

Project no: 269317

nSHIELD

new embedded Systems arcHItecturE for multi-Layer Dependable solutions

Instrument type: Collaborative Project, JTI-CP-ARTEMIS

Priority name: Embedded Systems

D5.1: SPD middleware and overlay technologies assessment

Due date of deliverable: M6 – 2012.02.29

Actual submission date: M10 – 2012.06.30

Start date of project: 01/09/2011 Duration: 36 months

Organisation name of lead contractor for this deliverable:

Selex Elsag, SE

 Revision [Issue 1]

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2012)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services) X

Page ii Issue 1

Document Authors and Approvals

Authors
Date Signature

Name Company

Andrea Fiaschetti UNIROMA1

Alberto Isidori UNIROMA1

Gaetano Scarano UNIROMA1

Roberto Cusani UNIROMA1

Salvatore Monaco UNIROMA1

Francesca Cuomo UNIROMA1

Antonio Pietrabissa UNIROMA1

Martina Panfili UNIROMA1

Andrea Morgagni SE

Renato Baldelli SE

Harry Manifavas TUC

Alexandros Papanikolaou TUC

Konstantinos Fysarakis TUC

Georgios Hatzivasilis TUC

Dimitrios Geneiatakis TUC

Konstantinos Rantos TUC

Inaki Eguia TECNALIA

Balázs Berkes S-LAB

Zoltán Hornák S-LAB

Mónika Halmy S-LAB

Roberto Uribeetxeberria MGEP

Dimitrios Serpanos ATHENA

Nikos Priggouris HAI

Ignasi Barri Vilardell ISL

Ljiljana Mijic THYIA

Nastja Kuzmin THYIA

Francesco Cennamo SG

Mariana Esposito ASTS

Reviewed by

Name Company

Josef Noll MAS

Approved by

Name Company

Elisabetta Campaiola SE

Issue 1 Page iii

Applicable Documents

ID Document Description

AD1 TA nSHIELD Technical Annex

AD2 D5.2 pSHIELD Semantic Technologies Report

AD3 D5.4 pSHIELD Middleware and Overlay Report

AD4 D5.1 pSHIELD Semantic Technologies Prototypes

AD5 D5.3 pSHIELD Middleware and Overlay Prototypes

AD6 D6.1 pSHIELD Platform development report

Modification History

Issue Date Description

Draft A 29.2.2012 First version

Draft B 26.3.2012 Draft A and review

Draft C 04.05.2012 Contributions to Chapter 4 added

Draft D 15.05.2012 Contributions to Chapter 4 content and: TUC and S-LAB

Issue 1 30.06.2012 Contributions to Chapter 5, 6. Final Issue

Page iv Issue 1

Contents

1 Executive Summary ...12

2 Introduction ...14

2.1 Scenario/user needs ... 14

2.1.1 SPD composability in railways surveillance .. 14

2.1.2 SPD composability in avionic surveillance .. 16

2.1.3 Remarks .. 17

2.2 WP5 Statement of Work ... 18

2.3 pSHIELD outcomes ... 20

3 Semantic technologies assessment ..22

3.1 pSHIELD results and adopted technologies .. 22

3.1.1 Procedure to define the pSHIELD semantic model 22

3.1.2 pSHIELD semantic technology .. 30

3.2 nSHIELD potential investigations ... 33

3.2.1 Proposed procedure to define the SHIELD semantic model 33

3.2.2 Proposed SHIELD semantic technologies .. 39

4 SHIELD middleware core SPD services assessment................43

4.1 pSHIELD results and adopted technologies .. 43

4.1.1 pSHIELD discovery engine.. 43

4.1.2 pSHIELD composition engine .. 45

4.1.3 pSHIELD orchestration engine .. 46

4.1.4 pSHIELD data and metadata management .. 48

4.2 nSHIELD potential investigations ... 51

4.2.1 SHIELD secure service discovery and delivery ... 51

4.2.2 SHIELD trusted service composition .. 58

4.2.3 SHIELD service orchestration and choreography .. 64

4.2.4 SHIELD data and metadata management .. 67

Issue 1 Page v

4.2.5 SHIELD monitoring, filtering and intrusion detection service for

interface protection ... 68

4.2.6 Adaptation of legacy systems .. 76

4.2.7 SHIELD middleware protection profile certification 77

5 SHIELD policy based management assessment 78

5.1 pSHIELD results and adopted technologies .. 78

5.1.1 pSHIELD policy based management architecture 78

5.2 nSHIELD potential investigations ... 81

5.2.1 Proposed SHIELD policy based management architecture 81

6 SHIELD Overlay assessment ... 84

6.1 pSHIELD results and adopted technologies .. 84

6.1.1 pSHIELD Security Agent architecture... 84

6.1.2 pSHIELD Composition algorithms: Hybrid Automata approach 85

6.2 nSHIELD potential investigations ... 89

6.2.1 Proposed SHIELD Security Agents architecture ... 89

6.2.2 Proposed SHIELD composition algorithms: DES and Petri Nets 91

7 Conclusions .. 99

8 References .. 100

Page vi Issue 1

Figures

Figure 1.1: D5.1 rationale .. 12

Figure 2.1: Typical monitoring architecture .. 15

Figure 2.2: UAV surveillance .. 16

Figure 2.3: pSHIELD outcomes .. 20

Figure 2.4: nSHIELD outcomes .. 21

Figure 3.1: Proposed approach to model SPD for ES .. 22

Figure 3.2: pSHIELD meta-model ... 23

Figure 3.3: Structural Ontology ... 24

Figure 3.4: pSHIELD Node Model .. 25

Figure 3.5: Node hardware ontology ... 25

Figure 3.6 pSHIELD Network Model ... 26

Figure 3.7: pSHIELD Middleware Model ... 26

Figure 3.8: SPD Functionality ... 27

Figure 3.9: Connector .. 27

Figure 3.10: SPD Attributes.. 28

Figure 3.11: SPD Threat .. 28

Figure 3.12: SPD Mean ... 29

Figure 3.13: pSHIELD ontology logical chain ... 30

Figure 3.14: pSHIELD OWL (XML File) ... 32

Figure 3.15: Technical Annex text box (left) and user/scenario bullet (right)................................. 33

Figure 3.16 Decoupling of the pSHIELD ontology .. 34

Figure 3.17; SHIELD semantic models ... 35

Figure 3.18 SHIELD ontology logical chain ... 35

Figure 3.19: Example of technology abstraction .. 35

Figure 3.20: Example of basic semantic in [1].. 37

Figure 3.21: Example of basic semantic in [12] .. 37

Figure 3.22: pSHIELD semantic model design from ER to OWL ... 39

Issue 1 Page vii

Figure 3.23: MARTE DAM UML example .. 40

Figure 3.24: JSON object ... 41

Figure 3.25: JSON array .. 41

Figure 3.26: JSON value.. 41

Figure 3.27: JSON string ... 41

Figure 3.28 JSON number ... 42

Figure 4.1: Core SPD services selected for the pilot project ... 43

Figure 4.2: Discovery engine structure .. 45

Figure 4.3 Composition Bundle .. 46

Figure 4.4 pSHIELD service orchestration engine: the Knopflerfish start -up environment 47

Figure 4.5: Middleware core service data management ... 48

Figure 4.6: OWL-S Service Description Elements .. 49

Figure 4.7: Benchmark Results for 25 concurrent requestors, [8]. ... 51

Figure 4.8: nSHIELD abstract architecture .. 54

Figure 4.9: An example of discovering service in the nSHIELD architecture 54

Figure 4.10: Arrangement of clients and devices [16] ... 56

Figure 4.11: The Devices Profile for Web Services Protocol stack [16]. 56

Figure 4.12. The SOA4D Architecture [21] .. 57

Figure 4.13 Service-Oriented Computing (SOC) Pyramid... 59

Figure 4.14: Service composition.. 60

Figure 4.15: Web Service Security Stack .. 62

Figure 4.16: Knowledge base for the SHIELD middleware and overlay 68

Figure 4.17: The logic block structure of the Int rusion Detection Bundle 74

Figure 4.18: The Logic Block Structure of the DoS Protection Subsystem 74

Figure 4.19: SHIELD generic adapter ... 76

Figure 5.1: PBM Mapping .. 78

Figure 5.2: N° of instances/class in Knowledge Base ... 79

Figure 5.3: nSHIELD Policy-Based Management (PBM) .. 82

Figure 6.1: SPD Security Agent Bundle .. 84

Figure 6.2: Single State representation ... 85

Page viii Issue 1

Figure 6.3: Hybrid Automata to describe all the possible configurations....................................... 86

Figure 6.4 Hybrid automata Matlab Prototype.. 87

Figure 6.5 Hybrid Automata representing the pSHIELD node ... 88

Figure 6.6: nSHIELD SPD Security agent architecture .. 89

Figure 6.7: Hybrid Agent Architecture ... 91

Figure 6.8: state transition diagram of queuing system with breakdowns 92

Figure 6.9: example of enabled transition.. 93

Figure 6.10: Examples of Petri Net primitives .. 94

Figure 6.11: SPD functionalities composed for the demonstrator .. 95

Figure 6.12: SPD functionality Automata model ... 96

Figure 6.13: SPD functionalities parallel composition ... 96

Figure 6.14: SPD functionalities Petri Nets .. 96

Figure 6.15: Petri nets composition... 97

Figure 6.16: SPD Functionalities CPN model .. 97

Figure 6.17: SPD Functionality module ... 98

Issue 1 Page ix

Tables

Table 3.1: SPD Composition modelling ... 27

Table 3.2: Procedure to define the pSHIELD semantic model – ASSESSMENT 30

Table 3.3: pSHIELD semantic technology – ASSESSMENT... 32

Table 4.1 pSHIELD discovery engine – ASSESSMENT ... 45

Table 4.2 pSHIELD composition engine – ASSESSMENT ... 46

Table 4.3 pSHIELD orchestration engine – ASSESSMENT.. 48

Table 4.4: pSHIELD data and metadata management – ASSESSMENT 50

Table 4.5: nSHIELD possible threats that can face Micronodes incorporating DPWS 55

Table 4.6: Service Composition in the Semantic Web .. 60

Table 5.1: pSHIELD policy based management – ASSESSMENT .. 80

Table 6.1: pSHIELD Security Agent architecture – ASSESSMENT ... 84

Table 6.2: pSHIELD Composition algorithms: Hybrid Automata approach – ASSESSMENT......... 88

Page x Issue 1

Glossary

Please refer to the Glossary document, which is common for all the deliverables in nSHIELD.

Issue 1 Page xi

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 12 of 106 Issue 1

 Executive Summary 1

The SHIELD Roadmap is an R&D initiative funded under the ARTEMIS-JU programme, whose objective
is to address security issues in the Embedded Systems domain, with particular focus on development,

certification and composability of heterogeneous SPD technologies.

Due to the budget allocation, this roadmap has been divided in two phases: the pSHIELD
1
 pilot project

and the nSHIELD
2
 full project. The first phase, closed on 31

st
 December 2011, has produced significant

achievements in terms of:

 Theoretical studies ([AD2][AD3])

 Prototypes ([AD4][AD5])

 Demonstration ([AD6])

These achievements represent a proof of concept that justifies and triggers the complementary activities
that has to be carried out in the phase two, whose (long term) objectives are: i) the consolidation of the
SHIELD guidelines, ii) the finalization of the SHIELD framework and iii) the demonstration in several,

industrially relevant, application scenarios.

The purpose of the current document, as earliest (WP5 T0+1) outcome of WP5 activities, is to assess the

results obtained by the pSHIELD investigation with respect to Middleware technologies, and to identify the
potential research/improvement that will be investigated during the nSHIELD prosecution, in order to fully
cover the SHIELD roadmap needs.

The main motivation of this deliverable, as indicated also in the technical annex (see box below), is to
clearly define the boundaries between the two projects, while assuring an exhaustive approach.

In particular, D5.1 takes in inputs the scenario/user needs (that justify the development of the SHIELD

framework), the outcome of phase one (as baseline) and the Technical Annex (for future development).
This rationale is depicted in Figure 1.1.

Figure 1.1: D5.1 rationale

1
 Call ARTEMIS-2009-1

2
 Call ARTEMIS-2010-1

pSHIELD
Outputs

Technical
Annex

Scenario/
User Needs

D5.1 Technology Assesment
| | | |

T5.1 T5.2 T5.3 T5.4

[…] At the start-up of the project an assessment will be done on the technologies that the pSHIELD project

has examined, in order to full address the right technologies for the nSHIELD project .[…]

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 13 of 106

Since this document will be the guideline for the prosecution of the work, it will be structured as follows:

after an introduction, four sections, each one covering one task, will be considered; then each section will
be further divided in two halves: <what has been achieved> and <what will be taken into account>, with
one paragraph per technology.

Finally, each technology description will be associated to the corresponding text from the technical annex,
to assure 100% coverage of Middleware activities.

Some preliminary links with the scenario needs will be identified as well (even if their definition is still in
progress), in order to show the motivation behind specific technological choices.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 14 of 106 Issue 1

 Introduction 2

In this section, the rationale behind the SHIELD Middleware technologies, as defined in previous section,
is reported, in terms of:

i. scenario/user needs,
ii. WP5 statement of work (technical annex)

iii. pSHIELD outcomes.

This will justify the work that had to be carried out.

 Scenario/user needs 2.1

Nowadays, complex systems are integrated with a great engineering effort, trying to harmonize
heterogeneous technologies and tailor them on the specific solution; in this context, security, privacy or
dependability issues are faced only a posteriori, time by time, without a structured or standardized

approach. This results in lack of reconfigurability or reusability of technical solutions and, above all, in the
impossibility of assessing, a priori, the SPD level for a given system.

The scenario/user need behind this research is to provide industrial actors with the SHIELD platform, a
framework that:

 Will offer innovative SPD functionalities.

 Will enable the dynamic, scalable, modular, reconfigurable and measurable composability of
SPD functionalities in the Embedded Systems domain

The activities carried out in WP5 will be finalized to create a Middleware able to satisfy these two topics.

Some example taken from the application scenario identified for the nSHIELD project will help to clarify
better the importance of these needs.

 SPD composability in railways surveillance 2.1.1

The first application scenario comes from the railways surveillance domain. Rail -based mass transit
systems are vulnerable to many criminal acts, ranging from vandalism to terrorism. Therefore, physical

security systems for infrastructure protection comprises all railway assets as for tunnel, train on board,
platform and public areas, external areas, technical control room, depots, electrical substations and etc…

The objectives of a surveillance system are to forecast critical threats as: aggressions and abnormal
behaviours, sabotage and terrorism, vandalism and graffiti, thefts and pickpocketing.

A modern smart-surveillance system suitable for the protection of urban or regional railways is made up
by distributed smart-sensors and several subsystems performing different functionalities:

1. Intrusion detection and access control:

 volumetric sensors for motion detection;

 magnetic contacts to detect illicit doors opening;

 glass break detectors;

 microphonic cables for fence/grill vibration detection;

 active infrared barriers for detecting intrusions inside the tunnels;

2. Intelligent video-surveillance and Intelligent sound detection:

 advanced cameras with special features;

 digital video processing and recording, using efficient data compression protocols;

 video-analytics of the scenes, using computer vision algorithms;

 Microphones.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 15 of 106

3. Dedicated communication network

4. Integrated management system

Distributed smart-sensors are installed along the railway line both in fixed (e.g. bridges, tunnels, stations,
etc.) and mobile (passenger trains, freight cars, etc.) locations. They are integrated locally using local
wired/wireless infrastructures (see Figure 2.1).

Figure 2.1: Typical monitoring architecture

Currently, the security system described above is highly heterogeneous in terms not only of det ection
technologies (which will remain such) but also of embedded computing power and communication
facilities. In other words, the sensors that are put together differ in their inner hardware-software

architecture and thus in the capacity of providing information security and dependability. This causes
several problems:

 Information security must be provided according to different mechanisms and on some links -
which are not “open” but still vulnerable to attacks - information is not protected by cryptographic
nor vitality-checking protocols;

 Whenever any new sensor needs to be integrated into the system, a new protocol and/or driver
must be developed and there is no possibility of directly evaluating the impact of such integration
on the overall system dependability;

 New dedicated and completely segregated network links often need to be employed in order not

to make the sensor network exposed to information related threats;

 The holistic assurance and evaluation of dependability parameters (e.g. for
assessment/certification purposes) would be a very difficult task.

In particular both natural and malicious faults can impact on system availability and indirectly on safety,
since the surveillance system is adopted in critical infrastructure surveillance applications.

The problems mentioned above can be solved by adopting the SHIELD architecture for the surveillance
framework, i.e. architecture able to compose, in a seamless way, heterogeneous technologies and to

 Security Control Center

Passenger Stations Power

Stations Tunnels, Bridges Local Security

Management

 Video Stream Display

 Alarm and Diagnostic

Management with Operator

Guide,

 Analytics

 System Management
WAN

internet

Line

 Antintrusione

 Controllo Accessi

 Videosorveglianza attiva

(videoanalisi evoluta)

Depots

 Anti-intrusion

 Access Control

 Active Video

Surveillance (Analytics)

 Anti-intrusion

 Access Control

 Active Video Surveillance

(Analytics.)

 Anti-intrusion

 Access Control

 Active Video Surveillance

(Analytics)

 SOS kiosk

 Active Video Surveillance

(Analytics)

 Distributed Modular

System

Manage Heterogeneous
Technologies

Perform
Composition

Evaluate security
impact of a component

Assess overall
security

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 16 of 106 Issue 1

quantify the individual security impact, as well as to assess the overall security strength of the system.
This will be mainly in charge of Middleware technologies.

 SPD composability in avionic surveillance 2.1.2

Another SHIELD application is the surveillance and monitoring performed by UAVs (see Figure 2.2).

Figure 2.2: UAV surveillance

They are usually applied for several purposes:

Remote sensing: Biological sensors are sensors capable of detecting the airborne presence of various
microorganisms and other biological factors. Chemical sensors use laser spectroscopy to analyse the
concentrations of each element in the air

Commercial aerial surveillance: Aerial surveillance of large areas is made possible with low cost UAV
systems. Surveillance applications include: livestock monitoring, wildfire mapping, pipeline security, home

security, road patrol and anti-piracy.

Oil, gas and mineral exploration and production: UAVs can be used to perform geophysical surveys, in

particular geomagnetic surveys where the processed measurements of the differential Earth's magnetic
field strength are used to calculate the nature of the underlying magnetic rock structure. Knowledge of the
underlying rock structure helps trained geophysicists to predict the location of mineral deposits. The

production side of oil and gas exploration and production entails the monitoring of the integrity of oil and
gas pipelines and related installations.

Scientific research: Unmanned aircraft are uniquely capable of penetrating areas which may be too
dangerous for piloted craft. An UAV can fly into a hurricane and communicate near-real-time data directly
to the National Hurricane Center.

Search and rescue: Search for missing person. A concept of coherent change detection in SAR images
allows for exceptional search and rescue ability: photos taken before and after the storm hits are

compared and a computer highlights areas of damage.

Since these systems are quite recent in their application, they suffer from several problems, including:

 Heterogeneous networks are not fully supported, so there is the need to improve information
exchange capabilities

Air Data Link

WAN or WLAN

Operation Data

Center

UAV Falco

Controls and

caputured data

For Data

fusion

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 17 of 106

 Partial integration of devices, only with same family systems

 Complex Certification

 Redundancy is obtained only by duplicating HW

 Trusted Data communication is possible only with old protocols and algorithms

 Scalability is not foreseen, so every time the system must be improved, added engineering effort
is needed

 Expensive integration of different standards and different vendors

 Sensitive to cyber attacks

The problems mentioned above can be solved by adopting the SHIELD approach. In particular

communication between non homogeneous data and integration of different devices will be enabled by
the technology independent abstraction; redundancy will be improved by enabling the dynamic
composition of both hardware and software technologies that are “SHIELD Compliant”; resilience to

cyber-attacks will be achieved by enabling system polymorphism (UAVs architecture changes
continuously); scalability will be enabled by the modularity of the SHIELD framework; the certification
process will be eased by the adoption of recognized standard (like the Common Criteria) as baseline for

SPD evaluation.

All these issues will be mainly in charge of Middleware technologies.

 Remarks 2.1.3

These two examples are explicit enough to outline the problems that affect complex systems engineering,
in the embedded systems domain and for security relevant applications. It must be said that Middleware

technologies will be focused on the creation of the “enabling capabilities” that make the SHIELD
framework work. The SPD improvements (i.e. the development of new SPD functionalities) will be mainly
in charge to WP3 and WP4, since these tasks are more technology oriented.

In the prosecution of the document the highlighted boxes will be mapped over the Middleware solutions,
to justify the technological choices.

Technology independent
abstraction

Dynamic
composition

“SHIELD
Compliant” SPD

functionality

Polymorphism

Modularity SPD certification

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 18 of 106 Issue 1

 WP5 Statement of Work 2.2

The second input for D5.1 is the Technical Annex, i.e. the Statement of Work for WP5 Activities, from
which the following text is fully taken.

Objectives

The objectives of WP5 are:

 Define a common semantic to describe the SPD interfaces and functionalities;

 Improve SPD middleware technologies;
 Provide support to legacy SPD systems;

 Introduce the Overlay concepts and functionalities;
 Develop a prototype to be integrated in the demonstrators.

Task 5.1: SPD driven Semantics

In this task semantic technologies will be developed to address the interoperability among different SPD
technologies. A semantic ontology will be defined to describe the SPD components and functionalities, to describe
the metrics and the exchanged information between the node, network, middleware and overlay layer.
The designed semantic language may be used also to represent profiles and policies according to interoperable
and self-describ ing formats. The exploitation of semantic technologies will allow meaningfully representing and
reasoning about context and policy information.
The outcome of this task will be a lightweight com mon semantic languages derived by standard ones (OWL) in
order to be easily processed in the embedded system world where the processing unit are limited in power and
resources.
The semantic ontology will be part of the prototypes delivered by WP5.

Task 5.2: Core SPD services & Adaptation of Legacy Systems

This task will design and/or develop the core SPD services provided by the SHIELD middleware:

 service discovery entailing mechanisms to securely register, advertise, discover, locate, filter, rank and
select the availab le services;

 service composition entailing mechanisms to automatically resolve the dependencies and to discover,
deliver and deploy the atomic services;

 service orchestration entailing run-time mechanisms to install, start, pause, stop, refresh and uninstall the
services in a distributed environment.

 context awareness features to refine and extend the existing middleware orchestration functionalities in
order to improve their performance (strict liaisons with Task 5.4);

The interaction between SPD-middleware and ES nodes will be b idirectional. The SPD-middleware will use data
received by ES nodes and will provide information to the upper layers of the system. In both cases information
passing through the middleware (e.g. information, configurations and data) should be represented in a proper way
(e.g. /by using semantics) in order to enable features for providing advanced service discovery, composition and
orchestration functionalities to the applications.
A complete architecture will be defined for developing the SHIELD core SPD services, which will be based on the

exchange of semantic metadata, used to describe, for each service, its model, the relevant security requirements
and the needed SPD components.
A prototype of the proposed architecture will be implemented, a key feature of which will be the exploitation of
ontology-based, semantic technologies to represent the SPD services model. Since an integrated support to SPD
functionalities in middleware architectures is still largely unexplored in both academic and industrial research
activities, this task will investigate how to extend the firstly emerging models to accomplish with the SHIELD
requirements provided by WP2. Indeed the design and development of the SPD Midd leware core SPD services
will be accomplished according to the specifications, requirements and architectural guidelines coming from tasks
2.1 and 2.3.
In order to build the target functionalities a modular approach will be followed by partition the featu res of the
middleware in abstract SPD modules. Each module will be a collection of conceptually similar functions that
provide services to other modules or layers: the SPD modules will be characterized to be dynamically
composable.
This task will also define and implement specific interfaces (based on the design results of task 2.3) for accessing
middleware capabilities from outside the system. The SPD modules will be implemented as software modules

which will become part of the prototypes delivered by WP5 on M18 and M30.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 19 of 106

This task foresees also the design of highly-dependable interfaces and/or, adapters and/or enablers to make
heterogeneous legacy SPD solutions (protocol, standards, mechanisms, techniques, etc.) for ES nodes, networks
and middleware interwork transparently with the enhanced capabilities provided by the SHIELD approach. The
main outcome of this task will be the design of adapters to make legacy devices capable to support the SHIELD

SPD-functionalities, as well as the development of some prototypal software.

Task 5.3: Policy-based management

This task aims at designing and developing a SPD-middleware policy-based management for ensuring a high
level of security, privacy and dependability in systems composed by Intelligent ES Nodes (developed in WP3) and
based on Smart Transmissions (developed in WP4) on the base of the metrics identified in task 2.2. In order to
build specific management functionalities and procedures for accomplishing these objectives, several aspects will
be investigated and analysed. The main ones are:

 Use of policies. Policies permit the declarative specification of security strategies separately from the
implementation code of ES nodes. The use of interpreted policies allows to change the security
behaviour of a node without recoding or shutting down the node;

 Design and development of algorithms and tools to enrich the smart capabilities of the middleware and
increase its autonomy;

The outcome of task 5.3 will be integrated in the WP5 prototypes.

