

Issue 1 Page i

Project no: 269317

nSHIELD

new embedded Systems arcHItecturE for multi-Layer Dependable solutions

Instrument type: Collaborative Project, JTI-CP-ARTEMIS

Priority name: Embedded Systems

D7.3: Dependable Avionic System demonstrator - integration and validation
plan

Due date of deliverable: M22 –2013.06.30

Actual submission date: M22 –2013.06.30

Start date of project: 01/09/2011 Duration: 36 months

Organisation name of lead contractor for this deliverable:

Selex-ES, SES

 Revision [Issue 1]

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2012)

Dissemination Level
PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services) X

Page ii Issue 1

Document Authors and Approvals
Authors

Date Signature
Name Company

Massimo Traversone Selex ES

Marina Guzzetti Selex ES

Antonio Di Marzo SESM

Antonio Bruscino SESM

Tor O Steine Alfatroll AS

Kresimir Dabcevic UNIGE

Lucio Marcenaro UNIGE

Iñaki Eguia Tecnalia

Andrea Morgagni Selex ES

Roberto Binaghi Selex ES

Andrea Fiaschetti UNIROMA

Balazs Berkes S-LAB

Kiriakos Georgouleas HAI

Nikos Pappas HAI

Reviewed by

Name Company

Approved by

Name Company

Issue 1 Page iii

Applicable Documents
ID Document Description

[01] TA nSHIELD Technical Annex

Modification History
Issue Date Description

Draft 01 30.04.2013 First version of TOC

Draft 02 10.05.2013 Added list of nSHIELD prototypes outcome of the Stockolm meeting; added
Annex A for ICDs; updated descriptions; editorial work

Draft 03 16.05.2013 Added proposed template for ICDs; added SPD features subsections;
updated descriptions.

Draft 04 16.06.2013 Added draft description of the avionic scenario

Draft 05 27.06.2013 Added description of nS-ESD-GW abd IQ Engine

Draft 06 22.06.2013 Added description of OMBRA, Multi-metrics, Surface metrics, Middleware
Intrusion detection system and Protection profile

Draft 07 30.06.2013 Added description of the Dependable Avionic scenario, Semantic model
and SDP features, OSGI middleware

