31

Figure 3-3: SLP logic architecture. ..32

Figure 3-4: SLP flow for service registration (upper line) and require (lower line).33

Figure 3-5: SLP header ...34

Figure 3-6: Service Request message. ...35

Figure 3-7 – Service Reply message ...36

Figure 3-8: URL entries ...36

Figure 3-9: Service Registration message ..36

Figure 3-10: Service ACK ..37

Figure 3-11: DA Advertisement message. ...37

Page viii Final

Figure 3-12: Authentication Block structure. ... 39

Figure 3-13: Signature generation process (according with DSA + SHA-1 standards) 39

Figure 3-14: Signature verification (according with DSA + SHA-1 standards) 40

Figure 3-15: Example of Replay Attack (Scenario 1) .. 40

Figure 3-16: Example of Replay Attack (Scenario 2) .. 41

Figure 3-17: Example of Replay Attack (Scenario 2) .. 41

Figure 3-18: Anti-ReplayAttack flowchart 1 ... 42

Figure 3-19: Anti-ReplayAttack flowchart 2 ... 42

Figure 3-20 – SLP flowchart .. 43

Figure 3-21: SLP simple scheme .. 44

Figure 3-22: Example of certification require. ... 46

Figure 3-23: Service Registration message. ... 46

Figure 3-24: 1024bit RSA key example .. 47

Figure 3-25: Modified Authentication Block structure .. 48

Figure 3-26: Example of Service Ask message. ... 49

Figure 3-27: Secure Service Reply. .. 50

Figure 3-28: SHIELD trusted service composition .. 51

Figure 3-29: SHIELD monitoring, filtering and intrusion detection service 52

Figure 3-30: The logic block structure of the Intrusion Detection Bundle ... 52

Figure 3-31: The Logic Block Structure of the DoS Protection Subsystem 53

Figure 3-32: Components of Intrusion Detection and Filtering module ... 53

Figure 3-33: The components and functional operation of a TUN based service 55

Figure 3-34: Packet structure .. 55

Figure 3-35: Accessing the network through the virtual interface ... 56

Figure 3-36: Example of reading data from tun interface at the client side 56

Figure 3-37: Example of forwarding data from one node to another node of the overlay 57

Figure 3-38: Example of forwarding the raw IP data to the real service ... 57

Figure 3-39: Sample Code Example of the Flow Control Monitor for the TUN Interface 59

Figure 3-40: Embedding the IDS Functionality in every forwarder ... 59

Figure 3-41: A centralized architecture for detecting malicious activity .. 59

Final Page ix

Figure 3-42: generic SHIELD adapters..61

Figure 3-43: generic SHIELD adapter interfaces ...61

Figure 3-44: nSHIELD architecture ..62

Figure 3-45: SHIELD middleware protection profile ..70

Figure 4-1: SHIELD Policy Based Management and Access Control ...73

Figure 4-2: Policy based Architecture ..74

Figure 4-3: Zolertia Z1 ...76

Figure 4-4: Crossbow Technology IRIS ...76

Figure 4-5: BeagleBone ...77

Figure 4-6: BeagleBoard-xM ..78

Figure 4-7: BeagleBoard ..78

Figure 4-8: A BeagleBoard runs an “Airconditioner” DPWS service ...79

Figure 4-9: A DPWS client (laptop computer running DPWS Explorer) discovers the Airconditioner
service running on BeagleBoard ..79

Figure 4-10: Client setting target temperature of Airconditioner service to 26 degrees80

Figure 4-11: Device switching states based on target temperature set by DPWS client80

Figure 4-12: DPWS client subscribing to TemperatureEvent operation of server (implemented using
WS-Eventing)..80

Figure 4-13: Sending events to subscribed client ..81

Figure 4-14: Deploying AC_Device on Knopflerfish ..81

Figure 4-15: SHIELD policy definition ..82

Figure 4-16: Criteria for policy classification ..84

Figure 4-17: The policy hierarchy ..86

Figure 4-18: nSHIELD compliant System (Scenario dependent) policy involvement87

Figure 4-19: XACML Policy components (source: Sun Microsystems) ...88

Figure 5-1: SHIELD Security Agent ...95

Figure 5-2: State transition diagram of queuing system with breakdown ..97

Figure 5-3: n example of enabled transition ..98

Figure 5-4: Examples of Petri Net primitives ...99

Figure 5-5: SPD functionalities parallel composition .. 101

Figure 5-6: the basic module .. 102

Page x Final

Figure 5-7: the sub-page of SPD Functionality module .. 102

Figure 5-8: a simple composition of SDP modules ... 103

Figure 5-9: nSHIELD model with coupling relation ... 103

Final Page xi

Tables

Table 3-1: ID value of the SLP header ..34

Table 3-2: Main Error code in SLP message. ..38

Table 3-3: Intrusion Detection System metrics values ..60

Table 4-1: Policy Attributes Template ..89

Table 5-1: overlay composability guidelines ... 101

Table 7-1: Prototype tables ... 105

Page xii Final

Glossary

Please refer to the Glossary document, which is common for all the deliverables in nSHIELD.

Final Page xiii

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 14 of 111 Final

1 Introduction
The nSHIELD project proposes an innovative layered architecture to provide intrinsic security (SPD
features and functionalities) to modern Embedded Systems. This is achieved by enriching these systems
with innovative functionalities, among which the most important is the “composability”, i.e. the possibility of
dynamically enable/disable/configure system’s components in order to achieve a desired end-to-end
behaviour.

Since an Embedded System is a mix of HW and SW functionalities, the intermediate layer (Middleware)
plays an important role because it acts as a glue to harmonize all the heterogeneous components and, in
the scope of the composability, to orchestrate the system behaviour according to the decision taken by
the “intelligent” Overlay.

In spite of this, the nSHIELD project, through WP5 activities, aims at defining the architecture and
behaviour of the so called SHIELD Middleware & Overlay that will be characterized by:

• Common Middleware functionalities

• Innovative SPD oriented Middleware functionalities

• Mechanisms to compose SPD functionalities to satisfy security needs.

This last point is addressed by means of a virtual vertical layer, transversal to all the others that collects
system information and elaborates them to drive the SPD composability. This layer is named SHIELD
Overlay and, even though it is logically separated by the others, on a practical point of view it can be
treated like a middleware component.

The various achievement and prototypes derived so far are reported in the following chapter. They will be
refined in the second project delivery and will be enriched with new ones.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 15 of 111

2 Semantic Technologies
2.1 SHIELD semantic models
In this paragraph the semantic models of the SHIELD system will be presented.

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

TE
R

S

IN
TR

U
S

IO
N

 D
E

TE
C

TI
O

N
, M

O
N

IT
O

R
IN

G
 A

N
D

FI

LT
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY SEMANTIC DB

Policy-Based
Manager

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Figure 2-1: Semantic models of the SHIELD system

Today, the evaluation of Security, Privacy and Dependability (SPD) functions is one of major aims of
research community and IT industry [1]. Despite all the work done, they do still not reach a convergence
solution of Security formal definition. In the same time, the security approach is becoming a fundamental
element in every sphere and area. This increasing demand for improvement of security, privacy and
dependability has resulted in the increase of products and services to allow “more reliable system”. These
new reliable system are typically the results of sub-systems combinations, for example to achieve a
security phone, it was added to it and authentication module or a cryptography function.

SIMPLE
SYSTEM

SIMPLE
SYSTEM

SIMPLE
SYSTEM SI

M
PL

E
SY

ST
EM

TRADITIONAL SYSTEM MORE RELIABLE SYSTEM

Figure 2-2: Idea of sub-systems compositions

The sub-systems composition implies several interdependences among all those involved. In particular,
the state and the functioning of each simple system depend of the states of others.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 16 of 111 Final

The major challenge of nSHIELD project in this sphere is to model the SPD context by means of semantic
technologies.

To entry in this scenario is necessary an appropriate formalization and, in particular, of “security
functionality” concept. An important contribute in this area is given in [2], [3], and [4].

According with those, we use the following definitions:

• Target of Evaluation (TOE) is a set of software, firmware, hardware or other possibly thing that is
the subject of an evaluation. It may contain resources such as electronic storage media (e.g. main
memory, disk space), peripheral devices (e.g. printers), and computing capacity (e.g. CPU time)
that can be used for processing and storing information and is the subject of an evaluation.

• Protection Profile (PP) that is the implementation-independent statement of security needs for a
TOE type.

• Security Target (ST) that is the implementation-dependent statement of security needs for a
specific identified TOE.

So, the security functionalities express security requirements intended to counter threats in the
assumed operating environment of the TOE and/or cover any identified organisational security policies
and assumptions. Security functional components are the basis for the security functional requirements
expressed in a PP or a ST. These requirements describe the desired security behaviour expected of a
Target of Evaluation (TOE) and are intended to meet the security objectives as stated in a PP or an ST.
These requirements are the security functionalities and they describe security properties that users can
detect by direct interaction (i.e. inputs, outputs) with the IT or by the IT response to stimulus.

Figure 2-3: Security Target contents

In few words security functionalities express security requirements intended to counter threats in the
assumed operating environment of the TOE and/or cover any identified organisational security policies
and assumptions.

Continuing to follow the way suggested in [2], [3], and [4], we dwell on ST and PP formalizations.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 17 of 111

Figure 2-3 shows the Security Target context. ST fulfils two roles: to specify “what is to be evaluated”
before and during the evaluation and to identify “what was evaluated” after the evaluation. ST is thought to
be a security specification on a relatively high level of abstraction and it should not contain detailed
component specifications (such as low level protocol details or algorithms disclaimers) or other unless
security-relevant facts (e.g. physical weight …).

So, a normally ST contains:

i. introduction that contains three TOE descriptions on different levels of abstraction;

ii. conformance claim, that shows whether the ST claims conformance to (and which) any PPs;

iii. security problem definition with threats and assumptions;

iv. security objectives, showing how the security problem solution;

v. extended components definition (optional);

vi. security requirements, TOE security objectives are translated in a standardized language;

vii. TOE summary specification that shows how the security functional requirements are
implemented.

It is easy to understand the ST Fields without dwelling again.

Figure 2-4: Protection Profile context.

Figure 2-4 shows the Protection Profile object. PP is used to provide a requirement specification for a
specific consumer or group, to regulate the protection from a specific regulatory entity and to define a
baseline for a group of IT developers. As ST object and for the same reasons, PP should not have a too
detailed or complete specification, but only the security-relevant ones. Moreover, the PP should not
contain single-object specifications because, unlike an ST, a PP is designed to describe a certain type of
IT, and not a single product.

The fields of PPs are similar to those of ST, without TOE summary specification.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 18 of 111 Final

This brief examine shows an interesting approach to describe and manage security functionalities. These
contents come from Common Criteria (CC) theory that was born:

• to ensure that evaluations of IT products and protection profiles are performed to high and
consistent standards and are seen to contribute significantly to confidence in the security of those
products and profiles;

• to improve the availability of evaluated, security-enhanced IT products and protection profiles;

• to eliminate the burden of duplicating evaluations of IT products and protection profiles;

• to continuously improve the efficiency and cost-effectiveness of the evaluation and
certification/validation process for IT products and protection profiles.

It is clear that the CC has several shared aims with nSHIELD project. We investigated it because we
believe that this is an interesting approach and it could help us to achieve the aim of modelling the SPD
context by means of semantic technologies. We would underline that CC focuses his effort only on IT
systems, instead nSHIELD contemplates a scenario largest. Different scenarios imply several difficulties
to develop a unique solution that is always available in each of these. For that, we consider CC only as an
interesting approach and not as a solution.

Already in pSHIELD project, and then in nSHIELD, it was been choosing to face the challenge developing
a enough generic representation to fit as much scenarios as possible, but at the same time to provide
sufficient details for the assessment of the security aspects that generally are strictly linked to specific
application. Likewise, the approach that was been basing on these three guidelines:

1. the translation of the real word into a uniform description;

2. the representation of functional properties by means of ontology as well;

3. the identification of the relations between real/structural and functional word.

This concept was explained in Figure 2-5, reducing the modelling problem to the formulation of three
different meta-models: i) structure; ii) functions; iii) relations between structure and functions.

Figure 2-5: Proposed approach to model SPD for ES

According with Figure 2-5 and considering the non-scalability of pSHIELD approach, it is necessary
provide a relevant abstraction to achieve the SPD system model. In particular, as shown in [5] it was
thought to decouple the three pSHIELD metamodels into two new nSHIELD ones:

• a technology independent metamodel;

• a domain library.

This process of decoupling is shown in Figure 2-6, where the SPD abstraction (Technology Independent
Abstraction - TIA) is composited by SPD component and functionality, instead the domain dependencies
(Domain Dependent Libraries - DDL) include NON-SPD components and functionalities, and the
attributes.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 19 of 111

Figure 2-6: Decoupling of the pSHIELD ontology into nSHIELD approach.

To achieve the first metamodels abstraction, a feasible approach is given by CC approach. Using the
same formalization and the acronyms to prevent further introduction of terms, the technologies
independent abstraction can be represent with three objects:

• TOE, which describes the object that we want SPD-evaluate;

• PP, which includes security aims for type of objects;

• ST, which includes security, aims for single components.

PP and ST also describe the inter-relations among different components or class of these.

The second level of abstraction, between SPD Attributes and SPD Functionalities is given by Domain
Library, which associates for each SPD Attributes state a corresponding value of SPD.

Figure 2-7 shows the proposed approach in Figure 2-5 whit these considerations.

We would underline that CC is only the basic idea and we use the same formalizations for easier
understanding. This approach does not imply to use the same owner methods, objects or already defined
thing.

Figure 2-7: Proposed abstracted approach to model SPD for ES.

This approach also allows to develop a formal verification method, how done in [6]. The authors start from
the fact that it is difficult to define reliable security properties that should be applied to validate an IT
system and they dwell in particular on satisfaction of the security criteria defined in ISO/IEC 15408.

Nowadays, more organizations and government agencies require the use of CC certified and use the CC
methodology in their acquisition, such as U.S. National Information Assurance Acquisition Policy [7].

ATTRIBUTES

FUNCTIONAL

STRUCTURAL

SPD ABSTRACTION

Technology
Independent
Abstraction

Domain
dependent
Libraries

SPD FUNCTIONALITY

ATTRIBUTES

SPD COMPONENT

NON-SPD
FUNCTIONALITY

NON-SPD COMPONENT

Technology
Independent
Abstraction

Domain
dependent
Libraries

DOMAIN DEPENDENCIES

Technology
Independent
Abstraction

Domain
dependent
Libraries

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 20 of 111 Final

Therefore, as well as being an interesting approach to follow, a CC conformed method could get important
benefit for nSHIELD project.

Re-taking Figure 2-7, the role of TIA is to associate an Abstracted SPD Functionality Model (ASFM) at
each system components, considering:

1. components features and structures;

2. interconnections and inferences among components;

3. security policies.

It is clear that for 1 and 2, this abstraction must consider the operative scenario and it is not completely
abstracted.

As an example of the new semantic abstraction, we will consider cyphering (see Figure 2-8). This can be
done either by hardware or software modules, but their abstract representation will be the almost same: a
box named cyphering. Then, the cyphering performed by HW, will have an input relation with, for
example, the power management functionality, since the availability of power resources could affect the
possibility of performing cyphering or not; while the cyphering performed by software module doesn’t have
input relations with other functionalities.

Figure 2-8: Example of technology abstraction

Secondly, all the functionalities affect the network data redundancy module, since they may introduce
overhead and increase the bandwidth occupied by the transmitted data.

Finally, the HW cyphering doesn’t have architectural dependencies (if there is a CPU able to perform
cyphering, then it can do it), while the SW cyphering has an architectural (NON-SPD) constraint related to
the memory usage of the cyphering routine.

This constraint is stored in the domain knowledge base, together with the SPD value of the component
that depends on several (domain related) aspects. For example a cyphering module that sends data from
two components of a camera for railways surveillance is affected by physical menaces, while the same
module installed on a flying UAV is very difficult to be physically attacked.

To model SPD attribute and SPD functionalities, we are following Algebra of Connectors way: the
concept of connector has emerged to interact and interoperate small components, functionalities and
services that are separately developed. Connectors are the glue code that takes care of all those aspects.

To analyse interconnected and distributed systems is crucial to have good mathematical foundations.
Several connector categories have been studied in the literature and all bring out the common definition of
connector: “a component that mediates the interaction of other computational components and

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 21 of 111

connectors” [8]. The connector concept has been developed following two different approach for system
modelling categorical and for algebraic approaches (see [9] [10] and [11] , respectively).

Categorical approach consists of depicting the systems as objects in a category and the sub-system and
the relations through appropriate morphisms.

Instead, algebraic approach requires a suitable algebra to model systems. This approach contains only
basic components that are used to develop other operators and complex systems.

Several papers [8], [12], and [13] suggest different algebraic approaches always with simple basic
components. For example, in [8] the authors present a basic algebra of stateless connectors using only
five basic connectors’ syntax that is shown in Figure 2-9.

Figure 2-9: Example of basic semantic in [8]

Another interesting contribute is given in [13] where the authors define six primitive semantic with different
basic elements approach. Figure 2-10 shows the primitive of this algebra.

Figure 2-10: Example of basic semantic in [13]

Cited documents and other Algebra of Connectors contributions establish that there is not a unique
algebra, but it must be developed ad hoc considering each single scenario. The system modelling
requires a particular attention in order to consider multiple and simultaneous actions.

The main benefit of the development of connector algebra, or at least composition formalism, is to
evaluate the individual SPD contribution of each component, which can be used for feedback controlling.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 22 of 111 Final

We show Figure 2-9 and Figure 2-10 because there is the most comparable Algebra of Connector that we
must develop for Technology Independent and Domain Dependent Abstractions, respectively.

2.1.1 The SHIELD ontology

In spite of all the considerations collected so far, the Ontology model adopted for the SHIELD project is a
re-elaboration of the one already presented in pSHIELD, limited to the abstraction layer and including a
new set of information directly derived from a new concept, the attack surface metrics, that will be
elaborated in the prosecution of the project and that represent the “logical” algebra of connection that
interconnects the SPD functionalities.

This approach, that will be better outlined in the Metrics documents in the second phase of the project, is
based on the quantification of the so-called “attack surface” and “porosity”, that is representative of the
vulnerability of the system. This surface is a function of the amount of interfaces to the external world
(access), interactions between components (complexity) and internal/external interactions with no direct
impact on security (trust). These attributes are represented by a number, so the generic SPD functionality
brings a numeric contribution for each of these attributes.

These values hold both for the system and for each additional SPD functionality

Figure 2-11: SHIELD SPD Functionality Ontology: attributes

Then, each vulnerability (identified by the number of “accesses”) can be counteracted by means of
specific controls. The controls can be classified in Class A (interactive controls) that are Authentication,
Indemnification, Subjugation, Continuity, and Resilience, and Class B (process controls) that are Non-
repudiation, Confidentiality, Privacy, Integrity, and Alarm.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 23 of 111

Figure 2-12: SHIELD "Control Ontology"

Each SPD functionality can bring into the system one or more controls. Each control, once activated, can
be affected by a set of limitations: Vulnerabilities, Weaknesses, Concerns, Exposures, and Anomalies.

Figure 2-13: SHIELD "Limitations" Ontology

Each element depicted in these Ontologies can be:

• A simple number (i.e. 2 integrity controls, …)
• An element itself (i.e. CRC integrity control, Hash integrity control, …)

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 24 of 111 Final

These elements are finally composed, according to a proper algebra, to obtain the metric value for the
whole system. The algebra will be detailed in the Metrics document.

To sum up, the SHIELD ontology, stored in the SHIELD components, is based on an abstract description
of the generic SPD functionality including all the attributes (numerical or instantiated) to compute the
contribution given by that functionality to the whole system.

Then a proper domain data base is needed to tailor the result to the specific application scenario.

2.1.2 The SHIELD Domain dependent library

This library contains all the refinements necessary to tailor the abstract components to the specific
scenario needs. In particular in contains:

• A list of functional dependencies between the SPD functionalities (mutual inclusion and mutual
exclusion)

• A list of numerical values for the metrics attribute of the Ontology previously defined.

This second relation is expressed by duplicating the Ontology tree and by instantiating only the values
that override the ones already present in the Ontology. For example if and SPD functionality implement 2
resilience control and in a particular scenario one of this control has no effect, then the Database will
override the value of “Resilience control” to 2.

In the following E-R diagram for the Domain dependent Library is reported, with highlighted in yellow the
parts that can override the information already included in the Ontology.

Figure 2-14: SHIELD Domain Dependent Library E-R Diagram

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 25 of 111

This Library can be also referred to as “context” and is used by the Overlay during the composition
process in this way:

Step 1: at first the Ontologies are retrieved by means of discovery services.

Step 2: Ontologies are updated by means of context information

Step 3: the inclusion dependencies are evaluated as well as the exclusions one and the solution
is updated accordingly

Step 4: the solution for the composability problem is computed

Elaborated composition algorithms that will leverage this formulation will be analysed in the prosecution of
the project.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 26 of 111 Final

2.2 Semantic Intrusion Detection
In this section some analysis on a Semantic Intrusion Detection are reported

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

TE
R

S

IN
TR

U
S

IO
N

 D
E

TE
C

TI
O

N
, M

O
N

IT
O

R
IN

G
 A

N
D

FI

LT
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY

SEMANTIC
DB

Policy-Based
Manager

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Figure 2-15: Semantic Intrusion Detection

In the recent years, some people have started to develop methods which separate the design process into
a high level and a low level phase, helping the developer to design more powerful network intrusion
detection.

As Hung et al. [14] affirm these approaches define methodologies for designing an intrusion detection
application which meets the end-user requirements. However, they do not express the modelling of the
intrusion detection application in terms of the domain of interest. They posit that it is important not only to
corporate the terminology of a domain but also to make sure that domain expert with this terminology of
the domain can fully exploit his/her domain expertise for designing his/her intrusion detection application.

They also cite the following characteristics as an advantage to more traditional methods:

• Grasping the knowledge of a domain: the domain knowledge can be captured by domain
ontology.

• Expressing the intrusion detection system much more in terms of the end-user domain: by using
the domain ontology, the design of the intrusion system can be expressed in terms of the end-
user's domain.