Task 5.4: Overlay monitoring and reacting system by security agents

This task aims to design and implement an overlay layer based on a system of reacting security agents. The
outcome of this task will be a software implementation of a security agent prototype ready to be integrated and
interwork with the rest of SHIELD architecture.
The security agent will be designed to interpret and elaborate the SPD information generated by the SHIELD
multi-layer framework. So the Security Agent produces high-level SPD information which are aggregated and
eventually shared and distributed with other Security Agents acting with different scopes to the SHIELD systems.
The high-level SPD information will be assessed with the metrics defined in task 2.2, in order to assess the SPD
level of the single layer as well as of the overall system.
The security agent will be designed and developed to build autonomously an overlay network composed by
different security agents that monitor SPD among groups of embedded system peers, networks, applications an d
services. Each security agent will interpret the information shared in the SPD system in order to discover imminent
threats, menaces and vulnerabilities. All security events of interest will be correlated with the underlying criticality
rating the targeted asset. This will results in accurate prioritization and enables fast response to the threats,
targeting most critical assets.
The security agent reacting system will be a combination of network scanning, passive network monitoring, and
integration with existing data provided by the layers. It allows the security agent to organize the network assets
into categories. This feature will permit to assign ad-hoc security policies for monitoring each application or service
component.
A multi-agent approach which combines intelligent, adaptive, autonomous and cooperative capabilities of the
agents will be developed. Teams of security agents will cooperate to monitor over time the SPD level on the whole
service chain. Therefore, in order to guarantee security and dependability in inter-agent communication, new
semantically enriched communication protocols and distributed algorithms capable of dynamically identifying
potential dangerous activities, will be analyzed and defined.
The benefits brought by semantic technologies developed in Task 5.1 will be also adopted to exploit the security
agent capability and adapt security needs and associated policies to possib le unforeseen situations.
The main outcome of this task will be the development of a software prototype (on M18 and M30) ready to be

integrated in the SHIELD platform.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 20 of 106 Issue 1

 pSHIELD outcomes 2.3

The pSHIELD pilot phase has already produced several studies and prototypes of functionalities and
components at Middleware level. The outcomes, in terms of technologies examined within the WP5, are
depicted in Figure 2.3.

Figure 2.3: pSHIELD outcomes

In particular they are:

 A methodology to derive the SHIELD semantic and a preliminary ontology in OWL language,
tailored on a significant but reduced scenario (railways domain)

 A framework that implements middleware core services for discovery, registration, orchestration
and composition of SHIELD components, developed in Java language (based on OSGI)

 An engine that performs SPD composability based on a Common Criteria-like metric

 Architectural design and performances analysis of a Policy Based approach by which the

middleware composition could be driven

 A theoretical foundation and Matlab simulations of an Hybrid Automata-based approach to drive
the SPD composition in a context-aware way

 The definition, at architectural level, of the behaviour of the Security Agent

It is evident that some work must be still done to fully achieve the Technical Annex objectives mentioned
in the previous section, in all potential scenarios, so these outcomes are only the starting point of the

prosecution of the research. nSHIELD will go further in two ways, by means of:

 Improvements: some technologies will be enriched (new or further implementation)

 Innovativeness: new technologies will be developed

The differences between the pilot phase and the full project are depicted in Figure 2.4, where the
outcomes expected from nSHIELD are highlighted.

(Generic)
Middleware

Services

Network
functionalities

Node
functionalities

SERVICE
REGISTRY

DISCOVERYCOMPOSITION

SEMANTIC DBSECURITY AGENT

ORCHESTRATION

Common
Criteria

Reasoner

Policy-Based
Manager

pSHIELD Middleware and Overlay

A
D

A
PT

ER
S

OWL/
XML

pSHIELD System

Control
Algorithms

Addressed by the pSHIELD project

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 21 of 106

Figure 2.4: nSHIELD outcomes

In particular they are:

 The enrichment of the semantic approach by means of new languages and new procedures to
represent and manage the information necessary to enable the composability

 The improvement of the SHIELD middleware core services, with the enabling of a “secure”
discovery and a “trusted” composition.

 The identification of new middleware core services, like the “choreographer” and the “intrusion
detection monitor and filter”.

 The definition of the adapters, by which the SHIELD system is able to interface the external world
(and in particular legacy devices)

 The enrichment of the Security Agent architecture, with the harmonization of all the approaches
(standardized, policy-based or context aware) that drive the composability

 The definition of the interactions between several Security Agents working together to manage

SPD in distributed environments

 The development of innovative control algorithms, based on DES and Petri Nets, to model and
control the system behaviour

 The instantiation of the Policy Based management architecture, as well as the definition of

several libraries of policies to manage SPD in different application scenarios.

 The certification of the protection profile for the SHIELD middleware (Common Criteria
compliant).

These technologies, as well as their heritage from the pilot project, will be analysed in the prosecution of
the document.

SERVICE
REGISTRY

SECURE
DISCOVERY

TRUSTED
COMPOSITION

SEMANTIC DBSECURITY AGENT

ORCHESTRATION

Common
Criteria

Reasoner

Policy-Based
Manager

pSHIELD Middleware and Overlay

Control
Algorithms

Improved/Enriched from previous phase

OTHER
SECURITY AGENTS

COREOGRAPHER

(Generic)
Middleware

Services

Network
functionalities

Node
functionalities

UML/
OWL/
JSON
…

pSHIELD System

IN
TR

U
SI

O
N

 D
ET

EC
TI

O
N

, M
O

N
IT

O
R

IN
G

 A
N

D

FI
LT

ER
IN

G

A
D

A
PT

ER
S

Addressed by the nSHIELD project

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 22 of 106 Issue 1

 Semantic technologies assessment 3

 pSHIELD results and adopted technologies 3.1

In the pilot phase the major technological achievements in semantic technologies were:

 The formalization of a procedure to define the pSHIELD model

 The design of a SHIELD ontology in OWL language

 Procedure to define the pSHIELD semantic model 3.1.1

The challenge of the SHIELD roadmap is to model the SPD context by means of semantic technologies.

This representation should be generic enough to fit as much scenarios as possible, but at the same time
to provide sufficient details for the assessment of the security aspects that generally are strictly linked to
the specific application.

To achieve these objectives, the approach derived in the pilot phase is based on three guidelines:

1. the translation of the real word into a uniform technological description.

2. the representation of functional properties by means of ontology as well

3. the identification of the relations between real/structural and functional world.

So, as depicted in Figure 3.1, the problem of modelling SPD in the context of ES is reduced to the
formulation of three different meta-models describing: i) structure, ii) functions, iii) relations between
structure and functions.

Figure 3.1: Proposed approach to model SPD for ES

In particular the metamodels that describes relations has been built by taking into account the atomic
attributes that are impacted in SPD context and mapping them in these two worlds.

The whole pSHIELD meta-model is depicted in Figure 3.2, and the prototype is available in AD4.

For all the three models, a short justification and a description are provided in the following paragraphs.

System Components
(Embedded Systems)

Security/Privacy
/Dependability relevant

functionalities

SPD
Attributes

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 23 of 106

Figure 3.2: pSHIELD meta-model

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 24 of 106 Issue 1

 Structural System meta-model 3.1.1.1

SHIELD is a framework composed by the interaction of dozens of interconnected Embedded Systems:
they constitute the “physical world”. This world is made by hardware and software components, mapped
on three layers: Node (the devices), Network (the interaction between devices) and Middleware (the

software services that make the devices run). The first semantic model captures this concept.

Figure 3.3: Structural Ontology

 pSHIELD Node Model 3.1.1.1.1

The structural ontology is the easier to model, because it is a simple description of the Embedded System
component. It contains the hardware components and basic functionalities provided by the individual
element and the related attribute, all in an SPD relevant environment. For example a node, in a first

simplification, is composed by a memory a CPU, a battery and a transmission antenna; furthermore the
CPU is characterized by the frequency and bit length and, in SPD relevant context, the possibility of

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 25 of 106

performing hardware cryptography. By doing so, all the components constituting a complex system can be

represented. The elements that constitute a node are represented in Figure 3.4 and Figure 3.5.

Figure 3.4: pSHIELD Node Model

Figure 3.5: Node hardware ontology

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 26 of 106 Issue 1

 pSHIELD Network Model 3.1.1.1.2

The network model was trivial to derive, since the only relevant information are about the topology, the

transmission medium and the typology.

Figure 3.6 pSHIELD Network Model

 pSHIELD Middleware and Overlay Model 3.1.1.1.3

The model for the Middleware services is the standard OWL-S to describe services. This choice has been
done to maximize interoperability.

Figure 3.7: pSHIELD Middleware Model

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 27 of 106

 SPD Functionalities meta-model 3.1.1.2

The SPD functionalities were modelled as composable atomic components.

Figure 3.8: SPD Functionality

A SPD Functionality can be an Atomic SPD Functionality or a Composite SPD

Functionality: the latter embodies a composite pattern (from a functional point of view it acts as a SPD

Functionality) and represents an aggregation of other SPD Functionality (possibly composite) by

means of a Connector.

Figure 3.9: Connector

The Connector stands for a mean of aggregation, and specifies:

 one of the identified patterns: A connector provides a specification of the structure of the
composition, by means of basic “control constructs” (whose names are reminiscent of control

structures in programming languages). Specific instances of connector implement the conceived
aggregations of pSHIELD SPD Metrics

 a SPDCompositionSpecification: a connector offers an analytical specification of the

algorithm that composes the SPD status values of contributing SPD functionalities into the
overall SPD status value.

Composition is modelled after analogous Composite Processes in OWL for services (OWL-S). The
following analogies have been drawn:

Table 3.1: SPD Composition modelling

SPD Composition Description
Analogous OWL-S
Control Construct

Concentric The SPD functionalities are composed serially Sequence

Concurrent
The SPD functionalities are composed separately on

different assets
Split

Parallel
The SPD functionalities protect at the same time the

same assets
Choice

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 28 of 106 Issue 1

A SPD Functionality can be measured by a SPDStatus that ultimately assesses the overall

functionality of the ES from the viewpoint of SPD.

 SPD Attributes 3.1.1.3

SPD concepts are described in terms of attributes (that assess them), threat (that affect them) and means
(that increase them).

The attributes are derived from the SPD taxonomy identified in the pilot phase (see Figure 3.10).

Figure 3.10: SPD Attributes

Following the Common Criteria approach, the SPD attributes are:

 Menaced by SPD Threats (error, failure, …)

 Improved by SPD Means (fault forecasting, tolerance, ecc.)

This is depicted in the following Figure 3.11 and Figure 3.12.

Figure 3.11: SPD Threat

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 29 of 106

Figure 3.12: SPD Mean

 Remarks 3.1.1.4

To sum UP, the following metamodels have been derived in the pilot phase:

 A section to represent system’s components

 A section to represent functional properties

 A section to represent SPD relevant information: attributes, threats, means of mitigation

Plus:

 Attributes to identify relations between system and functionalities

 Attributes to quantify SPD level

All the presented metamodels are linked by relations that allow a complete knowledge of the environment,
according to this logical chain:

1. The pSHIELD System is composed by Node, Network and Middleware elements

2. These elements are made by real hardware components and realizes some functionalities

3. Some of these components can be considered as SPD Component as well as some of these

functionalities realise SPD Functionalities

4. SPD Functionalities can be composed

5. SPD Functionalities impact SPD Attributes

6. SPD Attributes are affected by SPD Threats

7. SPD Threats can be improved by SPD Means

The logical chain is depicted also in Figure 3.13, where the dotted lines represent the separation between
the system and the user: the user drives the composability with respect to the desired SPD level, and
following the paths, all the systems elements are composed (and quantified) consequently.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 30 of 106 Issue 1

Figure 3.13: pSHIELD ontology logical chain

In conclusion, the assessment of this activity is reported below:

Table 3.2: Procedure to define the pSHIELD semantic model – ASSESSMENT

Procedure to define the pSHIELD semantic model - ASSESSMENT

Limits of this approach
to be overcome

This result was more than suitable for the demonstration purposes,

where a reduced scenario was addressed and a small set of
components and models had to be modelled. However some limits have
been identified:

 Too much queries have to be performed to go through the
whole chain: this could be a problem in scenarios with hundreds
or thousands of components and models both for memory and

time constraints.

 The metamodels associated to the physical system are too
specific, so a huge initial effort is needed to translate, into the
ontology, the description of the various components.

 The metamodels associated to the physical system are not
scalable, since the development of a new technology should be
manually updated into each component

Positive aspects to be

preserved

The part of the modelling procedure derived from the Common Criteria

(SPD Level-Attributes-Threats-Means) is linear, simple and efficient: it
allows to establish a link between the user needs and the system
behaviour, but keeps them decoupled. This logical chain should be

preserved also in the prosecution of the research.

 pSHIELD semantic technology 3.1.2

For the implementation of the pSHIELD ontology, the OWL language has been selected, after a careful
evaluation that took into account expressiveness and computational complexity (or memory usage).

System
Is made by Components

and
functionalities

SPD

Components
and SPD

functionalities

Could be

can be

composed

SPD Level SPD Attributes
Is mapped into Are affected by

SPD Threaths

SPD Means

Are countermeasured by

realise

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 31 of 106

The OWL Web Ontology Language is designed for use by applications that need to process the content

of information instead of just presenting information to humans. OWL facilitates greater machine
interpretability of Web content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing
additional vocabulary along with formal semantics. OWL has three increasingly expressive sublanguages :

OWL Lite, OWL DL, and OWL Full.

The basic reasons for decision to use of OWL for modelling in pSHIELD are:

1. OWL extends all other languages like XML, RDF, and RDF-S. Actually, OWL has been developed
on top of the existing XML and RDF standards, which did not appear adequate for achieving

efficient semantic interoperability.

a) E.g. in XML and XML Schema same term may be used with different meaning in different

contexts, and different terms may be used for items that have the same meaning.

b) E.g. RDF and RDF-S address some problem by allowing simple semantics to be

associated with identifiers. With RDFS, one can define classes that may have multiple
subclasses and super classes, and can define properties, which may have sub-
properties, domains, and ranges. However, in order to achieve interoperation between

numerous, autonomously developed and managed schemas, richer semantics are
needed, like disjoints and cardinality of relations.

2. OWL adds more vocabulary for describing properties and classes, relations between classes,
cardinality, equality, richer typing of properties, characteristics of properties and enumerated
classes, and all available in three increasingly expressive and increasingly complex

sublanguages (Lite, DL, Full) designed for use by specific communities of implementers and
users.

3. OWL is well-known widely used open W3C standard with very good support and promising
potential and real usage in several industry applications.

4. OWL has wide support of modelling tools, platforms, and reasons.

5. Previous languages could express (in most cases) the same things, but for some of them OWL

provide direct solution by a predefined type of predicates.

6. There are several well-known mechanisms for expressing OWL-Lite and OWL-DL ontologies to

stay on decidable level, where Description Logic (DL) could be used correctly.

7. OWL language has proved its potential to use for modelling of semantic interoperability in several

middleware-based applications and domains.

In pSHIELD the same OWL-based framework can be used for representation of context, device

descriptions (capabilities), descriptions of middleware components, services, security aspects, with
several specific goals such as:

1. Semantic reasoning based on ontology model may carry out a reconciliation of heterogeneous
formats of parameters exchanged between different layers (also suitable for interaction with
legacy agents).

2. The semantic characterization of the behavioural aspect of components makes it suitable for an
agent to determine “what the service does”.

3. The semantic characterization of the composition of functionalities and of the relations among
them makes it suitable for an agent to reason about SPD metrics of the current configuration and

- if needed - to carry out reconfigurations of the system at run-time, by means of rule-based
combination / composition of components and SPD technologies, in order to achieve the new
intended values for SPD metrics.

The ontology has many merits, of which the most notable are the excellent extensibility, and high
expression power. Many systems in the “ubiquitous” and embedded environments are being developed

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 32 of 106 Issue 1

using DL-based ontologies and used with DL-based reasoning. Usually, ontologies are used for modelling
context that the systems should collect and analyse. A pure DL-based approach, however, has certain

limitations in a context environment. OWL and other ontology languages based on Description Logic
cannot properly handle rules expressed in Horn-Logic. Hence, to ensure syntactic and semantic
interoperability on device level (e.g. “low-level” ontologies), SWRL (Semantic Web Rule Language) or

Jena can be used for expressing rules.

The final implementation of the pSHIELD OWL was an XML file, easy to be imported by the middleware

and semantic parses. The full XML code of the pSHIELD ontology can be found in AD4 (a screenshot is
provided in Figure 3.14).

Figure 3.14: pSHIELD OWL (XML File)

The assessment of this technology is reported in the following:

Table 3.3: pSHIELD semantic technology – ASSESSMENT

pSHIELD semantic technology - ASSESSMENT

Limits of this approach
to be overcome

The OWL language used in pSHIELD showed to be adequate for
the railways demonstration purposes, where discrete

computational capabilities were available; however it could not fit
all the possible application, due to the reduced memory and
computational capabilities of ESs. A new way of representing the

ontology and the metamodels is needed.

Positive aspects to be

preserved

The translation of the model into an XML file is scalable and
versatile, so it will be for sure a constant also in the technological
choices for the nSHIELD project.

 <?xml version="1.0"?>

<!DOCTYPE rdf:RDF

[…]

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1300273978.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1300273978.owl"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

 xmlns:Ontology1300273978="http://www.owl-ontologies.com/Ontology1300273978.owl#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:TCP="&Ontology1300273978;TCP/">

 <owl:Ontology rdf:about="">

 <owl:imports rdf:resource="http://protege.stanford.edu/plugins/owl/protege"/>

 </owl:Ontology>

 <!--

 ///

 //

 // Object Properties

 //

 ///

 -->

 <!-- http://www.owl-ontologies.com/2005/08/07/xsp.owl#minExclusive -->

 <owl:ObjectProperty rdf:about="&xsp;minExclusive">

 <rdfs:domain rdf:resource="&rdfs;Datatype"/>

 </owl:ObjectProperty>

 <!-- http://www.owl-ontologies.com/Ontology1300273978.owl#HasAutorization -->

 <owl:ObjectProperty rdf:about="#HasAutorization"/>

 […]

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 33 of 106

 nSHIELD potential investigations 3.2

NOTE: Starting from this paragraph and for all the others related to nSHIELD investigation, the text from

the Technical Annex (shadowed boxes), as well as the user/scenario needs (rounded boxes), will be
reported as justification of the technological investigations.

Figure 3.15: Technical Annex text box (left) and user/scenario bullet (right)

 Proposed procedure to define the SHIELD semantic model 3.2.1

The biggest limitation of the pSHIELD approach (Table 3.2) was the high
number of models and their strict relation with the physical system (i.e.
great effort to build a knowledge base that, at last, is not scalable). The

only way to overcome this complexity is by simplifying the information
through abstraction: only a subset of information has to be selected, applicable to all the devices and
components, and then they have to be represented in the same way, no matter whether they are software

or hardware technologies, middleware, node or network component. A
uniform, simple and abstract model thus enables the interoperability, for
composability purposes, between SPD technologies. But what happens to

the non-uniform information?

There are, indeed, a plenty of information in the system description that cannot be abstracted or

represented in a uniform way (metrics, measurements, topology, architectural dependencies, …); for that
reason, in order to preserve the completeness of the knowledge representation, a second model should
be added to the former, containing all those information related to the specific application scenario or

underlying technology that cannot be abstracted.

A decoupling procedure will be adopted to translate the three pSHIELD metamodels into two new SHIELD

metamodels:

 a technology independent one, plus

 a domain library.

This is the only reasonable solution, since it is not feasible to imagine a unique representation of a domain
as complex as the Embedded Systems one, mainly due to the scalability and expressiveness problems

identified in the assessment.

The first model will feed the composability computation, while the second one will drive the composability
implementation.

[…] In this task semantic technologies will be developed to address the interoperability among different SPD
technologies. A semantic ontology will be defined to describe the SPD components and functionalities, to describe
the metrics and the exchanged information between the node, network, middleware and overlay layer. […]

Manage Heterogeneous
Technologies

[…] In this task semantic technologies will be developed to address the interoperability among different SPD
technologies. A semantic ontology will be defined to describe the SPD components and functionalities, to describe

the metrics and the exchanged information between the node, network, middleware and overlay layer. […]

Manage Heterogeneous

Technologies

Technology independent
abstraction

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 34 of 106 Issue 1

Figure 3.16 Decoupling of the pSHIELD ontology

The decoupling process is depicted in Figure 3.16. The three original metamodels are split in two halves:

 the model describing the structure of the component, as well as the model describing the SPD

functionalities, are split into SPD and NON-SPD models
3
, while

 the attributes models is considered as domain specific model.

This is in line with what is expected from the Technical Annex.

In the following Figure 3.17, a better explanation of the SHIELD semantic model is provided. In particular

the components identified at the three canonical layers (node, network and middleware) are translated
into a unique, atomic, uniform element named Abstract SPD Functionality that identifies:

 A SPD functionality

 The associated SPD value

 The relations with other SPD functionalities

 The constraints that limit the composition possibilities.

All the remaining information are transferred into the domain knowledge bases, including deployment/

architectural dependencies, metrics evaluation, policies, etc.

3
 NON-SPD information are mainly functional information

ATTRIBUTES

FUNCTIONAL

STRUCTURAL

SPD ABSTRACTION

Technology

Independent

Abstraction

Domain

dependent

Libraries

SPD FUNCTIONALITY

ATTRIBUTES

SPD COMPONENT

NON-SPD
FUNCTIONALITY

NON-SPD COMPONENT

Technology

Independent

Abstraction

Domain

dependent

Libraries

DOMAIN DEPENDENCIES

Technology

Independent

Abstraction

Domain

dependent

Libraries

[…] In order to build the target functionalities a modular approach will be followed by partition the features of the
middleware in abstract SPD modules. Each module will be a collection of conceptually similar functions that
provide services to other modules or layers: the SPD modules will be characterized to be dynamically

composable. […]

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 35 of 106

Figure 3.17: SHIELD semantic models

The logical chain identified in the pilot phase is still valid (and simplified, as needed from the assessment).
It is depicted in Figure 3.18.

Figure 3.18: SHIELD ontology logical chain

As an example of the new semantic abstraction, we will consider cyphering (see Figure 3.19). This can be
done either by hardware or software modules, but their abstract representation will be the almost same: a
box named cyphering. Then, the cyphering performed by HW, will have an input relation with, for

example, the power management functionality, since the availability of power resources could affect the
possibility of performing cyphering or not; while the cyphering performed by software module doesn’t have
input relations with other functionalities.

Figure 3.19: Example of technology abstraction

Application
Scenario

Peculiarities

Topologycal/
Architectural
Information

SPD
Functionality
(SPD Value)

Relation with other
SPD functionalities

Receives

inputs

Sends

Inputs

Constraints

Technology
Independent

Abstraction

Technology
Dependent

Components and

Functionalities

Scenario
Dependent

Informations

Node
Technologies

Network
Technologies

Middleware
Technologies

Policies

Architecturale
dependencies

and
constraints

Domain Libraries

x

x

x

x

Abstract SPD Functionality

System

Is abstracted

into
Technology

Independent
SPD

Functionalities

can be

composed

SPD Level SPD Attributes
Is mapped into

Are affected

by
SPD Threats SPD Means

Are counter-

measured by

are

realized
by

realize

Cyphering
(SPD Value)

Is affected by

Power
Management
Functionality

HW Cyphering SW Cyphering

Affects the

data
redundancy
transmission

No

dependencies

Cyphering
(SPD Value)

Not affected

by any
functionality

Affects the

data
redundancy
transmission

Dependencies with the

amount of available memory

x

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 36 of 106 Issue 1

Secondly, all the functionalities affect the network data redundancy module, since they may introduce
overhead and increase the bandwidth occupied by the transmitted data.

Finally, the HW cyphering doesn’t have architectural dependencies (i f there is a CPU able to perform
cyphering, then it can do it), while the SW cyphering has an architectural (NON-SPD) constraint related to

the memory usage of the cyphering routine.

This constraint is stored in the domain knowledge base, together with the SPD value of the component

that depends on several (domain related) aspects. For example a cyphering module that sends data from
two components of a camera for railways surveillance is affected by physical menaces, while the same
module installed on a flying UAV is very difficult to be physically attacked.

Further semantic studies lie on the above mentioned models. A couple are reported in the following
paragraphs.

 An example of technological abstraction: the algebra of connectors 3.2.1.1

The main benefit of the technology independent abstraction is the possibility to define algebras to model
the composability of SPD functionalities. In fact, given a uniform model (like the one defined in Figure
3.17), there are many ways to model their relations (with the perspective of feeding the control algorithm

at overlay level). In particular a promising research field has been identified, based on the theory of
connectors (i.e. the possibility of modelling interconnected uniform components) developed in computer
science.

In recent years, computer science researchers shift their focus from traditional isolated computing system
to massively distributed communication ones. The modern communication technologies have entailed the

conceptual separation between coordination and computation in distributed computing system. This
separation should be noted in different levels of abstraction, such as architecture, software, process, etc.,
where concepts like heterogeneity and reusability require modular specifications, theories and models.