Page iv Issue 1

Contents

1 Executive Summary 9

2 Introduction 10

2.1 Avionic Dependable Demonstrator structure 10

3 Terms and Definitions 12

3.1 nSHIELD prototypes 12

4 nSHIELD Dependable Avionic scenario 14

5 Dependable Avionic System demonstrator reference
architecture 16

6 Dependable Avionic System demonstrator technology
overview 18

6.1 OMNIA ... 18

6.1.1 OMNIA SPD features .. 20

6.2 Gateway 20

6.2.1 nS-ESD-GW Gateway SPD features .. 22

6.3 SPD-driven Smart Transmission Layer 24

6.4 IQ_Engine Autopilot and Cognitive Pilot 26

6.4.1 Why IQ_Engine in WP7.3 ... 26

6.4.2 IQ_Engine basic description .. 26

6.4.3 Operating Environment in the WP-7.3 demo 29

6.4.4 IQ_Engine sensor inputs and command lines 30

6.4.5 Scenario proposal. .. 31

6.4.6 IQ_Engine Autopilot and Cognitive Pilot SPD feature s 31

6.5 Semantic model 32

6.5.1 Semantic model SPD features .. 32

6.6 Multi-metrics 33

6.7 Surface metric 34

6.7.1 Surface metrics SPD features ... 34

6.8 Middleware Intrusion Detection System 35

6.8.1 IDS prototype interfaces .. 35

6.8.2 IDS prototype SPD features .. 35

6.9 Protection profile 36

6.9.1 Protection Profile SPD features .. 36

6.10 OSGI middleware 37

6.10.1 OSGI middleware SPD features ... 38

6.11 Control Algorithms 39

6.11.1 Control algorithms SPD features... 39

Issue 1 Page v

7 nSHIELD Dependable Avionic use cases 40

8 Dependable Avionic System demonstrator integration 41

9 Dependable Avionic System demonstrator validation
and verification 42

9.1 Validation and Verification methods 42

9.2 Validation of demonstrator scenarios 44

9.2.1 Scenario n.1 .. 44

9.2.2 Scenario n.2 .. 44

9.3 Justification based on prototype and platform Valid ation
and Verification 45

9.3.1 Validation and verification results for prototypes 45

9.3.2 Validation and verification results for integrated prototypes 46

9.3.3 Platform validation and verification results ... 46

9.4 Verification of Demonstrator scenario execution 47

9.4.1 Tools and platforms for execution of Demonstrator scenarios 47

9.4.2 Other HW and SW resources for execution of Demonstrator
scenarios .. 47

10 Conclusions 48

11 References 49

Appendix A Interface Control Documents 50

A.1 Interface Control Document OMNIA 50

A.1.1 Introduction ... 50

A.1.2 Protocol Formats .. 50

A.1.3 OMNIA – nSHIELD Data Interchange .. 50

A.2 Interface Control Document Gateway 51

A.2.1 Introduction ... 51

A.2.2 Protocol Formats .. 51

A.2.3 nS-DI – nSHIELD Data Interchange ... 51

A.3 SPD-driven Smart Transmission Layer 52

A.3.1 Introduction ... 52

A.3.2 Protocol Formats .. 52

A.3.3 nS-DI – nSHIELD Data Interchange ... 52

Page vi Issue 1

Figures

Figure 2-1 High Level Avionic Dependable Demonstrator Structure .. 10

Figure 2-2 Dependable Avionic Scenario .. 11

Figure 4-1 UAV Avionic Equipment ... 14

Figure 4-2 Avionic scenario outline ... 15

Figure 5-1 UAV demonstrator rack system ... 16

Figure 5-2 Dependable Avionic Scenario Prototypes ... 17

Figure 6-1 Platform Services ... 18

Figure 6-2 OMNIA platform ... 19

Figure 6-3 Avionics Layers .. 20

Figure 6-4 nS-ESD-GW HW architecture .. 21

Figure 6-5 nS-ESD-GW SW partitioning ... 22

Figure 6-6 nS-ESD-GW Functionalities... 23

Figure 6-7 SPD-driven Smart transmission layer platform .. 25

Figure 6-8 Knopflerfish start-up environment .. 37

Figure 6-9 Bundle architecture .. 38

Figure 9-1: Validation and verification activities .. 43

Figure 11-1 Generic SOAP message structure ... 53

Tables

No table entries found.

Issue 1 Page vii

Glossary

Please refer to the Glossary document, which is common for all the deliverables in nSHIELD.

Page viii Issue 1

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 9 of 61

1 Executive Summary
The purpose of this document is to present the plan and methodologies driving the integration, the
validation and verification activities for the nSHIELD Dependable Avionic Scenario. The document is
structured as follows:

• Chapter 2 – provides a brief introduction on Dependable Avionic System demonstrator structure

• Chapter 3 – presents the SHIELD taxonomy, and a table with all nSHIELD prototypes

• Chapter 4 – presents detailed description of Dependable Avionic System Demonstrator scenario and
the nSHIELD solution proposed

• Chapter 5 – presents the reference architecture for Dependable Avionic System Demonstrator

• Chapter 6 – presents the prototypes involved in the demonstrator scenario and their SPD

characteristics

• Chapter 7 – presents the Dependable Avionic System Demonstrator functionalities

• Chapter 8 – presents the Avionic System Demonstrator integration activities

• Chapter 9 – presents the Avionic System Demonstrator integration V&V approach.

• Chapter 10 – draws the conclusions

• Appendix A – presents a detailed description of some prototypes interfaces

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 10 of 61 Issue 1

2 Introduction

2.1 Avionic Dependable Demonstrator structure

This section identifies how the nSHIELD Dependable Avionic System scenario is structured

• SHIELD framework will be employed to design an innovative Avionic Dependable Architecture
• Aspect such as Dependability and Composability will be encompassed into the demonstrator

.

Figure 2-1 High Level Avionic Dependable Demonstrat or Structure

Mainly the Dependable Avionic scenario can be seen as System of Systems (SOS): a set of
heterogeneous systems logically or physically connected that cooperate for the execution of one or more
tasks.

Typical examples of applications of system of systems are the “surveillance systems” for several different
application like search & rescue or security.

The term surveillance is a set of techniques, devices and methodologies to detect, prevent and recognize
“behavior” in order to prevent/investigate all the possible behavior.

The scenario of the Dependable Avionic system for surveillance is taken as a reference in the
demonstrator as particularly suited to highlight the potential of the methodology of the nSHIELD. Typically

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 11 of 61

a system for surveillance is composed of a large number of heterogeneous systems (radar, sonar, …)
including aircraft of many different grades and sizes (typically unmanned : UAV).

Each operational level must be able to communicate with its own network operating according to a certain
protocol and with certain benefits. For the security of the surveillance is vital that communication between
different levels must be guaranteed with an adequate level of security and dependability, worth the loss of
the main functions of the system.

Given the UAV as one of the N subsystems of the security of the surveillance, the goal of this
demonstrator is to develop a number of hardware and software modules to be integrated appropriately
into the surveillance subsystem.

Figure 2-2 Dependable Avionic Scenario

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 12 of 61 Issue 1

3 Terms and Definitions

3.1 nSHIELD prototypes

A number of individual prototypes have been identified in the nSHIELD framework. They are enumerated
in the following table and associated to an Id code.