• Generating the intrusion detection system more easily: from the knowledge given in the domain
ontology, it is possible to derive a number of properties for an object.

• Making intelligent reasoning: it is not easy to make intelligent reasoning from a scene to the other
one. However, it is possible to do that using ontology.

Undercoffer et al. [15], [16] were the first to propose ontologies for intrusion detection. From the point of
taxonomy, the intrusion detection can be considered as possessing many characters and classifications
and it needs a language that describes instances of that taxonomy.

After the initial proposal from Undercoffer et al., several authors have proposed different or more detailed
ontologies. We can cite the following ones as especially relevant in the context of the project:

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 27 of 111

• The previously cited Hung et al. [14]

• The work from Abdoli and Kahani [17]

• The work from Isaza et al [18], and [19]. These authors not only define an ontology for IDSes but
they also follow a methodology [20] called METHONTOLOGY to develop the ontology.

Isaza et al. affirm that they use METHONTOLOGY because in different studies it is considered one of the
most mature methodologies that seek to follow the life cycle of the software proposed in the IEEE 1074
standard, which is recommended by the Foundation for Intelligent Physical Agents (FIPA). The
methodology not only incorporates the description of the attack taxonomy, but also axioms and rules
describing the attacks.

The specification phase in this methodology includes asking a set of competence questions (CQ) for the
domain to allow building the ontology in an easier, faster way. Questions such as:

• What is the events sequence that describes an attacks type?

• What kind of reaction must be assumed as a result of a possible attack?

• What impact does an attack on the underlying distributed environment?

• What kind of attacks requiring priority reactions (high, medium, low)?

From these questions, not only the entities and their attributes are built into the ontology, but also axioms
and rules describing the attack types.

Figure 2-16: OntoIDPSMA MAS architecture

Isaza et al. define a Multi-Agent System (MAS) for IDS and IPS architecture, which they call OntoIDPSMA
– Ontological Intrusion Detection and Prevention Multi-agent system. The main roles in the agents that
participate in the Multi-Agent System (MAS) model are:

Sensor Agent

• Intentions: Capture packets from the network and send them to other agents to be analysed and
processed.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 28 of 111 Final

Analyser Agent

• Intentions: Receive data from Sensor Agent, minimize false positives and false negatives, and
compare signatures with predefined patterns or behaviours.

Correlation Agent

• Intentions: Aims to the integration, classification and correlation from events and alarms stored in
the Ontology model, using reasoning tools applied in ontological models.

Reaction Agent

• Intentions: Manages the events to generate alarms and to create a prevention model integrating
reaction rules to reconfigure other network devices.

The following figure shows the interaction and the OWL message exchange used by the agents in the
OntoIDSPMA architecture, as well as the performative parameter ACL Message and action.

They use Artificial Neuronal Networks with a supervised learning for the intelligent component behaviour.
In that component a normalized process for packet captures has been used; the relevant fields are
classified and coded to binary. The fields information used are ToS (Type of Service), Length, TTL (Time
to Live), Sequence, ACK, Flags, TCP and Data content.

For the ontology rules are defined that allow properties inferences and reasoning process. The
IntrusionState, WebAttack, SQLInjection, BufferOverflow, DoS, dDoS, PrivilegedAccess properties among
others, describe the anomaly behaviour. They are defined as ontology’s attributes, from the captured and
processed attack instance using the detection engine, identifying the Type of Intrusion. These values
value are imported into the ontology through format conversion sequences from the original data capture
formats (IDMEF XML messages, Pcap/tcpdump captures, etc.).

To define the rules Semantic Web Rule Language (SWRL) is used. SWRL is an expressive OWL-based
rule language that allows writing rules expressed in OWL concepts and provides some capabilities. A
SWRL rule contains an antecedent part to describe the body, and a consequent part, referring the head.

An example for a SQL Injection Rule that describes the intrusion state (p) directed to node (z), with source
host (x) is given by:

(NetworkNode(?x) ∧ NetworkNode(?z)
∧ IntrusionState(?p) ∧ GeneratedBY(?p, ?z)

∧ SQLInjection(?p) ∧ Directed_To(?p, ?z)) →
SystemSQLInjectionState(?p, ?z)

We can also generate a value attribute in the inference process a part of a rule evaluation. For example, if
we have a Web Attack Rule like the following one, the target host (x) state is defined as True for Under
Web Attack, given the axioms, sentences and conditions that meet the specified claim:

(NetworkNode(?x) ∧ IntrusionState(?y)
∧ GeneratedBY(?x,?y) ∧ GeneratedBY(?x,?y)

∧ WebAttack(?z) ∧ AttackTypeOf(?y,?z))→
UnderWebAttack(?x, ?true)

A possible description for the axiom that describes a RootAccess state is denoted as:

RootAccess ≡ ∋ (IntrusionState ∩ InputTraffic ∩ NetworkNode)
 ∩ ∋ Generated_by(AnomalousSSH ∪ AnomalousFTP ∪
 WebAttack ∪ TelnetAccess)
 ∩ UID_Try(UID_0)

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 29 of 111

As a conclusion, the ontologies and reasoning systems developed by different authors so far offer several
advantages over more traditional approaches, like an increase in the performance in tasks such as
distribution of the knowledge among nodes, intelligence reasoning, knowledge representation, generating
inferences, and adaptability, among others. Additionally the correlation model, if present in the
architecture provides scalability to the ontology providing a more semantic approach to the model.

However, the CPU usage at each node is greater due to interaction with multiple tools, virtual machines
processing and ontological management. This is why we propose not to use this Intrusion Detection
Model in the nSHIELD demonstrators, given that the micro/personal nodes are quite constrained in their
CPU capabilities.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 30 of 111 Final

3 SHIELD middleware core SPD services
3.1 SHIELD secure service discovery and delivery
In this section the SHIELD secure service discovery and Delivery are depicted.

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

TE
R

S

IN
TR

U
S

IO
N

 D
E

TE
C

TI
O

N
, M

O
N

IT
O

R
IN

G
 A

N
D

FI

LT
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY SEMANTIC DB

Policy-Based
Manager

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Figure 3-1: SHIELD secure service discovery and Delivery

3.1.1 Service Discovery concept

The Service Discovery (SD) is a lookup operation accomplished by a generic entity in order to identify all
available services which satisfy specific criteria and requirements. The Service Discovery can be done
either manually or automatically by software or by an automatic device.

A Generic Service is characterized by a location (physical and logical) and some other specific
properties, which allow to identify it by an entity. In general, it is necessary to compose a careful query
with the useful parameters to identify an appropriate service. For example:

• the type of service;

• the physical location;

• the capability;

• the delivery method;

• the cost;

• …

and the other values which the user claims from the service. If there exist one or more services the
respects this requirements, it or they notify the user with their availability.

Even though the Service Discovery concept is very simple to understand, it is also one of the greatest
barriers for the optimal use of the modern technologies. In fact, nowadays, we are surrounded by
thousands of programmable devices able to offer several services but, in the same time, often mutually
incompatible.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 31 of 111

The incompatibility has a direct effect: to take advantage of advanced devices, the user must use different
technologies manually, each with the own interfaces, the own services, the own configurations … as well
as to compose these services respecting their own requirements and paying attention to the compatibility
problems. It is clear that these operations require also the broad expertise of the user.

Internet is the exemplary case study to understand the utility of the Service Discovery: in fact, Internet
connects a huge number of customers and services from the whole world and it is clear the importance of
the search engines to find the required information. We can see a search engine as a simple Service
Discovery which search in the web documents, pictures ore complex e-commerce services.

Figure 3-2 – Example of Service Discovery architecture

The concept of Service is more general. A feasible definition could be: “anything which can be used by
someone”. A service can be a printer, a projector, generic information (written or audio or video), a call, a
video call conference, the access to the appliance control panel or to the alarm system …

Does not exist a unique and absolute definition of Service: it depends from several factors and, in each
scenario and in each context, a class of services exists and allows to describe all the relevant
characteristic. It is obvious that, the heterogeneity of the information will be one of the most important
problems to be addressed.

3.1.2 Overview of Service Discovery protocols

In the last ten-fifteen years, more effort was dedicated to the development of Service Discovery Protocols
(SDP). For a deep analysis we suggest to read the papers [21] and [22]. In this section, we illustrate the
Service Discovery Protocols used to develop nSHIELD prototype.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 32 of 111 Final

3.1.3 Service Location Protocol (SLP)

The Secure Location Protocol (SLP), created by the Service Location Protocol Working Group (SVRLOC)
of Internet Engineering Task Force (IETF) and referenced in SLPv2 standard ([23] and [24]), is one of the
more used Service Discovery Protocol. In this protocol are considered three basic entities, named
“Agent”:

• Service Agent (SA);
• Directory Agent (DA);
• User Agent (UA).

Figure 3-3: SLP logic architecture.

It is a simple, scalable, light and decentralized protocol; furthermore it is independent by HW, SW and the
language programs.

A SLP service has some “properties” that describe it. The first is the Service URL: it is a string with a
specific form, and it specifies the general category of the service that it describes. For example, a Service
URL may be “service:content-adaptation:sip://can1@nshield.eu”: it says that the current service is a
content-adaptation service, that may be reached, with SIP protocol [25], at the SIP address
can1@nshield.eu. The “service:” is a fixed string that says only that following is the URL of a service.

Each service, beyond a Service URL, has a list of Attribute-Values couples. Each Attribute is a property of
the service, and it is indicated by a name. This property, typically, has one or more values: so a couple
can be “Supported_Resolutions = 640X480,800X600,1024X768”. This attribute indicates that that service
(that can be a monitor or a projector) has an attribute, named “Supported_Resolutions” (that is auto-
explicative) that can assume 3 possibly values: 640X480, 800X600 and 1024X768.

So, supposing to describe a projector as a service on a LAN, it Service URL can be something like
“service:video-ouptut-device:projector://p1” (supposing that a protocol exists that uses the projector://p1
as a way to indicate an address of a projector) with the “Supported_Resolution” attribute mentioned
above.

After this introduction, we can enter in the SLP architecture’s detail. As said previously, SLP uses three
kinds of entities: Service Agent (SA), User Agents (UA) and Directory Agents (DA). The SA is the service
supplier: it has to register its services on the DA. The DA is the “core” of the architecture, because it
registers all the services that are offered by a network. Finally, the UA is the client that interrogates the DA
to find a specific service of a SA. See Figure 3-3.

On the DA, for each service, beyond Service URL and its attributes (with their values), there is stored a
Service Scope (that is “visibility area”), a Service Type (that is indicated the Service URL) and a Service
Life Time (that is a time that, after expired) causes the service to be unregistered. This additional
information are used to simplify the discovery process and to make failure-safe the entire architecture:

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 33 of 111

indeed, if a service crashes it can’t renew its registration on the DA, the Life Time expires and it is
removed; so no one DA can find that service further!

The service discovery is done as follows. The UA sends a message to find a service. This message can
be either in unicast mode to a specific DA, or in multicast: in this last case, each DA or SA that is on the
network receives that message. If there are only SAs, the ones that satisfies to the UA requests, respond
to it; otherwise, each SA that respond to the UA requests and each DA where is registered a service that
satisfies to the UA requests, respond to the UA. So, SLP can work both in a centralized and in a
decentralized way. The UA message contains a visibility area, a service type and a list of capabilities that
the service has to comply. All messages exchanged by entities are extensively defined in SLP specifics:
these messages implement a robust asynchronous communication protocol.

The branch where SLP excels (on other protocols above and below reported) is in its capability of perform
“complex” queries on the attributes’ values: it can use Boolean operators (AND, OR, NOT), comparators
(<, ≤, >, ≥, =) and functions of string matching.

The motives because SLP was the protocol chosen for this thesis are summarized below:

• it has the best query language and capability

• it is highly scalable: with service Scopes and the possibility to work either in a centralized and in a
decentralized way, it can perfectly work either in small LANs and in the Internet with the same
simplicity

• it supports the possibility of using more DAs, hierarchically interconnected: with SLP it is possible
to create a service discovery architecture like the DNS one

• it uses a moderate number of multicast messages and has a very low traffic overhead

Summing, we can consider two type of messages exchange in SLP: one is for a registration of a new
service and the other for service requests.

New Service Registration

1. the SA sends a service registration request (SrvReg) to the DA when it want share an own
service;

2. the DA registers the service and replay to the SA with a service acknowledgement message
(SrvAck);

Service Request

1. the UA sends a service request (SrvRqst) asking the type and the parameters of the desired
service;

2. the DA checks for the UA request and answer with a service replay message (SrvRply) including
the address of the services required.

+-------+ -Unicast SrvRqst-> +-----------+ <-Unicast SrvReg- +-------+
| User | | Directory | |Service|
| Agent | | Agent | | Agent |
+-------+ <-Unicast SrvRply- +-----------+ -Unicast SrvAck-> +-------+

Figure 3-4: SLP flow for service registration (upper line) and require (lower line).

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 34 of 111 Final

3.1.4 SLP Message

In order to introduce the security policy of SLP protocol, a little summary of the main SLP messages is
required. The messages exchanged in SLP protocol have all the same header.

 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Version | Function-ID | Length |
+-+
| Length, contd.|O|F|R| reserved |Next Ext Offset|
+-+
| Next Extension Offset, contd.| XID |
+-+
| Language Tag Length | Language Tag |
+-+

Figure 3-5: SLP header

We report now the most important fields of the SLP header

3.1.4.1 Function-ID

Table 3-1: ID value of the SLP header

Type Message Acronyms Function-ID

Service Request SrvRqst 1

Service Reply SrvRply 2

Service Registration SrvReg 3

Service Deregister SrvDeReg 4

Service Acknowledge SrvAck 5

Attribute Request AttrReq 6

Attribute Replay AttrRply 7

DA Advertisement DAAdvert 8

Service Type Request SrvTypeRqst 9

Service Type Reply SrvTypeRply 10

SA Advertisement SAAdvert 11

This field report the unique code of the type of the message. The allowed IDs are shown in Table 3-1.

3.1.4.2 Length

This field report the length of the whole message included the header (it is a integer value).

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 35 of 111

3.1.4.3 Flags

This binary field allows to set the option of the transmission mode:

• Flag O (Overflow): is “1” if the message length exceeds the length of the datagram;

• Flag F (Fresh): is “1” for each new registration message;

• Flag R (multicast Request): is enabled if the request must address in multicast mode.

3.1.4.4 XID

This is a unique number for a request which allows to identify the thread. So, the following replay
messages keep the same XID value.

In the follow, we report the more important message exchanged in SLP protocol.

3.1.4.5 Service Request

The ‘Service Request’ message is sent from the UA to the DAs to retrieve already registered services.
Figure 3-6 shows the structure and, follow that, the main fields of the messages are described.

 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Service Location header (function = SrvRqst = 1) |
+-+
| length of <PRList> | <PRList> String |
+-+
| length of <service-type> | <service-type> String |
+-+
| length of <scope-list> | <scope-list> String |
+-+
| length of predicate string | Service Request <predicate> |
+-+
| length of <SLP SPI> string | <SLP SPI> String |
+-+

Figure 3-6: Service Request message.

• <PRList> (Previous Responder List): empty in case of unicast requests; it contains the IP

addresses of the DAs found till that moment in case of multicast requests.

• <service type>: the type of the service sought.

• <predicate>: optional. It is an additional filter on the attributes of the services to be found.

• <SPI> (Security Parameter Index): the security parameters with which the UA was configured; if
omitted, the reply message has not to contain any Authentication Block. If the SPI are not
supported by the DA and AUTHENTICATION UNKNOWN errors returned.

3.1.4.6 Service Reply

An UA receives this message by a DA as a response to its request for services: such a reply contains,
further than the usual header, an Error Code indicating there were errors if its value is not zero.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 36 of 111 Final

 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Service Location header (function = SrvRply = 2) |
+-+
| Error Code | URL Entry count |
+-+
| <URL Entry 1> ... <URL Entry N> |
+-+

Figure 3-7 – Service Reply message

The < URL Entry count > field indicates the number of services found; subsequently there is a list of URL
Entry, each one having the form shown in Figure 3-8.

 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Reserved | Lifetime | URL Length |
+-+
|URL len, contd.| URL (variable length) |
+-+
|# of URL auths | Auth. blocks (if any) |
+-+

Figure 3-8: URL entries

As previously said, each service has also a ‘Lifetime’, i.e. the time on which the service is active from its
registration.

3.1.4.7 Service Registration

This message is sent by the Service Provider (SA) in order to register a service on a DA, specifying all the
characteristics of the service, such as its type, its attributes and relative values, the lifetime, etc.

 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Service Location header (function = SrvReg = 3) |
+-+
| <URL-Entry> |
+-+
| length of service type string | <service-type> |
+-+
| length of <scope-list> | <scope-list> |
+-+
| length of attr-list string | <attr-list> |
+-+
| # of AttrAuths |(if present) Attribute Authentication Blocks...|
+-+

Figure 3-9: Service Registration message

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 37 of 111

The last field is the Authentication Block (optional), used for secure the SLP messages: it contains the
digital signature of the SA and all the parameters to be used to verify the message after its reception.

3.1.4.8 Service Acknowledgment

The Service Ack is sent by the DA to the SA as a response to a Service Registration, in order to inform
the SA of the right registration of the service. The Error Code will be different by zero in case of errors.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Service Location header (function = SrvAck = 5) |
+-+
| Error Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3-10: Service ACK

3.1.4.9 Directory Agent Advertisement

This message is sent by the DA, containing all the information about it.

The field < Error code > is the usual; the field < DA Stateless Boot Timestamp > indicates the status of the
DA. It is zero to indicate the DA is not active from that moment. The message could also contain a list of
the attributes of the DA. The <scope-list> is the list of the scopes supported by the DA.

Among the attributes concerning the DA, particularly important is the < min-refresh-interval >, indicating
the minimum time among two information refreshes from a SA for a particular service. The field URL
contains the string “service:directory-agent://<addr>”, where <addr> is the address of the DA. Finally, the
< SPI List > contains the list of security parameters the DA is able to verify.

 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Service Location header (function = DAAdvert = 8) |
+-+
| Error Code | DA Stateless Boot Timestamp |
+-+
|DA Stateless Boot Time,, contd.| Length of URL |
+-+
| URL |
+-+
| Length of <scope-list> | <scope-list> |
+-+
| Length of <attr-list> | <attr-list> |
+-+
| Length of <SLP SPI List> | <SLP SPI List> String |
+-+
| # Auth Blocks | Authentication block (if any) |
+-+

Figure 3-11: DA Advertisement message.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 38 of 111 Final

3.1.4.10 Error Code

More messages, also among the previously, have a <Error Code> field. This field is composited by two
byte and indicates if there is an error in message exchange. If this field has a value different from zero,
the rest of the message could be trunked. Only the error occurred in unicast requests are returned,
instead the messages are simply discarded in multicast requests. In --- are shown the main error.

Table 3-2: Main Error code in SLP message.

Type of Error Code Description

PARSE ERROR 02 Syntactical Error.

INVALID REGISTRATION 03 Registration problem (ex. <lifetime>=0 or it
lacks a field).

SCOPE NOT SUPPORTED 04 The <scope> is not supported by DA or SA.

AUTHENTICATION UNKNWON 05 The security parameters are not supported.

AUTHENTICATION ABSENT 06 It lacks an <Authentication Block>.

AUTHENTICATION FAILED 07 There is error signature verification.

3.1.5 Security in SLP

In this section, we discuss the issue of the SLP security and, in particular, of various specifications that
the protocol introduces to ensure a specific level of security. Also, we discuss the main method including
in this protocol and, finally, the changes introduced in order to improve the security level.

The security issue is addressed in order to allow the customers to use services which are not included in
the own network. The sharing of services of different network is an important problem to treat both for
costumer and for network owner security. SLP has the possibility to authenticate some messages coming
in the network. This process is based using a public authentication key and it certificates the trusted
identity of the sender agent. An agent sends a message including a digital signature starting from the
original message. The only message where this is possible are the message which include the
<Authentication Block>, see the Section 3.1.4.

The security process requires two key: the first is private and it is used to compute the digital signature
and other is public and it is necessary to verify it. The relation between a DA and a SA is established,
according with SLP standard, in configuration phase when there is the exchange of keys. The main
problem of this security approach is that the trusted relation can occur only in configuration mode.

Moreover, there are other two problems in this security scenario: the first regards the DA, because it is not
possible guarantee that a generic UA does not access to the high protection services; the second
concerns the possibility of an UA to ascertain that a DA is trusted. The first problem is not dealt whit a
traditional SLP standard, instead the second can be resolved guaranteeing that the public key is
exchanged in security mode with the DA.

The following paragraphs show how this latter happens.

3.1.5.1 Authentication Block

It is important to introduce the <Authentication Block>. Its structure is shown in Figure 3-12.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 39 of 111

 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Block Structure Descriptor | Authentication Block Length |
+-+
| Timestamp |
+-+
| SLP SPI String Length | SLP SPI String |
+-+
| Digital Signature |
+-+

Figure 3-12: Authentication Block structure.

The <Authentication Block> drives some SLP messages in order to guarantee the originality of the
message and that the source is a trusted identity. Beyond the length fields, there are four important fields:

• BSD (Block Structure Description) which identifies the algorithm used to compute the digital
signature. The default choice is the DSA algorithm [26] using SHA-1 (Secure Hash Algorithm)
hash function [27], but it is not the only.

• Timestamp: it indicates the expiration time of the signature.

• SPI (Security Parameter Index): it contains the parameter useful to understand and to verify the
digital signature, such as the key length as well as the BSD parameters or the public key.

• Digital Signature: in this field is written the signature.

3.1.5.2 Signature generation process

The generation process of the signature is divided in two phases: in the former it runs the hash of the
message and in the latter it applies the algorithm.

The hash functions are particular algorithms which cover a primary role in the signature process. The
main algorithms take input messages with fixed length, but this implies several problems for long
messages. In fact, one possible solution could be to divide in small blocks but it entails other problems as:

• the space, the signature length is proportional to the blocks number;

• the time, the checking of the signature requires several and complex operations;

• the security, sniff and replicate the messages is simpler for intruders.