In this scenario, the concept of connector has emerged to interact and interoperate small functionalities
and services that are separately developed. Connectors are the glue code that takes care of all those

aspects.

To analyse interconnected and distributed systems is crucial to have good mathematical foundations.

Several connector categories have been studied in the literature and all bring out the common definition of
connector: “a component that mediates the interaction of other computational components and
connectors” [83]. Typically, connectors have been studied within two important frameworks for system

modelling categorical and algebraic approaches (see for example [84] for categorical approach and
[85],[86] for algebraic approach).

In the categorical approach, the systems are represented with the objects in a category and the sub
system and the relations are developed through morphisms.

In the algebraic approach, systems are implemented through a suitable algebra. This has only basic
components that can be used to achieve the other operators and complex systems.

Several papers [83], [87], [88] offer different algebraic approaches with simple basic components.

For example, in [83] the authors present a basic algebra of stateless connectors using syntax with only

five basic connectors and its duals (see Figure 3.20).

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 37 of 106

Figure 3.20: Example of basic semantic in [1]

Moreover, in [87] the authors define another semantic with six primitive, but with different approach of the
basic elements. Figure 3.21 shows the primitive of this algebra.

Figure 3.21: Example of basic semantic in [12]

All of these aforementioned documents establish that there is not a single algebra, but this is developed
ad hoc for a single scenario aiming to model systems where multiple actions can be executed at each
time, either independently or synchronized.

The main benefit of the development of connector algebra, or at least composition formalism, is the
possibility to evaluate the individual contribution of the SPD component to the overall SPD. This approach
should provide the SPD quantification framework, since the SPD

quantification/evaluation rules or algebra is in charge of WP2 and the framework
should be independent from the specific quantification/evaluation process.

 An example of domain knowledge base: IDS Ontologies 3.2.1.2

The technology independent ontology is mainly used for composability purposes, with the enrichment of

domain knowledge base. However this domain related knowledge base can be used also to perform other
SPD relevant activities that enrich the SHIELD behaviours. An interesting application that will be analysed
in the nSHIELD project is the possibility of using ontologies to perform intrusion detection (eve in this task

is already in charge to the middleware core services).

Intrusion detection systems (IDS) can be defined as a set of different scanners that monitor the activities

of an information system looking for malicious actions. An IDS is not an antivirus designed to detect
malware or a first line barrier like firewall, it is a detection system that identifies anomalous activities,
alerts about them and optionally takes reactive actions to sub sane them.

We can classify the different kind of existing IDS based on the following criteria:

 Host-based versus Network-based: The IDS agents can be installed inside hosts, and they run
apart from the normal functionalities of host, monitoring the activities inside the host. These are
called Host intrusion detection system (HIDS).

Assess overall

security

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 38 of 106 Issue 1

Instead in Network intrusion detection system (NIDS), the agents are installed in special devices
and monitor the network traffic. Usually these devices are completely transparent for the network

because they do not answer to any link layer or network layer addresses, i.e., they operate as
passive devices. If they need to communicate with reporting or management systems, they
usually have a second link to a different network (the management network).

 Centralized versus Decentralized: In centralized IDS there is an agent that collects and analyses
all the anomalous activities of the whole system and sends alerts or takes actions depending on
the result the analysis.

On the other hand, decentralized IDS are composed of several agents that run independently and
collect and analyse their own anomalous activities, taking their own measures. This type of IDS is
more resistant and versatile, but also more complicated to configure and maintain.

 Type of analysis used to detect anomalous activities: In misuse-based analysis the IDS agent
compares the data from the monitored system with known malicious patterns stored in its attack
database. If it finds a match it will raise an alarm (an optionally adopt a counter measure). On the
other hand, in anomaly-based analysis the IDS agent compares the monitored system activity

with the normal behaviour that it is supposed to have (this normal behaviour is usually modelled
beforehand).

In the scope of the project, the IDS will be the first safety barrier for possible attacks against the system,

warning of possible attacks to maintain reliability and availability of the network.

In the recent years, some people have started to develop methods which separate the design process into

a high level and a low level phase, helping the developer to design more powerful network intrusion
detection.

As Hung et al. [76] affirm, these approaches define methodologies for designing an intrusion detection
application which meets the end-user requirements. However, they do not express the modelling of the
intrusion detection application in terms of the domain of interest. They posit that it is important not only to

corporate the terminology of a domain but also to make sure that domain expert with this terminology of
the domain can fully exploit his/her domain expertise for designing his/her intrusion detection application.

Undercoffer et al. [77,78] were the first to propose ontologies for intrusion detection. From the point of
taxonomy, the intrusion detection can be considered as possessing many characters and classifications
and it needs a language that describes instances of that taxonomy. The language is paramount to the

effectiveness of the intrusion detection system because information regarding an attack or intrusion needs
to be intelligently conveyed, especially in distributed environments.

After the initial proposal from Undercoffer et al., several authors have proposed different or more detailed
ontologies. We can cite the following ones as especially relevant in the context of the project:

 The previously cited Hung et al. [76]

 The work from Abdoli and Kahani[79]

 The work from Isaza et al[80, 81]. These authors not only define an ontology for IDSes but they
also define a methodology [82] called METHONTOLOGY to develop the ontology.

They affirm that they use METHONTOLOG because in different studies it is considered one of the most
mature methodologies that seek to follow the life cycle of the software proposed in the IEEE 1074

standard, which is recommended by the Foundation for Intelligent Physical Agents (FIPA). The
methodology not only incorpores the description of the attack taxonomy, but also axioms and rules
describing the attacks.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 39 of 106

 Proposed SHIELD semantic technologies 3.2.2

The limits of the OWL used in the pilot phase have been identified in Table 3.3, so new languages should

be examined to ease i) the design of the SHIELD metamodels and ii) the implementation of the SHIELD
metamodels into demonstrators.

Two candidate technologies will be studied, to face these issues.

 MARTE DAM UML 3.2.2.1

pSHIELD ontology was developed using ER diagrams translated into OWL files with Protégé software
(see Figure 3.22).

Figure 3.22: pSHIELD semantic model design from ER to OWL

This is not user friendly enough, so the adoption of UML as modelling language of the SHIELD semantic
model will be considered. In particular there is a specific profile, named MARTE

4
 DAM

5
 UML, that

enriches the UML language with the possibility of modelling information and attributes related to the

embedded systems domain in safety-critical application and in dependability analysis (see for an
example).

In is interesting to underline that the DAM profiles foresees specific constructs that follows the logical
chain defined in the SHIELD project (Figure 3.18), since it includes construct to define menaces, threats,
faults and their attributes.

4
 Modeling and Analysis of Real-Time and Embedded systems

5
 Dependability Analysis and Modeling

class SPDconcepts

SPD Functionality

SecurityDependability

Av ailability

Reliability

Safety Confidentiality MaintainabilityIntegrity

«abstract»

SPDConcept

«abstract»

SPDAttribute

«abstract»

SPDThreat

«abstract»

SPDMean

Fault

Error

Failure

FaultsPrev etion

FaultsForecasting

FaultsTolerance

FaultsRemov al

supports

isAffectedBy

isIncreasedBy

isAssessedBy

[…] The outcome of this task will be a lightweight common semantic languages derived by standard ones (OWL)
in order to be easily processed in the embedded system world where the processing unit are limited in power and

resources. The semantic ontology will be part of the prototypes delivered by WP5. […]

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 40 of 106 Issue 1

Figure 3.23: MARTE DAM UML example

 JSON 3.2.2.2

The versatility of XML as language to translate the SHIELD semantic models has been widely proved in

the pilot phase, so XML will be the basis also of the nSHIELD project. However a second language will be
investigated, specific for lightweight application. The following text is reported from the official JSON
initiative

6

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read
and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript

Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON is a text format that is
completely language independent but uses conventions that are familiar to programmers of the C-family
of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties

make JSON an ideal data-interchange language.

JSON is built on two structures:

 A collection of name/value pairs. In various languages, this is realized as an object, record, struct,
dictionary, hash table, keyed list, or associative array.

 An ordered list of values. In most languages, this is realized as an array, vector, list, or sequence.

These are universal data structures. Virtually all modern programming languages support them in one
form or another. It makes sense that a data format that is interchangeable with programming languages
also be based on these structures.

In JSON, they take on these forms:

6
 http://w w w .json.org/

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 41 of 106

An object is an unordered set of name/value pairs. An object begins with { (left brace) and ends

with } (right brace). Each name is followed by : (colon) and the name/value pairs are separated

by , (comma).

Figure 3.24: JSON object

An array is an ordered collection of values. An array begins with [(left bracket) and ends with] (right
bracket). Values are separated by , (comma).

Figure 3.25: JSON array

A value can be a string in double quotes, or a number, or true or false or null, or an object or an array.

These structures can be nested.

Figure 3.26: JSON value

A string is a sequence of zero or more Unicode characters, wrapped in double quotes, using backslash
escapes. A character is represented as a single character string. A string is very much like a C or Java

string.

Figure 3.27: JSON string

A number is very much like a C or Java number, except that the octal and hexadecimal formats are not
used.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 42 of 106 Issue 1

Figure 3.28 JSON number

Whitespace can be inserted between any pair of tokens. Excepting a few encoding details, which

completely describe the language.

The main usage of these languages is, for example, in embedded system domain, where low powered

devices (like the Arduino platform
7
) can exchange information in an efficient way with this lightweight

semantic.

7
 w w w .arduino.cc

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 43 of 106

 SHIELD middleware core SPD services assessment 4

 pSHIELD results and adopted technologies 4.1

In the pilot project it has been chosen to implement a reduced but significant set of core SPD services as

enabling of the pSHIELD middleware behaviour. The core SPD services aim to provide a SPD
middleware environment to actuate the decisions taken by the SHIELD Overlay and to monitor the Node,
Network and Middleware SPD functionalities of the Embedded System Devices under the SHIELD

Middleware Adapter control. The selected core SPD services are (see Figure 3.1):

 service discovery;

 service composition;

 service orchestration.

Figure 4.1: Core SPD services selected for the pilot project

 pSHIELD discovery engine 4.1.1

Service discovery is the service that allows any SHIELD Middleware Adapter to discover the available
SPD functionalities and services over heterogeneous environment, networks and technologies that are

achievable by the SHIELD Embedded System Device where it is running. Indeed the SHIELD secure
service discovery uses a variety of discovery protocols (such as SLP

8
, SSDP

9
, NDP

10
, DNS

11
, SDP

12
,

8 IETF Service Location Protocol V2 - http://www.ietf.org/rfc/rfc2608.txt
9 UPnP Simple Service Discovery Protocol - http://upnp.org/sdcps-and-certification/standards/
10 IETF Neighbour Discovery Protocol - http://tools.ietf.org/html/rfc4861
11 IETF Domain Name Specification - http://www.ietf.org/rfc/rfc1035.txt
12 Bluetooth Service Discovery Protocol

Heterogeneous SPD-relevant
parameters and measurements

pSHIELD Network Layer

pSHIELD Middleware Layer

SPD Security Agent

Rules for discovery
and composition

Other SPD Security
Agents

Exchanged
metadata

pSHIELD Overlay
Layer

pSHIELD Node Layer

Commands for composition and
configuration of SPD modules

Semantic
Knowledge
Repository

Sensed
Metadata

Application Scenario

pSHIELD Node Adapter

Control algorithms

Elaborated Metadata

pSHIELD Network Adapter

Legacy Node
Capabilities

Legacy Network
Capabilities

Innovative SPD
Functionalities

Innovative SPD
Functionalities

pSHIELD Middleware Adapter

Le
ga

cy
M

id
d

le
w

ar
e

C
ap

ab
ili

ti
e

s

Core SPD Services

Discovery

Composition

Orchestration

Innovative SPD Functionalities

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 44 of 106 Issue 1

UDDI
13

) to harvest over the interconnected Embedded System Devices (ESDs) all the available SPD
services, functionalities, resources and information that can be composed to improve the SPD level of the

whole system. In order to properly work, a discovery process must tackle also a secure and dependable
service registration, service description and service filtering. The service registration consists in
advertising in a secure and trusted manner the available SPD services. The advertisement of each

service is represented by its formal description and it is known in literature as service description. The
registered services are discovered whenever their description matches with the query associated to the
discovery process, the matching process is also known in literature as service filtering. On the light of the

above a SPD services discovery framework is needed as a core SPD functionality of a pSHIELD
Middleware Adapter. Once the available SPD services have been discovered, they must be prepared to
be executed, assuring that the dependencies and all the services preconditions are validated. In order to

manage this phase, a service composition process is needed.

The discovery engine developed for the pSHIELD purposes is depicted in Figure 4.2 and is composed by

the following bundles:

 Discovery Engine Bundle: it is in charge to handle the queries coming from the

IGenericDiscovery() interface. The Discovery Engine Bundle manages the whole discovery
process and activates the different functionalities of the Discovery service. It calls the
IQueryPreprocessor() interface to enrich semantically and contextually the query. After that the

query is sent to the different underlying discovery protocols, by means of the IServiceDiscovery()
interface, to harvest over the interconnected systems all the available SPD components. Finally
the list of discovered services is sent to the Filter Engine Bundle using the IServicesFilter()

interface to discard those components not matching with the enriched query.

 Query Pre-processor Bundle: it is in charge to enrich the query sent by the Discovery Engine
with semantic information related to the peculiar context. The query pre-processor can be
configured by the SPD Security Agent to take care of the current environmental situation using

the IConfigureContext() interface;

 Discovery Protocol Bundle: it is in charge to securely discover all the available SPD components
description stored in the Service Registry Bundle, using a the findServices() interface;

 Filter Engine Bundle: it is in charge to semantically match the query with the descriptions of the
discovered SPD components. In order to perform the semantic filtering, the Filter Engine can
retrieve from the Semantic DB the information associated to the SPD components, by means of

the getOntology() interface.

13 OASIS Universal Description Discovery and Integration - http://www.uddi.org/pubs/uddi_v3.htm

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 45 of 106

Figure 4.2: Discovery engine structure

The assessment of this technology is reported below:

Table 4.1: pSHIELD discovery engine – ASSESSMENT

pSHIELD discovery engine - ASSESSMENT

Limits of this
approach to be
overcome

The discovery engine developed for pSHIELD application scenario
is good to perform composability, but is not able to increase the
SPD level of the system, since it introduces by itself a set of

vulnerabilities. These vulnerabilities must be faced either with the
adoption of “secure” discovery protocols, or with the introduction of
additional functionalities.

Positive aspects
to be preserved

The discovery engine is independent from any underlying

discovery protocol, and this eases its implementation in a real
environment. This feature must be preserved.

 pSHIELD composition engine 4.1.2

Service composition is in charge to select those atomic SPD services that, once composed, provide a

complex and integrated SPD functionality that is essential to guarantee the required SPD level. The
service composition is a SHIELD Middleware Adapter functionality that cooperates with the SHIELD
Overlay in order to apply the configuration strategy decided by the Control Algorithms residing in the

SHIELD Security Agent. While the Overlay works on a technology independent fashion composing the
best configuration of aggregated SPD functionalities, the service composition takes into account more
technology dependent SPD functionalities at Node, Network and Middleware layers. If the Overlay

decides that a specific SPD configuration of the SPD services must executed, on the basis of the services’
description, capabilities and requirements, the service composition process ensures that all the
dependencies, configuration and pre-conditions associated to that service are validated in order to make

all the atomic SPD services to work properly once composed.

The discovery engine developed for the pSHIELD purposes is depicted in Figure 4.3 and is composed by

the following bundles:

 Composition Engine Bundle: it is in charge to compose the discovered bundles accordingly with

the composition rules determined by the SPD Security Agent. Once the SPD Security Agent

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 46 of 106 Issue 1

communicates through the runBundle() interface the necessity to run a composed functionality,
the Composition Bundle use the findServices() interface to discover any suitable SPD component

to be composed. Then the Composition Bundle compose the available bundles (taking care of
the inter-bundle dependencies and the API-IMPL relationships) and uses the start(), stop(),
install() and remove() interfaces provides by the Orchestrator (that is the OSGi framework itself).

Figure 4.3: Composition Bundle

The assessment of this technology is reported below:

Table 4.2 pSHIELD composition engine – ASSESSMENT

pSHIELD composition engine - ASSESSMENT

Limits of this

approach to be
overcome

The pSHIELD composition engine performs a valid composition of
services, but as for the discovery engine, it increases the vulnerability of
the system, in case an attacker forces the activation of malicious bundles.

A mechanism to assure a trusted composition is needed.

Positive aspects

to be preserved

The composition mechanism is decoupled from the composition
orchestration, so it is reduced to the implementation of the decision taken
from other modules. This eases the deployment, while preserving the

modularity and scalability of the “intelligent part” that drive the
composability (e.g. it works either with a choreographer or with an
orchestrator).

 pSHIELD orchestration engine 4.1.3

Service orchestration is in charge to deploy, execute and continuously monitor those SPD services which
have been discovered and composed. This is part of the pSHIELD Middleware Adapter functionality.
While service composition works “off-line” triggered by an event or by the pSHIELD Overlay, service

orchestration works “on-line” and is continuously operating in background to monitor the SPD status of the
running services.

 The OSGi framework 4.1.3.1

Considering the possible available SOA open solutions, our decision was to select OSGi as the reference

service platform to develop the proof-of-concept demonstrator (and to realise the service orchestration).
The main reasons leading to this decision were:

 OSGi is an open standard;

 OSGi has a number of open source implementation (Equinox, Oscar, Knopflerfish);

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 47 of 106

 OSGi can be executed even over lightweight nodes (Embedded Systems Devices);

 OSGi has been implemented using different programming languages (e.g. Java, C, C#);

 The Java implementations of OSGi is fast to deploy and it is much easier to learn, facilitating even

an active and collaborative prototype deployment among partners;

 OSGi plugins are available for a number of IDE tools (i.e. Eclipse, Visual Studio, etc.);

 OSGi can be easily deployed in Windows (XP, 7, Mobile), Linux, MAC and Google (Android)

OSes.

More in particular we decided to use the open source Knopflerfish OSGi service platform. Knopflerfish
(hereafter referred as to KF) is a component-based framework for Java in which units of resources called
bundles can be installed. Bundles can export services or run processes, and have their dependencies

managed, such that a bundle can be expected to have its requirements managed by the container. Each
bundle can also have its own internal classpath, so that it can serve as an independent unit, should that
be desirable. All of this is standardized such that any valid Knopflerfish bundle can be installed in any

valid OSGi container (Oscar, Equinox or any other).

Basically, running OSGi is very simple: one grabs one of the OSGi container implementations (Equinox,

Felix, Knopflerfish, ProSyst, Oscar, etc.) and executes the container's boot process; much like one runs a
Java EE server. Like Java EE, each container has a different start -up environment and slightly different
capabilities. The KF environment can be downloaded here: http://www.knopflerfish.org/

The KF start-up environment is shown below in Figure 4.4.

Figure 4.4: pSHIELD service orchestration engine: the Knopflerfish start-up environment

One of the most important peculiarities of the KF OSGi is that it already offers a standard orchestration

environment that, once correctly setup, can act as the pSHIELD Orchestrat ion Core SPD Service. Thus
the Orchestration functionalities come for free when using an OSGi framework, instead of using other
SOA implementations.

In conclusion, the assessment of this activity is reported below:

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 48 of 106 Issue 1

Table 4.3: pSHIELD orchestration engine – ASSESSMENT

pSHIELD orchestration engine - ASSESSMENT

Limits of this
approach to be
overcome

The orchestration is a centralized approach that may introduce a
single failure point, in case the orchestrator fails. This risk has to be

mitigated either by physical redundancy or by the adoption of
distributed approaches.

Positive aspects

to be preserved

The OSGI Framework represents a solid base for the SHIELD
Middleware implementation. The developed bundles, being written

in Java language, are interoperable with other technologies by
definition.

 pSHIELD data and metadata management 4.1.4

The core services data management is an important issue, since the middleware should be provided with

all the necessary information to activate services in a SPD/Context aware way. This has been achieved
by decoupling the data management in two elements:

 Service Registry Bundle: it is in charge to store the bundle (i.e. SPD component) description in
terms of provided functionalities, interfaces, semantic references, etc... Any pSHIELD Node,
Network or Middleware layer component can be registered here to be discovered by its own

proper pSHIELD Adapter. The Adapter registers each bundle as a service

 Semantic DB Bundle: it is in charge to store properly the semantic set by each Adapter Bundle.
The stored ontologies contain all the information to compose the available Innovative SPD
functionalities. The Semantic DB Bundle provides access to the SHIELD ontologies.

This is depicted in Figure 4.5

Figure 4.5: Middleware core service data management

The service registry bundle has been implemented with OWL-S. OWL-S, is the result of a collaborative
effort by researchers at several universities and organizations, including BBN Technologies, Carnegie

Mellon University, Nokia Research Centre, Stanford University, SRI International , USC Information
Sciences Institute, University of Maryland, Baltimore County, University of Toronto, Vrije Universiteit
Amsterdam, University of Southampton, De Montfort University and Yale University.

OSGi Framework (ORCHESTRATION)

DISCOVERY
BUNDLE

ADAPTER
BUNDLE

SPD SECURITY AGENT
BUNDLE

SERVICE
REGISTRY
BUNDLE

SEMANTIC DB
BUNDLE

COMPOSITION
BUNDLE

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 49 of 106

The first approach for Semantic Web services has been provided by OWL-S [99, 100]. Using OWL as the

description language, OWL-S defines an upper ontology for semantically describing Web services that is
comprised of three top-level elements: A service in OWL-S is described by means of three elements, as
shown in Figure 4.6.

1. The Service Profile describes what the service does. It explains what the service accomplishes,
details limitations on its applicability and quality of service, and specifies requirements the

service requester must satisfy to use it successfully. This information is used by consumers
during the discovery of the service.

2. The Service Process Model describes how to use the service. It details the semantic content of

requests, the conditions under which particular outcomes will occur, and, where necessary, the
step-by-step processes leading to those outcomes.

3. The Service Grounding specifies the details of how to access/invoke a service. It includes

communication protocol, message formats, serialization techniques and transformations for each
input and output, and other service-specific details such as port numbers used in contacting the
service [103].

Figure 4.6: OWL-S Service Description Elements

Therewith, OWL-S provides a model for semantically describing Web services and serves as a basis for
various research and development activities on Semantic Web service technologies [101]. However,

OWL-S is criticized for conceptual weaknesses and incompleteness: the meaning of the description
elements is not clearly defined and thus used ambiguously, leading to misinterpretations and incompatible
service descriptions; furthermore, although OWL-S allows other languages like KIF and SWRL for process

descriptions besides OWL, their formal intersection is not defined, hence a coherent formalism for
semantically describing Web services is not provided [102]. However, the OWL-S provides developers
with a strong language to describe the properties and capabilities of Web Services in such a way that the

descriptions can be interpreted by a computer system in an automated manner [103]. In the following, we
briefly summarize the underlying standard ontology language OWL and then present each of the main
elements of OWL-S service descriptions.

The information provided by an OWL-S description includes

 ontological description of the inputs required by the service

 outputs that the service provides

 preconditions and post conditions of each invocation

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 50 of 106 Issue 1

The goal of OWL-S is to enable applications to discover, compose, and invoke Web Services dynamically.
Dynamic service discovery, composition, and invocation will allow services to be introduced and removed

seamlessly from a services-rich environment, without the need to modify application code. If the
information it needs to achieve its goals can be described in terms of an ontology that is shared with
service providers, an application will be able to detect new services automatically as they are introduced

and adapt transparently as the programmatic interfaces of services change. Although it is not the only
technology being pursued to support dynamic environments, OWL-S is far enough along in its
development to be used as a proof of concept, if not a potential solution.

Consequently, the emerging concept of Semantic Web services aims at providing more sophisticated
Web Service technologies along with support for the Semantic Web. Mentioned first in [104] and [105],

Semantic Web services shall utilize ontology’s as the underlying data model in order to support semantic
interoperability between Web services and its clients and apply semantically enabled mechanisms for
automated discovery, composition, conversation, and execution of Web Services. Therefore, exhaustive

description frameworks are required that define the semantic annotations of Web services needed for
automatically determine their usability.

The semantic DB bundle has been simply populated with the ontology developed for pSHIELD purposes
(see previous section).

The assessment of this technology is reported below:

Table 4.4: pSHIELD data and metadata management – ASSESSMENT

pSHIELD data and metadata management - ASSESSMENT

Limits of this

approach to be
overcome

The data management mechanism adopted for the pilot phase worked

very well and was able to produce solutions as expected. However, in
order to enrich the potentiality of the SHIELD composability, it could
be useful to enrich the information stored or exchanged at middleware

level (this is strictly related to the development of the new SHIELD
semantic models).

Positive aspects
to be preserved

The decoupling architecture for data management should be
preserved, as well as the use of a standard for service description

(OWL-S)

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 51 of 106

 nSHIELD potential investigations 4.2

 SHIELD secure service discovery and delivery 4.2.1

In distributed networks it is imperative to have services discovered, composed and delivered to legitimate

service users in a secure way. The same principle applies to embedded systems as well, with the added
complexities that are imposed by their heterogeneous and resource-constrained nature.