Id Name Author

00 Elliptic Curve Cryptography UNIGE

01 Lightweight Cyphering TUC

02 Key Exchange Protocol TUC

03 Hypervisor SICS

04 Secure Boot T2D

05 Smart Power Unit AS

06 Smart Card TUC

07 Facial Recognition ETH

08 GPU Hase TUC

09 SPD-driven Smart Transmission Layer SES/UNIGE

10 Anonymity TUC

11 Automatic Access Control TUC

12 DDoS Attack Mitigation ATHENA

13 Recognizing DoS ATHENA

14 Cellular Automata UNIUD

15 Intrusion Detection System MGEP

16 Reputation-Based Secure Routing TUC/HAI

17 Access Control Smart Grid TECNALIA

18 Policy Definition ASTS/SES/SESM

19 Policy Based Management Framework TUC/HAI

20 Control Algorithms UNIROMA

21 Gateway SESM

22 Middleware Intrusion Detection System S-LAB

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 13 of 61

23 Link Layer Security INDRA

24 Network Layer Security TUC

25 OSGI Middleware UNIROMA1

26 Semantic Model UNIROMA1

27 Multimetrics TECNALIA

28 Attack Surface Metrics SES

29 Adaptation of Legacy System ATHENA

30 Reliable Avionic ALFATROLL

31 Protection Profile SES

32 Secure Discovery UNIROMA1

33 Secure Agent UNIROMA1

34 Audio Surveillance System ISD

35 BeagleBoard-Xm SICS

36 OMNIA-IMA SES

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 14 of 61 Issue 1

4 nSHIELD Dependable Avionic scenario
In this section the dependable avionic scenario, at the heart of the chosen demonstrator, will be
described. The Unmanned Aerial Vehicle (UAV) is a system composed by an aircraft controlled by a pilot
located on the ground, through a remote control unit. The avionic equipment of the UAV has been
designed in adherence to the IMA (Integrated Modular Avionic) concept:

Figure 4-1 UAV Avionic Equipment

Two type of faults will be tackled in the context of the avionic demonstrator; and the SHIELD
countermeasure mechanisms will be shown.

With the aim to demonstrate the fault detection within the UAV architecture, an initial configuration of the
scenario is made up of a single UAV and the remote control unit.

During a normal operational status, a hardware fault in the IMA will be injected. Such an event can be
overcome with the usage of a spare unit. Thanks to the adoption of the NSHIELD methodology, already
embedded into the IMA components, the fault will be identified, isolated and recovered. In this way
mission success won’t be jeopardized at all.

Regarding the second type of fault, in the context of system of systems an error condition will be identified
and isolated with the aid of the system composability. In particular, the demonstrator boundaries will be
extended in a way to includes a second UAV (or a different suitable node) and other nSHIELD actors.
Such a new system configuration will be executed at runtime by means of the joint action of the nSHIELD
Middleware and Overlay.

The second fault is experienced on the UAV positioning system, in particular a data discrepancy among
onboard sensor readings is detected. Thanks to the intervention of the nSHIELD Middleware and Overlay,
a fault recovery mechanism is triggered. In order to overcome this system impairment, a fixing on the
faulty UAV is performed using sensor readings taken from the second UAV in close proximity of the faulty
one.

With the intervention of the fully functional sensor, data reconciliation is then performed through the new
nSHIELD node. The communication between these two nodes is carried on thanks to the integration of
the nS-ESD-GW and SPD-driven Smart Transmission Layer board that allow the exchanging of
information through the nSHIELD middleware, the orchestrator of all these complex activities. In this way
the faulty sensor is isolated.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 15 of 61

Figure 4-2 Avionic scenario outline

Unlike a conventional standard avionic FDI, nSHIELD methodology can overcome faults both at system
and system of systems level as well. In this way, dependability and composability concepts can be shown
in a very effective manner.

A configurable gateway capable of easing the integration of legacy embedded systems into a nSHIELD
network is used. The gateway (dubbed as nS-ESD-GW) acts as a “proxy” that connects legacy embedded
systems to the nSHIELD network and middleware.

The detail of the interfaces exposed by components is reported in Appendix A for integration purposes.

Remote Control Unit

nS-ESD-GW

nShield Middleware

nS-ESD-GW

nS-ESD-GW

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 16 of 61 Issue 1

5 Dependable Avionic System demonstrator
reference architecture

The whole demonstrator is a rather complex architecture. Indeed, due to scenario complexity, the
demonstrator will be delivered as a laboratory exercise. Nonetheless, the opportunity to deploy a mock-up
is being evaluated as well. The main actors of the demonstrator are: OMNIA, gateway (nS-ESD-GW) and
nSHIELD Middleware. However we do envision the integration in the aforementioned scenario of
IQ_Engine and SPD-driven Smart Transmission Layer.