The use of a hash function provides an efficient solution to all these problems. In particular, it accepts
input messages of any size and it return a fixed length messages which acts as fingerprint. This approach
guarantees that if the original message will change, also the hash function will be different.

The fingerprint of the message is given in input to an algorithm which creates the digital signature, using
and combining also the private key.

Figure 3-13: Signature generation process (according with DSA + SHA-1 standards)

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 40 of 111 Final

3.1.5.3 Signature verification

Once a message with Authentication Block is received, the receiver must extract the BSD and the SPIs in
order to identify the algorithm used to sign the message and relatives parameters as well as the public
key.

Firstly, the receiver applies the hash function (the same used by the sender) to the message, then it
decodes the message using the public key and, finally, the hashed and the decoded message will be
compared so that it is possible to verify the correctly of the signature.

If there is one or more problem, the message will discard and the receiver will sent and error message to
the sender using the <error code> already illustrated in Paragraph 3.1.4.7.

Figure 3-14: Signature verification (according with DSA + SHA-1 standards)

3.1.5.4 Security scenarios

In the previous paragraphs, we have described how it is possible to assure the authenticity of the
messages exchanged in SLP protocol. The signature process allows to verify if the message are authentic
and, also, if the message is intact. All this thanks to hash function, because if a message is changed, for
any reason, also the hash signature must be different and the verifier will deny the message received.

Unfortunately, however, the SLP messages are not secure. In fact, the messages are sent in clearly mode
and, so, anyone could eavesdrop and read. To introduce this protection, it is necessary combine SLP
message with other high-level security protocol which allows, for example, cryptography.

Hereinafter, we illustrate some important scenario where security attacks typically happen and the
countermeasures implemented in nSHIELD project.

The main threat for SLP is due to the information which are eavesdropped and stored in the network in
order to be sent in other moment (Replay Attacks).

3.1.5.4.1 Scenario 1

We consider an exchange of message between a Directory Agent and a Service Agent as shown in
Figure 3-15.

Figure 3-15: Example of Replay Attack (Scenario 1)

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 41 of 111

The SA sends a message to DA in order to delete a generic service S from its cache, using SrvDereg
structured request. An Attacker intercepts and stored it. When the SA will send a new require for service
registration (SrvReg), the Attacker could re-send the intercepted message, pretending to be the SA.

3.1.5.4.2 Scenario 2

Another scenario is shown in Figure 3-16. At time t1, the SA registers a service S which will end at time t4.
An Attacker intercepts and stores this message in its memory at time t2, the SA wants to change some
service parameter, including the lifetime in such a way to delay it at time t5. At time t3, if the Attack sends
the message stored at time t1, the second message will be deleted and the service will reset at time t4.

Figure 3-16: Example of Replay Attack (Scenario 2)

3.1.5.4.3 Scenario 3

Following the previous scenario, this has some different that particularize other aspects. As previous, at
time t1 a SA register a service S (such us a printer service) but, in this case, it expires at time t10. At time
t5, the network administrator decides to remove this service from the DA.

Figure 3-17: Example of Replay Attack (Scenario 2)

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 42 of 111 Final

So, the Attacker has the interval time from t5 to t10 to pretend itself as a SA (for example using the
spoofing IP). During this interval, the Attacker will receive all documents that all users think to send to the
printer service.

These scenarios and threats are been dealt introducing small improvements at the traditional SLP. In
particular, the approach developed follows the criterions:

1. the DA take notes of all timestamps included in the Authentication Block of the messages
received;

2. to transmit a new message, the SA must use ever a timestamp t’’ higher than that of the previous
(t’).

So, the DA compares the timestamp of the last message received and if it is less than that of the previous,
the DA discards this latter. The DA will accept and store only the messages which have t’’>t’ (Figure
3-18). It is simply to verify that this small shrewdness solves almost all the Replay Attack seen in this
paragraph.

Figure 3-18: Anti-ReplayAttack flowchart 1

Figure 3-19: Anti-ReplayAttack flowchart 2

SEND message

TIMESTAMP(t1)

SA

RECEIVE message

DA

STORE
timestamp(t1)

DA memory

SEND message

TIMESTAMP(t2)
RECEIVE message

COMPARE with
timestamp(t1)

STORE
timestamp(t2)

SEND message

TIMESTAMP(t1)

SA

RECEIVE message

DA

STORE
timestamp(t1)

DA memory

SEND message

TIMESTAMP(t1)
RECEIVE message

COMPARE with
timestamp(t1)

INTERCEPT
message

ATTACKER

DISCARD
message

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 43 of 111

3.1.6 Secure Architecture for Service Discovery

The service discovery process of a device is a service offered by the network. One of the main aspect to
take attention is the security due to the heterogeneous environment and, primarily, because the service
discovery network is very useful when all devises can access at the network. To deal this problem, in
nSHIELD project, we have exploited the SLP protocol implementing relevant improvements. As previously
illustrated, SLP has few shrewdness to guarantee secure discovery. It was necessary to introduce other
specifications in order to allow nSHIELD to discovery service securely.

Summarizing, the SLP signature process is as shown in Figure 3-20 and, for more detailed specification
we suggest to read Section 3.1.3.

DOCUMENT

HASH
function

HASH ENCODE

private KEY

DOCUMENT

SIGNATURE

HASH
function HASH

COMPARE

DECODE

public KEY

Figure 3-20 – SLP flowchart

The SLP approach allows to guarantee some security specification such as the authentication and the
data integrity. Whit some improvement, in paragraph 3.1.5.4, we show how to prevent Replay Attack, but
it still remains the confidentiality problem. In fact, all devices connected in a network could read the SLP
messages exchanged among all SAs and all DAs.

The only parameters on which the SLP bases own protection are in Authentication Block and, in
particular, the field named SPI (Security Parameter Index). The main role of this field is to give
information to the received entity for doing the signatures verify. For further details, you can see
paragraph 3.1.4.

To guarantee the confidentiality communications for service discovery we have introduced the PKI
(Public Key Infrastructure). Generally, it is a set of devices, such us hardware, software … but not only,
it could be also people, policies, or procedures … anything skilful to create, manage, distribute, use, store,
and revoke digital certificates. For our use, we consider it is an trusted certification authority able to issue,
on demand, a certificate which guarantees the trusted relation between the owner and a public key. Only
than the certificate will be published and shared with others. The whole process it can be described in
three steps:

1. initialization of the PKI (not if it already exist);

2. certification (request and issue of the certificate);

3. authentication (signature and verify)

Our approach extends the traditional SLP standard, deleting the pre-configuration phase where there
were the recognition and federation phases using just the PKI. In this manner, we high the level of
security because to have a public key it is necessary to register into trusted PKI. Not only. This allows to
improve transparently the Public Key Infrastructure as soon as possible to have a better system. The
follow paragraph deals the iteration between nSHIELD and the PKI.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 44 of 111 Final

3.1.6.1 Iteration between PKI

This paragraph is dedicated to illustrate how the nSHIELD prototype communicates with the PKI and the
reasons to use a PKI. The SLP standard implementation needs a setting phase where the entities
involved change the own key, code/encode parameters and other preferences. Using PKI, this pre-
configuration step is useless, or better, it is declined to it, entirely.

As before just mentioned, the process can be summered in three step:

1. initialization of the PKI (not if it already exist);

2. certification (request and issue of the certificate);

3. authentication (signature and verify).

3.1.6.1.1 Initialization of the PKI

The means which a PKI uses to associate a generic entity with a public key is the digital certificate. The
entity which emits it is the Certification Agency (CA). Nowadays, the CA are more diffuse and they are
used to guarantee a defined level of internet security, particularly. The main applications are to avoid
frauds in the on-line bank or other type of electronic commerce, and to allow a secure communication
among all web-sites which require reliable services. Typically, the process requires that a CA require an
own certificate to other CAs, but it is not important for our case. A PKI can be created in local o global
network, it is indifferent for the functionalities and depends only by the own policies.

Figure 3-21: SLP simple scheme

In nSHIELD project, we have created a local PKI, but it is also thought for public one. In particular we
choose good open source software, named OpenCA. It is management software for CA and it is born to
offer a toolkit for PKI implementation. It involves four different main entities:

1. The End Entity (EE): the EEs are the owner of the certificates: people, server, router, OID… In
our case, they are the Agents of the SLP. The EEs access to the Personal Security
Environment (PSE) to get the information useful for SLP communication.

2. The Certification Authority (CA) that we have described before.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 45 of 111

3. The Registration Authority (RA): the RAs work in parallel with the CA in order to recognize the
PKI certificate owner and to create a interface for the final user. As well as, when the CAs are
servers, it is important decouple the CA with a simple entity that emit only the basic services (i.e.
certification request or revoke, or renewal …)

4. The repository, which is the public database where are kept the certificates and the polity to
access them.

Onetime the main actors are clear; we can entry in the initialization phase. It is composited by four steps:

1. Generation of public and private keys of the CA. This phase requires a password to protect the
key just generated.

2. Initialization of database, in particular, the creation of directory, files and tables needed to take
note of the certification states.

3. Creation of a own certification which guarantee the correspondence between a CA and the
relatives public key.

4. Certification signature using the two keys.

The following phases are similar: both the certification and the registration certificates will create for CA
and RA, using similar steps and the password decided previously.

3.1.6.1.2 Certification

The certification is the main peculiarity of PKI: in fact, through this process, an entity can obtain the
emission of a certificate which attests the authenticity of the user-public key correspondence. It is useful in
two cases:

• Authentication: when it wants to sign and it needs a public key of the signatory to verify it.

• Cryptography: when an entity wants to crypt the messages in order to make visible the content
only at who has the public key.

Using OpenCA, the procedure to obtain the certificate is as follow:

1. The costumer sets his personal PIN on the CA using the own browser. After that, OpenCA
generates a couple of keys (public and private). The former is sent to DA, the latter is stored in a
Smart Card, or a Token on another device.

2. Periodically, the RA controls if there are new connection requires. If there are, the RA check if
each is compliant with the policies defined and, if is necessary, asks other information.

3. The requirements approved by the RA are sent to CA.

4. The CA emits the certificates based on what is written on the requirements.

5. The new certificates are emitted and sent to RA.

6. The RA imports the certificates on own server and updates periodically the Certificate
Revocation List (CRL) and the Certificate Suspension List (CSL).

7. When a certificate is published, the RA sends a mail to the claimant.

8. The claimant can now download its certificate and works.

This procedure can be done by the three entities which take part at Service Discovery process, that are
the Directory Agents, the Service Agents and the User Agents.

The Figure 3-22 shows an example of certification require.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 46 of 111 Final

Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=IT, ST=Italia, L=Roma, O=SP, CN=Service Provider
 Subject Public Key Info:Service Agent
 Public Key Algorithm: sha1withrsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:ce:0d:cd:08:86:fd:b5:cb:14:56:51:04:73:38:
 15:77:39:2d:3b:10:17:06:7c:64:0d:69:14:67:cd:

...
 67:f7:ef:b1:71:af:24:77:64:66:64:0f:85:a6:64:
 16:c2:69:26:59:0a:d9:4b:8d
 Exponent: 65537 (0x10001)
 Signature Algorithm: md5WithRSAEncryption
 8f:25:9f:68:3a:67:4c:6d:e6:eb:52:4a:ca:73:74:47:85:14:
 ca:d6:6c:6d:24:3b:6c:37:59:ec:f8:fb:0b:a9:74:d6:1c:0f:
 ...
 02:60:16:fd:2e:9b:09:af:11:03:82:74:16:ae:57:a7:90:f5:
 e1:a5

Figure 3-22: Example of certification require.

3.1.6.1.3 Authentication in the case of Service Registration

The authentication process includes the computation of the digital sign of the message to send. One
obtained the certificate, an Entity can sign whatever message because the receiver can decode and reed
these using the known key. The SLP is thought for the signature of the message, but there is not any
procedure to do it.

Resuming the Service Registration message, for example and we consider its structure (Figure 3-23).

 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Service Location header (function = SrvReg = 3) |
+-+
| <URL-Entry> |
+-+
| length of service type string | <service-type> |
+-+
| length of <scope-list> | <scope-list> |
+-+
| length of attr-list string | <attr-list> |
+-+
| # of AttrAuths |(if present) Attribute Authentication Blocks...|
+-+

Figure 3-23: Service Registration message.

The last field allows the possibility to include the digital firm, through the Authentication Block, but there is
not a standardise procedure. Moreover, the exchange of trusted messages it is possible only if there is a
pre-configuration phase, in when the configuration parameters for encode-decode are defined.

The use of Certification Agency avoids this phase. In nSHIELD project, we have chosen to imply the
asymmetric algorithm RSA combined the hash function SHA-1.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 47 of 111

3.1.6.1.3.1 Hash function

The first step, the message is shaped by an hash algorithm. In particular, a variable size message the
SHA-1 function generates a 160 bit string. This message is called message digest. It is “secure” because
it is computational impossible to find:

• a message which matches at another;

• two different message which produce the same message digest.

3.1.6.1.3.2 RSA

The RSA algorithm is used both for cryptography both for the digital signature. The first is based on the
existence of two keys and, in particular, it is used the private key for the encode step and the public key to
decode the message. If the keys are well-chosen, the two keys are completely independent, in such a
way to not allow di find one known the other. The RSA algorithm born on a complex factorization of first
number:

1. it is chosen two random numbers, p and q, mutual independent and fairly large (it is necessary for
a good security);

2. it is computed the product n=p*q, called form;

3. it is chosen a number e, called public exponent, such that 1<e<φ(n) and gcd (φ(n) , e) = 1 (gcd is
the greatest common divisor);

4. it is compute the private exponent d= d = e-1 mod φ(n).

RSA key, 1024 bits

Modulus n:
152011386056965022080288058704257365115956774034022029605776966206407
054327295788466675009167178031475794360216606168959896588866701550378
146017637962628953861186173877305648320545518682093226197261251037625
546524406468098709550731727497940820614817088944861394933268567783421
008857573534835951194583685267789

public exponent e: 65537

private exponent d:
021078968674140440059575647386791846916192243545740236401653051915475
433052507011288274906321240108889241089072651596800672541478849451568
845688459708386212210709905812638625800656911834802383661308508626925
475135673036881174847930573429459042028595249364093051137729073305920
52349212881578574528929081976193

prime p:
131753684968499383496626954247729538474500742645454820530059455706250
721430051791150993655364964852686459433807614607983616378078069716898
69922710444733041

prime q:
115375434162094969210759645547902500874428137737124360407358372006445
938476683366004452503683391242850597423788817599375601357853450325474
02454408671785629

Figure 3-24: 1024bit RSA key example

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 48 of 111 Final

So, the private key consists on {d, n}, although the public key is {e, n}. A typical RSA key is a 1024 bit,
such an example in Figure 3-24.

3.1.6.1.4 Signature

After the creation of the hash, the message H(M), where M is the original message in clear, the Service
Agent is ready to compute the signature, using the key obtained by RSA algorithm. In particular, it uses
the follow equation:

F = H(M) d mod n

Done that, the SA sends a message to Service Registration with the Authentication Block, which contains
the fields as shown in Figure 3-25.

 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| BSD = 3 (RSAwithSHA1) | Authentication Block Length |
+-+
| Timestamp |
+-+
| SLP SPI String Length | SLP SPI String \
+-+
| Digital Signature F \
+-+

Figure 3-25: Modified Authentication Block structure

Comparing it with the original (previously shown in Figure 3-12), the changes made on it are in particular
on SPI. In fact, to allow the interaction between the PKI and the DA, it was necessary to add the serial
number between the parameters of the SA certificate.

3.1.6.1.5 Verification

We continue to take in exam the Service Registration message sent by SA. To allow that the DA can read
the original message, it is necessary to decode the message received.

The first step of DA is to read the BSD field of Authentication Block, in order to understand which
algorithm was used to encode and to know the public key. These parameters are sufficient to make a first
verification of integrity and the correctness of the key.

Then, it applies the hash algorithm: considering the received message M’, H(M’) (the message digest of
M’) is obtained thanks to the SHA-1, as in sender procedure.

After that, it is the time to decode the message using the RSA inverted formula:

C = F e mod n

The DA will discard the unsigned message and will process the signed ones. The DA cannot know the
reason of sign error.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 49 of 111

The second verification step is to verify if the public key and the SA which sent the message are regular.
For this, we use the PKI, in fact, the Certification Authority keeps the certificate through the storing of
serial number. The same parameter is contained in Authentication Block.

1. extract the serial number of the SA certification from the Authentication Block of the message
received;

2. connect to CA e require the certificate with this serial;

3. download the certificate, if it is possible;

4. verify the CA signature and the relative public key;

5. download the Certificate Revocation List and the Certificate Suspension List to check if there is
any problem.

If it is all ok, the DA informs the SA the successful with a Service Ack message.

 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Service Location header (function = SrvAck = 5) |
+-+

 | Error Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3-26: Example of Service Ask message.

3.1.6.2 Extension of SLP

We propose an extension of SLP in nSHIELD project. In particular, we add two new messages which
allow an high level of security in service require phase. The first message (Secure Service Request) is for
the secure request for a particular service and the second (Secure Service Reply) is just the replay at
previous request. These extensions allow at the Das to be secure of the authenticity of the UAs which
send any type of request.

3.1.6.2.1 Secure Service Request

This first message is based on Service Request of traditional SLP, already discussed in paragraph
3.1.4.2. The Secure Service Request moreover contains the user sign an, so, it is sent with the
Authentication Block and relate parameters. The computation and the verification is as previously
described in case of Service Registration.

This new request type introduces a distinction among services which require authentication or not. This
choice is given by the Service Agent: in fact, we add a new parameter among the attributes to understand
it. This parameter is “authentication”. So, if the DA reads that a specific service it distinguee normal and
protected services. In the first case the UA will use the traditional Service Request otherwise it will use the
Secure Service Request.

3.1.6.2.2 Secure Service Reply

To increase the secure level of communications and to prevent some types of attacks, we create a new
format of Secure Reply, too. If an UA send a request using Secure Service Request message, the DA will
answer with Secure Service Reply.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 50 of 111 Final

 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Service Location header (function = SrvRply = 2) |
+-+
| Error Code | URL Entry count |
+-+
| ### |
+-+

Figure 3-27: Secure Service Reply.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 51 of 111

3.2 SHIELD trusted service composition
In this section the SHIELD Trusted Composition concept is outlined

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

TE
R

S

IN
TR

U
S

IO
N

 D
E

TE
C

TI
O

N
, M

O
N

IT
O

R
IN

G
 A

N
D

FI

LT
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY SEMANTIC DB

Policy-Based
Manager

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Figure 3-28: SHIELD trusted service composition

This service is in charge to select those atomic SPD services that, once composed, provide a complex
and integrated SPD functionality that is essential to guarantee the required SPD level. The service
composition is an nSHIELD Middleware Adapter functionality that cooperates with the nSHIELD Overlay
in order to apply the configuration strategy decided by the Control Algorithms residing in the nSHIELD
Security Agent. While the Overlay works on a technology independent fashion composing the best
configuration of aggregated SPD functionalities, the service composition takes into account more
technology dependent SPD functionalities at Node, Network and Middleware layers. If the Overlay
decides that a specific SPD configuration of the SPD services must executed, on the basis of the services’
description, capabilities and requirements, the service composition process ensures that all the
dependencies, configuration and pre-conditions associated to that service are validated in order to make
all the atomic SPD services to work properly once composed.

Composition may be enriched by making it trusted. The proper service selection is difficult when there are
many candidate services in a service repository. Usually the minimum requirements, like functional
attributes, are satisfied by many services. Thus other non-functional features like trust should be
introduced in the selection process. Trust refers to several factors such as quality, reputation, cost,
availability and experience. The trust factors must be specified in service description to ease the service
discovery phase. Trust is a complex factor and it can take many forms such as belief, honesty,
truthfulness, competence, reliability and confidence or faith of the service provider, consumer, agents and
service. Specific algorithms and procedures take cares of this aspect.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 52 of 111 Final

3.3 SHIELD monitoring, filtering and intrusion detection service for
interface protection

In the current deliverable, a preliminary version of the intrusion detection service is provided as a proof-of
concept service to demonstrate DDoS protection subsystem that will be used.

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

TE
R

S

IN
TR

U
SI

O
N

 D
ET

EC
TI

O
N

, M
O

N
IT

O
R

IN
G

 A
N

D

FI
LT

ER
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY SEMANTIC DB

Policy-Based
Manager

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Figure 3-29: SHIELD monitoring, filtering and intrusion detection service

3.3.1 DoS Protection Subsystem

Figure 3-30: The logic block structure of the Intrusion Detection Bundle

The DoS Protection Subsystem provides the core functionality (queuing, filtering and administration of
requests and related responses) for the Intrusion Detection and Filtering Service.

The demonstration code for the following structure has been developed:

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 53 of 111

Figure 3-31: The Logic Block Structure of the DoS Protection Subsystem

The current code delivered implements filtering based on automatically black-listing based on queue
length and server status watch.

3.3.2 Architecture Modules and Interfaces

3.3.2.1 Implemented Modules

From the modules described in D2.4 Reference System Architecture Design, chapter 6.4 Middleware, the
following modules are implemented:

Figure 3-32: Components of Intrusion Detection and Filtering module

On the logical level, relevant functionality of Intrusion Detection and Filtering is implemented.

 TCP/UDP interfaces Function interfaces

Knopflerfish OSGI Framework (Java platform)

C++ native code
(Linux / Windows
portable) JNI wrapper

DoS protection module (so/DLL/EXE)

Middleware Server

service Bundles
(e.g. Discovery)

Client functionality using discovery
(e.g. in nodes)

DoS Protection Bundle

Java wrapper class
With collection of services

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 54 of 111 Final

On the deployment level, the deliverable consists of the source for the Intrusion Detection and Filtering
module. This module is built up from the following code parts, as shown in Figure 3-32, coloured in light
green.

The System Monitoring (measurement collection) functionality is not included in the preliminary version.
This functionality will rely on definition of the collection of measurements as required by Overlay modules,
as well as relevant Overlay functionalities to issue measurement requests and to consume measurement
values collected from system components.