 The OASIS Standards 4.2.1.1

The Organization of Structured Information Standards (OASIS, [1]) has focused on standardizing web

services provision and has gradually released a number of related standards. Many of these enjoy wide
support from industry leaders and are already used in various applications, including current versions of
software by Microsoft, Sun Microsystems, Oracle, Apache, RSA Security Inc., Verisign etc.

 WS-Security 4.2.1.1.1

The Web Services Security Specification (WS-Security or WSS, [2]) is part of the WS-* family of
specifications published by OASIS. It was originally developed by IBM, Microsoft and Verisign and was

presented on April 2002 as an extension to SOAP aiming at providing end-to-end security to web services
(mainly via the use of XML Digital Signature and XML Encryption). The current version is 1.1 which was
released on February 2006.

The protocol specifies enhancements to existing SOAP messaging, integrating security features in the
header of SOAP messages (working in the application layer), in order to provide additional security-

related functionality such as message-level confidentiality, integrity and authentication to SOAP
messages. The main mechanisms detail signing SOAP messages (integrity, non-repudiation), encrypting
SOAP messages (confidentiality) and attaching security tokens to SOAP messages (authentication).

There is a variety of supported encryption, signature and security token formats. The latter include SAML
Assertions [3], Kerberos tickets [4], X.509 Certificates [5], Rights Expression Language (REL) Tokens [6],
UserID/Password credentials [7] as well as custom tokens.

It should be noted that the aforementioned WSS mechanisms should not be considered a comprehensive
security solution for Web services, but merely a building block to be using in conjunction with other
protocols and web service extensions. Moreover in situations where point -to-point confidentiality and

integrity are adequate, Transport Layer Security (TLS) could be considered an alternative. Unlike WSS
though, TLS cannot offer end-to-end (message-level) security and it is not as flexible as when application-
level proxy servers are involved. Still, the performance overhead is significant with the standard WS-

Security implementation (see Figure 4.7) and this is an area where further research is required (and
already being conducted) in order to improve its usability in resource constrained devices.

Figure 4.7: Benchmark Results for 25 concurrent requestors, [8].

[…] This task will design and/or develop the core SPD services provided by the SHIELD middleware:

• service discovery entailing mechanisms to securely register, advertise, discover, locate, filter, rank and select the

availab le services; […]

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 52 of 106 Issue 1

 WS-Trust 4.2.1.1.2

Web Services Trust Language (WS-Trust [9], approved March 2007, at v1.4 since February 2009) is an

important add-on to WS-Security, defining primitives that allow the issuance, exchange, renewal and
validation of security tokens and thus the establishment and assessment of trust relationship, even
between entities across different trust domains. It introduces a Security Token Service (STS) which is

responsible for issuing WS-Security tokens, defines the format of security token requests and their
responses as well as mechanisms for key exchange.

 WS-SecureConversation 4.2.1.1.3

Web Services Secure Conversation (WS-SecureConversation v1.4, [10]) is another WS-Security add-on
this introduces, similarly to TLS, a session key to secure communication across one or more messages.
The aim of the specification is to establish security context, share, renew, amend or cancel said context

as well as derive (potentially more efficient) sessions keys from the abovementioned context.

When multiple message exchanges are involved WS-SecurityConversation has proven to be more

efficient than a plain WS-Security implementation (e.g. [11]) but the former requires the presence of other
WS-* protocols as well, like WS-Trust, so the added complexity should also be considered.

 WS-SecurityPolicy 4.2.1.1.4

Web Services Security Policy (WS-SecurityPolicy, at v1.3 as of February 2009, [12]) defines a set of
security policies (to be used along with the Web Services Policy Framework, endorsed by W3C [13])
enabling web services to define security-related constraints and requirements regarding. These policies

extend the functionality and flexibility of the protocols defined in WS-Security, WS-Trust and WS-
SecureConversion, improving compatibility and interoperability of web services and participants.

Policy assertions include protection assertions (identifying parts of a message that require confidentiality,
integrity checks etc.), token assertions (specifying which token formats are allowed), security binding
assertions (defining cryptographic algorithm suites, transport layer security, timestamps etc.) and

supporting token assertions (adding supporting function like username/pass user sign-on).

 WS-Discovery 4.2.1.1.5

The OASIS specification Web Services Dynamic Discovery v1.1 (WS-Discovery, [14]) approved in 2009

as an OASIS standard, defines a service-discovery protocol, operating either in ad-hoc or managed
mode. In ad-hoc mode probes are used (sent to a multicast group) and matching services send a
response directly to the requester. The managed mode of operation, which is more scalable, involves a

discovery proxy to which services send announcements when joining and leaving the network.

 WS-Federation 4.2.1.1.6

Web Services Federation Language (WS-Federation , at v1.2 as of May 2009) details mechanisms which

extend the functionality of the WS-* protocols to allow communication between different security realms,
enabling authorized access to resources belonging in one realm to entities whose identities and security
attributes are define in another realm.

 Devices Profile for Web Services - DPWS 4.2.1.2

The communication and service composition in complex architecture where various types of devices
requires interacting with each other it’s not trivial problem. This is because most digital devices (especially
those with embedded systems) are equipped with their own architectural components. In such cases

proxies can be utilized to overcome incompatibility issues. However, this approach can have various
limitations e.g. (limited number of support devices, high cost, etc.). Thus, application of middleware
concepts that are widespread in other application domains and may be used to solve interoperability

problems.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 53 of 106

Web services provide an ideal framework to address issues such as heterogeneity and interoperability.

However, it is of major importance to understand the performance limits and constraints, in terms of
resource requirements, imposed by various Web services toolkits, in order to estimate expected
performance at run-time (i.e., executing a task at hand).

The Devices Profile for Web Services (DPWS) [40] is such a cross domain technology for inter machine
communication and base on Web Services. DPWS employs similar messaging mechanisms as the Web

Services Architecture (WSA) [41], with restrictions to complexity and message size. The DPWS defines a
minimal set of implementation constraints to enable secure Web Service messaging, discovery,
description, and eventing on resource-constrained devices. It features secure message exchange,

dynamic discovery, and description of devices based on WS-Discovery, WSMetadataExchange and WS-
Transfer. Furthermore, it provides a publish-subscribe eventing mechanisms based on WS-Eventing. It
should be noted that DPWS requires nodes to have an IP connectivity, otherwise, is not able to utilize

such DPWS feature. This can be achieved using the 6LoWPAN [42].

The DPWS offer the ability to resource constraint devices (e.g. limited memory and battery energy), to

provide services similar to those offered by traditional web services. Currently various Application
Programming Interfaces (API) can be used to incorporate DPWS in embedded device. Toolkits in C++ as
well as Java/J2ME (e.g., Symbian based devices), and furthermore .NET implementations on Microsoft

platforms are available for developing web services. In particular:

C/C++ toolkits: WS4D-Gsoap [43] is a toolkit for developing Web services consumer and providers being

conform to the “Devices Profile for Web Services” (DPWS). The toolkit is implemented as an extension to
the well-known gSOAP Web services toolkit. This toolkit offers multi-platform support such as Linux i386,
Windows-native, Windows-cygwin and embedded Linux.

The .NET Compact Framework (CF) is a subset of Microsoft’s .NET framework. The .NET CF is
supported on various devices/platforms that are based on PocketPC and Smartphone architec tures. Web

services on .NET CF support the use of synchronous or asynchronous invocation [17]. Development of
embedded Web services is analog to implementing Web services clients in .NE.

The Java 2 Platform Micro Edition (J2ME) is a set of standard Java APIs defined through the Java
Community Process (JCP). The J2ME specifications define the Connected Device Configuration (CDC)
(i.e., a subset of J2SE) and the Connected Limited Device Configuration (CLDC). In contrast to CDC,

CLDC provides libraries such as the Connection Framework which are suitable for devices with a small
memory footprint (not part of J2SE). CLDC targets hardware platforms with 128 KB to 512 KB memory
and 16-bit or 32-bit CPUs. Different SOAP APIs and Web services toolkits are suitable for J2ME/MIDP

based devices. Such examples are the following:

 DPWS4J (https://forge.soa4d.org/projects/dpws4j/)

 kSOAP 2 (http://ksoap2.sourceforge.net/)

 JMEDS (http://sourceforge.net/projects/ws4d-javame/)

The choice of a particular DPWS technology depends on the type of service that will be used in nSHIELD.

Considering the dynamic multilayer architecture of nSHIELD (see Figure 4.8) the different
elements/components should be able to discover, register in and integrate different services when is

needed securely.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 54 of 106 Issue 1

Figure 4.8: nSHIELD abstract architecture

All the components in the nSHIELD architecture should be able to define their authentication mechanism
as well as enable access control services to restrict the access in information only to those components
that need access to a particular set of data.

For instance, consider a case where an overlay service requires information to monitor the state of
underlying nodes. If we assume nodes are connected dynamically to nSHIELD infrastructure the overlay

is not possible to know all the nodes in advance. In that case the overlay should multicast a discovery
message on the managed domain to find the nodes that should receive information. Alternatively, if there
is a discovery service directory the overlay can request the registered services by the discovery service.

The discovery service typically stores the network location information of services that are present on the
local subnet as well as on a wider network and allows for discovery of such services. This way we can
decrease the network traffic compared to the multicast discovery. The overlay to identify the discovery

service can send a multicast WS-Discovery probe message explicitly looking for a discovery proxy on the
network or can be pre-configured with the discovery service information.

Considering that this discovery service is available every component participating in the SHIELD
architecture should introduce them to the discovery service. The joined component announces its features
to the discovery service via WS-Discovery hello message. The discover service the hello message and

stores the information about the services of the joined component (e.g motion detection). The overlay
requires access to the information provided by the joined component sends WS-Discovery probe
message to the discovery service searching for motion detection. The discovery service responds with a

WS-Discovery probe match message carrying the network location information of the motion detection
service. Since the overlay receive this information is able to connec t and use the provided service. This
procedure is illustrated in Figure 4.9.

Figure 4.9: An example of discovering service in the nSHIELD architecture

Node

N
et

ow
rk

Overlay

Discovery Service

1. Hello

2. Probe3. ProbeMatch

U
se

 se
rvice

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 55 of 106

Though we believe that DPWS is the most suitable technology to integrate nSHIELD different components

on a unified architecture, requires more research work to address possible issues arising from the
particular architecture of nSHIELD. For instance, which are the “consequences” of employing the DPWS
in micro nodes of nSHIELD? Do all the available APIs have the same consequences? How the defined

scenarios can affect the choice of using DPWS?

 Security for Devices Profile for Web Services 4.2.1.2.1

The DPWS specification provides various mechanisms to enable security, depending on deployment

requirements. The transaction among a client and a device may require authentication, integrity and
confidentiality services.

The DPWS propose the utilization of the following mechanisms:

Transport Layer Security (TLS): TLS [59] is used to establish an end-to-end secure channel between

the communicating entities. It does not only provide integrity, authenticity and confidentiality but also
identity verification if exploits X.509 certificates.

HTTP Authentication: HTTP Authentication [60] is used to authenticate users, where the client provides
user name and password. However, if the basic http authentication scheme is employ we highly
recommend using it after TLS session establishment.

WS-Discovery Compact Signatures: The WS-Discovery [61] relies on multicast and unicast UDP
datagrams for transport. However, TLS cannot be utilized to protect connectionless protocols such as

UDP. Thus, the DPWS proposes the WS-Discovery Compact Signatures which allows a client to verify the
integrity of discovery messages, and to identify WS-Discovery traffic that was signed by a device with a
specific cryptographic credential. This type of compact signatures is based on XML signatures [62].

In the case of nSHIELD as a client can be any component of the upper networking layers.

Threats: Threats and attacks that nSHIELD should deal with is not different from those facing traditional
wired and wireless Internet based services. Vulnerabilities can be also identified in the software stack. For
instance, in [63] is published a vulnerability to the DPWS Microsoft’s API that could allow remote code

execution. The following table summarizes the possible vulnerabilities.

Table 4.5: nSHIELD possible threats that can face Micronodes incorporating DPWS

Threat/Attack Brief Description Consequences

Impersonation
An attacker may impersonate a micronode in
order to send modified data to the upper layers.

Unauthorized
access, integrity loss

Node Integrity

An attacker may modify node’s configuration

data in order to either get unauthorized access
in the micronode.

Denial of service,
unauthorized access

Confidentiality
loss

An attacker may try to break the secure

channels to gain unauthorized access to the
data provided to the upper layers.

Unauthorized
access

Availability loss
An attacker may try to cause micronodes
services unavailable.

Denial of service

Software
vulnerabilities

An attacker may exploit a published

vulnerability in order to gain either
unauthorized access or to cause a denial of
service

Unauthorized

access, Denial of
service

 DPWS – Implementing the OASIS Standards on Resource-Constrained Devices 4.2.1.3

The need for implementing dynamic and secure discovery of devices and Web Services (including

messaging, description, interactions, event-driven changed etc.) on resource constrained devices led to

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 56 of 106 Issue 1

the development of the Devices Profile for Web Services specification (DPWS, [16], at v1.1 since July
2009).

The profile’s architecture includes hosting and hosted services, where the former are associated to a
device and are essential for device discovery and the latter are functional and reply on the hosting device

for discovery. Figure 4.7 provides an overview of the client, device and service arrangement.

Figure 4.10: Arrangement of clients and devices [16]

Moreover, discovery services are included, enabling devices to “advertise” their presence on the network
and search for other devices. Metadata exchange services provide dynamic access to services hosted on

a device and their metadata and publish/subscribe eventing services allow other devices to subscribe to
messages provided by a certain service. The DPWS protocol stack can be seen in Figure 4.11.

Figure 4.11: The Devices Profile for Web Services Protocol stack [16].

The EU research project “Service Infrastructure for Real time Embedded Networked Applications”

(SIRENA, [18]) was one of the earliest implementation of the DPWS on embedded devices. Their results
were a foundation for the EU projects “Service-Oriented Device & Delivery Architecture” (SODA, [19]) and
“Service-Oriented Cross-layer Infrastructure for Distributed Smart Embedded Devices” (SOCRADES, [20])

that followed but also led to the introduction of the Service-Oriented Architecture for Devices (SOA4D,
[21]) and Web Services for Devices (WS4D, [22]) open source programs.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 57 of 106

 Service-Oriented Architecture for Devices - SOA4D 4.2.1.4

SOA4D provides development toolkits (in C and Java, simplifying the development of DPWS-compliant
applications (and thus the implementation of the WS-* family of protocols) for embedded devices. Figure

4.12 provides a graphical representation of the SOA4D architecture.

Figure 4.12: The SOA4D Architecture [21]

 Web Services for Devices – WS4D 4.2.1.4.1

WS4D is an open source initiative which provides a number of toolkits aimed at developing DPWS -
compliant applications for resource-constrained devices in ad-hoc networks which are interoperable with
regular W3C-specified Web Services.

Toolkits include the WS4D-gSOAP (C/C++ languages) and WS4D-JMEDS (Java) as well as the WS4D-
Axis2, a Java-based Apache project. WS4D also includes two toolkits which utilize state of the art

technologies, namely WS4D-jCoAP and WS4D-uDPWS. WS4D-jCoAP is a Java-based implementation
using the Constrained Application Protocol (CoAP, [23]), a protocol currently in IETF draft form which is
promoted as an alternative to HTTP optimized for highly resource-constrained devices and networks.

WS4D-uDPWS is a proof-of-concept implementation of DPWS for the emerging IETF IPv6 over Low
power Wireless Personal Area Networks (6LoWPAN, [24]) protocols.

A detailed overview of the WS4D initiative can be found in [17].

 Other Implementations 4.2.1.4.2

Other than the EU projects already mentioned, “Network-centric Middleware for group communications

and resource sharing across heterogeneous embedded systems” (MORE, [25]) also focused on the
development of a DPWS-compatible middleware. In fact the project’s Core Management Service was
based on an implementation of DPWS4J, the open-source Java-based version available from the SOA4D

project, for embedded devices. A description of a Service Orchestration mechanism aimed at resource-
constrained devices deployed in hierarchical network topologies and which is to be applied to services
running on top of MORE’s DPWS-based middleware can be found in [26]. In [27] a combination of the
DPWS stack with a low footprint P2P network technology is presented, including real -life measurements

which show that this approach outperforms SOAP-based methods when communications take place via
narrow-bandwidth cellular networks.

 Other State-of-the-Art Secure Service Discovery and Delivery Technologies 4.2.1.5

Other than the OASIS standards, there are various approaches and protocols pertaining to secure service

discovery, composition and delivery for embedded devices.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 58 of 106 Issue 1

A thorough survey of Service Composition technologies in ambient intelligence environments can be
found in [28]. Taxonomy of security-aware service composition approaches is presented in [29], along

with a comparative evaluation of identified technologies. The classification includes Security -aware
Syntactic-based Approaches (Information Flow Control based, Access Control Based) and Security -
Aware Semantic-based Approaches. Another relevant survey can be found in [30], where the focus is on

service composition middleware and which are classified based on a four step model (translation,
generation, evaluation, execution) and pervasive requirements (interoperability, discoverability,
adaptability, context awareness, QoS management, security, spontaneous management and autonomous

management).

Minimizing service disruptions is critical, especially for ad-hoc applications, and [31] presents a service

composition and recovery framework aiming to address that, via service routing (selecting the service
components that support the service path) and network routing (finding the optimal network path that
connects the service components). A disruption index is also introduces, aiming to characterize aspects

that are undetectable by other metrics (e.g. reliability and availability). ReSCo is a relevant approach, a
lightweight middleware for reliable service composition in pervasive dynamic systems, which is presented
in [32], along with simulations that demonstrate the effectiveness of the proposed mechanisms.

Furthermore, [33] proposes the design and development of an intelligent service management component
(with two different proposed methods – one based on Sensor-Service Ontology reasoning and the other
on Rule-based reasoning) to be included in the middleware layer of ubiquitous sensor networks.

Secure service discovery is another critical area of research. A secure service discovery model for
pervasive environments is presented in [34], using a hybrid secure and non-secure discovery scheme and

based on mutual trust. [35] proposes a service discovery scheme based on stable and resource-rich
nodes identified as “volunteers” and additional trust management mechanisms. A similar model is
introduced in [36], classifying services into three levels, with different levels being discovered in different

manners, while [37] and [38] focus on ad-hoc networks with the former proposing a hybrid peer-to-
peer/directory-based scheme and the latter a Secure Pervasive Discovery Protocol (SPDP) based on an
anarchy trust model. Finally, a decentralized approach based on trust management principles is used in

the Flexible and Secure Service Discovery (FSSD) protocol introduced in [39].

 SHIELD trusted service composition 4.2.2

[…] • service composition entailing mechanisms to automatically resolve the dependencies and to discover, deliver

and deploy the atomic services; […]

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 59 of 106

 Web Service Composition 4.2.2.1

Figure 4.13 Service-Oriented Computing (SOC) Pyramid

Web service composition tries to effectively and efficiently compose existing
services with minimum user intervention, in order to address needs that cannot be
satisfied by an atomic service. It aims to combine the functionalities offered by

different services to develop a value-added composition service. Also, the definition
of increasingly complex application is allowed, by progressively combining services at increasing levels of
abstraction. Service composition accelerates rapid application development, service reuse and complex

service consummation.

The proposed composition approaches can differ on ‘when’ and ‘how’ the

composition schema is created. The term ‘when’ is referred to static or design-time
composition and dynamic or run-time composition. In the first case services are
chosen, linked and compiled before runtime and the schema does not change. In the

second case the composition schema is adapted to reflect unpredictable changes and effects at runtime.
The term ‘how’ refers to manual and automated composition functionalities.

There are 4 service composition models:

 Orchestration

 Choreography

 Coordination

 Service Component Architecture

Orchestration, which was adapted for the pSHIELD core services composition process, is a centrally
controlled decision making specific business process that is executed by a single entity. It organizes the
participating services into a process flow and describes the interaction between them as well as t he

control and data flow. Furthermore, the services can be orchestrated recursively. WS-BPEL is an OASIS
standard and has been generally adopted as a standard orchestration language.

Perform

Composition

Dynamic
composition

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 60 of 106 Issue 1

On the other hand choreography is a multi-party collaboration for distributed decision making as part of
some larger business transaction. It describes the collaborations between the multiple partners and

focuses only on the conversational aspect of the interaction. It does not aim to expose what’s underneath,
like the internal processes of the partners, and it is not directly executable. Thus, Choreography can be
combined with orchestration. Orchestration is used for the description of the internal processes, while

choreography is used for the description of the global external interaction between the participants. WS-
CDL and WSCI are W3C standards and the most relevant standard languages for choreography
modelling.

In Coordination, a group of participating services interacts, following a coordination protocol. In that case,
a coordinator is needed, as a special entity, to enforce the coordination protocol and decide on the

outcome of the interaction after it is finished. The participants are communicating through the coordinator.
They don’t have to communicate with each other as in choreography. WS -Coordination and WS-CF are
used to model coordination processes.

In Service Component Architecture , components are configured instances of service implementations
which provide business functions and can have settable properties. The business functions are offered of

use by other components as services. The implementations may depend on services that are provided by
other components. Finally, the composition can contain all the above plus the wiring that describes the
connections between the elements. This model was created by the OSOA Consortium.

Table 4.6: Service Composition in the Semantic Web

SWS
Languages

SWS Discovery
Support

Process Model
Inter-Process

Communication

OWL-S Yes Limited Orchestration Synchronous

WSMO Yes Orchestration/Choreography Synchronous/Asynchronous

BPEL4SWS Through WSMO Orchestration/Choreography Synchronous/Asynchronous

 Automated Service Composition 4.2.2.2

Automated service composition attempts to decrease the human intervention in the composition process.

Figure 4.14: Service composition

Automatic composition involves five phases:

1. Advertisement: the service providers advertise their services that will be used in the

composition, usually with semantic descriptions

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 61 of 106

2. Translation: the external descriptions are then translated to internal ones that describe the

processes with semantic descriptions

3. Process model: it is created combining the existing service descriptions to satisfy a user request

4. Evaluation: the resulting process models are evaluated based on non-functional attributes

5. Execution: one process model is chosen from the previous phase and is executed

There are two main approaches for implementing automated service composition:

 Workflow techniques: they view services as flows and exploit the accumulated knowledge of the

workflow community and apply it in the service domain. They automatically generate an abstract

workflow based on a high-level goal. Then, a reasoning service aims to decompose the goal and

tries to satisfy it with a composition of tasks. The abstract workflow tasks are matched with

concrete services or compositions of those. The result of these techniques is a concrete workflow

which is executed.

 AI planning techniques: they generate a plan that contains the series of actions required to

reach the goal state set that has been set by the service requester, beginning from an initial state.

The planning problem is expressed using a domain theory like classical logic, graphs, hierarchical

task networks and finite state machines.

Other approaches include:

 Model-driven service composition: in this approach, concepts from Model-driven development

in software engineering are used. Here, all software functionality is specified using platform

independent models (PIMs). Then, PIMs are translated to various platform-specific models

(PSMs). PSMs can either be compiled into executable code or run directly. In a proposed

instantiation, BPMN was used as a PIM and BPEL as a PSM.

 QoS-aware Service Composition: except from functional attributes, QoS attributes are taken

into consideration to augment service selection. There are two phases involved to t he QoS

calculation:

1. The Local optimization: in this phase, QoS is calculated for each service individually

2. The Global optimization: here a globally optimum set of services is found instead of a

set of individually optimum services, in order to satisfy global QoS constraints

QoS approach takes into consideration attributes for performance, like time calculations, throughput and
scalability, and for dependability, such as availability, accuracy and robustness.

In [52], the authors proposed a novel approach to automated composition of services based on their
security policies. Given a community of services and a goal service, they reduce the problem of
composing the goal from services in the community to a security problem where an intruder should

intercept and redirect messages from the service community and a client service till reaching a satisfying
state. The implement the algorithm in AVANTSSAR (Automated VAlidatioN of Trust and Security of
Service-oriented ARchitectures) Platform and applied the tool to several case studies.

 Trusted service composition 4.2.2.3

The service composition is a challenging task that involves the integration of many existing services to
implement more complex processes. The proper service selection is difficult when there are many
candidate services in a service repository. Usually the minimum requirements, like functional attributes,

are satisfied by many services. Thus other non-functional features like trust should be introduced in the
selection process. Trust refers to several factors such as quality, reputation, cost, availability and
experience. The trust factors must be specified in service description to ease the service discovery phase.

Trust is a complex factor and it can take many forms such as belief, honesty, truthfulness, competence,
reliability and confidence or faith of the service provider, consumer, agents and service. A good survey on
trust in semantic web services can be found in [44].

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 62 of 106 Issue 1

Figure 4.15: Web Service Security Stack

There are two main types of trust. The first one is called soft trust or reputation based trust. It is
community dependent and participants exchange information about the other known participants and
services. Malicious entities can be detected and isolated based on the exchanged information. The

drawback is that no one takes the risk to invoke a new unknown service initially before deciding the
trustworthiness of the new services for invocation. The second type is called hard trust or certificated
based trust. Here trust does not depend on the social context. The semantics of security behaviour can be

specified in service description. The trustworthiness can be derived from the policy or contract. The
drawback is that anyone can provide a fake or wrong policy or contract.