Due to budget, time and complexity constraints, a fully functional system isn’t implemented at all. For this
reason a bench demonstrator is employed. Albeit this simplification, key concepts are still shown in full
(composability and dependability) and in a very effective way.

Hereafter a brief description of every component is given:

- A stripped down version of the UAV1 is represented by a rack unit equipped with: a simulated set
of sensors (system camera, GPS and inertial sensors), AMMC (Aircraft & Mission Management
Computer) on which runs IQ_Engine, supporting components which ensure communication with
other nodes (SDR/Cognitive-capable node), an interface toward the nSHIELD world (nS-ESD-
GW);

Figure 5-1 UAV demonstrator rack system

- A stripped down version of the UAV2 is identical to UAV1;

- A C.O.T.S. PC equipped with the nSHIELD middleware and the same communication link used by
UAVs;

- A stripped down version of the remote control unit implemented thanks to a C.O.T.S. PC
equipped with nS-ESD-GW, the same communication link used by UAVs.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 17 of 61

As for the prototype listed in para 3.1, the nSHIELD Dependable Avionic Scenario is composed from the
following prototypes connected between them :

Figure 5-2 Dependable Avionic Scenario Prototypes

The use of these prototypes makes the Dependable avionic scenario nSHIELD-compliant, highlighting the
enhancements of SPD solutions obtained with the application of the nSHIELD methodology. In particular,
it will be demonstrated:

• Security:
o The data exchanged between the UAV and the Ground Station will be preserved by

interferences. This aspect will be covered thanks to the application of appropriate
communication mechanisms in the proposed scenario.

• Privacy:
o Different access to the UAV for the mission operators will be guaranteed.

• Dependability:
o The data acquired by on-board sensors are protected against corruption.
o Automated system recovery.

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 18 of 61 Issue 1

6 Dependable Avionic System demonstrator
technology overview

6.1 OMNIA

OMNIA (Open Mission Network Integrated Architecture) is based on IMA and IMA2G concepts and
introduces, at some level, typical nSHIELD dependability aspects, such as interoperability, fault detection,
fault management, health monitoring, data integrity…

The idea behind OMNIA is to create an IMA platform composed by a network of several «Computer
Units»; these can be HW boards or computers, acting as IMA CU (Central Unit), RIU (Remote Interface
Unit) or both. Each unit acting as RIU is connected to the A/C (AirCraft) sensors. All units are “nodes”of a
network, being connected by means of an High Speed deterministic serial line.

The OMNIA platform introduces the Middleware software to provide platform level services. The
Middleware is implemented on top of the Operating System local to the hardware components. Its
purpose is to enable IMA2G typical interoperability, allowing the provision of the same service with the
same behavior in such a way that it is independent from the physical location of the requesting
applications, i.e. the hardware component that hosts the application, independent from the hardware
component type, if applicable, and the Operating System hosted and independent from the location of the
requested hardware resources

Platform Services are classified at two levels according to their scope, which can be the overall platform
or a single hardware component; Platform Services include in fact Module Services. Platform Services are
also classified according to their privilege, whether they support Avionic applications or Platform
Management applications (including module management).

Figure 6-1 Platform Services

More specifically, the “nodes” selected to create the OMNIA network are:

• The NAMMC (New Aircraft & Mission Management Computers)
• The APM460 processor module (stand alone)
• The NSIU (New Sensor Interface Unit)
• More types could be added in future ...

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 19 of 61

The NAMMC, including HW and Equipment SW, is a SES product, flying onboard several types of
aircrafts, able to host the customer Flight Management applications. It is currently completing the
certificaton process. It mounts APM460 processor modules and is able to interface with the A/C sensors
by means of IO boards (e.g. the DASIO). In the OMNIA platform the NAMMC can act as CU or RIU or
both.
The APM460 stand alone can act as CU
The NSIU is a SES computer currently at development stage. It can act as CU or RIU in the OMNIA
platform

Figure 6-2 OMNIA platform

For the nSHIELD avionic dependable demonstrator, as depicted in the previous figure, it is proposed to
configure the OMNIA platform with two or more CU/RIU equipments (NAMMC or NSIU or simulated
NAMMC/NSIU) in order to simulate the onboard avionics on a UAV. This configuration can be changed to
include more “nodes” if necessary.

A SW middleware based on DDS architecture, with a unique service bus, will be used to “virtualise” the
physical connection of the A/C sensors enabling interoperability within the OMNIA platform as it will
allow the OMNIA platform “nodes” to access the sensor resources independently from the actual physical
connection.