3.3.2.2 Interfaces

The current version of the DoS protection subsystem implements interfaces to be used for demonstration
purposes. As such, the module can be considered as a TCP/UDP gateway with Java function interfaces
for control.

Configuration and control is possible via several methods:

• DoS protection module can be started in stand-alone way, setting parameters in command-line
and/or in configuration file.

• DoS protection module has a frontend implemented in Java as an OSGI Bundle so that it can be
controlled from a Knopflerfish OSGI Framework, and other bundles may start and control DoS
protection services via its function interfaces.

The Intrusion Detection and Filtering module has the following interfaces:

1. Multiple DoS protection services can be started to listen to client requests on given ports. TCP or
UDP connections/datagrams will be accepted by DoS protection module from the clients. Arbitrary
data received on these interfaces (subject to filtering) is be forwarded towards the server services
without alteration, and response data is directed back from the server towards this interface.
(Multiplicity = number of services started).

2. DoS protection module forwards filtered client requests to Server service listening on a server
(TCP/UDP) port. Then, server response is received and forwarded towards clients. (Multiplicity =
number of services started in 1.)

3. DoS protection subsystem itself has a control interface implemented in Java providing the
following:

3.1. OSGI bundle activator interface (Start/Stop operations for the whole subsystem)

3.2. Collection of services, and methods to create and destroy new services

3.3. Blacklist addition and removal, Whitelist addition and removal functions

3.4. Functions for service control: Start and Stop, Set maximal concurrent listeners, Set queue
size, Set critical load status, Set filtering mode (none, based on whitelist, based on blacklist)

3.5. Functions to retrieve service metrics (incoming requests, outgoing requests, dropped
requests, queue length, blacklist rejections, whitelist rejections)

4. For development and demonstration purposes, the DoS protection subsystem has logging
implemented, where relevant events and internal status is output continuously.

Other functionality relying on Filtering and Intrusion Detection module should start a service for itself
setting relevant parameters of the service (name, IP address of service, client and server ports, and
protocol). Interfaces 3.X are offered to other Middleware and Overlay services for control, setup, and
monitoring of the services.

The code supplied in D5.2 contains code demonstrating the usage of this service, as well as test cases for
testing all major functions of the Filtering and Intrusion Detection module.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 55 of 111

Further integration is also planned in the next phases to evaluate usage of virtual network interfaces [28],
to provide unified entry points for this service in case of heterogeneous protocols used by Discovery and
Composition.

3.3.2.2.1 TAP / TUN virtual network interfaces provided by the IDS

To enable transparency, to the end-devices, for accessing the overlay network we propose the usage a
virtual interface that “intercepts” users’ traffic and forwards it to the overlay. This interface operates
transparently to any application and serves as a single gateway between end-device and the overlay. The
traffic destined to the overlay provided service, instead of following the normal network path are sent to
this virtual interface. TUN simulates a network layer device and it operates on layer 3 packets such as IP
packets. In this approach, packets sent by an operating system via this virtual device are delivered to a
user-space program that attaches itself to the device.

To implement this feature we relied on the TUN pseudo-device driver [29], while the TUN based service is
implemented in the C programming language. The TUN interface can be used as a bridge for any
application requires accessing the nSHIELD infrastructure. The architecture of the developed TUN service
is depicted in the following Figure.

Figure 3-33: The components and functional operation of a TUN based service

Figure 3-34: Packet structure

In this case TUN device delivers these packets to the operating system network stack thus emulating their
reception from an external source. The packets that received by the interface are encapsulated in new
UDP/TCP packet. The decision to use UDP instead of TCP for packet encapsulation is based on the fact

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 56 of 111 Final

that the encapsulation of TCP within TCP is not efficient [29]. The format of the new packet is illustrated in
the following Figure.

3.3.2.2.2 Building an overlay using TUN/TAP Interface

In the following figure is illustrated an example where an end-user has installed the provided interface and
forwards its traffic to the overlay network. In that case, it is supposed that the end-user has installed in
his/her device the implemented software.

Figure 3-35: Accessing the network through the virtual interface

Particularly, the proposed architecture is consisted of

• the “client” module

• the forwarder module

Client Module

In the client side the data targeting a service instead of sent to the Ethernet interface are forwarded to the
tun interface. In order to achieve this we should modify the root tables in the client using the following
commands:

1. ifconfig tun0 tunIP up
2. route add -host service-to-accessed dev tun0

The first command assigns a new IP to the tun, while the second on redirect the traffic to the tun0
interface. As the tun interface delivers the original packet to the user-space we capture the packets in the
application layer by creating a socket which is associated with the tun interface. This functionality is
accomplished by the coded depicted in the following figure.

/*read from the tun*/
if(FD_ISSET(tap_fd, &rd_set))
{
 //read from tun
 len=tun_read(tun_fd,outgoing,sizeof(outgoing));
 //process the outgoing data
}

Figure 3-36: Example of reading data from tun interface at the client side

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 57 of 111

Forwarder Module

The Forwarder Module as its name implies is responsible to forward the received packet to a randomly
chosen node of the next layer using the code illustrated in Figure 3-37.

len = recvfrom(sd2, buf, PDU, 0, (struct sockaddr *) &cliAddr, &cliLen);
if(len<0)
{
 printf("%s: cannot receive data \n",argv[0]);
 continue;
}
else
{
 selectedNode=chooseNode(overlayNodes);
 error= sendto(sd1, buf, len,
 MSG_DONTWAIT,
 (struct sockaddr *)&remoteServAddr[selectedNode],
 sizeof(remoteServAddr[selectedNode]));
 if(error<0)
 {
 perror("cannot send data");
 close(sd1);
 exit(1);
 }
}

Figure 3-37: Example of forwarding data from one node to another node of the overlay

The last layer of the overlay de-encapsulates the initial packet and sends it to the service. Depending on
the configuration the responses of the service can be routed either through the overlay or can be sent
directly to the end-user.

/*RAW Socket Setup, for raw packet forwarding */
if ((sd1 = socket(PF_INET, SOCK_RAW, IPPROTO_RAW)) < 0)
{
 perror("Forwarding socket Error");
 exit(1);
}
tmp = 1;
setsockopt(sd1, IPPROTO_RAW, IP_HDRINCL, &tmp, sizeof(tmp));
len = recvfrom(sd2, buf, PDU, 0, (struct sockaddr *) &cliAddr, &cliLen);

if(len<0)
{
 printf("%s: cannot receive data \n",argv[0]);
 continue;
}
else
{
 error = sendto (sd1, buf, len, 0, (struct sockaddr *) &sin, sizeof(sin));
 if(error<0)
 {
 printf("%s: cannot send data \n",argv[0]);
 close(sd1);
 exit(1);
 }
}

Figure 3-38: Example of forwarding the raw IP data to the real service

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 58 of 111 Final

3.3.2.2.3 Detection Module

The detection module incorporates the functionality which illustrated in Figure 3-32 in order to eliminate
the attempts of a node participating in the nSHIELD architecture to accomplish a DoS. To do this each
node is authenticated first to the protection service and then get access to the actual service. This can be
achieved by using either symmetric or asymmetric keys depending on the computation “capabilities” of the
end-user and the other security parameters that will be used in the nSHIELD architecture. If the protection
service authenticates the “end-user” successfully provides to him an authentication ticket which should
incorporate in all the requests sent to the service by relying on the structure depicted in Figure 3-32. In the
case which the ticket is missing the request immediately rejected otherwise the request is forwarded to
the core of the detection module of DoS engine. The core monitors end-users’ flows as entering the
system and assess as malicious if exceeding a pre-defined threshold. A sample code of this module is
illustrated in Figure 3-39.

int initFlow()
{
 int i;
 int flow_size=RECORD_NUM;

 for(i=0;i<flow_size;i++)
 {
 flows[i].counter=0;
 flows[i].timer=0;
 flows[i].punishment=1;
 }
}

int setFlowCnt(int flowId)
{
 struct timeval tim;
 flows[flowId].counter=flows[flowId].counter++;
 gettimeofday(&tim,NULL);
 flows[flowId].timestamp=tim.tv_sec+(tim.tv_usec/1000000.0);

}

Void monitor (int i)
{
 double t2;
 double time_diff;
 struct timeval tim;
 struct itimerval tout_val;
 signal(SIGALRM,monitor);
 howmany += INTERVAL;

 /*reset the timer, we call this function every 5 seconds*/
 tout_val.it_interval.tv_sec = 0;
 tout_val.it_interval.tv_usec = 0;
 tout_val.it_value.tv_sec = INTERVAL; /* 5 seconds timer */
 tout_val.it_value.tv_usec = 0;
 setitimer(ITIMER_REAL, &tout_val,0);

 /*here I have to make my checks*/
 /*get the current time*/
 gettimeofday(&tim,NULL);
 t2=tim.tv_sec+(tim.tv_usec/1000000.0);
 //check all the records of the monitor
 for(i=0;i<RECORD_NUM;i++) {
 time_diff=t2-flows[i].timestamp;
 if(time_diff>=INTERVAL && flows[i].timestamp!=0)
 {
 if(flows[i].counter>THRESHOLD){

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 59 of 111

 //flow rejection
 }
 flows[i].timestamp=0;
 flows[i].counter=0;
 }
 else {
 if(flows[i].counter>THRESHOLD) {
 //flow rejection
 }
 }
 }
}

Figure 3-39: Sample Code Example of the Flow Control Monitor for the TUN Interface

3.3.2.2.4 Interface to IDS

All the overlay modules (client and forwarder) can interact with IDS by forwarding the traffic to it or by
integrating the IDS functionality in it as illustrated in Figure 3-40 and Figure 3-41. This architecture can
consist of a number of overlay-nodes. This way the protection service will not rely on a single point of
failure, which is considered crucial for the nSHIELD architecture.

Figure 3-40: Embedding the IDS Functionality in every forwarder

Figure 3-41: A centralized architecture for detecting malicious activity

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 60 of 111 Final

3.3.3 Metrics

The current preliminary version of the DoS Protection module implements output of values relevant to
SPD metrics values as described in D5.2 Preliminary SPD Metrics Specification, section 5.3 Middleware
SPD metrics. For the following integration phases, metrics values are available for being forwarded to
relevant modules as SPD metrics.

The actual values reported in the current version, and the relevant SPD metrics values are shown in the
following table. All values are currently ordinal values in the range 0...N, where N depends on the
configuration settings of the module.

Table 3-3: Intrusion Detection System metrics values

Value Derived SPD metrics

NumIncomingRequests Discovery frequency

NumOutgoingResponses
Discovery Service Statistics,
Composition Service Statistics

NumWTRACAllowed
Discovery Service Statistics,
Composition Service Statistics

NumWTRACRejected
Failed Discovery Requests
Failed Composition Requests

NumServerSent
Discovery Service Statistics,
Composition Service Statistics

InServer
Discovery Service Statistics,
Composition Service Statistics

Queue Length
Discovery Service Statistics,
Composition Service Statistics

Rejected by Blacklist
Rejected Discovery Requests
Rejected Composition Requests

Blacklist entries Blacklist/whitelist additions and removals for DOS protection

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 61 of 111

3.4 Adaptation of legacy systems
In this section the Adaptation of Legacy Systems will be introduced, by analysing again the SLP protocol
on a different point of view, i.e. the implementation in a legacy system.

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
PT

ER
S

IN
TR

U
S

IO
N

 D
E

TE
C

TI
O

N
, M

O
N

IT
O

R
IN

G
 A

N
D

FI

LT
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY SEMANTIC DB

Policy-Based
Manager

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Figure 3-42: generic SHIELD adapters

3.4.1 Description

The nSHIELD architecture should be also generic enough in order to allow participation of legacy
embedded systems not capable to support the nSHIELD SPD modules.

In order to allow legacy devices to be integrated into the SHIELD framework, it is simply necessary to
enable them with the possibilities of being discovered and composed. This can be done by developing
specific adapters (HW or SW) that contain the semantic information necessary for the
discovery/composition procedure and that are able to communicate them. Usually it is done by means of
pluggable web server (HW) or ad hoc software routines (SW).

Figure 3-43: generic SHIELD adapter interfaces

In Figure the architecture of a generic SHIELD adapter are highlighted. The main interfaces are:

• The possibility to register the provided Innovative SPD Functionality in the Service Registry;

• The possibility to publish the semantic description of the Innovative SPD Functionality in the
Semantic DB;

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 62 of 111 Final

Addressing the above will require modifications/enhancements at the node level since embedded systems
need to provide additional functionalities (i.e. in order to be discovered or composed). These
functionalities can be implemented in most cases as an extra software add-on module that runs on the
embedded node. An important requirement though is to minimize the needed changes in incumbent
systems employing legacy nodes, without compromising their ability to be part of a future nSHIELD
system. This is not a simple task since legacy embedded nodes may have limitations, such as lack of
operating system or of enough memory, that does not allow the deployment of even a minimal set of
additional software capabilities. This enforces that at least one embedded system node with advanced
SPD functionalities must be present in each cluster. This node can be configured to act as proxy or
provide adapter functionality for the rest devices that do not have the ability to directly expose enhanced
functionalities.

Therefore nSHIELD can be regarded as a network consisting of nSHIELD and Legacy embedded devices
having a physical architecture similar to the one depicted in Figure 3-44. The L-ESDs since they do not
understand nSHIELD middleware services they need a gateway nSHIELD device in order to participate in
the nSHIELD system.

Figure 3-44: nSHIELD architecture

In general the nS-ESD GW at this level is responsible for providing proxy or adapter services for L-ESDs.
The “Legacy Network or Middleware” cloud abstracts the physical and/or logical communication
capabilities between the nS-ESD GW and the various L-ESDs. This node may contain additional
technology dependant components which may either translate nSHIELD middleware requests to the ones
that a legacy middleware can process or adapt proprietary network interfaces so that interaction within the
nSHIELD network is possible for non nSHIELD compliant devices.

So we are developing SW adapters based on SLP (Service Location Protocol) [30], [31] . SLP
implementation provides a framework, [32], to allow networking applications to discover the existence,
location, and configuration of networked services in enterprise networks.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 63 of 111

3.4.2 SW adapters based on SLP

3.4.2.1 AGENTS

In SLP an agent is a software entity that processes SLP protocol messages. There are three types of SLP
agents:

3.4.2.1.1 User Agent (UA)

The SLP User Agent is a software entity that is looking for the location of one or more services. Usually
implemented (at least partially), as a library to which client applications link, it provides client applications
with a simple interface for accessing SLP registered service information.

3.4.2.1.2 Service Agent (SA)

The SLP Service Agent is a software entity that advertises the location of one or more services. SLP
advertisement is designed to be both scalable and effective, minimizing the use of network bandwidth
through the use of targeted multi-cast messages, and uni-cast responses to queries.

3.4.2.1.3 Directory Agent (DA)

The SLP Directory Agent is a software entity that acts as a centralized repository for service location
information. Both Service Agents and User Agents make it a priority to discover available Directory
Agents, as using a Directory Agent minimizes the amount of multi-cast messages sent by the protocol on
the network.

3.4.2.2 MESSAGES

In order to be able to provide a "framework" for service location, SLP agents communicate with each other
using eleven different types of messages. The dialog between agents is usually limited to very simple
exchanges of request and reply messages.

3.4.2.2.1 Service Request (SrvRqst)

Message sent by UA's to SA's and DA's to request the location of a service.

3.4.2.2.2 Service Reply (SrvRply)

Message sent by SA's and DA's in response to a SrvRqst message. The SrvRply contains the URL of the
requested service.

3.4.2.2.3 Service Registration (SrvReg)

Message sent by SA's to DA's containing information about a service that is available.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 64 of 111 Final

3.4.2.2.4 Service Deregister (SrvDeReg)

Message sent by SA's to inform DA's that a service is no longer available.

3.4.2.2.5 Service Acknowledge (SrvAck)

A generic acknowledgment that is sent by DA's to SA's in response to SrvReg and SrvDeReg messages.

3.4.2.2.6 Attribute Request (AttrRqst)

Message sent by UA's to request the attributes of a service.

3.4.2.2.7 Attribute Reply (AttrRply)

Message sent by SA's and DA's in response to a AttrRqst. The AttrRply contains the list of attributes that
were requested.

3.4.2.2.8 Service Type Request (SrvTypeRqst)

Message sent by UA's to SA's and DA's requesting the types of services that are available.

3.4.2.2.9 Service Type Reply (SrvTypeRply)

Message by SA's and DA's in response to a SrvTypeRqst. The SrvTypeRply contains a list of requested
service types.

3.4.2.2.10 DA Advertisement (DAAdvert)

Message sent by DA's to let SA's and UA's know where they are.

3.4.2.2.11 SA Advertisement (SAAdvert)

Message sent by SA's to let UA's know where they are.

3.4.2.3 SECURITY

SLPv2 has been designed to be a secure protocol. When properly implemented, SLPv2 can ensure
integrity and authenticity of data being transmitted between SLP agents. See RF2608 section 9.2, [33] for
more information.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 65 of 111

3.4.2.4 SCALABILITY

SLPv2 was designed to be a scalable solution for enterprise service location. It is not intended to be a
solution for the global Internet. However, as an enterprise solution, SLP can be configured to use
"scopes" (see RFC 2608, section 11 [33]) and SLP Directory Agents in ways that should allow it to scale
well in very large networks. More concrete evidence of SLPv2 scalability will become available when SLP
is more widely used.

3.4.2.5 IMPLEMENTATIONS

The following is a list of known SLP implementations which we examine for developing the SW (adapters,
interfaces, enablers), to make legacy devices interwork transparently with the enhanced capabilities
provided by the SHIELD approach.

OpenSLP

It is an OpenSource project that aims to provide a full SLPv2 implementation [34]. Today, most Linux
distributions either pre-install OpenSLP, or make it available to the user via the distribution's package
management software.

JSLP

jSLP [35] can either operate stand-alone (in peer-to-peer mode), or with a dedicated SLP Directory Agent
in the network. In the first case, jSLP uses multicast convergence to query the local subnet for peers that
offer requested services. In the latter case, the central Directory Agent maintains all registered services
and answers requests.

The SLP protocol is self-adaptive in the sense that whenever a Directory Agent is present (and matches
the scope), it is exclusively used. Otherwise, multicast convergence is used. jSLP fully complies to this
behaviour, [36].

jSLP-OSGi

jSLP OSGi is designed to enable SLP service discovery on OSGi platforms [37]. Bundles can get Locator
and Advertiser instances to find other services in the Network. The OSGi version has a smaller footprint
than the jSLP standalone version because it uses the frameworkFilter and instead of using commons-
logging, it makes use of the OSGi org.osgi.service.log logger. The OSGi version of jSLP registers the
ServiceLocationManager as a ServiceFactory for ch.ethz.iks.slp.Advertiser and
ch.ethz.iks.slp.Locator services.

Since OSGi does not provide any general way to parameterize ServiceFactories, both Locator and
Advertiser have an additional void setLocale(Locale locale) method to set the locale after having
retrieved the service object.

3.4.2.6 IMPLEMANTATION EXAMPLES

There are some different approaches between these implementations which we are working and we try to
find the most suitable platform according to SHIELD approach,

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 66 of 111 Final

3.4.2.6.1 OpenSLP

OpenSLP is able to statically register legacy services (applications that were not compiled to use the SLP
library). To accommodate this need RFC 2614, [38] specifies syntax for a registration file that is read by
the OpenSLP daemon (slpd). All of the registrations from the registration file are maintained by SLP and
will remain registered as long as slpd is alive. Slpd reads the slp.reg file on start-up and re-reads it
whenever the SIGHUP signal is received.

3.4.2.6.2 Syntax

The registration file format is pretty easy to understand [39]. Each registration consists of several lines
with the following format:

#FILE

#comment
;comment
service-url,language-tag,lifetime,[service-type]<newline>
"scopes="[scope-list]<newline>
[attrid]"="val1<newline>
[attrid]"="val1,val2,val3<newline>
<newline>

#EOF

3.4.2.6.3 jSLP

Register a service

The following example shows how to register a service with jSLP:

//CODE

// get Advertiser instance
Advertiser advertiser = ServiceLocationManager.getAdvertiser(new Locale("en"));

// the service has lifetime 60, that means it will only persist for one minute
ServiceURL myService = new ServiceURL("service:test:myService://my.host.ch",60);

// some attributes for the service
Hashtable attributes = new Hashtable();
attributes.put("persistent", Boolean.TRUE);
attributes.put("cool", "yes");
attributes.put("max-connections", new Integer(5));

advertiser.register(myService, attributes);

//END OF CODE

Locate a service

The next example shows how to locate a service in the network:

//CODE

// get Locator instance
Locator locator = ServiceLocationManager.getLocator(new Locale("en"));

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 67 of 111

// find all services of type "test" that have attribute "cool=yes"
ServiceLocationEnumeration sle = locator.findServices(new
ServiceType("service:test"), null, "(cool=yes)");

// iterate over the results
while (sle.hasMoreElements())
{
 ServiceURL foundService = (ServiceURL) sle.nextElement();
 System.out.println(foundService);

}

//END OF CODE

3.4.2.6.4 jSLP-OSGi

jSLP OSGi registers ch.ethz.iks.slp.ServiceLocationManager as ServiceFactory. The registered
services are ch.ethz.iks.slp.Advertiser and ch.ethz.iks.slp.Locator and every bundle
requesting one of the services will get their own instance. Since requests forServiceReferences
cannot pass parameters to the ServiceFactory, the Advertiser and Locator instances will be created
with the empty default Locale and both classes have a setter method .setLocale(Locale locale) to
change the locale at runtime (this differs from the jSLP standalone version).