Trust is also classified according to the origin of the trust information. Direct trust is the opinion that an
entity possesses about other entities and is determined by their previous interactions. Indirect trust
stands for the opinion that other entities possess about the investigated entity. Usually an entity consults

the indirect trust of other entities that are considered trustworthy. Indirect trust is further categorized in
reputation, recommendations and referrals. Reputation is the general feedback about an entity’s
behaviour. Recommendation means that a user trusts a service because of some suggestion got from a

trusted central authority. Referral is that a service consumer trusts a service because of some distributed
referrals got from known trusted third party agents.

Based on the topology and the way that trust information is established three models are categorized:

1. Peer-to-Peer trust model: the model is not scalable, since the participants should share their

trust relations on one-by-one basis

2. Trust Chain Model (TC): each participant stabilizes its trust relation with its direct ancestor,

which is not flexible for dynamic service integration

3. Trusted Third Party Model (TTP): here all the participants get the credentials from a trusted third

party

In [45] the authors presented a trust and reputation model for web service selection based on Bayesian

networks. They consider three sources as trust information: useful reputation, QoS monitoring and direct
experience of consumer. The model tries to overcome some limitations in trust calculation by integrating
the mentioned sources to find the final trust value.

In [49], an approach is proposed to deal with malicious entities that try to gain high trust value in order to
perform malicious activities later. A penalty vector is introduced, which represents the misbehaviour in

past transactions which has been derived from inconsistency and misuse of trust measure by peers. The
malicious service providers can be found by using the result of subtraction of penalty vector from trust
vector.

In [46] the authors follow the Reputation based and Trust Third Party model. They propose a Priority
based trust (PB) model for service selection in general service oriented environments, which overcomes

the limitations of Certified Reputation Model.

In [47] the authors focus in developing a trust model according to the behaviours of consumers and

providers at dynamic environments. Instead of only concentrating their attention only to provider

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 63 of 106

behaviour, they also consider the reputation of the consumer. Consumer reputation is collected by other

consumers in the same community and by its interaction with other communities.

The authors in [48] try to model the behaviour of a service. The trustworthiness is categorized as objective

and subjective. The objective features are customer requirement, capability of implementing
functionalities, commitment to complete work, performance and existence. The features subjective
trustworthiness is reliability, honesty and expectation. They also use the OWL-S to structure the ontology

schemas.

In [50], a framework for automatic selection and composition of services is presented, which exploits

trustworthiness of services as a metric for measuring the quality of service composition. Trustworthiness
is defined in terms of service reputation extracted from user profiles. The profiles are extracted and
inferred from a social network which accumulates users past experience with corresponding services.

Using the proposed privacy inference model, they prune social network to hide privacy sensitive contents
and utilize a trust inference based algorithm to measure reputation score of each individual service and
subsequently trustworthiness of the composition.

QoS-driven Trusted Composition Evaluation Model (TCEM) [51] can judge the business stream effectively
and comprehensively by choosing an appropriate and trusted evaluation method for the generated

services composition chains. Furthermore, on the basis of Case-Based Reasoning (CBR) and the retrieval
mechanism oriented to web services coordination, the TCEM0based execution engine and algorithm is
implemented to evaluate the quality of service composition. The proposed algorithm has the satisfied

result compared with the traditional method and is shows more efficient and trustworthy where web
services composition is widely used in multi domains.

 LAs (Level Agreements) contributing to trusted composition 4.2.2.4

Although current LA languages allow expressing Quality of Service (QoS) constraints with different

success, the absence of security and dependability aspects in LAs makes it difficult to create agile QoS
for Embedded systems.

A Service Level Agreement (SLA) (kind of LA) is a common way to specify the conditions under which a
service is to be delivered, but is usually limited to availability guarantees.

The most well-known machine-readable SLA models are the Open Grid Forum’s Web Services
Agreement (WS-Agreement) [53] and IBM’s Web Service Level Agreement (WSLA) [54]. The WS-
Agreement specification proposes a domain-independent and standard way to create SLAs and has been

up taken in several projects, while its predecessor WSLA seems to be deprecated.

It is difficult to express that a SLA can be derived to establish a kind of level agreement among different

embedded systems (at node layer). There is always has to be a control systems responsible for managing
the interactions between nodes and this means software processing. However, nSHIELD could analyse
the process of including agile Level Agreements in networks of embedded systems. This is one main

issue that will be analysed within the project jointly with the analysis of metrics in WP2 as parameters for
measuring and composing techniques for increasing QoS.

SLAs can serve as a contract for composing secure and dependable systems and have a fundamental
role in QoS. Some challenges have to be solved around this field: what kind of contract we define
between two entities and how this contact evolves in terms of security when there are more than 2 entities

trying to communicate each other or consume one or more resources at the same time.

An example of trustworthy composition could be achieved by a mixture of SLAs and copotiion techniques.

By monitoring agreement degradations (e.g., via SLAs) combining the information of current QoS
measurement in the SLAs, the diagnosis decides whether to initiate recovery. The main recovery method
of this approach is to instantiate a new service of the affected service’s type. Depending on performance

degradation or service malfunction the new service rule is additional service or replacement. In both
cases, the interceptor reroutes the request to the new service.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 64 of 106 Issue 1

 SHIELD service orchestration and choreography 4.2.3

Two mechanisms will be examined to manage (install, start, pause, stop, refresh uninstall) services in the
SHIELD framework: the orchestration and the choreography.

 OSGI framework for service orchestration 4.2.3.1

The orchestrator architecture will have its foundations on the OSGI framework
already developed for the pilot project, since it has shown robustness, modularity

and versatility. This will be the reference architecture for the entire SHIELD
framework, enriched with innovative middleware services (secure discovery,
trusted composition, monitoring and filtering, etc.).

This architecture is similar to a traditional middleware for service provisioning, with the main different that
it includes a repository for the semantic models developed in Task 5.1. As already outlined in pSHIELD, in

fact, the traditional service registry database will be coupled with a semantic repository in which
measurements, policies and other SPD relevant information are inserted by the monitoring engine to feed
the orchestration engine and the security agents and to allow them to take “intelligent” decisions.

This will constitute an important improvement in middleware for SPD applications.

 Choreography: a more intelligent manner to compose services 4.2.3.2

The Choreography Working Group at W3C is developing the Choreography Description Language (CDL).

CDL is designed to complement BPEL and other extended Web services technologies by defining the
executable processes needed to implement a piece of a business choreography or operation process for
one particular system operating multiple devices.

While BPEL’s (Orchestration based) abstract processes are intended for process interactions, CDL
provides additional capabilities beyond BPEL, including how different process engines might talk to each

other, such as systems of systems scenario involving a BPEL engine on one side and a choreographic
engine

14
 on another.

Metadata such as the element name (embedded system id), security information to be shared, policy
information on non-repudiation, acknowledgment policy, human approval policies, and so on cannot be
defined with BPEL alone when BPEL is used in conjunction with other technologies in a wide-process

collaboration across multiple systems, such as in an extended systems of systems scenario where
multiple devices are collaborating and unpredictable processes might happen.

CDL is intended for use in scenarios in which it isn’t possible to define a single controlling entity for the
entire interaction, and it may be necessary to define the rule for sharing control of the overall flow. CDL
defines how and when to pass control from one element/agent to another.

14
 RosettaNet Implementation Framew ork (RNIF) and ebXML Message Serv ice Specif ication (MSS).

[…] • service orchestration entailing run-time mechanisms to install, start, pause, stop, refresh and uninstall the
services in a distributed environment. […]

[…] A prototype of the proposed architecture will be implemented, a key feature of which will be the exploitation of
ontology-based, semantic technologies to represent the SPD services model. Since an integrated support to SPD
functionalities in middleware architectures is still largely unexplored in both academic and industrial research
activities, this task will investigate how to extend the firstly emerging models to accomplish with the SHIELD
requirements provided by WP2. Indeed the design and development o f the SPD Middleware core SPD services
will be accomplished according to the specifications, requirements and architectural guidelines coming from tasks

2.1 and 2.3. […]

Modularity

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 65 of 106

“CDL provides a “global” definition of the common ordering conditions and constraints under which
messages are exchanged that can be agreed upon by all the Web services participants involved in the

interaction. Each participant can then use the global definition to build and test solutions that conform to
it. Systems may not want to cede control to an external component process engine and may want to use
CDL for negotiating a smooth handoff of control. CDL is not an executable language but rather a

declarative language for defining interaction patterns to which multiple parties can agree.”

W3.org

The syntax of the package construct is as follows:

<package name="SupplyChain" author="Ericn" version="1.1"
targetNamespace=www.iona.com/artix/examples xmlns="http://www.w3.org/2004/04/ws -chor/cdl">

importDefinitions*
informationType*
token*

tokenLocator*
role*
relationship*

participant*
channelType*
Choreography-Notation*

</package>

The package model defines the participants in collaboration and their respective roles and relationships.
Once agreed upon, packages are exchanged a cross trust boundaries among the collaborating
companies to share explicit definitions.

The package construct allows aggregating a set of choreography definitions, where the elements
informationType, token, tokenLocator, role, relationship, participant, and channelType are shared by all

the choreographies defined within this package.

 Orchestration vs choreography 4.2.3.3

In this section, we’ll compare and contrast the different approaches to using WS -BPEL to define the flow.
In general, there are two approaches to implementing the same business process:

 Orchestration-centric.

 Choreography-centric.

These approaches are described in further detail in the following subsections.

Orchestration-Centric Approach

The following example shows the WS-BPEL pseudo-code for the OpenAccount process (this pseudo-

code shows the essential logic of the Web services orchestration using WS-BPEL keywords but without
the XML syntax):

receive 'OpenAccountRequest'
invoke CollectAccountInfo
invoke ValidateAccountInfo

assign AccountInfoInvalid = ValidateAccountInfoResponse
while AccountInfoInvalid = true

invoke RepairAccountInfo

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 66 of 106 Issue 1

pick onRepairAccountInfoCB
invoke ValidateAccountInfo
assign AccountInfoInvalid =

ValidateAccountInfoResponse
otherwise // timeout - assume AccountInfo can't be
repaired

invoke DeclineAccountApplication
terminate

end pick

end while
invoke OpenAccount
invoke SendConfirmation

In this approach, the OpenAccount process is implemented as a WS-BPEL orchestration that has the

following characteristics:

 The orchestration is initiated when an OpenAccountRequest is received.

 The orchestration invokes Web services (such as OpenAccount and CollectAccountInformation)
to fulfill the steps in the orchestration.

 The orchestration defines the business logic for the OpenAccount process, including control logic
(e.g., control of the while loop that handles invalid account information) and data flow.

Choreography-Centric Approach

In this approach there is no a single engine that takes the control of the entry point. So that interactions

are peer-to-peer. Control is not established by neither of the entry nor sequential points that is being
processed. This enables the capacity to dynamically reorganise and be tolerant to unexpected
happenings.

Comparing Orchestration-Centric and Choreography-Centric Approaches

In general, the choreography-centric approach is more loosely coupled. One key difference is that the
orchestration approach assumes a single, central point of control over the entire scope of the process
execution, while the choreography approach assumes that execution control is shared, potentially across

multiple systems process engines or various other technologies.

In a heterogeneous and semantically differentiated environment like nSHIELD, choreography mechanism

is a valuable attribute that should face the unexpected threats. Therefore, Choreography should increase
fault tolerance and thus system’ resiliency.

 SPD core State chart (SCXML) 4.2.3.4

Some SPD functionalities might require a formal structure of sequencing. This formalisation is brought by

SCXML standard with formally expresses a state machine through xml language. This is a nice solution
for regular and deterministic use cases that might derive from nSHIELD project.

An example of xml notation for SCXML:

[…] • context awareness features to refine and extend the existing middleware orchestration functionalities in order
to improve their performance (strict liaisons with Task 5.4); […]

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 67 of 106

<?xml version="1.0" encoding="UTF-8"?>

<scxml xmlns="http://www.w3.org/2005/07/scxml" version="1.0" initial="ready">

 <state id="ready">

 <transition event="watch.start" target="running"/>

 </state>

 <state id="running">

 <transition event="watch.split" target="paused"/>

 <transition event="watch.stop" target="stopped"/>

 </state>

 <state id="paused">

 <transition event="watch.unsplit" target="running"/>

 <transition event="watch.stop" target="stopped"/>

 </state>

 <state id="stopped">

 <transition event="watch.reset" target="ready"/>

 </state>

</scxml>

 SHIELD data and metadata management 4.2.4

As anticipated in the previous chapter, the SHIELD middleware will be enriched with new semantic

models to capture all the SPD relevant information. For that reason the (semantic) knowledge repository
in the middleware layer will contains, together with the OWL-S entries (whose adoption is confirmed in the
nSHIELD project), also an heterogeneous set of data and metadata, including:

 Policies to drive the composability

 Context information to model the system and optimize the control

 SPD attributes for metric evaluation

[…] A complete architecture will be defined for developing the SHIELD core SPD services, which will be based on
the exchange of semantic metadata, used to describe, for each service, its model, the relevant security

requirements and the needed SPD components. […]

[…] The designed semantic language may be used also to represent profiles and policies according to
interoperable and self-describ ing formats. The exploitation of semantic technologies will allow meaningfully

representing and reasoning about context and policy information. […]

[...] The benefits brought by semantic technologies developed in Task 5.1 will be also adopted to exploit the
security agent capability and adapt security needs and associated policies to possib le unforeseen situations.

The main outcome of this task will be the development of a software prototype (on M18 and M30) ready to be
integrated in the SHIELD platform. […]

[…] The security agent will be designed to interpret and elaborate the SPD information generated by the SHIELD
multi-layer framework. So the Security Agent produces high-level SPD information which are aggregated and
eventually shared and distributed with other Security Agents acting with different scopes to the SHIELD systems.
The high-level SPD information will be assessed with the metrics defined in task 2.2, in order to assess the SPD
level of the single layer as well as of the overall system. […]

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 68 of 106 Issue 1

This information will be used by the security agent to take proper decisions on composability, as will be
described in the overlay section (see Figure 4.16).

Figure 4.16: Knowledge base for the SHIELD middleware and overlay

So, the architectural choice in data and metadata management for the nSHIELD project has been to move
the interpretation complexity of knowledge base management from middleware core services to overlay
context engine.

In particular the process has been decoupled:

 the middleware services will collect the information and populate the data bases, while

 the overlay will retrieve from these data bases only information relevant to the subsystem under
its control.

This is necessary since the middleware has significant capabilities and hosts services and adapters to
interface the external world (and to exchange information), while the overlay has the “intelligence” to use
these data, but not the computational capabilities of managing them.

In the following section a new middleware core service, for data collection and data analysis for intrusion
detection purposes, will be introduced.

 SHIELD monitoring, filtering and intrusion detection service for interface 4.2.5
protection

A monitoring and filtering service will be designed to allow data collection. Middleware is indeed the

collector of the information generated by node and network devices, since it hosts the information
repositories used by the overlay to perform dynamic composability .

As information collector, middleware interacts with the external world and is subject to several threats that
must be faced by a new core service: the Intrusion detection service (that performs also the above
mentioned monitoring tasks). An overview of the potential threats is provided in the following.

[…] The interaction between SPD-middleware and ES nodes will be b idirectional. The SPD-middleware will use
data received by ES nodes and will provide information to the upper layers of the system. In both cases
information passing through the middleware (e.g. information, configurations and data) should be represented in a
proper way (e.g. /by using semantics) in order to enable features for providing advanced service discovery,

composition and orchestration functionalities to the applications. […]

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 69 of 106

 Threats related to SPD services 4.2.5.1

 Network/Transport level related threats: Overload and DOS/DDOS attacks 4.2.5.1.1

In this chapter we give an overview over the basic expressions and definitions related to overloads i n
mass servicing systems.

In the context of nSHIELD middleware, all service interfaces available for outside components may suffer
from the problem situations described below, and considerations listed should also be analysed and

protection measures may possibly be implemented. All services publicly available on open networks, like
discovery and possibly composition are concerned. A proposed solution for protection is described in
chapter 4.2.5.2

 Nature of Overload 4.2.5.1.1.1

Overloading of information systems or servers may result in denial of service or in unacceptable response
times. Overload can occur basically because of the following reasons:

 Natural overload during the normal operation of the system, caused by peak hours (e.g.
restart/installation of a sub-system with many devices), spam, congestion in networks etc. In this

case, overload can be considered as a result of improper design of the system from
performance point of view (insufficient resources), or the lack of a proper rejection/fallback
strategy.

 Result of a malicious attack (referred to as denial-of-service or DoS attack). Many past cases of
synchronized DoS attacks against servers of leading information technology companies show
that DoS attacks can easily paralyze Internet services for several hours. These types of attacks
are especially dangerous since they require minimal preparedness from the attacker and the

consequences are very damaging. Protection against DoS attacks is very hard if an attacker
starts the action by penetrating into many weakly protected computers all around the world, use
them as zombie systems and execute a synchronized attack against the target (as happened in

many cases [64], [65], [66]). Similar attacks can be relevant to all interfaces of nSHIELD, which
are accessible via internet or via public networks routed to internet without proper firewall
protection.

As it turns out, protection against overload is one of the most crucial questions in the design of
dependable servers. While in case of natural overload, the question is how to reject requests to allow
others to be served; in DoS protection we should assume that a malicious attacker is intelligent and

knows the applied protection method and will try to cheat it. Malicious attacks can produce extreme,
improbable situations, so a protection method should work not just in natural-like overload cases but in
any extreme situations as well.

Another serious threat is the blocking type attacks, which can be handled only by controlling the request
admission function and detecting blocking. As long as this threat is not avoided, other protection methods

would be useless. Therefore, the DoS protection should face each of the following overload and denial -of-
service type threats:

 Huge request: one or a few requests, which occupy too many resources, can cause denial-of-
service of the server.

 Blocking: a malicious attacker can very easily block an operation by exploiting the fixed limits

(e.g. number of threads) or bugs in the server. Even though this case can be explained as an
overload of resources, but detection of this type of events is significantly different from other
overload situations.

 Flood: an attack aims to overload the server by generating an unbearable number of requests.
In this case the overload can be much bigger than a natural overload can cause.

Flood can be handled at different levels based on its intensity:

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 70 of 106 Issue 1

 Overload: the server gets more requests than it can handle, but it has enough capacity to select
and reject unwanted load and serve the remaining ones. (Optionally rejected requests may get a

polite rejection message.)

 Moderate flood: Buffers get filled, packets get lost, but the server remains operational. Those
requests will be served, which can get through, but the server does not have the capacity to
select unwanted requests. (Preferably polite rejection mechanism should be disabled in this

case.)

 Massive attack: Incoming messages overload the operating system under the server and totally
block its operation (no served requests). These attacks usually use distributed zombie systems

to flood their targets (DDoS).

 Performance Considerations 4.2.5.1.1.2

It is very important to clearly understand what can be the goal of an overload protection subsystem. From

the client’s point of view two major factors are important: maximum response time and rejected request
ratio. One may think that the average response time can be also a considerable factor; however we think
it has a significantly less importance, as it will be explained later on.

From the server’s point of view the aim is to stay alive in any cases (avoid final denial-of-service), utilize
system resources most effectively to maintain high performance (especially CPU utilization should be

100% in case of overload, while blocking should be avoided).

To control the above performance factors we have basically two performance controlling values: the

length of the queue and the number of server threads. However we will see that performance
considerations in some sense contradict security considerations.

The above considered performance factors will be analysed during the nSHIELD research project from
many points of view:

 Measurements: operation of the proposed solution will be measured in realistic environment.
nSHIELD SPD metrics relevant to this case will be developed.

 Queuing Theory: theoretical modelling and analysis.

 Simulation: if the mathematical analysis of our proposed solution is not available, we will use

simulation technique to determine more precise results.

 Response Time, Rejected Request Ratio 4.2.5.1.1.2.1

From the client’s point of view the response time and the rejected request ratio are the most important

factors. If an adequate overload protection is not applied, response times may increase above a limit
where users (in this case, nSHIELD-enabled devices) could time out waiting for the response and
therefore this request can be considered lost and, on the other hand, server resources were consumed

uselessly. This negative feedback can drastically degrade the performance of the server: response times
continue to increase and the ratio of lost requests will increase as well, finally resulting in a virtual denial-
of-service.

The response time and rejected request ratio can be handled by buffering or queuing. In case of burst in
the load traffic the requests can be served only up to a certain limit. A server has a finite service capacity

and if it gets higher load than this limit, at least the extra part of the incoming traffic should be rejected to
limit the response times. So if a server gets a 110% load for a long time, at least 10% of the requests
should be rejected. Unfortunately, because real traffic has a remarkably big variance (bursts), the server

will drop requests even under the theoretically handleable 100% load. The ratio of dropped requests in
this case depends on the time while requests wait in the queue. The longer they wait, the longer bursts
can be handled without unnecessary rejection. Thus the rejected request ratio can be considered as a

function of response time. The traditional way to limit response times is to limit the number of requests in

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 71 of 106

the system (limit the length of the queue). We will see that security will require a more adequate

mechanism to control response times.

Based on the theoretical modelling we can describe the operation of a server based on only some

parameters. This description is almost independent from the used overload protection method.

 Below 90% load: queue is almost empty. Rejected request ratio is very small if the queue is

longer than a minimal size (10).

 Between 90% and 110% load: behaviour of the server in this interval greatly depends on the
applied overload protection technique. Rejected request ratio is somewhere between 5% and
15%.

 Above 110% load: the queue is almost always full. Response times go up to their limit. Request
rejection ratio will be close to the magnitude of the overload (load-100 %).

As we can see from the above, the applied technique is important only in the 90%-110% load interval. We

should focus on the acceptable response times and try to avoid unnecessary rejections in this interval.

 Performance and Utilization 4.2.5.1.1.2.2

Since a server is a complex system its modelling is not straightforward. Thanks to multitasking, one

computer may serve more than one request in the same time. In parallel executions threads can be
overlapped without remarkably affecting the execution of each other, but if too many threads are started
together, the overall performance will not increase. This thread limit depends on very many factors

(request type, hardware configuration, network bandwidth, speed of disk I/O, etc.). Although we can
explain the meaning of this limit theoretically, it is very hard to determine it in practice, because its value
may greatly vary during operation.

That’s why we proposed another approach for controlling the performance of the server. Namely, if the
utilization of the server resources is the highest possible, the performance of the server should be the

highest possible as well. In other terms, the utilization is the highest if no resources are wasted when they
could be utilized.

 Arrival Rate 4.2.5.1.1.2.3

Investigation of mass-servicing systems shows that if the number of users is high, requests arrive
according to a memoryless process, named Poisson-process in almost every case. In this case the time
intervals between incoming requests are exponentially distributed. The parameter of this exponential

distribution is referred to as arrival rate and usually denoted by . Since the mean value of an exponential

distribution is 1/, the arrival rate can be interpreted as the average number of requests within a time unit

or 1/ can be considered as the average elapsed time between two request arrivals.

The Poisson process models the reality very well, so we used this load characteristic in each case.

 Service Rate 4.2.5.1.1.2.4

To enable the simple modelling of server systems it is very important to hide the internal structure of a
server, it can be considered as a black box and we need only one performance-measuring factor to
describe this system, which is the service rate. This service rate gives how many requests leave the

system in one time unit in average. Of course if we want to be more precise, not just the rate, but the
distribution of the leaving requests should be considered. Further exponential, deterministic and general
distributions will also be analysed.

One should also understand that the service rate is independent from the response time and the servicing
time. Imagine the case of a pipeline system in a car factory. In each hour a car leaves the factory, but it

takes four days for a car to be prepared. In this example the service rate is 1/hour, the service time is 4
days (96 hours), while the response time (together with the waiting in the queue) can be as high as
several weeks.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 72 of 106 Issue 1

For a system with limited capabilities this service rate has an upper limit, which is denoted by . This
reflects the performance capacity of a server. In case of computer systems the maximum service rate is

approximately equal to the reciprocal of the average CPU usage time of a request.

 Security Considerations 4.2.5.1.1.3

After the usual performance measures of queuing systems we overview the security considerations as

well, where we also have to assume malicious intent to cheat the protective mechanisms.

 Blocking Avoidance 4.2.5.1.1.3.1

The limitation of server threads according to a fixed value can lead to the possibility of block ing attacks.

Note that if this thread limit is increased to any fixed value an attacker always can use this technique to
block the actual server.

To avoid blocking, the server should not have (small) fixed limitations on any resources , otherwise a
malicious attacker may issue some requests which consume these small amount of resources, hold them
allocated and this way block the service of other requests.

 Recognizing Malicious Flood 4.2.5.1.1.3.2

The fixed limitation of the length of the queue can prevent the DoS protection subsystem to reject
malicious requests (black list) effectively and admit correct requests (white list), since if one determines

the maximal length of the queue based on performance considerations then, even if malicious requests
can be spotted too many correct requests will be dropped at the end of the queue, so an attacker can
reach his goal to deny many good requests and thus virtually block the server.