Health monitoring and fault management within the OMNIA platform are performed at “node” level by
means of continuous built in tests. Integrity of sensors data will be handled at OMNIA middleware level

For the nSHIELD demonstrator the OMNIA system will be able to provide the main aircraft
mission/navigation functionalities with all the relevant check either relating to the data integrity exchanged
and to the integrity of the OMNIA system (fail, reconfiguration, …).

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 20 of 61 Issue 1

6.1.1 OMNIA SPD features

As preliminary definition of each OMNIA features, the following figures represent the different “avionics”
layers with the detail of the functionalities.

Figure 6-3 Avionics Layers

6.2 Gateway

nS-ESD-GW is a SHIELD framework pivotal component. This component has been introduced to foster
the interconnection of nodes and to ease the SHIELD employment. Thus, in the context of the
Dependable Avionic application scenario, this component will be employed to ease the integration and
interconnection of the OMNIA framework to nSHIELD nodes, middleware and overlay as well. The nS-
ESD-GW will exploit the flexibility of the SoC (Zynq) to provide appropriate interfaces towards the OMNIA
components. The Zynq consists of an hybrid architecture composed by a dual-core Cortex ARM A9 and a
7-series Xilinx FPGA. The Zynq is an innovative SoC characterized by a powerful ecosystem that greatly
simplifies the development process and shrinks the time to market.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 21 of 61

The nS-ESD-GW has been designed following a modular approach; this enables the tight partitioning and
isolation between internal components involved to implement security, communication and monitoring
functions. Furthermore the modularization eases the adaptation process of nS-ESD-GW to the avionic
scenario.

Figure 6-4 nS-ESD-GW HW architecture

As shown in Figure 6-4, the nS-ESD-GW is constituted by several modules hereafter specified:

• Dual core Cortex ARM A9 in asymmetric multiprocessi ng (AMP) configuration. Each
processor is configured to run its own software and, in particular, a Linux distribution runs on
CPU1 while bare metal applications run, as parallel threads, on CPU2.

• Encrypt/Decrypt IP core. This component has been developed as FPGA-based module to
assure high flexibility and performances. The presence of this block guarantees the confidentiality
and the security of data.

• Coordination module. It provides balancing functionality according to the SPD level. To assure
the required level of security and dependability, it dynamically adapts its configuration and
resources used.

• Memory. It stores dynamic data blocks whom contain: the status of OMNIA’s components, the
status of the nS-ESD-GW, SPD levels received by the nSHIELD Middleware, operational mode
and freshness information.

• Middleware Interface Controller. It is constituted by different sub-components: interfaces,
mechanisms of digital signature check, fault detection and the data integrity. In the context of the
avionic scenario, it represents the interface between the nS-ESD-GW and the nSHIELD
Middleware through the SDR cognitive radio.

• Legacy nodes Interface Controller. Similar to the Middleware Interface controller, this
component has been subdivided into sub-modules to manage the data integrity, the fault
detection and the messages conversion. In the context of avionic demonstrator, it represents the
interface between the nS-ESD-GW and the OMNIA platform.

• Additional peripherals. The nS-ESD-GW also offers a set of common ready-to-use interfaces
as: UART, general purpose I/O, VGA and HDMI.

As previously mentioned, Cortex ARM A9 processors are in AMP configuration; this mechanism allows to
run an operative system and bare metal applications with the possibility of loosely coupling those
applications via shared resources. Figure 6-5 depicts the software layered architecture designed.

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 22 of 61 Issue 1

Figure 6-5 nS-ESD-GW SW partitioning

According to this configuration, the Linux operative system is responsible for:

• Audit;
• Graphical user interface for monitoring;
• nSHIELD Middleware management application.

The bare metal applications are responsible for:

• XML parsing and filtering;
• Recording / system dump;
• Dynamic reconfiguration.

6.2.1 nS-ESD-GW Gateway SPD features

The nS-ESD-GW is a component defined into the SHIELD framework. Its scope is to foster the
interconnection of legacy nodes building up a SHIELD cluster. As constituted, the cluster will inherit from
the ns-ESD-GW several SPD features; in particular the cluster will have:

- Security: Mechanism for encrypted communication. The cluster nodes will leverage on
encryption/decryption methods provided by nS-ESD-GW to exchange messages with other
SHILED components.

- Security: Mechanisms for data and message integrity. These mechanisms will ensure the
accuracy and the consistency of the exchanged messages.

- Dependability: Mechanism for Fault detection. They are obtained by the means of fault tree logic
and decision support systems.

- Dependability: Mechanism for internal Cluster reconfiguration. Getting information about the
nodes status, current faults and context, the system is able to identify a new nodes configuration
and eventually apply it to the nodes cluster.