The following example shows how to get Advertiser and Locator instances and use them:

/////CODE/////

public class SLPTestBundle implements BundleActivator
{
 public void start(BundleContext context) throws Exception
 {
 ServiceReference advRef =
 context.getServiceReference("ch.ethz.iks.slp.Advertiser");
 ServiceReference locRef =
 context.getServiceReference("ch.ethz.iks.slp.Locator");

 if (advRef != null)
 {
 System.out.println("Got reference for Advertiser");
 Advertiser advertiser = (Advertiser)context.getService(advRef);

 advertiser.register(new
 ServiceURL("service:osgi:test://192.168.24.118", 20),null);
 }

 if (locRef != null)
 {
 System.out.println("Got reference for Locator");
 Locator locator = (Locator) context.getService(locRef);

 ServiceLocationEnumeration slenum = locator.findServices(new
 ServiceType("service:osgi"), null, null);
 System.out.println("RESULT:");

 while (slenum.hasMoreElements())
 {
 System.out.println(slenum.nextElement());
 }
 }
}

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 68 of 111 Final

public void stop(BundleContext context) throws Exception
{

}

}
/////END OF CODE/////

Since the OSGi is widely preferred so far in this project, the implementation of jslp- OSGi and R-OSGi for
registering and getting services is more suitable for our purpose.

OSGi is a framework for Java in which units of resources called bundles can be installed. Bundles can
export services or run processes, and have their dependencies managed, such that a bundle can be
expected to have its requirements managed by the container. Each bundle can also have its own internal
classpath, so that it can serve as an independent unit, should that be desirable. All of this is standardized
such that any valid OSGi bundle can theoretically be installed in any valid OSGi container. There are
many OSGi container implementations (Equinox, Felix, Knopflerfish, and ProSyst, among others). Our
software is developed under Knoperflish implementation.

Some bundles must be installed in the L-ESD and Ns-ESD GW to accomplish the use of nSHIELD
services by the legacy systems.

• The “R-OSGi” service runs as a bundle and will be used by bundles in nS-ESD GW for
advertising nSHIELD services to Legacy Network which consists of L-ESD.

• The “jslp-osgi”, “R-OSGi SLP Service Discovery” and “R-OSGi” services will be used by bundles
in L-ESD for locating the nSHIELD services in Ns-ESD GW.

Similar to RFC 2614, jSLP separates the UA and SA functionalities. According to this the UA functionality
must be implemented in the Legacy devices for discovering the nSHIELD remote services and the SA
functionality must be implemented in the nSHIELD GW device to advertise the nSHIELD Services.

The nSHIELD GW nodes-server side- must register their services to R-OSGi service for being accessible
from the legacy nodes in the network. The have to implement it by the following ways:

1. Registration of service inside their own bundles

2. Registration of service by another bundle.

For example, the HttpService have to be registered by itself in HttpBundle or by another Bundle.

3.4.3 Registering a service for remote access (service provider side)

public class Activator implements BundleActivator
{
 public void start(BundleContext bundleContext)
 {

 System.out.println("Hello started.");

 //Map properties = new HashMap(0);
 Dictionary<String,Boolean> properties = new Hashtable();

 // this is the hint for R-OSGi that the service
 // ought to be made available for remote access
 properties.put(RemoteOSGiService.R_OSGi_REGISTRATION, Boolean.TRUE);
 bundleContext.registerService(Http.class.getName(), new HttpImpl(),
 properties);
 }

http://searchsoa.techtarget.com/tip/Best-practices-for-OSGi-development-in-enterprise-Java-integration

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 69 of 111

 public void stop(BundleContext bundleContext)
 {
 System.out.println("Hello stopped.");
 }
}

Now on the other side, the Legacy nodes -client side-have to get the services that are advertised by R-
OSGi in the nSHIELD-GW .They have to implement it by creating bundles for locating and getting remote
access to the services.

3.4.4 Connect to a remote peer and get the service (service consumer side)

public class Activator implements BundleActivator
{
 /* (non-Javadoc)
 * @see
org.osgi.framework.BundleActivator#start(org.osgi.framework.BundleContext)
 */
 public void start(BundleContext context) throws Exception
 {
 // get the RemoteOSGiService
 final ServiceReference sref =
 context.getServiceReference(RemoteOSGiService.class.getName());

 if (sref == null)
 {
 throw new BundleException("No R-OSGi found");
 }

 RemoteOSGiService remote = (RemoteOSGiService)
 context.getService(sref);
 // connect
 remote.connect(new URI("r-osgi://150.xxx.xxx.xxx:9278"));
 final RemoteServiceReference[] srefs =
 remote.getRemoteServiceReferences(new URI("r-
 osgi://150.xxx.xxx.xxx:9278"), Http.class.getName(), null);
 Http hi = (Http) remote.getRemoteService(srefs[0]);
 }

 /* (non-Javadoc)
 * @see
org.osgi.framework.BundleActivator#stop(org.osgi.framework.BundleContext)
 */
 public void stop(BundleContext context) throws Exception
 {
 }
}

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 70 of 111 Final

3.5 SHIELD middleware protection profile definition & certification

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

TE
R

S

IN
TR

U
S

IO
N

 D
E

TE
C

TI
O

N
, M

O
N

IT
O

R
IN

G
 A

N
D

FI

LT
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY SEMANTIC DB

Policy-Based
Manager

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Figure 3-45: SHIELD middleware protection profile

3.5.1 Embedded systems security

An embedded system is a computer system designed to perform a dedicated or narrow range of functions
with a minimal user intervention, it involves computation that is subject to several challenging traditional
system design constraints.

The physical constraints arise through the two ways that computational processes interact with the
physical world: reaction to a physical environment and execution on a physical platform.

a. Common reaction constraints specify deadlines, throughput, and jitter and originate from
behavioural requirements.

b. Common execution constraints bound available processor speeds, power, and originate from
implementation choices.

Control theory deals with reaction constraints; computer engineering deals with execution constraints.

Today embedded systems are increasingly permeating our lives, From smart buildings to automated
highways, the opportunities seem unlimited but meantime the requests for security, privacy and
dependability for these systems are becoming more urgent and although security issues are nothing new
for embedded systems they still remain an open question and could prove a more difficult long-term
problem than security does today for desktop and enterprise computing. In the modern application
scenarios always more embedded systems are connected to the Internet and the potential damages from
potential vulnerabilities scale up dramatically. Internet connections expose applications to intrusions and
malicious attacks. Unfortunately, security techniques developed for enterprise and desktop computing
might not satisfy embedded application requirements this because for embedded systems we have to
take into account:

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 71 of 111

Cost sensitivity

Embedded systems are often highly cost sensitive - even five cents can make a big difference when
building millions of units per year. For this reason, most CPUs manufactured worldwide use 4- and 8-bit
processors, which have limited room for security overhead. Many 8-bit microcontrollers, for example, can’t
store a big cryptographic key. This can make best practices from the enterprise world too expensive to be
practical in embedded applications. Cutting corners on security to reduce hardware costs can give a
competitor a market advantage for price-sensitive products. And if there is no quantitative measure of
security before a product is deployed, who is to say how much to spend on it?

Interactive matters

Many embedded systems interact with the real world. A security breach thus can result in physical side
effects, including property damage, personal injury, and even death. Backing out financial transactions
can repair some enterprise security breaches, but reversing a car crash isn’t possible.

Energy constrains

Embedded systems often have significant energy constraints, and many are battery powered. Some
embedded systems can get a fresh battery charge daily, but others must last months or years on a single
battery. By seeking to drain the battery, an attacker can cause system failure even when breaking into the
system is impossible. This vulnerability is critical, for example, in battery-powered devices that use power-
hungry wireless communication.

Development environment

Many embedded systems are created by small development teams or even lone engineers. Organizations
that write only a few kilobytes of code per year usually can’t afford a security specialist and often don’t
realize they need one. However, even seemingly trivial programs may need to provide some level of
security assurance.

3.5.2 What is a Protection Profile?

In order to address the above security, privacy and dependability (SPD) open issues, the nSHIELD project
aims at addressing SPD in the context of ESs as "built in" functionalities, proposing and perceiving with
this strategy the first step towards SPD certification for future ESs.

Editing a protection profile is a first step to define a security problem definition and security objectives for
embedded systems, but what is a protection profile?

A protection profile (PP) is a Common Criteria1 (CC) term for defining an implementation-independent set
of security requirements and objectives for a category of products, which meet similar consumer needs for
IT security. Examples are PP for application-level firewall and intrusion detection system. PP answers the
question of "what I want or need" from the point of view of various parties. It could be written by a user
group to specify their IT security needs. It could also be used as a guideline to assist them in procuring
the right product or systems that suits best in their environment. Vendors who wish to address their
customers’ requirements formally could also write PP. In this case, the vendors would work closely with
their key customers to understand their IT security requirements to be translated into a PP. A government
can translate specific security requirements through a PP. This usually is to address the requirements for
a class of security products like firewalls and to set a standard for the particular product type.

1 Common Criteria is a standard for security specifications and evaluation, ISO15408.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 72 of 111 Final

3.5.3 Why a protection profile?

Our purpose of writing a PP in the nSHIELD project is to define the security requirements for nSHIELD
complaint embedded system product. It does so by providing a framework that describes the product
security environment, and objectives from which the requirements could be derived. To establish the
security environment, the product must be first identified and described. The threats, organizational
policies and assumptions from the product security environment become an input to determining the
product security objectives. Having determined the product security objectives, the product security
requirements can be drawn up using CC Part 2 and Part 3. The requirements and objectives shall be
traceable to the inputs and this shall be demonstrated in the rationale statements as evidence that the PP
is complete, coherent and consistent internally.

We want to follow United States consolidated experience where vendors who wish to have their products
eligible as Commercial Solution for Classified (CSfC) components of a composed, layered Information
Assurance (IA) solution must build their products in accordance with the applicable U.S. Government
Protection Profile(s) and submit their products using the Common Criteria Process.

The nSHIELD project has the ambitious to be a commercial standard for Security, Privacy and
Dependability regarding embedded systems and writing a PP for SPD requirements is the first step to
establish a European standard, in the same manner the protection profile prEN 14169-1 is established by
Technical Committee CEN/TC 224 as a European standard for products to create electronic signatures. It
fulfils requirements of directive2 1999/93/ec of the European parliament and of the council of 13
December 1999 on a community framework for electronic signatures.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 73 of 111

4 SHIELD policy based management and access
control

In this section we analyse two different, yet both policy-based, mechanisms adopted by nSHIELD
architecture, namely Policy-Based Management (PBM) of SPD functionalities and Policy-Based Access
Control (PBAC) of nSHIELD resources. While PBM of SPD functionalities is used so that the nSHIELD
system configuration can adapt dynamically and autonomously to changing conditions and maintain an
acceptable security level, PBAC is used for managing access requests to resources, based on a
predefined set of rules and policies.

4.1 SHIELD policy based access control (PBAC)

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

TE
R

S

IN
TR

U
S

IO
N

 D
E

TE
C

TI
O

N
, M

O
N

IT
O

R
IN

G
 A

N
D

FI

LT
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY SEMANTIC DB

Policy-Based
Management

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Policy-Based
access control

Figure 4-1: SHIELD Policy Based Management and Access Control

4.1.1 Description

The solution adopted for secure policy-based access control is based on eXtensible Access control
Markup Language (XACML) policies. XACML is an XML-based general-purpose access control policy
language used for representing authorisation and entitlement policies for managing access to resources.
However, it is also an access control decision request/response language. As such, it can be used to
convey policy requirements in a unified and unambiguous manner, hence interoperable and secure, if
appropriately deployed.

The above fit well into the model of a network of heterogeneous embedded systems where access to
resources is provided by nodes as a service, and into the management architecture developed by IETF
Policy Framework. This typical policy based access control architecture combined with XACML, is
mapped to a Service Oriented Architecture (SOA) network of nodes to provide protected access to their
distributed resources.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 74 of 111 Final

4.1.2 Architecture Modules and Interfaces

XACML is designed to accommodate the policy management architecture which consists of the following
modules:

• Policy Enforcement Point (PEP): The system entity that performs access control, by making
decision requests and enforcing authorization decisions. A PEP’s sub-module is the Obligation
Handling (OH) module which is responsible for handling the operations specified in a rule, policy,
or policy set.

• Policy Administration Point (PAP): The system entity that creates a policy or policy set.

• Policy Decision Point (PDP): The system entity that evaluates applicable policy and renders an
authorization decision.

• Policy Information Point (PIP): The system entity that acts as a source of attribute values.

• Context Handler (CH): It orchestrates the communication among the stakeholders, converts, if
necessary, messages between their native forms and the XACML canonical form, and collects all
necessary information for the PDP

The architecture modules and their interconnections are depicted in Figure 4-2.

Figure 4-2: Policy based Architecture

In a typical data flow model, authorization requests for accessing nodes’ resources are forwarded to
PDPs, through the context handler which is responsible for orchestrating the communications and
collecting the required attributes from the PIP. The PDP evaluates the request against the policies and
rules set and provided by the PAP, and issue an authorization decision which the PEP has to enforce
together with some (optional) obligations and/or advices. In this process it is important not to disregard the
fact that a PEP is not expected to have the capacity to support the context handler functionality, which
should be offloaded to a PDP or another infrastructure component, such as a base station in a WSN
architecture.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 75 of 111

According to the proposed architecture, different approaches can be adopted for the different types of
nodes met in heterogeneous systems, with diversified capabilities. The chosen architecture consists of the
following components.

1) Power Nodes running both PEP and PDP functionality, serving requests originating from other
nodes or for its own needs. This role is assumed by a BeagleBoard component. The PDP
interacts with the PIP/PAP that handles policies and attributes necessary for making decisions.
Note that although a Power node will have all the aforementioned functionality it might not
assume both roles (PEP/PDP) but rather choose to act either as a PEP or a PDP.

2) Micro or Nano nodes acting only as PEPs, hence enforcing authorization decisions rendered by a
PDP (Power Node). Nano nodes, such as a node running Contiki or TinyOS will not perform
anything more than the PEP functionality. Micro nodes on the other hand, such as a BeagleBone
running a Linux distribution, might have the capacity to accommodate the PDP functionality
depending on the available resources and the environment that will be deployed.

Regarding communications protocols chosen for the exchange of the policy related messages, there is a
variety of protocols proposed with different properties and characteristics to satisfy diversified
environments needs. While XACML defines the structure and content of access requests and responses
exchanged among PEPs and PDPs, it does not provide any details regarding mechanism(s) used to
transfer these messages, thus providing the necessary flexibility to adapt to diversified environments.
Resource-constrained nodes participating in a SOA should typically avoid connection overhead caused by
expensive protocols such as TCP, although this option is at the expense of reliability which has to be
provided by other layers protocols. Therefore, the choice made was to use SOAP over UDP, being in line
with OASIS which characterized this solution as the natural choice [23]. SOAP over UDP specifies the
way SOAP envelopes are carried in user datagrams while respecting the requirements for UDP messages
being received in one chunk, which demands valuable resources on small. Lower layers issues are also
being considered, such as the underlying communication protocols, e.g. whether the communication
would take place over 6lowpan.

Emphasis is also given on the protection of the exchanged policy messages against unauthorized
disclosure, modification, and masquerade attacks. Among the available solutions the choice made was to
protect the messages at the network layer, by using an IPSEC-based variant for resource constrained
environments. Details of this approach are provided in D4.3.

4.1.3 Implementation details

4.1.3.1 Device classification

The policy-based management prototype will utilize the technologies listed below.

Please note that there is no explicit matching of the Policy Enforcement and Policy Decision points (i.e.
PEP, PDP) to devices since the framework is flexible in this regard and exact assignment will depend on
application scenario. Moreover, descriptions below are restricted to features pertaining to the proposed
framework and do not include additional functions that may be running on the same devices (e.g. security
agents, anonymizer and other nSHIELD services).

4.1.3.1.1 Nano nodes

Small devices with limited resources both in terms of hardware and software; typically sensor motes.
Battery powered.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 76 of 111 Final

4.1.3.1.1.1 Role

• Devices running a DPWS service.

4.1.3.1.1.2 Underlying technologies

• Operating system: Contiki
• Network: 802.15.4/6LoWPAN
• DPWS service provision: uDPWS stack (C)

4.1.3.1.1.3 Prototype platforms

• Zolertia Z1 motes [40]

Figure 4-3: Zolertia Z1

• Crossbow Technology IRIS motes [41]

Figure 4-4: Crossbow Technology IRIS

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 77 of 111

4.1.3.1.2 Micro nodes

Devices richer than the nano nodes in terms of hardware and software resources, network access
capabilities, mobility, interface etc. Considering the computing power, these nodes remain confined in the
class of embedded computers. Typically battery powered.

4.1.3.1.2.1 Role

• DPWS client and server (i.e. DPWS peer).

4.1.3.1.2.2 Underlying technologies

• Operating system: A lightweight Linux distribution
• Network: 802.15.4/6LoWPAN
• DPWS functionality: WS4D-gSOAP (C)

4.1.3.1.2.3 Prototype platforms

• BeagleBone [42]

Figure 4-5: BeagleBone

4.1.3.1.3 Power nodes

Devices that maintain the characteristics of embedded systems while offering relatively high performance
in terms of computing power. This class of nodes represents, in the pervasive system, the first level of
massive data elaboration, with the peculiarity that the computing power is provided directly on the field.
Typically mains powered.

4.1.3.1.3.1 Role

• DPWS client and server (i.e. DPWS peers).
• Responsible for interfacing with OSGi (Knopflerfish) framework.
• Bridge between 802.15.4/6LoWPAN and IPv4/IPv6 networks
• Policy Administration Point
• Policy Information Point - Attributes repository

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 78 of 111 Final

4.1.3.1.3.2 Underlying technologies

• Operating system: A lightweight Linux distribution with desktop environment
• Network: 802.15.4/6LoWPAN, IPv4/IPv6
• DPWS functionality: WS4D-JMEDS (Java), WS4D.Comoros (DPWS-OSGi interface)
• OSGi functionality: Knopflerfish framework

4.1.3.1.3.3 Prototype platforms

• BeagleBoard xM [43]
• BeagleBoard [44]

Figure 4-6: BeagleBoard-xM

Figure 4-7: BeagleBoard

4.1.3.2 Simple application

A simplified application of the proposed framework, suitable for an elementary demonstration of
functionality, could entail the following:

• A number of nano nodes (e.g. Zolertia Z1 sensor motes) are spread across a room. Each node
runs a DPWS “MOTE_X_TEMPERATURE” service (where X = device’s ID). This allows clients to
subscribe and get a temperature reading at set intervals (e.g. pushed to subscribed devices every
10 minutes), on request (replying to a GetStatus operation submitted by a client) and/or when
certain events are triggered (e.g. when temperature rises above a certain threshold).

• A micro node (BeagleBone [42]) is embedded in each room’s smart air-conditioning appliance. It
subscribes as a client to DPWS “MOTE_X_TEMPERATURE” services running on nano nodes
present in the room. Each micro node also runs its own DPWS service,
“ROOM_Y_TEMPERATURE” (where Y = room’s ID). This service reports the average of
temperatures collected from sensor motes (again at set intervals, on request or when certain
events are triggered) and can be considered the average room temperature. The device is also
responsible for shutting down the appliance when the room temperature reaches the desired
value.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 79 of 111

Figure 4-8: A BeagleBoard runs an “Airconditioner” DPWS service

• A power node (BeagleBoard-xM [43]) is the control point of a smart home environment or of a
floor of a smart office building. It subscribes as a client to all DPWS “ROOM_Y_TEMPERATURE”
services running on micro nodes (i.e. smart air-conditioning in this application) in its range (e.g. its
floor). Power node is responsible for setting the desired temperature of each room (via a
SetTargetTemperature operation of the “ROOM_Y_TEMPERATURE” service), shutting down
devices when outside working hours or in cases of emergency etc.

Figure 4-9: A DPWS client (laptop computer running DPWS Explorer) discovers the Airconditioner
service running on BeagleBoard

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 80 of 111 Final

Figure 4-10: Client setting target temperature of Airconditioner service to 26 degrees

Figure 4-11: Device switching states based on target temperature set by DPWS client

Figure 4-12: DPWS client subscribing to TemperatureEvent operation of server (implemented
using WS-Eventing)

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 81 of 111

Figure 4-13: Sending events to subscribed client

• In a typical policy-based managed data flow model, authorization requests for accessing nano
and micro nodes’ DPWS services and issuing commands (requesting operations) to said devices
are forwarded to PDPs, through the context handler which is responsible for orchestrating the
communications and collecting the required attributes from the PIP/PAP (present on power
nodes). The PDP evaluates the request against the policy restrictions taken from the PAP
(running on power nodes) and issues an authorization decision which the PEP has to enforce
together with some (optional) obligations and/or advices. Given its potentially limited resources, a
PEP might not have the capacity to support the context handler functionality, which can be
offloaded to a PDP or another infrastructure component, such as a power node.

4.1.3.3 Infrastructure entities (Power node)

On the power nodes, other than the PDP and PIP/PAP implementations, development will also include a
bundle for deploying DPWS Devices and also a DPWS Client bundle. The latter will be used to identify
DPWS devices in the network and register to any services they may offer. An example of former, namely
the creation of an Airconditioner device via the respective OSGi bundle, can be seen in Figure 4-14

Figure 4-14: Deploying AC_Device on Knopflerfish

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 82 of 111 Final

4.2 SHIELD policies definition
The purpose of this section is to show how policies are considered inside nSHIELD project in part as input
to a Policy-based management which aim to ensure a defined level of security, privacy and dependability
in part as a simple set of conditions to serve as the governing reference for any required adaptation a
particular scenario may require and how this different point of view with a same target can work on
parallel levels to obtain a common result.

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

TE
R

S

IN
TR

U
S

IO
N

 D
E

TE
C

TI
O

N
, M

O
N

IT
O

R
IN

G
 A

N
D

FI

LT
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY

SEMANTIC
DB

Policy-Based
Management

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Policy-Based
access control

Figure 4-15: SHIELD policy definition

4.2.1 Description

To analyse the concept of policies and its use, it is necessary to first clarify the meaning of the notion of
policy and derive criteria for policy classification. At this purpose in the following paragraphs [45] the
following concept will be analysed:

• different definitions of policies with evidence of their strengths and weaknesses

• aspects of policy classification (motivation, criteria for classification and hierarchy)

4.2.1.1 Differences in policies definition

In general as a system starts to become more complex (heterogeneity, distribution, etc…) it needs
management and two main notions made their way into the literature: domain and policy. They were
introduced to reduce the complexity of management tasks but their interpretations vary between and
within the fields of research, standardization and industry.