On the other hand if the allocation of a resource is not limited (either the length of queue, or the number of
threads) a malicious flood or even a natural overload can lead to unlimitedly growing response times. This

is unacceptable and practically means a denial-of-service from the clients’ point of view.

At first sight there is a contradiction here between performance and security considerations. The DoS

protection subsystem needs a long run from a flood to recognize the malicious requests more precisely
and preferably no requests should be dropped during it, while performance considerations call for a high
request rejection rate to maintain response times. Our proposal solves this problem by letting the queue

grow and rejecting requests at the beginning of the queue.

 Presentation/Application level related threats 4.2.5.1.2

 Programming bugs 4.2.5.1.2.1

Common vulnerabilities caused by typical security-relevant programming bugs in the implementation
make up a sizeable part of software vulnerabilities, which are worthwhile to target when using automated
testing and security analysis. In the current case, the implementation of middleware core SPD services

are proposed to be tested against a list of bugs, such as:

 Buffer overflow errors

 Integer overflow errors

 Format string bug

 SQL injection (injection errors related to database access)

 Cross-site scripting vulnerabilities 4.2.5.1.2.2

Cross-site scripting (XSS) is vulnerability where malicious scripts are injected into vulnerable Web pages,
causing the user’s browser to execute malicious code [67]. In a Web service context, XSS vulnerabilities

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 73 of 106

are triggered indirectly – a Web service could feed malicious content to a web application, which in turn

would present this content to those who used the web application.

 XSLT vulnerabilities 4.2.5.1.2.3

XSLT is a content-generation language using select and merge operations. The language is Turing-

complete and can use various extensions from the underlying environment. In the recent years, several
vulnerabilities were found in various XSLT parsers [68] and XSLT usage scenarios. For example: if the
XML parser supports XSL transformations within the <Transform> tag of an XML signature, it may cont ain

XSL injection vulnerability [69].

 DTD parser implementation vulnerabilities 4.2.5.1.2.4

DTD entities are resolved by the XML parser when doing initial parsing, and DOM parsers attempt to store

them in memory. If the attacker uses a sufficiently deeply nested DTD entity chain, it can cause the parser
to crash or consume all of a system’s available memory [70].

 Coercive parsing vulnerabilities 4.2.5.1.2.5

In order to exhaust the system resources of the web service, the attacker can send an XML message
containing a large number of – or very deeply nested – entries [71]. Depending on the web service's XML
parser implementation, the parsing of such an XML message may cause abnormally high CPU load and

memory consumption or even crash the web service.

 SOAP specific vulnerabilities 4.2.5.1.2.6

Some special SOAP features and functionality can be implemented in a vulnerable way. The attacker may

create malformed SOAP messages in order to cause denial-of-service against the local or remote site, for
example by creating large SOAP arrays [72] or modifying the <ReplyTo> element in the header [73].

 External reference attacks 4.2.5.1.2.7

If a reference is identified as an URI, such as the <RetrievalMethod> in XML signature, the specified URI
may refer to remote content and the attacker can cause a denial-of-service attack against the remote site
indirectly, or can force outbound network connectivity by using URL schemes (e.g. ldap://, file://, ftp://)

[74].

 Protection against threats: intrusion detection service (DoS / DDoS protection) 4.2.5.2

The proposed solution of protecting nSHIELD Middleware Core SPD services is to add an SPD service
that is monitoring vital server resources and utilization of the Core SPD services being monitored.

The proposed solution can be seen in Figure 4.17, with the example of the Discovery Core SPD Service
being protected. The DoS Protection Subsystem is described in chapter 4.2.5.2.1, while chapter 4.2.5.2.2

discusses how the nSHIELD system could provide DDoS protection on the system level.

The Intrusion Detection Bundle would thus be implemented as an input filter for other Core SPD Services

with public interfaces.

The type of the interface supported by the Intrusion Detection Bundle would be defined on the transport
protocol level (e.g., SOAP messages encapsulated in XML messages, served by HTTP server services).
All other Core SPD Services would be able to dynamically set up filtering of their inputs using the input

filtering services of the Intrusion Detection Bundle.

[…] This task will also define and implement specific interfaces (based on the design results of task 2.3) for
accessing middleware capabilities from outside the system. The SPD modules will be implemented as software

modules which will become part of the prototypes delivered by WP5 on M18 and M30. […]

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 74 of 106 Issue 1

Figure 4.17: The logic block structure of the Intrusion Detection Bundle

 DoS Protection Subsystem 4.2.5.2.1

Figure 4.18: The Logic Block Structure of the DoS Protection Subsystem

After a careful evaluation of problems and possible solutions related to overload, DoS and blocking

threats we designed a pretty good subsystem, which can protect against these threats with a combined
mechanism. According to our initial discussions this solution seems to be optimal not just from protection,
but also from performance point of view.

The heart of our protection concept is the Waiting Time based Request Admission Control (referred to as
WTRAC), which evaluates each request and decide whether it can be admitted to the server for

processing or should be delayed or should be rejected. In practice it reads one request from the unlimited
queue and waits until the server will have enough resources to start the processing of this new request.

WTRAC solves the problem of unlimitedly growing response times, which is a consequence of the
unlimited length queue (which could cause blocking) by observing the waiting times of the requests in the
queue. If a request gets so old that its service cannot be expected within a given time limit (waiting time +

processing time > time limit) the request is rejected.

Using this WTRAC technology we got a self-calibrating method to dynamically determine the number of

started threads and to limit the response times without applying undesirable fixed limits within the
architecture. WTRAC provides ideal performance behaviour in case of natural overload: rejection ratio is
the smallest possible, response times are limited and their variance is also minimal. In case of block ing

attack or flood the malicious characteristic of the load can be very easily recognized: the number of
threads increases in case of blocking attacks or the length of the queue goes above a high limit in case of

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 75 of 106

flood. Simple monitoring mechanisms (Queue Length Watch, Thread Number Watch) can be applied to

handle these attacks as shown in the figure.

In case of natural overload the average length of the queue will be controlled by the maximal waiting time

and will tend to an optimal, self-calibrating value, which means 10-100 records in practice.

In case of flood, when the server receives much more requests than it can serve (i.e. request rate is more

than double of the service rate) the average length of the queue grows up, but remains limited. In such
case the server can process only a part of the requests, but remains operational with 100% load.

In case of malicious denial-of-service attack, the length of the queue grows without limit, what the Queue
Length Watch can detect. In this case the queue is full with malicious requests, out of which only a small
number (i.e. less than 10%) belongs to normal queries, all the others come from malicious sources. An

intelligent algorithm can distinguish then between normal and malicious requests and put the bad sources
on a black list. If filtering based on the black list is not enough to maintain the normal operation of the
server, the system can turn to white list based filtering, when only those requests will be served, which

behaved normally in the past.

In case of blocking a similar effect can be observed in the number of started server threads. If their

number increases unnaturally, the Thread Number Watch can notice it and put the blocking requests to
the black list.

In summary, our proposed solution is a very promising protection method against both natural and
malicious overloads and blocking, while on the other hand it does not even degrade the performance of
the server, but provides a much better behaviour than the current solutions.

 DDoS protection - Connection to nSHIELD Overlay 4.2.5.2.2

The above protection technique can provide good local response to DoS attacks. However in case of
heavy distributed DoS attack we can protect only at the network level, which means the Intrusion

Detection Bundle would have to alert the Overlay system of nSHIELD about the fact of the attack and
back propagate the black list or in more severe cases the white list. With the use of SPD metrics provided
by the DoS protection subsystem and reconfiguration capabilities implemented in the control algorithm of

nSHIELD Overlay layer, it would be possible to provide an unmatched protection against these serious
attack methods.

The SPD metrics that the DoS protection system provides in order to realize higher-level system
protection would include the following:

 Wait and processing times for Services protected

 Queue length of Service

 Thread count of Service

 Amount of allocated resources

 Number of rejected service requests (cumulated and per interval)

 Overload detection status (load % and/or internal state of protection)

 Blacklisting / Whitelisting events of Nodes or Blacklist/Whitelist

The SPD Security Agent in nSHIELD Overlay would be able to utilize the above metrics in SPD level

decisions and specifically, malicious or erroneous behaviour of nSHIELD Nodes, which is not reported or
recognized using the SPD metrics reported by the nodes themselves, could be detected and taken into
account for system composition.

 Middleware core SPD services vulnerability testing and countermeasures 4.2.5.2.3

To make the Middleware functionalities implemented in nSHIELD more secure, security testing regarding
public service interfaces is proposed. Thus, the Core SPD services providing system-wide functionality to

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 76 of 106 Issue 1

components on other levels of the nSHIELD system, such as nodes and network components will be
made more securely integrated, and the whole system less error-prone.

To detect potential vulnerabilities originating from the implementation, we propose security testing of the
external interfaces of the nSHIELD middleware, supplementing the Core Services Certification (see

Chapter 4.2.7).

Common security vulnerabilities may be detected in various ways, from source code analysis to black -box

testing. As source code analysis is a design-time technique and we are evaluating the external interfaces
of composite services, we focus on detecting vulnerabilities through the use of active testing methods –
specifically fuzz testing. In this section we briefly describe the most important fuzzing-related

technologies.

Most traditional security testing methodologies focus on finding evidence of known vulnerability types.

Fuzz testing approaches the same problem from a different angle – instead of trying to locate specific
vulnerabilities, it attempts to manipulate the input to the target composite service (the Target of Evaluation
– ToE) in order to discover previously unknown typical vulnerabilities.

According to [75], (fuzzing is) a highly automated testing technique that covers numerous boundary cases
using invalid data (from files, network protocols, API calls and other targets) as application input to better

ensure the absence of exploitable vulnerabilities. The name comes from modem applications’ tendency to
fail due to random input caused by line noise on “fuzzy” telephone lines. Fuzzing is not purely a security
testing technique – it has numerous applications in quality assurance (QA) processes as well (specifically

robustness testing). Even there it focuses on identifying bugs arising from input validation issues, and
does not validate the actual business logic implementation; fuzz testing cannot substitute for functional
testing. Fuzz testing also tends to be binary in the sense that it only evaluates whether a certain test

vector causes the ToE to crash, lock up, or act in a way that is easily identifiable as non-conformant – it
typically does not attempt to identify the cause of the crash in detail. As this also means that typical fuzz
testing produces no false positives, it makes fuzz testing very useful for nSHIELD; vulnerabilities reported

by such a ‘binary’ fuzz tester are guaranteed to be valid, and will not degrade the overall trustworthiness
of the nSHIELD platform.

 Adaptation of legacy systems 4.2.6

In order to allow non-native SHIELD (i.e. legacy) devices to be integrated into the SHIELD framework, it is
simply necessary to enable them with the possibilities of being discovered and composed. This can be
done by developing specific adapters (HW or SW) that contain the semantic information necessary for the

discovery/composition procedure and that are able to communicate them. Usually it is done by means of
pluggable web server (HW) or ad hoc software routines (SW).

Figure 4.19: SHIELD generic adapter

[…] This task foresees also the design of highly-dependable interfaces and/or, adapters and/or enablers to make
heterogeneous legacy SPD solutions (protocol, standards, mechanisms, techniques, etc.) for ES nodes, networks
and middleware interwork transparently with the enhanced capabilities provided by the SHIELD approach. The
main outcome of this task will be the design of adapters to make legacy devices capable to support the SHIELD

SPD-functionalities, as well as the development of some prototypal software. […]

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 77 of 106

In Figure 4.19 the architecture of a generic SHIELD adapter are highlighted. The main interfaces are:

 The possibility to register the provided Innovative SPD Functionality in the Service Registry;

 The possibility to publish the semantic description of the Innovative SPD Functionality in the
Semantic DB;

 SHIELD middleware protection profile certification 4.2.7

A Protection Profile
15

 (PP) is a document used as part of the certification process
according to the Common Criteria (CC). As the generic form of a Security Target

(ST), it is typically created by a user or user community and provides an
implementation independent specification of information assurance security
requirements. A PP is a combination of threats, security objectives, assumptions, security functional

requirements (SFRs), security assurance requirements (SARs) and rationales.

A PP specifies generic security evaluation criteria to substantiate vendors' claims of a given family of

information system products. Among others, it typically specifies the Evaluation Assurance Level (EAL), a
number 1 through 7, indicating the depth and rigor of the security evaluation, usually in the form of
supporting documentation and testing, that a product meets the security requirements specified in the PP.

For the nSHIELD project, the possibility of editing a protection profile for the SHIEDL middleware wil l be
explored, depending on the completeness of the architecture. If possible, this profile will be certified and

recognized at European Level as the first certified SHIELD component. This will open the procedure for
the certification of SHIELD compliant Embedded Devices.

15
 Source wikipedia and Common Criteria portal

SPD certification

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 78 of 106 Issue 1

 SHIELD policy based management assessment 5

 pSHIELD results and adopted technologies 5.1

 pSHIELD policy based management architecture 5.1.1

In the pilot project, a typical PBM architecture has been mapped into the SHIELD general architecture.
The latter includes two types of nodes at the button node layer that are categorized based on their
capabilities in terms of processing power and capacity, i.e., power nodes and sensor nodes. Power nodes

are described to be more resourceful while sensor nodes are typically seen as resource constrained
devices. Upper supporting layers constitute network, middleware and application layers while agents in a
vertical overlay monitor/tune those layers. Given the aforementioned architecture, a PDPs and PEPs from

a typical PBM architecture can be mapped naturally to power and sensor nodes respectively. Figure 5.1
presents the proposed PBM mapping.

On the lower layer, sensor nodes being the managed resources are considered as policy enforcers, i.e.,
PEPs. The latter, based on the XACML model, should enforce authorisation decisions and handle
affiliated obligations specified by applicable rules. PEPs can support local policy storage in order to

comply with COPS-PR mode of operation hence the provision of a local PIP although not compulsory.
However, this depends on the capabilities of deployed sensor nodes whether they can afford a form of
local policy storage and decision making. Moreover, power nodes are those nodes that are more

resourceful than the sensor nodes which make them natural decision making points able to
process/translate policies and deduce rules to be enforced by affil iated PEPs. The COPS protocol can
govern the communication between PDPs and affiliated PEPs but not exclusively as SNMP is an option

as well (where an LPIP is no more required).

Figure 5.1: PBM Mapping

A group of PDPs can access the repository of policies, (i.e., PIP) in order to retrieve needed polices for
evaluation. This is done through LDAP that is a protocol suited for lightweight read-intensive operations

allowing for directory access from different platforms and locations. The policy repository is managed

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 79 of 106

solely by the policy administrator point (PAP). Also, PAP is responsible for providing policy authoring tools

besides management and control capabilities. These could include creation, termination, activation,
listing, amending and synchronizing policies. Commercially for instance, Cisco’s PAP (Cisco) manages,
administer and monitor policies in a central manner compatible with LDAP. It also provides several

features such as web-based editing and composing of policies in a drag and drop manner, policy scope
definition, delegation management and aiding functionalities for understanding the implications of policy
changes. Concerning, LDAP implementations, an open source version is available as mentioned earlier

at (OpenLDAP, 2011). However, COPS does not seem to have an open source implementation where
some commercial ones could be available. If SNMP is considered as an alternative for COPS, some open
source and free implementations are available such as in (NET11). XACML is indeed the policy

specification language to be used as argued in earlier discussion.

Concerning pSHIELD main scenario where a monitoring and access control system is put in place to

oversee rail-transported hazardous materials, the above PBM is considered suitable. Locking and access
control mechanism in addition to installed sensors can be seen as PEPs where the central control unit in
the train carriage can be seen as a PDP with local access to PIP. Moreover, the central command cent re

overseeing the operation of the monitoring system is seen as a PAP with policy administration tools and
repository support. The PIP is expected to be distributed which allows a given PDP to access it locally
where a PAP can manage such a distributed PIP through LDAP.

As a final step, a performance evaluation of the policy execution (as PDP) is reported, with specific focus
on the computation time during policy execution.

The processing time depends on:

 Policy specification language (high level or low level)

 Type of policy execution engine

 Underlying formalisms used to describe attributes (e.g. Knowledgebase in pSHIELD)

 No. of simulteneous execution

Figure 5.2: N° of instances/class in Knowledge Base

Figure 5.2 shows the computation time for simultaneous policy execution with the following simulation
parameters:

 Rule-based semantic policies (SWRL-SQWRL)

- A high level language

 Underlying formalism: OWL

- High level compared to simple XML

 Simultaneous queries from Application requires execution of simultaneous policies

 Performance measure in P4 2.0 GHz,1GB RAM windows machine

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 80 of 106 Issue 1

Implications for pSHIELD: Latency is one of the QoS requirements for Web services at Middleware
level; latency includes request processing time. Figure shows that even with small no. of instances

simultaneous policy execution takes increasing amount of time.

For that reason run-time decision support with simultaneous query processing may not be possible with

such settings.

The assessment of this technology is reported below:

Table 5.1: pSHIELD policy based management – ASSESSMENT

pSHIELD policy based management - ASSESSMENT

Limits of this
approach to be
overcome

The policy based management architecture developed for the pilot
project purposes has shown to be suitable for a deployment in a real

application scenario. However, after the deployment, at runtime, the
biggest problem is in the computational effort needed to perform the
evaluation of the policies. This represents a problem in an SPD

environment, especially when realtime (or near realtime) decisions must
be taken.

Moreover very poor policies have been used in the testing campaign, so

there is still the lack of a reference SHIELD policy, based maybe on a
consolidated standard or at least on a consolidated language.

Positive
aspects to be

preserved

The PBM architecture has been selected after a careful evaluation of the
state of the art. This background analysis must be leveraged also in the

nSHIELD project.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 81 of 106

 nSHIELD potential investigations 5.2

 Proposed SHIELD policy based management architecture 5.2.1

 Use of XML-Based Technologies and Protection of the Communicated Messages 5.2.1.1

Adoption of XACML seems to be the most appropriate solution given its benefits, the standardised nature
and support it enjoys as demonstrated by the analysis made on policy languages in pSHIELD.

However, in contrast to the pSHIELD architecture the following modification, also depicted in Figure 5.3, is
proposed to cover different types of nodes (especially power nodes that have the capability to support

PDP functionality.

1. Power Node that incorporates both PEP (typically on a node component) and PDP functionality

serving requests originating from other nodes or for its own needs.

2. Power Node that is only acting as PEP, while the PDP functionality is provided by another system
such as a base station.

3. Power Node that only acts as PDP serving requests originating from other nodes.

This task aims at designing and developing a SPD-middleware policy-based management for ensuring a high
level of security, privacy and dependability in systems composed by Intelligent ES Nodes (developed in WP3) and
based on Smart Transmissions (developed in WP4) on the base of the metrics identifie d in task 2.2. In order to
build specific management functionalities and procedures for accomplishing these objectives, several aspects will

be investigated and analysed. The main ones are:

• Use of policies. Policies permit the declarative specification of security strategies separately from the
implementation code of ES nodes. The use of interpreted policies allows to change the security behaviour of a
node without recoding or shutting down the node;

• Design and development of algorithms and tools to enrich the smart capabilities of the middleware and increase

its autonomy;

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 82 of 106 Issue 1

Figure 5.3: nSHIELD Policy-Based Management (PBM)

Given the dynamic nature and the desired property of self-configurability, there will be situations where
there is no coordination or central control over the network of nodes. Therefore nodes that just joined the
network have to discover which entity is responsible for making access decisions. In this case the

corresponding systems, such as power nodes or base stations, have to advertise their capabilities
regarding PDP functionality while PEPs have to be able to discover PDPs and their corresponding
provided services. It is worth noting that by the term “power node” we imply a node possessing the same

functionality as a micro node, but that does not have any resource constraints.

While XACML defines the structure and content of access requests and responses exchanged among

PEPs and PDPs, it does not provide any details regarding mechanism(s) used to transfer these
messages, thus providing the necessary flexibility to adapt to diversified environments. Protocols that
have been proposed for the communications among PEPs and PDPs are COPS, SNMP while LDAP

matches the requirements for accessing the policy repository and PIP. One of the issues that need
considering is the protection of policy messages exchanged among PAP, PEP, PDP, and repository.

Communications between a PDP, running on a power node, and the repository can be protected using the
TLS and the widely used StartTLS extension, as the power node can support the heavy computations
required by TLS. However, communications among the less powerful micro/nano nodes (PEPs) and

power nodes (PDP) using COPS or SNMP protocol cannot rely on the security provided by TLS or IPSec,
due to their expensive computations that do not match the requirements of the constrained environment
with the very limited resources [91]. Therefore, alternatives have to be adopted for this purpose.

Several lightweight alternatives have been proposed that are based on TLS/SSL, thus making them
suitable for resource-constrained environments. One such approach was proposed in [92], which used

ECC for key exchange and authentication, RC4 for encryption and MD5 for integrity check. According to
the presented experimental results, it was able to complete a full SSL handshake within 2 seconds. Tiny
3-TLS proposed in [93] is an extension and adaptation of the TLS handshake sub-protocol, tailored for

securing communications between sensing nodes and remote monitoring terminals. This protocol relies

Policy Repository /
PIP

PA
Tools

PAP

PDP

PEP
LPIP OH

PEP

LPIP OH

Power
Nodes

Power
Nodes

Micro/Nano
Nodes

Micro/Nano
Nodes

PEP

LPIP OH

PEP

LPIP OH

PDP

SOAP/COPS/SNMPSOAP/COPS/SNMP

LDAPLDAP

ProprietaryProprietary

PDP

Legend:
PAP: Policy Administration Point
PDP: Policy Decision Point
PEP: Policy Enforcement Point
(L)PIP: (Local) Policy Information Point
OH: Obligation Handling

Legend:
PAP: Policy Administration Point
PDP: Policy Decision Point
PEP: Policy Enforcement Point
(L)PIP: (Local) Policy Information Point
OH: Obligation Handling

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 83 of 106

on the existence of an intermediate node, the sink node. In the nSHIELD context, the role of the

intermediate node can be played by the power node.

Regarding less powerful nodes, protection mechanisms can be deployed on multiple layers including the

application layer where, for instance, a proprietary lightweight cryptographic protocol that satisfies the
needs and matches the capabilities of constrained environments can be used. A solution that can be
adopted for this purpose is WS-Security and the corresponding mechanisms, i.e. XML Encryption and

XML Signatures (enveloped, enveloping or detached) or a combination of those depending on the
particular requirements to secure confidentiality and integrity of the exchanged messages. This approach
is also recommended by the XACML standard.

A structured exchange of secure messages, using XML encryption and signature, for XACML messages
is provided by SAML specifications (Security Assertion Markup Language) [97]. SAML is an independent

platform XML standard for exchanging authentication and authorization information. SAML assertions are
typically transferred embedded using HTTP or XML-encoded SOAP (Simple Object Access Protocol)
messages that are transferred over HTTP or UDP [98]. OASIS has defined a profile in [95] for the

integration of SAML with XACML and, among the others, the use of SAML for the secure transmission of
XACML requests and responses.

If SNMP is the chosen application layer protocol for transferring XACML data, SNMPv3 comprises a set of
security capabilities for network security and access control. It is worth emphasising that SNMPv3 is not a
stand-alone protocol and that it should be used in conjunction with SNMPv2 (preferably). RFC 2574

defines the User-based Security Model (USM) for SNMPv3 that is designed to be secure against
modification of information, masquerading, message stream modification (since SNMP has been
designed to operate over a connection-less protocol) and disclosure. However, it is not able to shield

against Denial of Service (DoS) attacks and traffic analysis (an eavesdropper is able to observe the traffic
patterns between managers and agents).

Message confidentiality and integrity can also be provided by corresponding security mechanisms
deployed at the network layer. These services will be made available to upper layers depending on the
application’s and other protocols (e.g. COPS) specific security requirements. In this case, the required

protection for the exchanged messages shall be revisited and aligned with the mechanisms proposed and
adopted at the node’s network layer, based on the work carried out on WP4. If message protection at the
network layer is compulsory there is no need to deploy additional heavy computations to the application

layer to add one more, possibly redundant, protection layer. Nevertheless, should a web-services-oriented
approach be followed, the Devices Profile for Web Services (DPWS) security framework could be of great
value, as it defines a recommendation baseline for interoperable security between devices. DPWS

describes the desired behaviour of clients, in terms of confidentiality, integrity and authentication is
described. What is more, a web-service-based platform for WSN management was recently proposed in
[94] that also featured a novel service-oriented routing protocol.

In either of the aforementioned approaches, one of the main problems related to the exchanged
messages’ protection is key management, especially when considering the following:

1. Communications might take place ad-hoc between nodes that do not have an established trust
relationship, hence they do not (pre-) share any secrets. Dynamic structures and self-

configuration capabilities demand for more flexible mechanisms.

2. Some nodes might not support public-key technologies, which further complicate the processes
of establishing trust relationships and keys.

The inherent key management problems, especially in resource constraint environments have attracted a
lot of attention in the research community and many schemes have been proposed within this context. A
survey and taxonomy on proposed wireless sensor networks key management schemes is provided in

[89].