In Figure 6-6 a logical architecture of functionalities provided by the Gateway is outlined.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 23 of 61

Figure 6-6 nS-ESD-GW Functionalities

The nS-ESD-GW encompasses several communication policies. These policies specify and regulate
interrogations (interval, priority, broadcast, unicast, etc), type of messages to be dispatched and/or to be
accepted (message alive time, timeout, etc) and the Gateway operational modes. The policies are not
upgradeable, avoiding by design the risk of malicious attacks. In accordance to the policies of the
nSHIELD framework, the nS-ESD-GW is able to evaluate the SPD level provided by the Middleware and
to change its operational mode. This means that the Gateway is able to:

• Increase/decrease the rate of the messages read/write to OMNIA;
• Enable/disable cryptographic modules;
• Increase/decrease the writing of the logfile concerning the audit function.

The nS-ESD-GW encompasses two distinct Data Freshness methods. Stored data can be updated
periodically or upon system requests. The update time interval is controlled by an internal configurable
register. A dedicated set of registers are used to store information about the data freshness. Specifically,
the number representing the amount of time since data have been stored is saved into a specific register
of the Gateway and it is available as output.

The confidentiality and the security of private information is ensured through the adoption of
encryption/decryption modules for the data writing. A non-volatile memory is used to store long-term data.
While the Gateway is running in a secure mode the data processed and algorithms are stored as
encrypted. Also, a mechanism of digital signature check is applied during the communication with nodes
in order to detect any malicious attempt to open a non-trusted communication channel.

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 24 of 61 Issue 1

6.3 SPD-driven Smart Transmission Layer

Communication between the UAV and the control center shall be based on utilization of the capabilities of
the highly-reconfigurable, computationally unconstrained nSHIELD SDR/Cognitive-capable node, that is,
its Smart Transmission Layer functionality, developed within the task T4.1.

Role of the Smart Transmission Layer is providing reliable and efficient communications even in critical
channel conditions by using adaptive and flexible algorithms for dynamically configuring and adapting
various transmission-related parameters. Namely, for the purposes of the Dependable Avionics
demonstrator, the following will be exercised and demonstrated:

• Basic network functionalities:
o network entry;
o node authentication;
o internode communication;
o topology awareness(number of nodes, mutual visibility, connection, location);
o reconnection of a node after power cycle/link loss;
o choice of operating frequencies in accordance with the predefined frequency plan

• Waveform and channel interoperability - by using the appropriate software tools (see Appendix),
we shall be able to model different kinds of waveforms and emulate different channel conditions

• Jamming detection and counteraction - By measuring link channel quality, and performing
consistency checks between SNR-PER and SNR-location, a decision on whether jamming takes
place can be taken. In this case, a security counter-algorithm shall be deployed. The algorithm
shall encompass the following functionalities (which of them shall be exercised at a given moment
depends on the SPD level imposed by the overlay):

o moving to a new frequency
o changing physical or logical waveform parameters, i.e. modulation, bit-rate, transmit

power, FEC and MAC protocols
o selecting a different waveform for transceiving

Basic demonstrability of the secure and dependable communication can be depicted by the following
scenario:

1) A wireless node-to-node communication between the two communication modules (one is
placed on the vehicle, and one on the ground as the control center) is initiated on a chosen
frequency in VHF/UHF band. SPD level is set to maximum (10), meaning that all transmission
parameters, such as modulation, channel coding, etc., are set to provide the highest
resilience to possible interference. Visualization of the link quality is provided on the control
center.

2) Jamming disturbances on the channel that is momentarily used for communication are
created using another SDR. Jamming power is gradually increased (with SDRs, this is fairly
easy to do on-the-fly), until the control center and the onboard-radio decide that the
interference level is too high for the normal communication to continue. Link quality is
adequately depicted at the control center (possibility of creating some sort of visual/audio
“alert” message).

3) Both radios change their operating frequency according to a pre-defined scheme.
Uninterfered communication takes place once more, and the satisfying link quality is restored.

4) SPD level is changed (e.g. to 5). Several transmission parameters may now be changed (e.g.
higher-order modulation techniques, reducing no. of transmitted redundant bits, etc.), which
typically reduce robustness but allow for a higher data rate.

5) Steps 2) and 3) are repeated.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 25 of 61

The hardware platform consists of two cooperating entities. Secure Wideband Multi-role – Single-Channel
Handheld Radio (SWAVE HH) is used as a RF front end and as the secondary processing platform,
whereas SPD-driven Smart Transmission Layer (OMBRA) v2 is used as the primary processing platform.
SWAVE HH and OMBRA v2 can be connected either through a high speed serial connection or through a
USB/Ethernet, depending on the required throughput. OMBRA v2 needs to be plugged into a carrier
board providing electrical interfaces towards radio and external instrumentation and power supply.
Sketch of the complete platform is as follows:

Figure 6-7 SPD-driven Smart transmission layer plat form

SWAVE HH is SCA 2.2.2 compatible, and supports reconfiguration of all of its transmission parameters
on-the-fly. It is capable of operating in the complete VHF and UHF bands.
OMBRA v2 is a powerful embedded platform equipped with a GPP, DSP and FPGA, being suitable for
highly-demanding computational tasks.
More in-depth technical details regarding the SPD-driven Smart Transmission Layer are provided in
deliverables D4.2 and D4.3
The interfaces to other relevant components of Avionic System demonstrator are presented in detail in
Appendix A.3

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 26 of 61 Issue 1

6.4 IQ_Engine Autopilot and Cognitive Pilot

6.4.1 Why IQ_Engine in WP7.3

This chapter aims to describe the working environment for the required components, including hardware
and software, for this scenario to work properly according the nSHIELD objective.

The IQ_Engine is a generic knowledge bases system1, which is based upon a patented technology which
is claimed to be in compliance with avionics requirements.

The IQ_Engine can take many roles, due to its flexibility and speed, and in this project it is assigned to a
task wich will reside in the ground control station PC (standard Windows environment).

The following paragraph describes its
current status, and what will/may be
required in the nSHIELD role.

6.4.2 IQ_Engine basic
description

The IQ Engine is currently being
demonstrated as an Autopilot for a
simulated airplane. In the image you see
the simulator up in the right hand corner,
the IQ_Engine test dashboard to the left,
and a simple ground station at the
bottom (The rationale being that with a

high degree of autonomy, no detailed instruments are needed)

The plane is here set up to fly in a hilly Alpine landscape with heavy winds and turbulence (can be varied).
Since the simulator displays many of the instruments (to be selected), there is no need for these in the
ground station.

1 http://en.wikipedia.org/wiki/Knowledge-based_systems

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 27 of 61

The altitude profile (yellow, blue, black lower right) includes the ground (black) for reference. The view of
the simulated aircraft is chosen to see the movements of the controls, but there are various options to see
the plane from the cockpit, in 3D, and passing by. By a single click one can see the map with the plane’s
position, direction and speed.
More about the simulator can be found here2.

6.4.2.1 Interfaces Inputs/Outputs

From the simulator we receive these inputs (called outputs from the simulator side):

 unsigned int timestamp; // Millisec Timestamp
 double position_latitude; // Degrees Position latitude,
 double position_longitude; // Degrees longitude,
 float altitude_msl; // m Altitude - relative to Sea-level
 float altitude_ground; // m Altitude above gnd
 float altitude_ground_45; // m gnd 45 degrees ahead (NOT IMPLEMENTED
YET),
 float altitude_ground_forward; // m gnd straight ahead (NOT IMPLEMENTED
YET).
 float roll; // Degrees
 float pitch; // Degrees
 float yaw; // Degrees
 float d_roll // Deg/sec Roll speed.
 float d_pitch // Deg/sec Pitch speed.
 float d_yaw // Deg/sec Yaw speed.
 float vx // m/sec Speed vector in body-axis
 float vy
 float vz
 float vx_wind // m/sec Speed vector in body-axis, relative to wind
 float vy_wind
 float vz_wind
 float v_eas // m/sec Equivalent (indicated) air speed.
 float ax // m/sec2 Acceleration vector in body axis
 float ay
 float az
 float angle_of_attack; // Degrees Angle of attack
 float angle_sideslip; // Degrees Sideslip angle
 float vario // m/sec TE-compensated variometer.
 float heading // Degrees Compass heading.
 float rate_of_turn // Deg/sec Rate of turn.
 float airpressure // pascal Local air pressure (at aircraft altitude).
 float density // Air density at aircraft altitude.
 float temperature // Celcius Air temperature at aircraft altitude.

The red-coloured parametres are currently in use. For communication, Silent Wings can output
various flight data to a configurable UDP socket. More details are found here3. NOTE: “Output” from Silent
Wings is “Input” to the IQ_Engine, and vice versa.

6.4.2.2 Commands

To the simulator we send these commands (inputs at the simulator side):