Following the common idea to model network devices, systems, and applications in an object oriented
fashion as Managed Objects (MOs), the ISO in its drafts on standardizing domains and policies ([46],
[47]) places MOs in a logical domain provided they satisfy a certain policy. Thus a policy is merely a
number of rules tied in to a domain managed object.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 83 of 111

A very similar approach can be found in the ODP draft standards [48] where domains are just sets of
objects that satisfy a specific policy.

In the field of research a different approach is taken. The definition of policy is independent from that of a
domain and hence a policy may be either applied to or used to define a domain.

[49], [50] define policy as to influence the behaviour of a manager or managed objects. The definition that
will use is that policies are derived from management goals and define the desired behaviour of
distributed heterogeneous systems, applications, and networks ([51]). The difference between the above
two definitions is simply the level of abstraction.

Applying policies to MOs is already at a technical level, whereas specifying the behaviour of the overall
environment is at a higher level of abstraction and more appropriate for enterprise management tasks.
Concerning the definition of policy services, [52] specifies some services which could be used in writing
management applications using the concept of policies.

To summarize, the advantages of the research-definition are as follows:

• policy and domain are two independent concepts which may but need not be combined;

• policies may be used to define a domain but may also be applied to a domain of objects; and

• policies are an active concept. Policies can initiate or change the characteristics of on-going
management activities.

4.2.1.2 Aspects of Policy Classification

4.2.1.2.1 115BMotivation

As interest grows and research in the field of complex systems management progresses, it becomes
increasingly important to clarify what means management policies.

A first step towards this was the definition of the term policy. However, this only allows to distinguish
whether a statement is considered to be a policy or not ([53]).

The vast number of policies, some examples of which will be presented later, calls for a classification i.e.
a well-defined set of (orthogonal) grouping criteria. The goals of such a classification of policies are listed
below:

1. to find commonalities of and similarities between different classes of policies;

2. to derive and verify the components of a formal definition of policies;

3. to derive a policy hierarchy for the process of policy refinement and transformation;

4. to allow a (semi-) automatic processing (enforcement and monitoring) of policies; and

5. to guarantee an efficient and effective management of policies.

The manner in which a policy is applied can be very different depending on the class of policy, i.e. its
characteristics. For example, the classification aspect life-time of policy can be used to distinguish
between short, medium, and long-term policies for which the realization may range from a polling strategy
to check the enforcement of a short-term policy, to a more complex configuration of asynchronous
notifications (traps) in network probes and proxy systems for long-term policies. Thus, our goal is to define
classification criteria which influence or even determine the way in which certain classes of policies are
defined, activated, enforced, monitored, changed, deactivated, and managed or the way in which policy
conflicts are resolved. This then leads to the definition of policy services, in other words services used by
management applications to employ the concept of policies. Thus, a precise and detailed classification is
a prerequisite in the process of deriving parameters for policy templates, policy processing, and their
application.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 84 of 111 Final

4.2.1.2.2 Criteria for the Classification of Policies

Extensive analysis of policy catalogues from numerous network and system providers (such as the
FidoNet, VirNet, etc.) and talks with network and system managers, administrators and operators (LRZ,
BMW, debis) have allowed researcher of University of Munich to collect the following list of criteria for the
classification of policies which are illustrated in Figure 1, in form of a multi-dimensional diagram. The
precise labels of the axes, i.e. the different categories for each criterion, inevitably depend on the type of
target objects the policy deals with and the functional area to which the policy can be assigned. Thus, the
criteria are not always perfectly orthogonal. This aspect will be discussed further in Section 4.2.1.2.3.

• Time: Time considerations are important because a policy for example may be active throughout
the lifecycle of its target objects or may only be activated for a short while, e.g. at the start when a
new network device goes into operation (configuration policy). Policy enforcement instructions
may need to be dispatched repeatedly, e.g. whenever new devices are added to the
configuration. Further refinement of this criterion are:

o Life time: The duration of a policy may be characterized by a short, medium, or long-term
application (i.e. enforcement and monitoring). A more detailed consideration of this idea
can be based on separating policy enforcement and policy monitoring [51], both of which
may be short, medium, or long-term activities. Short-term policy application in this context
may be a once-only management policy enforcement (e.g. which user interface to install
on a PC), medium-term for example a policy applicable until a new software release is
installed, and long-term for example once-and-for-all policies applicable to a compute-
server independent from its replacement by a different vendor’s system. As stated above,
these categories must be put in concrete terms depending on the type of target object(s)
affected by the policy.

o Trigger mode: The question here is whether the enforcement and especially the
monitoring are constantly active, repeated periodically for a specific time interval,
triggered by asynchronous events or a combination of the last two. Another aspect could
be a policy’s relationship to other policies. Examples of this are: no relationship,
sequential execution, simultaneous execution, etc.

Figure 4-16: Criteria for policy classification

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 85 of 111

• Activity: A policy may be only monitoring or enforcing actions on its target objects or reacting to
an event. The monitoring policy will only report its observations but never take on actions whereas
enforcing and reacting policies can initiate management activities (actions and reactions).

• Mode: Policies can be a constraint or an empowerment. We will use the distinction between an
obligation, permission, and a prohibition.

• Geographical criterion: With this criterion, policies are grouped according to their location, i.e.
affecting co-located physical and logical resources along geographical boundaries. Examples are
policies for systems within a LAN segment, all systems in a virtual private network. Typical
aspects for a grouping of systems and resources are also: office, work-group, department,
building, site/city, country, global.

• Organizational criterion: This grouping of policies reflects the organizational structure of the
environment, e.g. policies for specific business units of an enterprise or policies which only need
to be obeyed in high security departments, or policies in a wider view. Other categories such as
inbound logistics, operations, outbound logistics, marketing and sales, service, procurement,
research and development, or corporate can be derived from the value chain [54] of an
organization. The category ’corporate’ would qualify a policy for the overall corporation and need
to be obeyed in high security departments. Other categories such as inbound logistics,
operations, outbound logistics, marketing and sales, service, procurement, research and
development, or corporate can be derived from the value chain [54] of an organization. The
category ’corporate’ would qualify a policy for the overall corporation.

• Service criterion: Policies are often specific to certain services an organization offers its
customers, buys from service providers, or provides for internal use. Thus, the service for which a
policy is specified can help to identify a certain set of management tools to be used or the
resources to be taken action on in order to enforce the policy. Services are data storage, email,
network information services or software installation to name just a few.

• Type of targets: This criterion could include policies applicable to all end systems from one
vendor, or all PCs in one department, i.e. target objects with common characteristics. Familiar
categories here are resources such as workstations, PCs, hubs, router, laser printers, word
processing applications, CAD applications, employees, etc.

• Functionality of targets: This includes all policies which apply to resources with a set of
common functionalities although possibly of different characteristics otherwise. Targets with
common characteristic functionalities could be all network devices capable of routing, all systems
(PCs, printers, hubs, etc.) whose user-interface is protected by a password mechanism. In other
words, functional characteristics such as accounting, fault-location, security, traffic management,
performance analysis etc.

• Management scenario: Policies may be associated with a particular management scenario such
as network management, systems management, or application management. Some policies may
overlap and should thus be grouped together as enterprise management policies. For the
scenario of network management, a group of policies may be those applicable to one specific
layer of the OSI basic reference model [55] or policies applicable to several adjacent layers. The
next criterion is based on the management scenario:

• Management functionality within a management scenario: Within each of the above
scenarios, we can distinguish different functional areas, e.g. configuration management within
systems management, or configuration management within network management, or security
management for enterprise management. As mentioned earlier, the above criteria can be used to
derive components (attributes) of a policy template. However, the values of these attributes
depend on the policy’s level of abstraction i.e. its position in the policy hierarchy.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 86 of 111 Final

4.2.1.2.3 Policy Hierarchy

Before presenting a few examples with their classification, the important issue of a policy hierarchy or
better the level of abstraction must be raised. When analysing policies, we must differentiate between
(see also Figure 4-17 and [56]):

Figure 4-17: The policy hierarchy

• Task oriented policies: Their field of action is sometimes referred to as task or process

management, where they define the way how management tools are to be applied and used to
achieve the desired behaviour of the resources.

• _Functional policies: These policies operate at the level of and define the usage of management
functions, such as the OSI systems management functions ([57]), the OSF/DME distributed
services ([58]), or OMG’s object services ([59] and [60]); and

• _Low level policies: They operate at the level of managed objects (MOs). MOs in this context
refer to simple abstractions of managed network, system resources, and not MOs for e.g.
systems management functions.

Thus we find ”simple policies” with MOs as their target objects, policies that operate on more complex
managed objects such as SMFs, and policies that act on task objects (e.g. abstractions of management
tools). We will not consider corporate policies any further in this paper but believe that the other three
types of policies can be derived from these. A policy definition (or a policy object) will have the same
components at each level in the hierarchy, but the possible values for each component / attribute will
depend on the level of abstraction. In other words, the lower the level of abstraction, the more precise and
detailed will the definition become, i.e. the granularity of the criteria increases.

The transformation process of a policy definition is a process of stepwise refinement, moving from high-
level policy definitions down to low-level (MO-based) policy definitions which can be more easily
automated and applied to the managed environment. The question to whether this transformation process
can be automated cannot be answered at this stage. However, for any automation of this process (fully
computerized or human guided), management information on the managed environment and the
management capabilities of the involved systems is necessary.

Some policies can be assigned to exactly one level of the hierarchy, yet other (less well defined) policies
can be assigned to different levels of abstraction and thus need to be split into separate policies before
the transformation process can be applied.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 87 of 111

The application of this kind of approach (each policy can be classified and identified by a hierarchical point
of view) can be applied to nSHIELD project as indicated in the following description.

In the most easy condition, for each SPD functionality defined in a particular nSHIELD compliant
embedded system, the Overlay decide what is the correct implementation of the particular SPD
functionality (considering defined low level policies that characterized that SPD functionality) to obtain a
defined SPD level. But this easy solution could not be valid due to external factors which involve in an
active or passive way policies that are hierarchically higher. In particular two main situations can occur:

a. The solution, identified by overlay engine, cannot be used due to the presence of a constrain
imposed by a higher level policy (passive involvement of a policy – its existence block a defined
solution); in this case the overlay engine must define a new solution

b. The overlay engine is not able to identify an available solution; in this case an opportune policy
definition can fill this gap (active involvement of a policy – its existence determines a solution).

The following schema summarizes this approach.

Figure 4-18: nSHIELD compliant System (Scenario dependent) policy involvement

A policy is constituted by a number of rules that are the most elementary unit of a policy, so to implement
the solution highlighted in the previous schema, it is necessary to define a methodology to describe a
policy and their single rules that an nSHIELD compliant embedded system must satisfy in its particular
scenario. These rules, described in a formal way, will constitute the input of the Policy Based
Management system. As defined in paragraph 4.1 the solution adopted for secure policy based
management is based on eXtensible Access control Markup Language (XACML) policies. XACML is an
XML-based general-purpose access control policy language. In the following paragraph will be briefly
described how XACML implements a single policy rule.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 88 of 111 Final

4.3 XACML policy implementation for PBAC
The main components of the XACML Policy are depicted in Figure 4-19. A policy set about a specific
target consists of a number of applicable policies which in turn define a set of rules. Each rule contains
information about the applicable Target, the effect, and additional Conditions. Note that the target does
not only refer to resources. It might reference characteristics of a subject, resource, action or environment.

Figure 4-19: XACML Policy components (source: Sun Microsystems)

4.3.1 RULE implementation

A rule is the most elementary unit of policy, which is typically encapsulated within a policy. This also
facilitates the exchange of rules among the stakeholders, i.e. PDP and PAP. The main components of a
rule are:

• a target;

• an effect, indicates the rule-writer's intended consequence of a "True" evaluation for the rule.
Two values are allowed: "Permit" and "Deny".

• a condition,

• obligation expressions, and

• advice expressions

4.3.2 POLICY implementation

Rules are not exchanged amongst system entities. Therefore, a PAP combines rules in a policy. A
policy comprises four main components:

• a target;

• a rule-combining algorithm-identifier;

• a set of rules;

• obligation expressions and

• advice expressions

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 89 of 111

4.3.3 Policy Information Template

Table 4-1 defines the policy information template used to represent policies for controlling access to
nSHIELD resources. This template is used to facilitate rules and policies defined by PAP (scenario
owners in the context of the nSHIELD) to be imported into the system.

Table 4-1: Policy Attributes Template

POLICY ATTRIBUTE VALUE

Policy ID A unique identifier that allows the policy to be referenced within a
policy set.

Rule Combining
Algorithm

The procedure for combining decisions from multiple rules. Valid
values for this attribute are defined below.

Description A textual description of the purpose of the policy. It typically provides
information on most of the attributes found in this template.

Policy Target

The part of a policy that specifies matching criteria for figuring out
whether a particular policy is applicable to an incoming service
request. Contains three basic "matching" components: Subjects (An
actor), Actions (An operation on a resource), and Resources (Data,
service or system component). Attributes of the subjects, resource,
action, environment and other categories are included in the request
sent by the PEP to the PDP.

Effect

The intended consequence of a satisfied rule. It can take the values
"Permit" and "Deny". Note that this is not necessarily the authorization
decision returned by the PDP to the PEP which, besides the above,
can also include the values “Indeterminate” or “NotApplicable", and
(optionally) a set of obligations and advices

Condition (optional) Represents a Boolean expression that refines the applicability of the
rule

Obligations
expressions (optional)

Operation that should be performed by the PEP in conjunction with
the enforcement of an authorization decision.

Advice expressions
(optional)

A supplementary piece of information in a policy or policy set which is
provided to the PEP with the decision of the PDP.

4.3.4 Rule- and Policy-combining algorithms

The following algorithms are used for combining rules of a policy as well as policies from a policy set.

• Deny-overrides: It is intended for those cases where a deny decision should have priority over a
permit decision

• Ordered-deny-overrides: The behaviour of this algorithm is identical to that of the “Deny-
overrides” rule-(policy-) combining algorithm with one exception. The order in which the collection
of rules (policies) is evaluated SHALL match the order as listed in the policy (set).

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 90 of 111 Final

• Permit-overrides: It is intended for those cases where a permit decision should have priority over
a deny decision.

• Ordered-permit-overrides: The behaviour of this algorithm is identical to that of the “Permit-
overrides” rule-(policy-) combining algorithm with one exception. The order in which the collection
of rules (policies) is evaluated SHALL match the order as listed in the policy (set).

• Deny-unless-permit: It is intended for those cases where a permit decision should have priority
over a deny decision, and an “Indeterminate” or “NotApplicable” must never be the result. It is
particularly useful at the top level in a policy structure to ensure that a PDP will always return a
definite “Permit” or “Deny” result. This algorithm has the following behaviour.

1. If any decision is "Permit", the result is "Permit".

2. Otherwise, the result is "Deny".

• Permit-unless-deny: It is intended for those cases where a deny decision should have priority
over a permit decision, and an “Indeterminate” or “NotApplicable” must never be the result. It is
particularly useful at the top level in a policy structure to ensure that a PDP will always return a
definite “Permit” or “Deny” result. This algorithm has the following behaviour.

o 1. If any decision is "Deny", the result is "Deny".

o 2. Otherwise, the result is "Permit".

• First-applicable (rule): Each rule SHALL be evaluated in the order in which it is listed in the
policy. For a particular rule, if the target matches and the condition evaluates to "True", then the
evaluation of the policy SHALL halt and the corresponding effect of the rule SHALL be the result
of the evaluation of the policy (i.e. "Permit" or "Deny"). For a particular rule selected in the
evaluation, if the target evaluates to "False" or the condition evaluates to "False", then the next
rule in the order SHALL be evaluated. If no further rule in the order exists, then the policy SHALL
evaluate to "NotApplicable".

• First-applicable (policy): Each policy is evaluated in the order that it appears in the policy set.
For a particular policy, if the target evaluates to "True" and the policy evaluates to a determinate
value of "Permit" or "Deny", then the evaluation SHALL halt and the policy set SHALL evaluate to
the effect value of that policy. For a particular policy, if the target evaluate to "False", or the
policy evaluates to "NotApplicable", then the next policy in the order SHALL be evaluated. If no
further policy exists in the order, then the policy set SHALL evaluate to "NotApplicable".

• Only-one-applicable (for policies only): In the entire set of policies in the policy set, if no policy
is considered applicable by virtue of its target, then the result of the policy-combination algorithm
SHALL be "NotApplicable". If more than one policy is considered applicable by virtue of its target,
then the result of the policy-combination algorithm SHALL be "Indeterminate". If only one policy is
considered applicable by evaluation of its target, then the result of the policy-combining algorithm
SHALL be the result of evaluating the policy.

4.3.5 Policy examples

4.3.5.1 Policy classification and identification by a hierarchical point of view

The following examples are taken from real life situations from different corporations where the operators
applied these policies without a systematic and structured approach. Thus, the values for each
classification criterion were derived manually, since none of these policies were systematically refined.
For each example, the level of abstraction is given and possible values for each of the above classification
criteria are indicated. Examples 1 and 2 are used to show the components of a policy definition, whereas
example 3 illustrates the splitting of a “composite” policy into separate policies after which the
transformation and refinement process can be applied.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 91 of 111

Example 1:

”The exchange of data between the company’s headquarters and its remote production sites is to be done
between 18:00 and 22:00 hours in encrypted mode.” The degree of detail in this policy is very limited and
thus, we can only record it as a high level policy of the following format with several dimensions to be
further specified:

• level of abstraction: high level policy

• classification criteria:

o life time: long-term (no end specified)

o trigger mode: periodic (daily between 18:00 and 22:00 hours)

o activity: enforcement (no reaction is specified if the time interval or the security level are
not obeyed – a separate policy for this purpose would be necessary)

o mode: obligation

o geographical criterion: corporate headquarters and production sites

o organizational criterion: unspecified

o service criterion: unspecified

o type of targets: unspecified

o functionality of targets: unspecified

o management scenario: enterprise management

o management functionality within a management scenario: security management for
enterprise management

Analysing and refining this policy further leads to a number of low level policies, depending on the way the
encryption is achieved. The following two policy descriptions illustrate this, the first enforcing the
encryption by activating either encryption modems or scramblers, the second by activating the encryption
mode for data transfer in the application software. This also shows that a policy can be applied in several
different ways without changing the management goal.

• level of abstraction: low level policy

This is because the policy applies to MOs which, in this case, are abstractions of network devices,
i.e. modems or scramblers

• classification criteria:
o life time: long-term (no end specified)

o trigger mode: periodic (daily between 18:00 and 22:00 hours)

o activity: enforcement

o mode: obligation

o geographical criterion: corporate headquarters and production sites

o organizational criterion: networking department

o service criterion: data transfer service

o type of targets: encrypting modems or scramblers

o functionality of targets: data transfer or encryption

o management scenario: network management

o management functionality within a management scenario: security management for
network management

• level of abstraction: low level policy

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 92 of 111 Final

This is because the policy applies to MOs which, in this case, are abstractions of the application
software based on a client-server architecture e.g. distributed CAD or word processing
applications.

• classification criteria:

o life time: long-term (no end specified)

o trigger mode: periodic (daily between 18:00 and 22:00 hours)

o activity: enforcement

o mode: obligation

o geographical criterion: corporate headquarters and production sites

o organizational criterion: systems department

o service criterion: application software installation and software maintenance

o type of targets: general distributed applications based on a client-server architecture,
which therefor transfer data across the network.

o functionality of targets: applications with encryption

o management scenario: application management

o management functionality within a management scenario: security management for
systems and application management

Looking back at the policy hierarchy introduced in Section 4.2.1.2.3, it can be noted that the above policy
was refined to neither different low-level MO-based policies, without specifying task oriented policies nor
functional policies. This is because there were no management tools or management functions which
could have been used to enforce this policy at a higher level. However, if these had been available, a task
oriented policy could have specified the way to use a management tool for the configuration of modems or
scramblers, or a functional policy could have defined the manner in which to use a certain encryption
management function.

Example 2:

”If workstation access is protected by a password mechanism, passwords must be at least 6 characters
long, if they combine upper-case and lower-case letters, or at least 8 characters long, if in monocase. No
other password structure is allowed.”

• level of abstraction: managed-object based policy

This is a low-level or managed-object based policy, as it specifies the characteristics of the
specific password mechanism, i.e. a specific implementation of e.g. an authentication
management function. Provided a Managed Object for the password mechanism exists, the policy
can already be used to set the attributes’ values. It is not a functional policy, because the
attributes and not the functionality of the password mechanism are affected by the policy.

• classification criteria:

o life time: long-term

o trigger mode: asynchronously triggered (e.g. by execution of the UNIX command passwd)

o activity: monitoring, reacting (to a wrong password structure), and enforcing (setting the
password mechanism’s characteristics)

o mode: obligation

o geographical criterion: global

o organizational criterion: corporate

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 93 of 111

o service criterion: data processing (authentication)

o type of targets: workstations

o functionality of targets: authentication/password mechanisms

o management scenario: systems management

o management functionality within a management scenario: security management within
systems management

Example 3:

”Travel agencies are to be connected to the central booking office through leased lines. In case of failure,
dial-in lines are to be provided, and the agencies must authenticate themselves with their login-IDs and
login-keys.”

This policy obviously mixes aspects of several levels of abstraction, the level of corporate policies, the
level of functional policies, and the level of MO-based policies. The policy should be split into separate
policies of specific levels of abstraction e.g.: (3a, corporate) ”the network operations center at the central
booking office is to provide and maintain leased lines to the agencies, and modems for dial-in
connections”, (3b, functional) ”in case of failure of a leased line, modems are to be activated for dial-in
connections”, (3c, functional) ”dial-in connections are to be protected by an authentication procedure.” and
(3d, MO-based) ”the authentication mechanism MO must guarantee the use of non-empty login-ids and
login-keys”. For the sake of brevity we will not discuss the classification of these policies here further. Yet,
these examples clearly show that this classification allows us to find commonalities among policies and
that this form of classification is a necessary first step towards finding the components of a formal policy
definition. The transformation process will only be able to refine some components/attributes further,
depending on the management information available to the process.