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 84 of 106 Issue 1

 SHIELD Overlay assessment 6

 pSHIELD results and adopted technologies 6.1

 pSHIELD Security Agent architecture 6.1.1

The SPD Security Agent preliminarily designed in the pilot phase is depicted in the following Figure 6.1.

Figure 6.1: SPD Security Agent Bundle

It is composed by two elements:

 The Semantic Knowledge Bundle: it is in charge to get the semantic description of the available
services and to make inference on their semantic model to extract the SPD level of their composition;

 The Control Algorithm Bundle: it is in charge to evaluate the best control strategy for the whole

system in terms of proper configuration rules both for the Discovery and the Composition Bundle.
The Control Algorithm can influence which services can be discovered configuring the query pre-
processor and can influence the composition process limiting the composition only to the best SPD

functionalities that can assure the desired SPD level.

The assessment of this technology is reported below:

Table 6.1: pSHIELD Security Agent architecture – ASSESSMENT

pSHIELD Security Agent architecture - ASSESSMENT

Limits of this
approach to be
overcome

The security agent derived for the pilot purposes worked adequately in
the demonstration scenario, but is far away from being a consolidated

entity to be applied in all the potential domains.

In particular the control algorithm module is too weak to manage the
ambitious composability expected by the SHIELD framework, so a more

complex (and articulated) architecture should be derived.

Moreover in this architecture the security agent performs only a static
composability, since it has no possibility of retrieving real time information

on the underlying system. A monitoring module should be added as well,
to enrich its capabilities.

Positive aspects

to be preserved

The decoupling between control and knowledge management must be
preserved, since the development of control algorithm and the definition

of semantic models may be asynchronous, continuously evolving
activities. This will increase the lifetime of the proposed solution.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 85 of 106

 pSHIELD Composition algorithms: Hybrid Automata approach 6.1.2

One of the main theoretical results of the pSHIELD project was the formalization, by means of Hybrid
Automata Theory, of some control laws that are supposed to drive the SPD composition in a s way.

This concept is simple but effective: the Common Criteria approach defines a standard methodology to
compose elements with precise quantification of their SPD level. Since the solution of the composition
problem is not always unique, we can enrich this composition by setting further rules that allows to

discriminate from one configuration to the other. This can be done by creating a dynamic model of the
system and verifying, with respect to pre-defined objective functions, the most convenient configuration.

Two different approaches have been demonstrated to validate this theory.

 Static Approach with Simple Optimization 6.1.2.1

The first, simple approach is based on the following steps.

At first the system “state” is identified, i.e. the set of active components (node, protocols or applications).
A state is a screenshot of the system in a specific condition (for example with the node E switched on)
and with the dynamics associated to this condition (for example the evolution of the node’s power

consumption).

The selected dynamics considered for this model constitutes the so-called context information: since the

SPD is controlled via the common criteria approach, we need to insert into the model variables that could
be significant to control (optimize) the evolution of the system. They could be, for example, the power
consumption, the computational resources utilization, the bandwidth utilization, and so on.

The state identified in this step is depicted in Figure 6.2.

Figure 6.2: Single State representation

Secondly, different states are concatenated to obtain the universe of all the possible condition of the

system: this is an enumeration of configurations. For example in a system with two nodes, two network
protocols and two middleware services we 8 states (at least one component must be active).

Q = {[101010], [101001], [100110], [100101], [011010], [011001],[010110], [010101]}.

The result is depicted in Figure 6.3.

State:

[0 1 1 0 1 0]

Continuous

dynamics:

Energy Consumption

Discrete parameters

Bandwidth

Adjacency Matrix

[...]
Node [E F]

Protocol [C D]

Application [A B]

State Space: [A B C D E F]

MIDDLEWARE

NETWORK

NODE

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 86 of 106 Issue 1

Figure 6.3: Hybrid Automata to describe all the possible configurations

The transition can be voluntary and expected (control action) or not (due to fault) but in any case each
event is captured and in every moment it is possible to check the status (and evolution) of the system:

D = {switch configuration1, fault1, …, switch configurationn, faultn}.

The third step is the identification of the internal variables (and dynamics) to control. For the pilot project a

simple case is considered where:

 the relevant dynamic is the power consumption of the system in a specific configuration and

- the amount of bandwidth provided by the network layer.

These variables have opposite behaviours (higher bandwidth, higher power consumption) so the purpose

of the control algorithm is to choose the configuration that optimizes one of them.

This scenario has been implemented in Matlab-Simulink (see Figure 6.4) and is composed by two nodes

with two different dynamics for the power consumption and for bandwidth utilization. It is important to
notice that both these configurations should be valid SPD configurations (see CC approach).

State:

[0 1 | 1 0 | 0 1]

Continuous

dynamics:
E(t)=exp(-3t)

Discrete parameters
B=15Kbps

A=[0 1; 0 1].

State:

[0 1 | 1 0 | 1 0]

Continuous

dynamics:
E(t)=exp(-2t)

Discrete parameters
B=10Kbps

A=[1 1; 1 0].

Node E switched off

Node F switched on

Node E switched on

Node F switched off

EVENT

System

property

System

evolution

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 87 of 106

Figure 6.4 Hybrid automata Matlab Prototype

 Operating conditions approach with MPC Control 6.1.2.2

The second prototype aims at being more efficient and flexible to cope with the scalability issues that in a
complex system may arise. This has been obtained by clustering the representation of the configurations
in amore restricted environment: the operating conditions. Given an Embedded System (pSHIELD Node)

it is possible to identify a set con elements (battery, buffers, CPU) that can be associated to an operating
conditions: a buffer can be saturated, full or empty; a CPU can be idle, working or overloaded; a battery
can be full or empty. All these components can also be broken. The combination and aggregation of these

conditions allows to create an exhaustive model of a pSHIELD node, as depicted in Figure 6.5. The
aggregation is possible, since some behaviours of the components have the same effect of the system (if
the CPU or the Buffer is full, the result is always the impossibility of processing data).

At this point the problem of scalability of composition is solved, since the introduction of a new node in the
system doesn’t imply an exponential increase in the model size, but a linear growth (6 states for each

additional node and 4 states for each additional network layer).

B
entry :t= 0;

during :battery =battery -0 .2* t;
during :t=t+ 0.02;

A
entry :t=0;

during :battery=battery -0.4*t ;

during :t=t+0 .02;

Default

Att ivo
entry :t=0;

during :battery =battery +t;

during :t=t+0.02 ;

NonAttivo

entry : t=0;

C

entry :t=0 ;
during :battery= battery -0.4* t;

during :t=t+0 .02;

D

entry :t=0;
during :battery =battery -0.2 *t ;

during :t=t+0.02;

[battery <=500]

2

[battery <=500]

2

[battery >500]
1

[battery <=10]2[N 1== 0] 1

[N 1==1]

2

[N 1== 0]
1

[battery< =10]
1

[N 2==0]

1

[N2 ==1]1

[N 2== 0] 2

[battery>500]
1

[battery <=500]
2

[battery <=500]

2

[battery>1000]

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 88 of 106 Issue 1

Figure 6.5 Hybrid Automata representing the pSHIELD node

Last, but not least, interesting control algorithms can be applied to the system model due to its formulation
by means of these operating conditions (see for example the work of Bemporad [106] and [107]). In

particular for the pSHIELD purposes the framework developed in [107], based on Model Predictive
Control (MPC), has been considered to verify the effectiveness of the Hybrid Automata approach.

For the simulations it has been used the Matlab Toolbox for Hybrid System with the default configuration
(standard MPC problem). The Objective of the control algorithm has been to maximize the amount of data
processed by the node while preserving the battery and leaving a certain amount of “reserved” resources

for potential emergency tasks.

The assessment of this technology is reported below:

Table 6.2: pSHIELD Composition algorithms: Hybrid Automata approach – ASSESSMENT

pSHIELD Composition algorithms: Hybrid Automata approach - ASSESSMENT

Limits of this

approach to be
overcome

The main limits of the hybrid automata approach are:

 The scalability: even if the number of states has been reduced, it is
still unmanageable in systems composed by thousands of devices

(and this value is reasonable).

 The expressiveness of the model is limited to simple devices and
is not able to capture all the complexity of Embedded Systems

world (abstraction is needed)

 The difficult implementation of the control laws in a software
environment (e.g. Java or C language)

Positive

aspects to be
preserved

The merging of the Common Criteria approach optimized by a Context

Aware control law is a valuable intuition that harmonizes regulations and
theory, so it should be preserved.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 89 of 106

 nSHIELD potential investigations 6.2

 Proposed SHIELD Security Agents architecture 6.2.1

The SHIELD overlay functionality is implemented through a security agent component. This component
actually controls a given SHIELD Subsystem. Expandability of such framework is obtained by enabling
communication between SPD Security Agents controlling different sub-systems through the provided

overlay interface. Therefore, the presence of more than one SPD Security Agents is justified by the need
of solving scalability issues in the scope of system-of-systems (exponential growth of complexity can be
overcome only by adopting a hierarchical policy of divide et impera). Within an nSHIELD subsystem

multiple security agents could be possible mainly for redundancy or high availability purposes (usually
only one will be active).

Each SPD Security Agent, in order to perform its work, exchanges carefully selected information with the
other SPD Security Agents, as well as with the three horizontal layers (node, network and middleware) of

the controlled nSHIELD subsystem. Each SPD Security Agent collects properly selected heterogeneous
SPD-relevant measurements and parameters coming from node, network and middleware layers of the
controlled nSHIELD subsystem. The SPD Security Agent is a software module and requires the mediation

of the nSHIELD Middleware. Thus any actual communication between the Overlay and the three layers is
performed passing physically through the middleware layer.

The development view is depicted in the figure below.

Figure 6.6: nSHIELD SPD Security agent architecture

IDS/FILTER/ MONITOR MODULE

SEMANTIC DB
MODULE

DISCOVERY
MODULE

ENFORCEMENT
ENGINE

MONITORING
ENGINE

DECISION
MAKER ENGINE

CONTEXT
ENGINE

SPD SECURITY AGENT

COMPOSITION
MODULE

OTHER SPD SECURITY AGENTS

[…] This task aims to design and implement an overlay layer based on a system of reacting security agents. The
outcome of this task will be a software implementation of a security agent prototype ready to be integrated and

interwork with the rest of SHIELD architecture. […]

[…] The security agent will be designed and developed to build autonomously an overlay network composed by
different security agents that monitor SPD among groups of embedded system peers, networks, applications and
services. Each security agent will interpret the information shared in the SPD system in order to discover imminent
threats, menaces and vulnerabilities. All security events of interest will be correlated with the underlying criticality
rating the targeted asset. This will results in accurate prioritization and enables fast response to the threats,

targeting most critical assets. […]

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 90 of 106 Issue 1

The heterogeneous data collected from the three horizontal layers (passing through the middleware layer)
are abstracted and translated into technology-independent metadata. The resulting metadata (referred to

as sensed metadata) are interpreted by the monitoring engine and stored in the context engine.

The monitoring engine is in charge to interface the Overlay layer with the Middleware layer, to retrieve

sensed metadata from heterogeneous nSHIELD devices belonging to the same subsystem, to aggregate
and filter the provided metadata and to provide the subsystem situation status to the context engine.

The context engine is in charge to keep updated the situation status as well as to store and maintain
updated any additional information exchanged with other SPD security agents that are meaningful to keep
track of the situation context of the controlled nSHIELD subsystem. The situation context contains both

status information and configuration information (e.g. rules, policies, constraints, etc.) that are used by the
decision maker engine.

The decision maker engine uses the valuable, rich input provided by the context engine to apply a set of
adaptive (closed-loop or rule-based) and technology-independent algorithms. The latter, by using (as

input) the above-mentioned situation context and by adopting appropriate advanced methodologies able
to profitably exploit such input, produce (as output) decisions aiming at guaranteeing, whenever it is
possible, target SPD levels over the controlled nSHIELD subsystem.

The decisions mentioned above are translated by the enforcement engine into a set of proper
enforcement rules actuated by the nSHIELD Middleware layer all over the nSHIELD subsystem

controlled by the considered SPD Security Agent.

 Hybrid Agent Systems 6.2.1.1

A security agent is in charge of a SHIELD cluster or subsystem. It is foreseen that security agents can

exchange information for control purposes, so a multi-agent approach has to be explored, at least at
theoretical level, in the scope of the nSHIELD project. In order to ease the analysis and to keep the
solution as much generic as possible, we will focus on a specific class of agents that allows several

implementation: the hybrid agents ([108]).

A natural way to design a hybrid agent is to treat the behaviours of the agent as separate subsystems.

This style of design leads to the construction of a hybrid agent as a hierarchy of interacting layers. In the
layered agent architecture we will typically have at least a reactive layer and a proactive layer. However,
further layers can be included to equip the agent with additional kinds of behaviour. For example, we may

include layers for deduction, communication, social interaction, mobility, adaptation, and other common
agent properties. There are two main ways to structure the layers of a hybrid agent, illustrated in Figure
6.7:

1. In a parallel layered system, each layer takes the input from the environment separately and
produces suggestions as to the necessary output action. In effect, each layer acts as a separate

agent.

 […] The security agent reacting system will be a combination of network scanning, passive network monitoring,
and integration with existing data provided by the layers. It allows the security agent to organize the network
assets into categories. This feature will permit to assign ad-hoc security policies for monitoring each application or

service component. […]

[…] A multi-agent approach which combines intelligent, adaptive, autonomous and cooperative capabilities of the
agents will be developed. Teams of security agents will cooperate to monitor over time the SPD level on the whole
service chain. Therefore, in order to guarantee security and dependability in inter-agent communication, new
semantically enriched communication protocols and distributed algorithms capable of dynamically identifying
potential dangerous activities, will be analyzed and defined. […].

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 91 of 106

2. In a sequential layered system, the input from the environment is passed through all the layers of

the system, and handled by at most one layer. The layers act in concert to ensure that the input is
handled appropriately.

P
a

ra
lle

l
L

a
y
e

ri
n

g

S
e

q
u

e
n

ti
a

l
L

a
y
e

ri
n

g

Input Perception Input Perception

Output ActionOutput Action

Layer 1

Layer 2

Layer 3

L
a

y
e

r
1

L
a

y
e

r
2

L
a

y
e

r
3

Figure 6.7: Hybrid Agent Architecture

The parallel layered approach has the advantage of conceptual simplicity, as the layers can be
implemented independently. In essence, we can add a new layer for each kind of behaviour that we want
the agent to have. However, this simplicity is offset by the need to resolve potential conflicts between the

layers, and decide which layer has control of the agent at a given time. These tasks are usually assigned
to a separate mediator that enforces consistency between the layers. The design of this mediator is
nontrivial as it may be required to consider all possible interactions between the different layers.

Consequently, the mediator may adversely act as a bottleneck inside the agent.

The difficulties of the parallel layered architecture are addressed to an extent by the sequential layered

approach. The environmental input flows between all the layers without the need for a mediator. One layer
is responsible for the input, and one layer is responsible for the final output action. However, each of the
layers must be explicitly designed to fit with the others. A variant of this approach is a two-pass

architecture, where the input flows up the layers, and the output .flows back down the layers. This variant
is analogous to a network protocol stack.

Hybrid agent systems, constructed as layers, are currently the most popular kind of agent architecture.
The layered approach is appealing from a pragmatic point of view, as it allows us to define an agent as a
composition of different subsystems. These layers can be defined independently, and composed in

different ways, affording us considerable flexibility in the design of our agents. For example, we can
separate the activities of communication and reasoning, and we can further separate reasoning into
reactive and proactive behaviours.

The main criticism of the layered approach is that it is inherently difficult to reason about the behaviour of
an agent as a whole. Each layer will typically be defined in a different formalism with its own semantics.

Combining these formalisms to provide a unified view of the agent may be a challenging task. Another
criticism concerns the interaction between the layers. If the layers are independent, then it is necessary to
consider all the ways that the layers can interact in order to reason about the behaviour of an agent.

 Proposed SHIELD composition algorithms: DES and Petri Nets 6.2.2

A Discrete Event System (DES) is a discrete-state, event-driven system, that is, its state evolution
depends entirely on the occurrence of asynchronous discrete events over time. In particular a DES is
characterized by:

1. The feasible events set E;

2. The state space constituted by the discrete set X;

3. The state transition mechanism is event-driven.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 92 of 106 Issue 1

Formally DES can be modeled by Automata and Petri Nets (PNs). The former is the basic DES model
(Cassandras C.G. and Lafortune S. [109], Wonham W.M. [110]), that is characterized by an intuitive

structure/graph and easy composition operations, automata are amenable to analysis as well. On other
hand, automata model suffers from state space explosion, then automata should be not adequate for
complex system. The latter modelling formalism allows the representation of lager class of DES, in fact an

automaton can always be represented as a Petri net, but the contrary is not true. Introduced by C. A. Petri
in (Petri C.A. [111]) PNs have more structure than automata, although they do not possess, in general,
the same analytical power as automata. It is important underline that PN allows to explicit the conditions

to enable the event. Furthermore, Petri nets allow to overcome the state space explosion, in particular the
Colored Petri Nets (CPNs), an extension to PNs, are developed to model complex systems. CPNs
combine the PNs structure with the high-level programming, i.e., using data types and complex data

manipulation. Furthermore CPNs allows to obtain a hierarchical descriptions of system, combining a set of
sub-models and defining the interfaces between these sub-models.

 Automata Formal Description 6.2.2.1

Considering DES, the set E represents the alphabet and each (finite) sequence of events is a word or

trace. Then the set of feasible sequences of event that the system can execute is denoted as language.
To be more precise, a language defined over an event set E is a set of finite-length strings/word formed
from events in E. To represent a DES, there are two levels of abstraction: timed or logical. The timed DES

state evolution can be expressed by a sequence of the couples event and its occurrence time, i.e., {(e1,
t1), (e2, t2)… (en, tn)}, whereas logical DES state evolution can be simply expressed by a trace i.e., a
sequence of events {e1, e2, …, en}. Note that, stochastic DESs are including in the first level of abstraction

timed model. We will consider this second level of abstraction where the language models the behaviour
of the system. In order to model a system and represent a language, we consider the untimed discrete
event modelling formalism automata.

A deterministic Automaton is defined in few works as a six-tuple G = (X, E, f, T, x0, Xm), where T is the
feasible event function defined as T: X → 2

E
, T(x) is the set of events e for which f(x,e) is defined (clearly

this second function is derived by transition function f). The automaton can be represented by the state
transition diagram, a directed graph to describe graphically the behaviour of system. The state transition

diagram nodes represent the states x X and the arcs represent the transition labelled by e E, finally

the initial state and marked states are generally identified by an arrow and double circle respectively.

down

idle busy

start

complete

fault
repair

Figure 6.8: state transition diagram of queuing system with breakdowns

For example, the simple automaton in Figure 6.8 represents an elementary queuing (or machine) system
with breakdown. The system is defined by the following model:

X = {idle, busy, down};
E = {start, complete, fault, repair};

x0 = idle;
Xm = {idle};
f (idle, start) = busy;

f (busy, complete) = idle;
f (busy, fault) = down;
f (down, repair) = idle.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 93 of 106

The state transition diagram highlights the connection between automata and languages; in fact every
automaton evolution is associated with a word of the event alphabet E.

To building the model of complete system built from models of individual system components we need to
define the operation parallel composition, that consent to combine two o more automata.

Definition: The parallel composition of G1=(X1, E1, f1, x01, Xm1) and G2=(X2, E2, f2, x02, Xm2) is the

automaton G1 || G2 := (X1 x X2, E1 E2, f, (x01. x02), Xm1 x Xm2)

where

 otherwise undefined

 \ if ,,

 \ if ,,

 if ,,,

,,

122221

211211

22112211

21

xeexfx

xexexf

xxeexfexf

exxf

Hence, the events can be common (E1 ∩ E2) or private (E2 \ E1) ∪ (E1 \ E2). In the former case the
automata execute the event simultaneously. In the latter, each component can execute the private events

whenever possible.

 Petri Nets Formal Description 6.2.2.2

Like an automaton, a Petri net is a formalism to describe Discrete Event System behaviour; in particular
they represent the DES transition function. A Petri net is a five-tuple (P, T, A, w, M0) where

 P = {p1, p2, …, pn} is the finite set of places;

 T = {t1, t2, …, tm} is the finite set of transitions, such that P T = P T = ;

 A ⊆ (P × T) ∪ (T × P) is the set of arcs from places to transitions ((pi, tj): Input I(tj) = pi)and from

transitions to places ((ti , pj) Output O(ti) = pj);

 w : A → {1,2,3,...} is the weight function on the arcs;

 M0 : P → {0,1,2,3,...} is the initial marking;

A Petri Net is a directed, weighted, bipartite graph (with two type of node: place and transition) associated
with initial marking M0. Marking assign a non-negative integer k to each place p ∈ P, in other words every

place pi is marked with k i tokens, M(pi) = k i, with k i ∈ [0, ∞) and i =1, 2, …, n. Given a PN the number and
the distribution of tokens control the transitions execution. In fact a transition ti is enabled if and only if the

number of the tokens in each input place pj is larger than the weight of arc w(pj, ti): ti is enabled iff M(pj)
w(pj, ti) where pj = I(ti).

An enabled transition can fire only when the associated event occurs. The firing an enable transition ti
removes w(pj, ti) tokens from each input place pj (pj = I(ti)) and put w(ti, ph) tokens in each output place ph
(ph = O(ti)).

21

21

F
i
r
e

Figure 6.9: example of enabled transition

Petri Nets allow to model the typical features of dynamic systems, such as, concurrency , sequential
behaviour, synchronization, mutual exclusive, and so on, in the Figure 6.10 some examples are shown.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 94 of 106 Issue 1

Sequential Concurrent

Synchronization

Mutual exclusive

Figure 6.10: Examples of Petri Net primitives

The strength of Petri nets is that they allow to analyze several proprieties associated with the dynamic
systems:

 Reachability: A marking Mn, that represents a specific state of system, is reachable from initial

marking M0 (Mn ∈ R(M0)) if there exist a sequence of firing σ(M0) = {M0, M1, …, Mn} that

transforms M0 to Mn.

 Boundedness: A PN is k -bounded if the tokens number in each place does not exceed a finite

number k for any marking M reachable from initial marking M0, i.e., M(p) k for every p ∈ P and

every M ∈ R(M0).

 Liveness (Commoner F. 1972): A transition t is said to be:

- Dead or L0-live, if t can never fire in any sequence of firing σ(M0);

- L1-live, if there is some firing sequence σ(M0) such that the transition t can fire at least

once;

- L2-live, if the transition t can fire at least k times for some given positive integer k;

- L3-live, if there exists some infinite firing sequence σ(M0) in which the transition t appears

infinitely often;

- Live or L4-live, if the transition t is L1-live for every possible state reached from M0.

 Colored Petri Nets 6.2.2.3

Kurt Jensen introduced the Colored Petri Nets (CPNs) in 1981; CPNs combine the Petri Nets capabilities
with high level programming capabilities. In CPN the tokens carries a data value, referred as token colour,
furthermore each place may contain a determinate data type, in other word each place has an associated

coloured set. Similarly to PN the marking (number, colours and distribution of tokens) represent the state
of the modelled system. The definition of non-hierarchical Colored Petri Net follows:

A non-hierarchical Colored Petri Net is a nine-tuple CPN = (P, T, A, Σ, V, C, G, E, I), where:

 P = {p1, p2, …, pn} is a finite set of places.

 T = {t1, t2, …, tm} is a finite set of transitions such that P T = P T = ;

 A ⊆ (P × T) ∪ (T × P) is the set of directed arcs;

 Σ is a finite set of non-empty color sets;

 V is a finite set of typed variables such that Type(v) ∈ Σ for all variables v ∈ V;

 C : P → Σ is a color set function that assigns a color set to each place;

 G : T → exprV is a guard function that assigns a guard to each transition t such that

Type[G(t)] = Bool;

 E : A → exprV is an arc expression function that assigns an arc expression to each arc a such

that Type[E(a)] = C(p), where p is the place connected to the arc a;

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 95 of 106

 I : P → expr is an initialization function that assigns an initialization expression to each place p.

The strength of CPNs is the hierarchical structure, composed by modules, that allow to model complex
and to work at different abstraction level. The definition of Colored Petri Net Module follows:

A Colored Petri Net Module is a four-tuple CPNM = (CPN, Tsub, Pport, Ptype), where:

 CPN = (P, T, A, Σ, V, C, G, E, I) is a non-hierarchical Colored Petri Net;

 Tsub ⊆ T is a set of substitution transitions;

 Pport ⊆ P is a set of port places;

 Ptype : Pport → {IN, OUT, I/O} is a port type function that assigns a port type to each port place.

We refer to [112], [113] and [114] for detailed description of the concepts, analysis methods and practical
use of colored Petri nets.

 Modelling abstract SPD functionality 6.2.2.4

The DES theory described so far will be used to model the abstract component defined in the semantic

activities. An example of the representation of atomic SPD functionalities that exploit the dependable
monitoring of goods (see pilot project demonstration), as used by the control engine to drive the
composition, is reported in Figure 6.11, where all the options (with their associated level of SPD) are

listed, ready to be composed according to the user needs.

Figure 6.11: SPD functionalities composed for the demonstrator

Considering this simple scenario it is possible to highlight the main features of Automata model: easy
composition but scalability problem. The Figure 6.12 shows the simple model of two element of system,
assuming that each functionality is always active and can be implemented in three different ways. The

state represent in which way is implemented every functionality, the transitions occurs when the
functionality change mode and the output is the value of associated level of SPD.

Auditing

Accounting

Identification

Authentication

Cyphering

Key Management

PIN (2)

Password (5)

Token (8)

CHAP (8)

EAP (1)

PAP (1)

Blowfish (6)

AES (1)

DES (3)

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 96 of 106 Issue 1

Figure 6.12: SPD functionality Automata model

The basic composition of two functionalities is shown in Figure 6.13. Clearly, the main issue of this
approach is the state space explosion.

Figure 6.13: SPD functionalities parallel composition

The Petri net model is shown in Figure 6.14, the number of the token represent the associated level of

SPD. The control is not performed in fact the transitions are always active.

Figure 6.14: SPD functionalities Petri Nets

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 97 of 106

The composition of system elements is shown in Figure 6.15. Cleary, we are considering a simple system

but the difference between automata and PN model are shown. The PNs and, in particular, the CPNs
allow to overcome automata issues.

Figure 6.15: Petri nets composition

Finally the main strengths of CPNs are the token color and the sub-models structure. The former is a data

value attached to each token; this can be examined and modified by the occurring transitions. The latter
allows to overcome scalability problem using a hierarchical description of system.

A reasonable way to model the system is consider multiple cooperating sub-modules which achieve a
complete system. The SPD functionalities CPN model, shown in Figure 6.16 and Figure 6.17, is our basic
sub-module.

Figure 6.16: SPD Functionalities CPN model

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 98 of 106 Issue 1

Figure 6.17: SPD Functionality module

This model advantage is the hierarchical structure, that allows to overcome scalability problems and to
model heterogeneous systems using the composition of simple basic elements representing SPD
functionalities.

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 99 of 106

 Conclusions 7

In this document the assessment of the pSHIELD and nSHIELD technologies have been performed. In
particular, for each technology investigated in the pilot phase, an assessment table has been provided to
highlight limits and benefits of the approach. Then, this table is used as input to define the new research

that has to be performed in the second phase.

The Technical Annex has been reported as well, in order to demonstrate the rationale behind WP5

activities and the strategy to build the SHIELD middleware that is the main enabling technology of the
SHIELD framework.

The technologies identified for the prosecution of the nSHIELD project are in a nutshell:

 A new procedure to derive the SHIELD ontology, based on decoupling between abstraction and
domain

 A new lightweight language to translate the metamodels

 The secure discovery protocol

 The trusted composition procedure

 The choreographer as manager of composability

 The intrusion detection monitoring and filtering service

 The adapters for legacy systems

 The SHIELD Security Agent

 The multi-agent interaction between security agents

 The policy based management architecture

 The policy definition

 The DES and Petri Nets theory for composability

 The protection profile of SHIELD middleware

The advances will be shown in D5.2, D5.3, D5.4 and D5.5.

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 100 of 106 Issue 1

 References 8

[1] Organization for the Advancement of Structured Information Standards, OASIS,

http://www.oasis-open.org

[2] The Web Services Security: SOAP Message Security, WS-Security, http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

[3] SAML Token Profile 1.1, http://www.oasis-open.org/committees/download.php/16768/wss-
v1.1-spec-os-SAMLTokenProfile.pdf

[4] Kerberos Token Profile 1.1, http://www.oasis-open.org/committees/download.php/16788/wss-

v1.1-spec-os-KerberosTokenProfile.pdf

[5] X.509 Token Profile 1.1, http://www.oasis-open.org/committees/download.php/16785/wss-
v1.1-spec-os-x509TokenProfile.pdf

[6] Rights Expression Language (REL) Token Profile 1.1, http://www.oasis-
open.org/committees/download.php/16687/oasis-wss-rel-token-profile-1.1.pdf

[7] Username Token Profile 1.1, http://www.oasis-open.org/committees/download.php/16782/wss-

v1.1-spec-os-UsernameTokenProfile.pdf

[8] Francois Lascelles, Aaron Flint: WS Security Performance. Secure Conversat ion versus the
X509 Profile, 2006, http://websphere.sys-con.com/node/204424

[9] http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf

[10] Web Services Secure Conversation v1.4, WS-SecureConversation, http://docs.oasis-
open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf

[11] Hongbin Liu, Shrideep Pallickara, Geoffrey Fox: Performance of Web Services Security, 2005.

[12] Web Services Security Policy v1.3, WS-SecurityPolicy, http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf

[13] Web Services Policy 1.5 – Framework, http://www.w3.org/TR/ws-policy/

[14] Web Services Dynamic Discovery v1.1, WS-Discovery, http://docs.oasis-open.org/ws-
dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf

[15] Web Services Federation Language v1.2, WS-Federation, http://docs.oasis-
open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf

[16] Devices Profile for Web Services v1.1, DPWS, http://docs.oasis-open.org/ws-

dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf

[17] Zeeb, E., Moritz, G., Timmermann, D., & Golatowski, F. (2010). WS4D: Toolkits for Networked
Embedded Systems Based on the Devices Profile for Web Services. 2010 39th International

Conference on Parallel Processing Workshops (pp. 1-8). IEEE.

[18] Service Infrastructure for Real time Embedded Networked Applications , ITEA SIRENA,2003-
2005, http://www.sirena-itea.org/

[19] Service-Oriented Device & Delivery Architecture, SODA, http://www.soda-itea.org/

http://www.oasis-open.org/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16687/oasis-wss-rel-token-profile-1.1.pdf
http://www.oasis-open.org/committees/download.php/16687/oasis-wss-rel-token-profile-1.1.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://websphere.sys-con.com/node/204424
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
http://www.w3.org/TR/ws-policy/
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf
http://www.sirena-itea.org/
http://www.soda-itea.org/

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 101 of 106

[20] Service-Oriented Cross-layer Infrastructure for Distributed Smart Embedded Devices”,

SOCRADES, http://www.socrades.eu/Home/default.html

[21] Service-Oriented Architecture for Devices , SOA4D, http://cms.soa4d.org/

[22] Web Services for Devices, WS4D, http://ws4d.e-technik.uni-rostock.de/

[23] Constrained Application Protocol, CoAP , https://datatracker.ietf.org/doc/draft-ietf-core-coap/

[24] IPv6 over Low power Wireless Personal Area Networks, 6LoWPAN,
http://tools.ietf.org/wg/6lowpan/

[25] Network-centric Middleware for group communications and resource sharing across
heterogeneous embedded systems, MORE, http://www.ist-more.org/

[26] C. Timm, J. Schmutzler, P. Marwedel, C. Wietfeld: "Dynamic Web Service Orchestration

applied to the Device Profile for Web Services in Hierarchical Networks", ICST/IEEE 4th
International Conference on Communication System Softwareand Middleware, 16th - 19th
June 2009, Trinity College Dublin, Ireland.

[27] J. Schmutzler, S. Rohde, C. Wietfeld: "Integration of Wireless Peer-to-Peer Sensor Networks
with Embedded Web Services", 14. ITG Fachtagung -Mobilkommunikation, 13th and 14th May
2009, Osnabrück, Germany.

[28] T. Stavropoulos, D. Vrakas, I. Vlahavas, “A Survey of Service Composition in Ambient
Intelligence Environments”, Artificial Intelligence Review, Springer, 2011.

[29] Homa Movahednejad, Suhaimi Bin Ibrahim, Mahdi Sharifi, Harihodin Bin Selamat, and Sayed

Gholam Hassan Tabatabaei. 2011. Security-aware web service composition approaches:
state-of-the-art. In Proceedings of the 13th International Conference on Information Integration
and Web-based Applications and Services (iiWAS '11). ACM, New York, NY, USA, 112-121.

[30] N. Ibrahim and F.L. Mouel, " A Survey on Service Composition Middleware in Pervasive
Environments",International Journal of Computer Science Issues, Volume 1, pp1-12, August
2009.

[31] Shanshan Jiang, Yuan Xue, and Douglas C. Schmidt. 2009. Minimum disruption service
composition and recovery in mobile ad hoc networks. Comput. Netw. 53, 10 (July 2009), 1649-
1665.

[32] Brent Lagesse, Mohan Kumar, Matthew Wright. ReSCo: A middleware component for Reliable
Service Composition in pervasive systems. In Eigth Annual IEEE International Conference on
Pervasive Computing and Communications, PerCom 2010, March 29 - April 2, 2010,

Mannheim, Germany, Workshop Proceedings. Pages 486-491, IEEE, 2010.

[33] Jong-Hyun Park and Ji-Hoon Kang. 2011. Intelligent service processing in common USN
middleware. Artif. Intell. Rev. 35, 1 (January 2011), 37-51.

[34] Sheikh I. Ahamed, Moushumi Sharmin, A trust-based secure service discovery (TSSD) model
for pervasive computing, Computer Communications, Volume 31, Issue 18, 18 December
2008, Pages 4281-4293.

[35] M.J. Kim, M. Kumar, B.A. Shirazi, Service discovery using volunteer nodes in heterogeneous
pervasive computing environments, Pervasive and Mobile Computing, Volume 2, Issue 3,
September 2006, Pages 313-343.

http://www.socrades.eu/Home/default.html
http://cms.soa4d.org/
http://ws4d.e-technik.uni-rostock.de/
https://datatracker.ietf.org/doc/draft-ietf-core-coap/
http://tools.ietf.org/wg/6lowpan/

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 102 of 106 Issue 1

[36] Fang Shen, Qingqi Pei, Shu-po Bu, A Trust-based Dynamic Secure Service Discovery Model
for Pervasive Computing, 2011 Seventh International Conference on Computational

Intelligence and Security (2011), Volume: 31, Issue: 18, Publisher: IEEE, Pages: 630-634.

[37] Rafael Moreno-Vozmediano, A hybrid mechanism for resource/service discovery in ad-hoc
grids, Future Generation Computer Systems, Volume 25, Issue 7, July 2009, Pages 717-727.

[38] Haitham Elwahsh, Mohamed Hashem, Mohamed Amin, Secure Service Discovery Protocols
for Ad Hoc Networks, Communications in Computer and Information Science, 2011, Volume
131, Part 1, 147-157.

[39] Eduardo Moschetta, Rodolfo S. Antunes, Marinho P. Barcellos, Flexible and secure service
discovery in ubiquitous computing, Journal of Network and Computer Applications, Volume 33,
Issue 2, March 2010, Pages 128-140.

[40] OASIS Devices Profile for Web Services (DPWS) Version 1.1, available on line:
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf

[41] Web Services architecture, available on line: http://www.w3.org/TR/ws-arch/

[42] Geoff Mulligan. 2007. The 6LoWPAN architecture. In Proceedings of the 4th workshop on
Embedded networked sensors (EmNets '07). ACM, New York, NY, USA

[43] WS4D-Gsoap, available on-line http://ws4d.e-technik.uni-rostock.de/gsoap/

[44] V. Mareeswari, Dr. E. Sathiyamoorthy: A survey on Trust in Semantic Web Services.

International Journla of Scientific & Engineering Research, Volume 3, Issue 2, February.

(2012)

[45] Hien Trang Nguyen, Weiliang Zhao, Jian Yang: A Trust and Reputation Model Based on

Bayesian Network for Web Services. 2010 IEEE International Conference on Web Services.

(2010)

[46] Xing Su, Minjie Zhang, Yi Mu, Kwang Mong Sim: PBTrust: A Priority -Based Trust Model for

Service Selection in General Service-Oriented Environments. 2010 IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing. (2010)

[47] Surya Nepal, Wanita Sherchan, Athman Bouguettaya: A Behaviour-Based Trust Model for

Service Web. IEEE International Conference on Service Oriented Computing and Applications,

(2010)

[48] Ming Qu, Shufen Liu, Tie Bao: On theTrusted Ontology Model for Evaluating the Semantic web

Services. 14th International Conference on Computer Supported Cooperative Work in Design,

(2010)

[49] S. Park, L. Liu, C. Pu, M. Srivatsa, J. Zhang: Resilient Trust Management for Web Service

Integration. IEEE International Conference on Web Services. (2005)

[50] Shahab Mokarizadeh, Nima Dokoohaki, Mihhail Matskin, Peep Kungas: Trust and Privacy

Enabled Service Composition using Social Experience. 10th IIFIP International Conference on

e-business, e-services and e-society (2010), Buenos Aires, Argentina (3-5 Nov). (2010)

http://ws4d.e-technik.uni-rostock.de/gsoap/

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 103 of 106

[51] Li Qilong, Xin Mingjun, Li Weimin, Zhang Rui: A Trusted Composition Evaluation Model to

Support Web Services Coordination in Multi Domains. Research Journal of Applied Sciences,

Engineering and Technology 4(6): 587-590. (2012)

[52] Yannick Chevalier, Mohamed Anis Mekki, Michael Rusinowitch: Orchestration under security

constraints. Formal Aspects of Security and Trust, FAST’09 workshop. (2009)

[53] A. Andrieux, K. Czajkowski, A. Dan, et al, Web Services Agreement Specification (WS-

Agreement), March 14 2007, available at: http://www.ogf.org/documents/GFD.107.pdf

[54] H. Ludwig, A. Keller, A. Dan, et al, Web Service Level Agreement (WSLA) Language

Specification, January 28 2003, available at: http://www.research.ibm.com/wsla/WSLASpecV1-

20030128.pdf

[55] OASIS Devices Profile for Web Services (DPWS) Version 1.1, available on line:

http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf

[56] Web Services architecture, available on line: http://www.w3.org/TR/ws-arch/

[57] Geoff Mulligan. 2007. The 6LoWPAN architecture. In Proceedings of the 4th workshop on

Embedded networked sensors (EmNets '07). ACM, New York, NY, USA

[58] WS4D-Gsoap, available on-line http://ws4d.e-technik.uni-rostock.de/gsoap/

[59] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2, available on-

line: http://tools.ietf.org/html/rfc5246

[60] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L. Stewart,

“HTTP Authentication: Basic and Digest Access Authentication”, available-online:

http://www.ietf.org/rfc/rfc2617.txt

[61] Web Services Dynamic Discovery (WS-Discovery) Version 1.1, available-online:

http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html

[62] XML Signatures and processing, http://www.w3.org/TR/xmldsig-core/

[63] http://www.microsoft.com/technet/security/bulletin/ms09-063.mspx

[64] 'Immense' network assault takes down Yahoo February 8, 2000
http://www.cnn.com/2000/TECH/computing/02/08/yahoo.assault.idg/index.html

[65] Cyber-attacks batter Web heavyweights Strikes on eBay, Amazon, CNN.com follow Monday
Yahoo! Attack, February 9, 2000,
http://www.cnn.com/2000/TECH/computing/02/09/cyber.attacks.01/index.html

[66] Internet quiet after three straight days of attacks Strikes hit E*Trade, ZDNet, eBay, Amazon,
others
February 10, 2000

http://www.cnn.com/2000/TECH/computing/02/10/denial.attack.01/index.html

[67] See https://www.owasp.org/index.php/XSS

[68] See http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0449

http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf
http://www.w3.org/TR/ws-arch/
http://ws4d.e-technik.uni-rostock.de/gsoap/
http://tools.ietf.org/html/rfc5246
http://www.ietf.org/rfc/rfc2617.txt
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://www.w3.org/TR/xmldsig-core/
http://www.microsoft.com/technet/security/bulletin/ms09-063.mspx
http://www.cnn.com/2000/TECH/computing/02/10/denial.attack.01/index.html

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 104 of 106 Issue 1

[69] See http://isecpartners.com/files/XMLDSIG_Command_Injection.pdf

[70] See http://msdn.microsoft.com/en-us/magazine/ee335713.aspx

[71] See http://clawslab.nds.rub.de/wiki/index.php/Coercive_Parsing

[72] See http://clawslab.nds.rub.de/wiki/index.php/Soap_Array_Attack

[73] See http://clawslab.nds.rub.de/wiki/index.php/WS-Addressing_spoofing

[74] See http://www.isecpartners.com/files/isec_hill_attackingxmlsecurity_handout.pdf

[75] Oehlert P.: Violating Assumptions with Fuzzing. IEEE Security & Privacy vol 3, issue 2, pp.
58-62. doi: 10.1109/MSP.2005.55 (2005)

[76] Hung, S.-S., & Shing-Min Liu, D. (2008). A user-oriented ontology-based approach for network
intrusion detection. Computer Standards & Interfaces, 30(1-2), 78–88.
doi:10.1016/j.csi.2007.07.008

[77] J. Undercoffer, J. Pinkston, A. Joshi, T. Finin, ATarget-Centric ontology for intrusion detection,
IJCAI Workshop on Ontologies and Distributed Systems, IJCAI'03, August, 2003.

[78] J. Undercoffer, A. Joshi, T. Finin, J. Pinkston, A target centric ontology for intrusion detection:

using DAML+OIL to classify intrusive behaviors, To appear Knowledge Engineering Review—
Special Issue on Ontologies for Distributed Systems, Cambridge University Press, 2004.

[79] Abdoli, F., & Kahani, M. (2009). Ontology-based Distributed Intrusion Detection System.

Development, 65–70.

[80] Isaza, G. A., Castillo, A. G., & Duque, N. D. (n.d.). An Intrusion Detection and Prevention
Model Based on Intelligent Multi-Agent Systems , Signatures and Reaction Rules Ontologies,

237–245.

[81] Isaza, G.; Castillo, A.; López, M.; Castillo, L. & López, M. Intrusion Correlation Using
Ontologies and Multi-agent Systems. Information Security and Assurance, Springer Berlin

Heidelberg, 2010, 76, 51-63.

[82] Corcho, O., López, M., Gómez-Pérez, A., López-Cima, A.: Building Legal Ontologies with
METHONTOLOGY and WebODE. In: Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi,

A. (eds.) Law and the Semantic Web. LNCS (LNAI), vol. 3369, pp. 142–157. Springer,
Heidelberg (2005)

[83] R. Bruni, I. Lanese, U. Montanari, “A basic algebra of stateless connectors,” Theoretical

Computer Science, n. 366, pp. 98-120, 2006.

[84] J. A. Goguen, “Categorical foundations for general systems theory ,” Advances in Cybernetics
and Systems Research, Transcripta Books, 1973, pp. 121–130.

[85] C.A.R. Hoare, “CSP - Communicating Sequential Processes,” International Series in Computer
Science, Prentice-Hall, Englewood Cliffs, NJ, 1985.

[86] R. Milner, “A Calculus of Communicating Systems,” Lecture Notes in Computer Science, Vol.

92, Springer, Berlin, 1989.

[87] “Compositional Algebra of CONNECTors”, European Union FP7 ICT CONNECT Project, Tech.
Rep. Deliverable 2.2, 2011. Available: http://www.connect-forever.eu

http://www.isecpartners.com/files/isec_hill_attackingxmlsecurity_handout.
http://www.connect-forever.eu/

nSHIELD D5.1 SPD middleware and overlay technology assessment

 CO

 CO D5.1

Issue 1 Page 105 of 106

[88] S. Bliudze, J. Sifakis, “Causal semantics for the algebra of connectors,” Formal Methods in

System Design, Springer Science, n. 36, pp. 167-194, 2010.

[89] J. Zhang, V. Varadharajan, “Wireless sensor network key management survey and taxonomy”,
Journal of Network and Computer Applications, Elsevier, Volume 33, Issue 2, March 2010, pp.

63–75.

[90] A. Abd EL-Aziz, A.Kannan, “Access Control for Healthcare Data Using Extended XACML-
SRBAC Model”, 2012 International Conference on Computer Communication and Informatics

(ICCCI), pp. 1–4, 2012.

[91] C. Karlof, N. Sastry, D. Wagner, “TinySec: A link layer security architecture for wireless sensor
networks”, SenSys ’04 Proceedings of the 2nd international conference on Embedded

networked sensor systems, ACM, pp. 162–175, 2004.

[92] W. Jung, S. Hong, M. Ha, Y.-J. Kim, D. Kim, “SSL-based Lightweight Security of IP-based
Wireless Sensor Networks”, 2009 International Conference on Advanced Information

Networking and Applications Workshops, pp. 1112–1117, 2009.

[93] S. Fouladgar, B. Mainaud, K. Masmoudi, and H. Afifi, “Tiny 3-TLS: A Trust Delegation Protocol
for Wireless Sensor Networks”, Security and Privacy in Ad-Hoc and Sensor Networks, LNCS

4357, Springer Berlin / Heidelberg, pp. 32–42, 2006.

[94] A. Amokrane, Y. Challal, A. Balla, “A Secure Web Service-based Platform for Wireless Sensor
Network Management and Interrogation”, 2011 Conference on Network and Information

Systems Security (SAR-SSI), pp. 1–8, 2011.

[95] OASIS, eXtensible Access Control Markup Language (XACML) Version 3.0, Available from
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

[96] OASIS, SAML 2.0 Profile for XACML, Version 2.0. Available from http://docs.oasis-
open.org/xacml/3.0/xacml-profile-saml2.0-v2-spec-en.pdf.

[97] OASIS, Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML)

V2.0. Available from http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

[98] OASIS, SOAP-over-UDP Version 1.1. Available from http://docs.oasis-open.org/ws-
dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html

[99] D. Martin, editor. OWL-S 1.1 Release. 2004. http://www.daml.org/services/owl-s/1.1/

[100] D. Martin, editor. OWL-S 1.2 Release. 2008. http://www.ai.sri.com/daml/services/owl-s/1.2/

[101] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated Discovery, Interaction and

Composition of SemanticWeb services. Journal of Web Semantics, 1(1):27{46, September
2003.

[102] Lara, R., Roman, D., Polleres, A., Fensel, D.: A Conceptual Comparison of WSMO and OWL-

S. In: Proc. of the European Conf. on Web Services. (2004)

[103] Martin, David, et al. OWL-S: Semantic Markup for Web Services. W3C Member Submission:
November 22, 2004. http://www.w3.org/Submission/OWL-S/

[104] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semant ic Web Services. IEEE Intelligent
Systems, 16(2):46–53, 2001

[105] Fensel, D., & Bussler, C. (2002). The Web Service Modeling Framework WSMF. Electronic

Commerce Research and Applications, 1(2)

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-profile-saml2.0-v2-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-profile-saml2.0-v2-spec-en.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html
http://www.daml.org/services/owl-s/1.1/
http://www.ai.sri.com/daml/services/owl-s/1.2/

D5.1 SPD middleware and overlay technology assessment nSHIELD

 CO

D5.1 CO

Page 106 of 106 Issue 1

[106] Bemporad A. and Di Cairano, S., “Optimal Control of Discrete Hybrid Stochastic Automata”,
Proceedigns of ACM International Conference on Hybrid Systems: Computation and Control

(HSCC05), pp. 151-167, Zurich, Switzerland, 9-11 March, 2005

[107] Bemporad A. Di Cairano S. and Giorgetti N., “Model Predictive Control of Hybrid Systems with
Applications to Supply Chain Management”, Proceedings of 49th Convegno Nazionale

ANIPLA, Naples, Italy, Nov, 2005

[108] Tapia D., Bajo J., Corchado J., Rodríguez Sara., Manzano J. "Hybrid Agents Based
Architecture on Automated Dynamic Environments", in Knowledge-Based Intelligent

Information and Engineering Systems, Lecture Notes in Computer Science, Springer Berlin /
Heidelberg 2007

[109] C.G. Cassandras, S. Lafortune, Introduction to Discrete Event Systems - SecondEdition,

Springer, 2008. ISBN 978-0-387-33332-8. (771+xxiii pages)

[110] W. M. Wonham, Supervisory Control of Discrete-Event Systems. Ece 1636f/1637s 2009-2010,
2010 [online] Available: http://www.control.utoronto.ca/cgi-bin/dldes.cgi

[111] C.A. Petri, Kommunikation mit Automaten. Bonn: Institut für Instrumentelle Mathematik,
Schriften des IIM Nr. 2, 1962, Second Edition:, New York: Griffiss Air Force Base, Technical
Report RADC-TR-65--377, Vol.1, 1966, Pages: Suppl. 1, English translation

[112] K. Jensen,, 'An Introduction to the Theoretical Aspects of Coloured Petri nets', in J Bakker, W
Roever & G Rozenberg (eds), A Decade of Concurrency Reflections and Perspectivesvol. 803,
Lecture Notes in Computer Science, vol. 803, Springer, pp. 230-272, 1994.

[113] K. Jensen, 'A Brief Introduction to Coloured Petri Nets', in E Brinksma (ed.), Tools and
Algorithms for the Construction and Analysis of Systemsvol. 1217, Lecture Notes in Computer
Science, vol. 1217, Springer, pp. 203-208, 1997.

[114] K. Jensen, L.M. Kristensen, Coloured Petri Nets: Modelling and Validation of Concurrent
Systems. Springer, 2009. 384 p.

http://www.control.utoronto.ca/cgi-bin/dldes.cgi