4.3.5.2 XACML Policy implementation example

<?xml version="1.0" encoding="UTF-8"?>
<Policy
 xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os
 access_control-xacml-2.0-policy-schema-os.xsd"
 PolicyId="urn:oasis:names:tc:xacml:2.0:conformance-test:IIA1:policy"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-
overrides">
 <Target/>
 <Rule
 RuleId="urn:oasis:names:tc:xacml:2.0:conformance-test:IIA1:rule"
 Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">nshield_user</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 94 of 111 Final

 <Resource>
 <ResourceMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">Freight_ACDevice</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">SetTemperature</AttributeValue>
 <ActionAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
</Policy>

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 95 of 111

5 SHIELD Overlay
5.1 Proposed SHIELD Security Agents architecture

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

TE
R

S

IN
TR

U
S

IO
N

 D
E

TE
C

TI
O

N
, M

O
N

IT
O

R
IN

G
 A

N
D

FI

LT
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY SEMANTIC DB

Policy-Based
Manager

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Figure 5-1: SHIELD Security Agent

An overlay agent has been developed and deployed on power nodes. The agent's main functionality will
be to monitor and log the status of various services running on the power node itself and other (i.e. micro
& nano) nodes under its supervision.

Critical services running on nSHIELD nodes will be monitored by individual daemons. The daemons will
be responsible for restarting said services - when necessary - and will also inform the overlay agent of
their services' status, restarts etc. The overlay agent will log these daemon messages and facilitate their
assessment via a reporting mechanism (e.g. a GUI).

Development of the overlay agent will include a proof of concept implementation using one of nSHIELD's
available services (e.g. anonymity).

5.1.1 Description

In security environment, the composability problem, as defined by McLean in [61], is widely investigated:

“A general ability to build composite high-assurance systems presupposes a general theory of system
composition. Such a theory provides insight into why certain properties are preserved or not preserved
by certain forms of composition. More importantly, for a large class of properties and a variety of
composition constructs, it answers questions of the form: “if a system satisfying property X is composed
with a system satisfying property Y using composition construct Z, what properties will the composite
system satisfy?” [61]

In other words, in the literature the composability problem is generally used to refer to the study of how
the composition affect the security properties, (in particular information flow properties) of single
component, that composes a complex system, in general the relation between complex system properties
and single component properties. In [62] the problem of composability of the non-interference properties is

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 96 of 111 Final

discussed, the author shows that by connecting two systems, both of which are judged to be secure, it is
possible that the composite system is not secure. In [63] and [64] a general theory on security properties
is presented, in particular in [64] the authors compare their framework with McLean's Selective
Interleaving Functions framework [61]. Finally, in [65] various compositionality results are presented, in
details the author demonstrates that certain nontrivial security properties emerge under composition and
illustrates how this fact can be exploited.

In the SHIELD project we take into account the composition to assure the desired SPD level, then the
focus is on the composability of SPD functionality.

In the literature a wide array of Security and Dependability models and model-based evaluation are
available (e.g. [66], [67], [68], [69]). In [70] a methodology to construct dependability models, using
generalized stochastic Petri nets ([71], [72], [73]) and stochastic reward nets, is described. This topic is
investigated by Jonsson (e.g. [69], [74]), in particular, in [69], he proposes a conceptual model to define
security and dependability characteristics in terms of system’s interaction with its environment. In [67] the
authors survey the model-based techniques for the system dependability evaluation and summarize how
to extend them to security domain. This paper shows that many dependability evaluation techniques can
be used to evaluate system security, but some problems have not yet been fully overcome (due to
fundamental differences between the accidental nature of the faults commonly assumed in dependability
evaluation, and the intentional, human nature of cyber-attacks). Finally, in [66] the authors aim to meet the
need to quantify system properties methodically, in fact they present a threats classification and various
types of individual models that can be combined and represented by one of the common modelling
method (e.g. Markov chains, stochastic Petri nets).

In the pilot phase, the composition problem was successfully modelled by means of Hybrid Automata
Theory and solved by two different approaches: a static approach with simple optimization and an
operating conditions approach with MPC control. The main limits of the hybrid automata approach are: the
scalability problem, the implementation issue and the limitations to represent the complexity of embedded
systems (abstraction is needed).

To overcome these problems we investigate Discrete Event System (DES) problem formalization.

A Discrete Event System (DES) is a discrete-state event-driven system, in which the state evolution is
determined by asynchronous events that occur over the time. In particular, a DES is characterized by: (i)
the feasible events set E; (ii) the state space constituted by the discrete set X and (iii) the state transition
mechanism (event-driven).

Formally DES can be modelled by Automata and Petri Nets (PN). The former is the basic DES model
([75], [76]), that, on the one hand, is characterized by an intuitive structure, easy composition operations,
and ease of analysis, but, on the other hand, it suffers from state space explosion (automata model
should be not adequate for complex system). The latter modelling formalism PN was introduced by C. A.
Petri in [77], it allows (i) the representation of a larger class of systems (automata can always be
represented as PN, but the contrary is not true), (ii) to explicit the conditions to enable the event and (iii) to
overcome the state space explosion. In particular an extension of PN, the Coloured Petri Nets (CPN)
([78], [79], [80]), are developed to model complex systems, in fact, the CPN combine the PN structure
with the high-level programming, i.e., using data types and complex data manipulation. Furthermore
CPNs allows obtaining hierarchical descriptions of system, combining a set of sub-models and defining
the interfaces between these sub-models.

In the following box, an introduction of formal description of DES is provided; this text is fully taken from
nSHIELD Deliverable D5.1: SPD middleware and overlay technologies assessment.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 97 of 111

Automata Formal Description

Considering DES formalism ([75], [76]), the set E represents the alphabet and each (finite) sequence
of events is a word or trace. Then the set of feasible sequences of event that the system can execute
is denoted as language. In other word, a language, defined over an events set E, is a set of finite-
length strings/word formed from events in E. To represent a DES, there are two levels of abstraction:
timed or logical. The timed DES state evolution can be expressed by a sequence of the couples
event and its occurrence time, i.e., {(e1, t1), (e2, t2)… (en, tn)}, whereas logical DES state evolution can
be simply expressed by a trace i.e., a sequence of events {e1, e2, …, en}. Note that, stochastic DESs
are including in the first level of abstraction timed model. We will consider this second level of
abstraction where the language models the behaviour of the system. In order to model a system and
represent a language, we consider the untimed discrete event modelling formalism automata.

Definition 1: A Deterministic Automaton G is a five-tuple G = (X, E, f, x0, Xm)

where:

• X is the set of states;

• E is the finite set of events associated with G

• f : X × E → X is the transition function: f (x, e) = y means that there is a transition, labelled e,
from state x to state y;

• x0 is the initial state;

• Xm ⊆ X is the set of marked states (final states).

A deterministic Automaton is defined in few works (i.e., [75]) as a six-tuple G = (X, E, f, T, x0, Xm),
where T is the feasible event function defined as T: X → 2E, T(x) is the set of events e for which
f(x,e) is defined (clearly this second function is derived by transition function f). The automaton can
be represented by the state transition diagram, a directed graph to describe graphically the behaviour
of system. The state transition diagram nodes represent the states x ∈ X and the arcs represent the
transition labelled by e ∈ E, finally the initial state and marked states are generally identified by an
arrow and double circle respectively.

down

idle busy

start

complete

faultrepair

Figure 5-2: State transition diagram of queuing system with breakdown

For example, the simple automaton in Figure 5-2 represents an elementary queuing (or machine)
system with breakdown. The system is defined by the following model:

X = {idle, busy, down};

E = {start, complete, fault, repair};

x0 = idle;

Xm = {idle};

f (idle, start) = busy;

f (busy, complete) = idle;

f (busy, fault) = down;

f (down, repair) = idle.

The state transition diagram highlights the connection between automata and languages; in fact
every automaton evolution is associated with a word of the event alphabet E.

To building the model of complete system built from models of individual system components we

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 98 of 111 Final

need to define the operation parallel composition, that consent to combine two or more automata.

Definition: The parallel composition of G1=(X1, E1, f1, x01, Xm1) and G2=(X2, E2, f2, x02, Xm2) is the
automaton G1 || G2 := (X1 x X2, E1 ∪ E2, f, (x01. x02), Xm1 x Xm2)

where ()()
() ()() () ()
()() ()

()() ()









ΕΤ∈
ΕΤ∈
Τ∩Τ∈

=

 otherwise undefined
 \ if ,,
 \ if ,,

 if ,,,

,,
122221

211211

22112211

21
xeexfx
xexexf

xxeexfexf

exxf

Hence, the events can be common (E1 ∩ E2) or private (E2 \ E1) ∪ (E1 \ E2). In the former case the
automata execute the event simultaneously. In the latter, each component can execute the private
events whenever possible.

Petri Nets Formal Description

Like an automaton, a Petri net [81] is a formalism to describe Discrete Event System behaviour; in
particular they represent the DES transition function.

Definition 2: A Petri net is a five-tuple (P, T, A, w, M0)

where

• P = {p1, p2, …, pn} is the finite set of places;

• T = {t1, t2, …, tm} is the finite set of transitions, such that P ∪ T = ∅ P ∩ T = ∅;

• A ⊆ (P × T) ∪ (T × P) is the set of arcs from places to transitions ((pi, tj): Input I(tj) = pi)and
from transitions to places ((ti , pj) Output O(ti) = pj);

• w : A → {1,2,3,...} is the weight function on the arcs;

• M0 : P → {0,1,2,3,...} is the initial marking;

A Petri Net is a directed, weighted, bipartite graph (with two type of node: place and transition)
associated with initial marking M0. Marking assign a non-negative integer k to each place p ∈ P, in
other words every place pi is marked with ki tokens, M(pi) = ki, with ki ∈ [0, ∞) and i =1, 2, …, n.
Given a PN the number and the distribution of tokens control the transitions execution. In fact a
transition ti is enabled if and only if the number of the tokens in each input place pj is larger than the
weight of arc w(pj, ti): ti is enabled iff M(pj) ≥ w(pj, ti) where pj = I(ti).

An enabled transition can fire only when the associated event occurs. The firing an enable transition
ti removes w(pj, ti) tokens from each input place pj (pj = I(ti)) and put w(ti, ph) tokens in each output
place ph (ph = O(ti)).

21

21

F
i
r
e

Figure 5-3: n example of enabled transition

Petri Nets allow modelling the typical features of dynamic systems, such as, concurrency, sequential
behaviour, synchronization, mutual exclusive, and so on, in Figure 5-4 some examples are shown.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 99 of 111

Sequential Concurrent

Synchronization

Mutual exclusive

Figure 5-4: Examples of Petri Net primitives

The strength of Petri nets is that they allow to analyse several proprieties associated with the
dynamic systems:

• Reachability: A marking Mn, that represents a specific state of system, is reachable from
initial marking M0 (Mn ∈ R(M0)) if there exist a sequence of firing σ(M0) = {M0, M1, …, Mn} that
transforms M0 to Mn.

• Boundedness: A PN is k-bounded if the tokens number in each place does not exceed a
finite number k for any marking M reachable from initial marking M0, i.e., M(p) ≤ k for every p
∈ P and every M ∈ R(M0).

• Liveness ([82]): A transition t is said to be:

o Dead or L0-live, if t can never fire in any sequence of firing σ(M0);

o L1-live, if there is some firing sequence σ(M0) such that the transition t can fire at
least once;

o L2-live, if the transition t can fire at least k times for some given positive integer k;

o L3-live, if there exists some infinite firing sequence σ(M0) in which the transition t
appears infinitely often;

o Live or L4-live, if the transition t is L1-live for every possible state reached from M0.

Coloured Petri Nets

Kurt Jensen introduced the Coloured Petri Nets (CPNs) in 1981, CPNs combine the Petri Nets
capabilities with high level programming capabilities. In CPN the tokens carries a data value, referred
as token colour, furthermore each place may contain a determinate data type, in other word each
place has an associated coloured set. Similarly to PN the marking (number, colours and distribution
of tokens) represent the state of the modeled system. The definition of non-hierarchical Coloured
Petri Net follows:

Definition 3: A non-hierarchical Coloured Petri Net is a nine-tuple CPN = (P, T, A, Σ, V, C, G, E, I),

where:

• P = {p1, p2, …, pn} is a finite set of places.

• T = {t1, t2, …, tm} is a finite set of transitions such that P ∪ T = ∅ P ∩ T = ∅;

• A ⊆ (P × T) ∪ (T × P) is the set of directed arcs;

• Σ is a finite set of non-empty colour sets;

• V is a finite set of typed variables such that Type(v) ∈ Σ for all variables v ∈ V;

• C : P → Σ is a colour set function that assigns a colour set to each place;

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 100 of 111 Final

• G : T → exprV is a guard function that assigns a guard to each transition t such that
Type[G(t)] = Bool;

• E : A → exprV is an arc expression function that assigns an arc expression to each arc a
such that Type[E(a)] = C(p), where p is the place connected to the arc a;

• I : P → expr∅ is an initialization function that assigns an initialization expression to each
place p.

The strength of CPNs is the hierarchical structure, composed by modules that allow to model
complex and to work at different abstraction level. The definition of Coloured Petri Net Module
follows:

Definition 4: A Coloured Petri Net Module is a four-tuple CPNM = (CPN, Tsub, Pport, Ptype),

where:

• CPN = (P, T, A, Σ, V, C, G, E, I) is a non-hierarchical Coloured Petri Net;

• Tsub ⊆ T is a set of substitution transitions;

• Pport ⊆ P is a set of port places;

• Ptype : Pport → {IN, OUT, I/O} is a port type function that assigns a port type to each port
place.

We refer to [78], [79], [80] for detailed description of the concepts, analysis methods and practical
use of coloured Petri nets.

As shown in nSHIELD Deliverable D5.1: SPD middleware and overlay technologies assessment, the
automata model of SPD functionality suffer scalability problem.

The basic composition of two functionalities is shown following. Clearly, the main issue of this
approach is the state space explosion.

Parallel Composition

TKN

PIN PSW

a

b

c

Identification

de

f

PSW

TKN

2 5

8

TKN

CHAP PSW

g

h

i

Authentication

jk

l

EAP

PAP

8 1

1

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 101 of 111

PIN,
CHAP

a

b
c

d

e
f

φ (2, 8)

g

kl

PSW,
CHAP

φ (5, 8)

TKN,
CHAP

φ (8, 8)

PIN,
EAP

φ (2, 1)

PIN,
PAP

φ (2, 1)

h

PSW,
EAP

a
b

g

h

φ (5, 1)

PSW,
PAP

a
b

k l

TKN,
EAP

TKN,
PAP

c

d

c
d

e
f

e
f

h
g

k

l

k

l

j
i

j

i

j

i

φ (8, 1)

φ (8, 1)

φ (5, 1)

Figure 5-5: SPD functionalities parallel composition

To model an heterogeneous and complex system is necessary: (i) a scalable structure to overcome state
explosion and (ii) a simple composition rules to model the SPD composability. In particular, the following
table show the guide line to develop nSHIELD overlay composability:

Table 5-1: overlay composability guidelines

Feature Description

SPD Driven the focus is on SPD components

Scalable An abstraction of the SPD functionality is necessary
to obtain a modular structure

Close to existing standards Common Criteria

Measurable Quantification of SPD level

Flexibility Decision Making at different levels

Deterministic Formal modelling for composability

CPNs combine the PNs structure with the high-level programming capabilities, furthermore the
hierarchical structure is the strength of CPNs, in fact the sub-modules composition allows to model
complex system and to work at different abstraction level.

Petri Nets (PN) and Coloured Petri Nets (CPN) are frequently used to model security aspects of system
(see e.g. [83], [84], [85]). In [85] the CPN are used to develop a stochastic evaluation system that aims to
estimate the integrity of a security critical system. In particular, the CPN formalism is widely used in the
industrial and in the information security environment. In [86] is presented examples of the former case. In
the latter case, the CPN are mainly employed to the modelling, the verification and the analysis of security
protocol (see e.g. [87], [88], [89]) and information system (e.g. [90], [91]). In [90] the authors, using CPN’s
semantics, propose a formal security model called Secure Coloured Petri.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 102 of 111 Final

Considering the guideline in Table 5-1, we propose a basic module (basic element of system)
representing the SPD functionality (Figure 5-6). Especially the input state represents the desired value i.e.
desired metrics and/or a specific type of implementation.

Figure 5-6: the basic module

The Figure 5-6 represents a hierarchical Colour Petri Net, specifically the high level abstraction module. In
particular the double-lines border box corresponds to a substitution transition that represents the sub-
module (with more detailed view). The input (output) places of substitution transitions are called input
(output) sockets. The socket places of a substitution transition are related to the interface of sub-module
by means of a port–socket relation. The sub-module that represents the SDP Functionality module is
shown in Figure 5-7. This CPN is characterized by places, transitions, arcs, input/output ports,
declarations, etc. The place is depicted as a circle characterized by its colour set and optionally by the
initial marking and place name. The rectangular boxes represents the transitions while the place-transition
and transition-place arcs are depicted as an arrows and associated with the its inscription that defines the
tokens and data value affect by transition, in particular how the states change when transition occurs. As
previously defined, the CPN allows to work with different abstraction levels, the low level module (Figure
5-7) exchanges tokens with its environment by means input/output port (specific places that constitute the
module interface). Port places are labelled with a rectangular port tags specifying the port type: input,
output, or input/output port.

Figure 5-7: the sub-page of SPD Functionality module

The Table in Figure 5-7 defines the colour sets

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 103 of 111

The SPD Functionality module could be simple compose with others as show in Figure 5-8, in which three
SPD functionalities are considered.

Figure 5-8: a simple composition of SDP modules

In order to complete this model, it is necessary to take into account the possible relation constraint
between the implemented functionalities. For example, a particular implementation of the authentication
functionality can be used, or simply is effective, only if a precise implementation of identification is enable.
We denote this type of relation constraint as “coupling relation”. As shown in Figure 4 this relation
constraint is modelled as a substitution transition…

Figure 5-9: nSHIELD model with coupling relation

The Coupling Relation block contains the list of possible coupling constraints on functionality. As shown in
Figure 4 this block takes the implemented functionalities as input, verifies the presence of coupling
constraint and produces a control action as output. In particular, the control action aims to address any
coupling constraint by positioning a new token that carries the name of the implementation to be enabled
in order to satisfy the constraint, in the place Desired. This token drives the system to satisfy the
constraint if the new desired implementation (carried by token) is available and satisfies the required SPD
level. If this condition is not verified then the coupling block “turns off” the implementation that required the
coupling. Thus the system actives a new implementation to achieve the desired level of SPD, obviously if
at least one is available.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 104 of 111 Final

6 Conclusions
In this document the preliminary prototypes of the first phase of the nSHIELD project have been
presented, reporting the studies carried out, the first design solution and theoretical advances.

These main technologies are:

• A new procedure to derive the SHIELD ontology, based on decoupling between abstraction and
domain

• The secure discovery protocol

• The intrusion detection monitoring and filtering service

• The adapters for legacy systems

• The SHIELD Security Agent

• The policy based management architecture

• The policy definition

• The DES and Petri Nets theory for composability

• The protection profile of SHIELD middleware

Some of them have led to the development of real prototypes (i.e. software code, simulations, OWLs,
ECC) and these prototypes are collected in D5.2 according to the table included in the next section.

The advances will be addressed in D5.5.

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 105 of 111

7 Prototypes Table
This tables is used to link D5.2 sections with the associated prototypes

Table 7-1: Prototype tables

Partner Section of D5.2 Prototype Type

UNIROMA1 2.1 OWL/ER Diagrams of the
SHIELD semantic model OWL file / Diagrams

MGEP 2.2 Ontology for Intrusion
Detection System OWL file

UNIROMA1 3.1 Protocol for Secure
Discovery

Java Code of the
OSGI Bundle

SLAB 3.2 Intrusion Detection Bundle Java Code of the
OSGI Bundle

ATHENA 3.3 Adaptation of Legacy
Systems

Java Code of the
OSGI Bundle

SES 3.4 Middleware protection profile
(preliminary) PP Document

TUC 4.1
Policy Based Access Control

Module implementation
(preliminary)

Java Code of the
OSGI bundle

TUC 4.2 Policy Definition Example Policy code

UNIROMA1 5.1 Security Agent
Implementation (preliminary)

Java Code of the
OSGI Bundle

UNIROMA1 5.2 Protection profile

UNIROMA1 5.2 (Composition
Algorithms) CPN Tool Simulations Simulations and

source code

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 106 of 111 Final

8 References

[1] R. Anderson, “Why information security is hard - an economic perspective,” in Seventeenth Annual
Computer Security Applications Conference, pp. 358–365, 2001.

[2] Common Criteria for Information Technology Security Evaluation, "Part 1: Introduction and general
model", Version 3.1, revision 4, September 2012.

[3] Common Criteria for Information Technology Security Evaluation, Part 2: Functional security
components, Version 3.1, revision 4, September 2012.

[4] Common Criteria for Information Technology Security Evaluation, Part 3: Assurance security
components, Version 3.1, revision 4, September 2012.

[5] nSHIELD project team, “Tech. Rep. Deliverable 5.1: "SPD Middleware and Overlay technology
Assessment",” European Union FP7 ARTEMIS nSHIELD project, 2012.

[6] S. Morimoto, S. Shigematsu, Y. Goto and J. Cheng, “Formal verification of security specifications with
common criteria,” Proceedings of the 2007 ACM symposium on Applied computing - SAC ’07, p.
1506, 2007.

[7] D. Herrmann, “Using the Common Criteria for IT Security Evaluation,” in Auerbach, 202.

[8] R. Bruni, I. Lanese and U. Montanari, “A basic algebra of stateless connectors,” Theoretical
Computer Science, no. 366, pp. 98-120, 2006.

[9] J. Goguen, “Categorical foundations for general systems theory,” in Advances in Cybernetics and
Systems Research, Transcripta Books, 1973, p. 121–130.

[10] C. Hoare, “CSP - Communicating Sequential Processes,” in International Series in Computer
Science, Prentice-Hall, Englewood Cliffs, 1985.

[11] R. Milner, “A Calculus of Communicating Systems,” in Lecture Notes in Computer Science, Vol. 92,
Berlin, Springer, 1989.

[12] S. Bliudze and J. Sifakis, “Causal semantics for the algebra of connectors,” Formal Methods in
System Design, Springer Science, no. 36, pp. 167-194, 2010.

[13] CONNECT project team, “Deliverable 2.2: "Compositional Algebra of CONNECTors",” European
Union FP7 ICT CONNECT Project (http://www.connect-forever.eu).

[14] S.-S. Hung and D. Shing-Min Liu, “A user-oriented ontology-based approach for network intrusion
detection,” in Computer Standards & Interfaces, 30(1-2), 78–88, doi:10.1016/j.csi.2007.07.008, 2008.

[15] J. Undercoffer, J. Pinkston, A. Joshi and T. Finin, “A Target-Centric ontology for intrusion detection,”
in IJCAI Workshop on Ontologies and Distributed Systems, IJCAI'03, August, 2003.

[16] J. Undercoffer, A. Joshi, T. Finin and J. Pinkston, “A target centric ontology for intrusion detection:
using DAML+OIL to classify intrusive behaviors,” in Knowledge Engineering Review—Special Issue
on Ontologies for Distributed Systems, Cambridge University Press, 2004.

[17] F. Abdoli and M. Kahani, “Ontology-based Distributed Intrusion Detection System,” in Development,

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 107 of 111

65–70, 2009.

[18] G. A. Isaza, A. G. Castillo and N. D. Duque, “An Intrusion Detection and Prevention Model Based on
Intelligent Multi-Agent Systems,” in Signatures and Reaction Rules Ontologies, pp 237–245.

[19] G. Isaza, A. Castillo, M. López, L. Castillo and M. López, “Intrusion Correlation Using Ontologies and
Multi-agent Systems,” Information Security and Assurance, Springer Berlin Heidelberg, no. 76, pp.
51-63, 2010.

[20] O. Corcho, M. López, A. Gómez-Pérez and A. López-Cima, “Building Legal Ontologies with
METHONTOLOGY and WebODE,” Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A. (eds.)
Law and the Semantic Web. LNCS (LNAI) Springer, Heidelberg, no. 3369, pp. 142-157, 2005.

[21] A. N. Mian, R. Baldoni and R. Beraldi, “A survey of service discovery protocols in multihop mobile ad
hoc networks,” in Pervasive Computing, IEEE pp.66-74, 2009.

[22] E. Meshkova and e. al, “A survey on resource discovery mechanisms, peer-to-peer and service
discovery frameworks,” in Computer Networks, pp. 2097-2128, 2008.

[23] E. Guttman, J. Veizades, C. Perkins and M. Day, “Service Location Protocol, version 2,” IETF RFC
2608, June 1999.

[24] E. Guttman, C. Perkins and J. Kempf, “RFC 2609: Service Templates and Service: Schemes.,”
Network Working Group, The Internet Society, 1999.

[25] J. Rosenberg and e. al, “SIP: session initiation protocol,” RFC 3261, Internet Engineering Task Force,
vol. 23, 2002.

[26] National Institute of Standards and Technology (NIST), “186-2. Digital Signature Standard (DSS).,”
FIPS, PUB, 2000.

[27] D. Eastlake and P. Jones, “US secure hash algorithm 1 (SHA1),” 2001.

[28] A. A, “Virtual Point-to-Point(TUN) and Ethernet(TAP) devices -,” [Online]. Available:
http://vtun.sourceforge.net/tun/.

[29] M. Krasnyansky and M. Yevmenkin, “Virtual Point-to-Point(TUN) and Ethernet(TAP) devices,”
Copyright (C) 1999-2008 Maxim Krasnyansky, [Online]. Available: http://vtun.sourceforge.net/tun/.
[Accessed 2013].

[30] openslp.org, “What Is Service Location Protocol?,” [Online]. Available:
http://www.openslp.org/doc/html/IntroductionToSLP/index.html. [Accessed 2013].

[31] openslp.org, “OpenSLP Programmer's Guide,” [Online]. Available:
http://www.openslp.org/doc/html/ProgrammersGuide/index.html.

[32] Oracle Solaris, “Managing Service Location Protocol Services in Oracle Solaris 11.1,” October 2012.
[Online]. Available: http://docs.oracle.com/cd/E26502_01/html/E28998/legacy-11.html. [Accessed
2013].

[33] Network Working Group , “Service Location Protocol, Version 2 -- Optional Features (Authentication
Blocks),” Vinca Corporation, June 1999. [Online]. Available:
http://www.openslp.org/doc/rfc/rfc2608.txt. [Accessed 2013].

[34] openslp.org, “OpenSLP - Service Location Protocol,” [Online]. Available: http://www.openslp.org/.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 108 of 111 Final

[35] J. S. Rellermeyer and M. A. Kuppe, “jSLP - Java SLP (service Location Protocol),” [Online]. Available:
http://jslp.sourceforge.net/jSLP/index.html. [Accessed 2013].

[36] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum
and A. Wolf, “An Architecture-Based Approach to Self-Adaptive Software,” IEEE Intelligent Systems,
vol. 3, no. 14, pp. 54-62, 1999.

[37] J. S. Rellermeyer and M. A. Kuppe, “SLP service discovery on OSGi platforms,” [Online]. Available:
http://jslp.sourceforge.net/jSLP-OSGi/index.html. [Accessed 2013].

[38] Network Working Group, “RFC2614 - An API for Service Location -,” June 1999. [Online]. Available:
http://www.openslp.org/doc/rfc/rfc2614.txt. [Accessed 2013].

[39] Caldera Systems, Incorporated, “The Static Registration File,” open SLP - Service Location Protocol,
[Online]. Available: http://www.openslp.org/doc/html/UsersGuide/SlpReg.html.

[40] ZOLERTIA, “Z1 Platform - low-power wireless modules,” [Online]. Available:
http://www.zolertia.com/ti. [Accessed 2013].

[41] CrossBow, “IRIS Wirelles measurement System,” [Online]. Available:
http://www.dinesgroup.org/projects/images/pdf_files/iris_datasheet.pdf. [Accessed 2013].

[42] BeagleBone, “What is BeagleBone?,” [Online]. Available: http://beagleboard.org/bone. [Accessed
2013].

[43] BeagleBoard.org, “What is BeagleBoard-xM?,” [Online]. Available: http://beagleboard.org/hardware-
xm. [Accessed 2013].

[44] BeagleBoard.org, “BeagleBoard Product Details,” [Online]. Available:
http://beagleboard.org/hardware. [Accessed 2013].

[45] R. Wies, “Policy definition and classification: aspect, criteria and examples,” Munich Network
Management Team, University of Munich, Department of Computer Science, Munich.

[46] “Information Technology – Open Systems Interconnection – Systems Management Overview –
Amendment 2: Management Domains Architecture,” PDAM 10040/2, ISO/IEC, November 1993.

[47] ““Information Technology – Open Systems Interconnection – SystemsManagement – Part 19:
Management Domain and Management Policy Management Function”,” CD 10164-19, ISO/IEC,
January 1994.

[48] ““Basic Reference Model of Open Distributed Processing – Part 1: Overview and Guide to Use”,” WD
10746-1, ISO/IEC, November 1993.

[49] M. Sloman, “Specifying Policy for Management of Distributed Systems,” IFIP, Proceedings of the
IFIP/IEEE International Workshop on Distributed Systems: Operations & Management, October 1993.

[50] J. D. Moffett, “chapter 17,” in Specification of Management Policies and Discretionary Access Control,
June 1994, p. 455–481.

[51] R. Wies, “Policies in Network and Systems Management – Formal Definition and Architecture,” Manu
Malek, editor, Journal of Network and Systems Management - Plenum Publishing Corporation, vol. 2,
pp. 63-83, March 1994.

[52] IDSM Project; SysMan Project, «Domain and Policy Service Specification,» IDSM Deliverable D6 /
SysMan DeliverableMA2V2, IDSM Project (ESPRITIII EP 6311) and SysMan Project (ESPRIT III EP

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 109 of 111

7026), October 1993.

[53] J. D. Moffett and M. S. Sloman, “The Representation of Policies as System Objects,” in In Conference
on Organizational Computing Systems, SIGOIS Bulletin, pp 171–184, Atlanta, November 1991.

[54] M. Porter and V. Millar, “How information gives you competitive advantage,” Harvard Business
Review, vol. 4, no. 63, pp. 149-160, 1985.

[55] «Information Processing Systems – Open Systems Interconnection – Basic Reference Model,» IS
7498, ISO/IEC, 1984.

[56] M. Masullo and S. Calo, “Policy Management: An Architecture and Approach,” Proceedings of the
IEEE First International Workshop On Systems Management, Los Angeles, April 1993.

[57] “Information Technology – Open Systems Interconnection – Systems Management – Management
Functions,” IS 10164-X, ISO/IEC.

[58] Open Software Foundation, “OSF Distributed Management Environment (DME) Architecture,” 1992.

[59] Object Management Group, “Object Management Architecture Guide,” Document 92-11-1,
September 1992.

[60] Object Management Group, “Object Services Architecture,” Document 92-8-4, August 1992.

[61] J. McLean, “A General Theory of Composition for Trace Sets Closed Under Selective Interleaving
Functions,” in Proceedings of the 1994 IEEE Symposium on Security and Privacy, pp. 79-93, IEEE
Press, May 1994.

[62] D. Mccullough, “Noninterference and the composability of security properties,” Security and Privacy
Proceedings, IEEE Symposium (http://doi: 10.1109/SECPRI.1988.8110), pp. 177-186, 1988.

[63] A. Zakinthinos, “On the composition of security properties,” PhD Thesis. University of Toronto,
Toronto, 1996.

[64] A. Zakinthinos and E. Lee, “A general theory of security properties,” Security and Privacy
Proceedings, IEEE Symposium (http://doi: 10.1109/SECPRI.1997.601322), pp. 94-102, May 1997.

[65] H. Mantel, “On the composition of secure systems,” Security and Privacy Proceedings, IEEE
Symposium (http://doi: 10.1109/SECPRI.2002.1004364), pp. 88-101, 2002.

[66] K. Trivedi, D. S. Kim, A. Roy and D. Medhi, “Dependability and security models,” Design of Reliable
Communication Network (DRCN 2009), 7th International Workshop (http://doi:
10.1109/DRCN.2009.5340029), pp. 11-20, 25-28 Oct. 2009.

[67] D. Nicol, W. Sanders and K. Trivedi, “Model-based evaluation: from dependability to security,”
Dependable and Secure Computing, IEEE Transactions (http://doi: 10.1109/TDSC.2004.11), vol. 1,
no. 1, pp. 48-65, Jan - March 2004.

[68] Sallhammar, Karin, B. E. Helvik and S. J. Knapskog, “On Stochastic Modelling for Integrated Security
and Dependability Evaluation,” Journal of Networks (Web. 14 Feb. 2013), pp. 31-42, 2006.

[69] E. Jonsson, “Towards an integrated conceptual model of security and dependability,” Availability,
Reliability and Security (ARES 2006). The First International Conference (http://doi:
10.1109/ARES.2006.138), pp. 8; 20-22, 2006.

D5.3 Preliminary SPD Middleware and Overlay Technologies Report nSHIELD

 PU

D5.3 PU

Page 110 of 111 Final

[70] M. Malhotra and K. Trivedi, “Dependability modelling using Petri-nets,” Reliability, IEEE Transactions
(http://doi: 10.1109/24.406578), vol. 44, no. 3, pp. 428-440, Sep 1995.

[71] J. L. Peterson, “Petri Nets. Computing Surveys,” http://doi.acm.org/10.1145/356698.356702, vol. 9,
no. 3, pp. 223-252, September 1977.

[72] J. L. Peterson, Petri Net Theory and the Modelling of Systems. Translated into Russian and
Japanese. ISBN 0-13-661983-5, Prentice-Hall, Englewood Cliffs: New Jersey, April 1981.

[73] J. Wang, Petri nets for dynamic event-driven system modelling (Handbook of Dynamic System
Modeling), Paul Fishwick, CRC Press, 2007.

[74] E. Jonsson, “An integrated framework for security and dependability,” in In Proceedings of the 1998
workshop on New security paradigms (NSPW '98), pp. 22-29 (DOI=10.1145/310889.310903
http://doi.acm.org/10.1145/310889.310903), ACM, New York, USA, 1998.

[75] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems - Second Edition, Springer -
ISBN 978-0-387-33332-8. (771+xxiii pages), 2008, pp. ISBN 978-0-387-33332-8. (771+xxiii pages).

[76] W. M. Wonham, “Supervisory Control of Discrete-Event Systems. Ece 1636f/1637s 2009-2010,”
http://www.control.utoronto.ca/cgi-bin/dldes.cgi, 2010.

[77] C.A. Petri, Kommunikation mit Automaten, “New York: Griffiss Air Force Base, Technical Report
RADC-TR-65--377,” Institut für Instrumentelle Mathematik, Schriften des IIM, vol. 1, no. 2, p. Suppl. 1
(english translation), 1966.

[78] K. Jensen, “An Introduction to the Theoretical Aspects of Coloured Petri nets, in J Bakker, W Roever
& G Rozenberg (eds),” A Decade of Concurrency Reflections and Perspectives - Lecture Notes in
Computer Science, Springer, no. 803, pp. 230-272, 1994.

[79] K. Jensen, “A Brief Introduction to Coloured Petri Nets, in E Brinksma (ed.),” Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in Computer Science - Springer, no. 127,
pp. 203-208, 1997.

[80] K. Jensen and L. Kristensen, “Coloured Petri Nets: Modelling and Validation of Concurrent Systems,”
Springer, p. 384, 2009.

[81] T. Murata, “Petri Nets: Properties, Analysis and Applications,” invited survey paper, Proceedings of
the IEEE (http://www.cs.uic.edu/~murata/PAPERs/1989.IEEE.Proc.pdf.gz), vol. 77, no. 4, pp. 541-
580, April, 1989.

[82] F. Commoner, “Deadlocks in Petri nets,” Applied Data Research Inc., Wakefield, MA 1972.

[83] S. Singh, M. Cukier and W. Sanders, “Probabilistic validation of an intrusion-tolerant replication
system,” in In de Bakker, J.W., de Roever, W. P., and Rozenberg, G., editors, International
Conference on Dependable Systems and Networks (DSN‘03), June 2003.

[84] D. Wang, B. Madan and K. Trivedi, “Security Analysis of SITAR Intrusion Tolerance System,” in ACM
SSRS’03, 2003.

[85] S. H. Houmb and K. Sallhammar, “Modelling System Integrity of a Security Critical System using
Coloured Petri Nets,” in In Proceedings of the 1st International Conference on Safety and Security
Engineering (SAFE 2005), Rome, Italy, June 13-15, 2005.

[86] J. L. Rasmussen and M. Singh, “Designing a Security System by Means of Coloured Petri Nets,” in In
Proceedings of the 17th International Conference on Application and Theory of Petri Nets, pp. 400-

nSHIELD D5.3 Preliminary SPD Middleware and Overlay Technologies Report

 PU

 PU D5.3

Final Page 111 of 111

419, Jonathan Billington and Wolfgang Reisig (Eds.). Springer-Verlag,, London, UK, 1996.

[87] R. D. R. Bouroulet, H. Klaudel, E. Pelz and F. Pommereau, “Modelling and analysis of security
protocols using role based specifications and Petri nets,” in Proceedings of ICATPN'08, LNCS 5062,
Springer, 2008.

[88] F. Pommereau, Algebras of coloured Petri nets, and their applications to modelling and verification,
LAP LAMBERT Academic Publishing (ISBN: 978-3-8433-6113-2), 2010.

[89] W. Dresp, “Security analysis of the secure authentication protocol by means of coloured petri nets.
(http://dx.doi.org/10.1007/11552055_23),” [J. Dittmann, S. Katzenbeisser,A. Uhl (Eds.)] Springer-
Verlag, Berlin, Heidelberg, pp. 230-239, 2005.

[90] K. Juszczyszyn, “Verifying enterprise's mandatory access control policies with coloured Petri nets
(doi: 10.1109/ENABL.2003.1231405),” Enabling Technologies: Infrastructure for Collaborative
Enterprises (WET ICE '03). Proceedings Twelfth IEEE International Workshops on, pp. 184-189,
June 2003.

[91] B. Mikolajczak and S. Joshi, “Modelling of information systems security features with colored Petri
nets,” Systems, Man and Cybernetics, 2004 IEEE International Conference on (http://doi:
10.1109/ICSMC.2004.1401304), vol. 5, pp. 4879-4884, 2004.

[92] “Proceedings of the IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management,” in IFIP, October 1993.

	1 Introduction
	2 Semantic Technologies
	2.1 SHIELD semantic models
	2.1.1 The SHIELD ontology
	2.1.2 The SHIELD Domain dependent library

	2.2 Semantic Intrusion Detection

	3 SHIELD middleware core SPD services
	3.1 SHIELD secure service discovery and delivery
	3.1.1 Service Discovery concept
	3.1.2 Overview of Service Discovery protocols
	3.1.3 Service Location Protocol (SLP)
	3.1.4 SLP Message
	3.1.4.1 Function-ID
	3.1.4.2 Length
	3.1.4.3 Flags
	3.1.4.4 XID
	3.1.4.5 Service Request
	3.1.4.6 Service Reply
	3.1.4.7 Service Registration
	3.1.4.8 Service Acknowledgment
	3.1.4.9 Directory Agent Advertisement
	3.1.4.10 Error Code

	3.1.5 Security in SLP
	3.1.5.1 Authentication Block
	3.1.5.2 Signature generation process
	3.1.5.3 Signature verification
	3.1.5.4 Security scenarios
	3.1.5.4.1 Scenario 1
	3.1.5.4.2 Scenario 2
	3.1.5.4.3 Scenario 3

	3.1.6 Secure Architecture for Service Discovery
	3.1.6.1 Iteration between PKI
	3.1.6.1.1 Initialization of the PKI
	3.1.6.1.2 Certification
	3.1.6.1.3 Authentication in the case of Service Registration
	3.1.6.1.3.1 Hash function
	3.1.6.1.3.2 RSA

	3.1.6.1.4 Signature
	3.1.6.1.5 Verification
	3.1.6.2 Extension of SLP
	3.1.6.2.1 Secure Service Request
	3.1.6.2.2 Secure Service Reply

	3.2 SHIELD trusted service composition
	3.3 SHIELD monitoring, filtering and intrusion detection service for interface protection
	3.3.1 DoS Protection Subsystem
	3.3.2 Architecture Modules and Interfaces
	3.3.2.1 Implemented Modules
	3.3.2.2 Interfaces
	3.3.2.2.1 TAP / TUN virtual network interfaces provided by the IDS
	3.3.2.2.2 Building an overlay using TUN/TAP Interface
	3.3.2.2.3 Detection Module
	3.3.2.2.4 Interface to IDS

	3.3.3 Metrics

	3.4 Adaptation of legacy systems
	3.4.1 Description
	3.4.2 SW adapters based on SLP
	3.4.2.1 AGENTS
	3.4.2.1.1 User Agent (UA)
	3.4.2.1.2 Service Agent (SA)
	3.4.2.1.3 Directory Agent (DA)

	3.4.2.2 MESSAGES
	3.4.2.2.1 Service Request (SrvRqst)
	3.4.2.2.2 Service Reply (SrvRply)
	3.4.2.2.3 Service Registration (SrvReg)
	3.4.2.2.4 Service Deregister (SrvDeReg)
	3.4.2.2.5 Service Acknowledge (SrvAck)
	3.4.2.2.6 Attribute Request (AttrRqst)
	3.4.2.2.7 Attribute Reply (AttrRply)
	3.4.2.2.8 Service Type Request (SrvTypeRqst)
	3.4.2.2.9 Service Type Reply (SrvTypeRply)
	3.4.2.2.10 DA Advertisement (DAAdvert)
	3.4.2.2.11 SA Advertisement (SAAdvert)

	3.4.2.3 SECURITY
	3.4.2.4 SCALABILITY
	3.4.2.5 IMPLEMENTATIONS
	3.4.2.6 IMPLEMANTATION EXAMPLES
	3.4.2.6.1 OpenSLP
	3.4.2.6.2 Syntax
	3.4.2.6.3 jSLP
	3.4.2.6.4 jSLP-OSGi

	3.4.3 Registering a service for remote access (service provider side)
	3.4.4 Connect to a remote peer and get the service (service consumer side)

	3.5 SHIELD middleware protection profile definition & certification
	3.5.1 Embedded systems security
	3.5.2 What is a Protection Profile?
	3.5.3 Why a protection profile?

	4 SHIELD policy based management and access control
	4.1 SHIELD policy based access control (PBAC)
	4.1.1 Description
	4.1.2 Architecture Modules and Interfaces
	4.1.3 Implementation details
	4.1.3.1 Device classification
	4.1.3.1.1 Nano nodes
	4.1.3.1.1.1 Role
	4.1.3.1.1.2 Underlying technologies
	4.1.3.1.1.3 Prototype platforms

	4.1.3.1.2 Micro nodes
	4.1.3.1.2.1 Role
	4.1.3.1.2.2 Underlying technologies
	4.1.3.1.2.3 Prototype platforms

	4.1.3.1.3 Power nodes
	4.1.3.1.3.1 Role
	4.1.3.1.3.2 Underlying technologies
	4.1.3.1.3.3 Prototype platforms

	4.1.3.2 Simple application
	4.1.3.3 Infrastructure entities (Power node)

	4.2 SHIELD policies definition
	4.2.1 Description
	4.2.1.1 Differences in policies definition
	4.2.1.2 Aspects of Policy Classification
	4.2.1.2.1 Motivation
	4.2.1.2.2 Criteria for the Classification of Policies
	4.2.1.2.3 Policy Hierarchy

	4.3 XACML policy implementation for PBAC
	4.3.1 RULE implementation
	4.3.2 POLICY implementation
	4.3.3 Policy Information Template
	4.3.4 Rule- and Policy-combining algorithms
	4.3.5 Policy examples
	4.3.5.1 Policy classification and identification by a hierarchical point of view
	4.3.5.2 XACML Policy implementation example

	5 SHIELD Overlay
	5.1 Proposed SHIELD Security Agents architecture
	5.1.1 Description

	6 Conclusions
	7 Prototypes Table
	8 References