2 http://www.silentwings.no/

3 http://wiki.silentwings.no/index.php?title=UDP_Output

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 28 of 61 Issue 1

AIL <value> - Ailerons, [-1.0 -1.0]
ELE <value> - Elevator, [-1.0 -1.0]
ABK <value> - Airbrakes, [0.0 - 1.0]
FLP <value> - Flaps, [0.0 - 1.0]
RUD <value> - Rudder, [-1.0 - 1.0]
TRM <value> - Elevator trim, [-1.0 - 1.0]
GEAR <value> - Gear [0,1]
WTR <value> - Water valves (int)
THR <value> - Throttle, [0.0 - 1.0]
PIT <value> - Propeller pitch, [0.0 - 1.0]
WBK <value> - Wheel brakes, [0.0 - 1.0]
PBK <value> - Parking brakes [0, 1]
PRBK <value> - Propeller brake [0.0 - 1.0]
IGN <value> - Ignition, [0,1]
MIX <value> - Mixture, [0.0 - 1.0]
MAG <value> - Magnetos, [1,2,3]
FUV <value> - Fuel valve
FUT <value> - Fuel tanks
FUP <value> - Fuel pump, [0.1]
ENST <value> - Engine start [0, 1]
DCMP <value> - Engine decompression [0, 1]
PRM <value> - Fuel primer, [0, 1]
CHT <value> - Carburetor heat, [0.0 - 1.0]
CWFP <value> - Cowling flap [0.0 - 1.0]
EEXT <value> - Engine boom extend, [0, 1]
ERET <value> - Engine boom retract, [0, 1]
TBO <value> - Engine turbo, [0.0 - 1.0]
PANH <value> - Camera pan horizontal (degrees)
PANV <value> - Camera pan vertical (degrees)
ZOOM <value> - Zoom +/-
APHDG <enable> <target> - Auto pilot, heading hold. Enable/disable with 1/0, target in
degrees.
APSPD <enable> <target> - Auto pilot, speed hold. Enable/disable with 1/0, target in
km/h.
APROL <enable> <target> - Auto pilot, auto bank. Enable/disable with 1/0, target in
degrees.
APRUD <enable> - Auto pilot, auto rudder enable/disable, [0, 1] (Coordinated
flight).
APSPDC <enable> - Auto pilot, speed command enable/disable, [0, 1].
HUD <mode> - Set HUD: 0 = Off, 1 = Flight mode, 2 = Competition mod.
JOY <enable> - Enable/disable Joystick control, [0,1].
VIEW <mode> - Set view mode: 0 = Cockpit, 1 = Spot, 2 = Fixed, 3 = Flyby, 4 =
Free flight, 5 = Chase, 6 = Overview
SRT <val> - Simulation rate: < 0.0 - 64.0]
QUIT - Quit simulation
RST - Restart simulation
PAUSE <enable> - Enable/disable pause
CPT <enable> - Enable/disable cockpit graphics, [0,1]
TRK <enable> - Enable/disable track ribbons, [0.1]
LAB <enable> - Enable/disable labels, [0,1]
PIC - Grab screenshot
TSK <enable> - Enable/disable task graphics, [0,1]
THM <enable> - Enable/disable thermal visuals, [0,1]
VEC <enable> - Enable/disable force vectors, [0,1]
CHAT <message> - Send chat message
MAP - Switch to map screen
FLT - Switch to flight screen

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 29 of 61

HELP <enable> - Enable/disable help window, [0,1]
PLB <enable> - Enable/disable playback controls (Viewer only)
RSLT <enable> - Enable/disable results window [0,1]
SPLT <enable> - Enable/disable standings plot window [0,1]
AC <number> - Set current aircraft [1, n]
OFS <seconds> - Offset current time by <seconds> (Viewer only).

The red-coloured controls are currently in use. Mor e will be included as more intelligence is added
to the IQ_Engine.

As for input, Silent Wings can receive various flight controls to a configurable UDP socket. More details
are found here4. NOTE: “Output” from Silent Wings is “Input” to the IQ_Engine, and vice versa.

6.4.2.3 Internal data

In addition to the above, the IQ_Engine has its own set of variables, that are constantly updated as new
data arrives. These are e.g:
 float roll_target; // Degrees
(Which roll position to go to, e.g. 0 degrees or 30 degrees for turning, etc)
 float pitch_target; // Degrees
 float yaw_target; // Degrees

 float roll_difference; // Degrees
What is the difference between the current roll position and the target position?
 float pitch_difference; // Degrees
 float yaw_difference; // Degrees

6.4.3 Operating Environment in the WP-7.3 demo

IQ_Engine works as anticipated, and will comply with requirements such as minimum 20 control signals
per second (max 50ms between control outputs), often a requirement for unstable aircraft.

The input/output side is easy to change or adapt, and does not affect the content of the knowledge base.

A somewhat more detailed description of the IQ_Engine’s internal structure, when it acting like an
Autopilot, follows here:

4 http://wiki.silentwings.no/index.php?title=Remote_Control

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 30 of 61 Issue 1

6.4.4 IQ_Engine sensor inputs and command lines

In the nSHIELD set-up, the IQ_Engine will NOT act as an Autopilot, it will rather give the Autopilot
Commands on a higher level, such as

• where to go (heading, altitude and velocity),
• what to do when you get there (loiter in circle, take pictures, etc),
• to follow a target on the ground while loitering (position of the target being continuously updated).

All detailed commands, such as setting a throttle speed, setting of rudders, ailerons and elevator wll be
managed locally in the UAV by the autopilot). A number of the data listed above in the section
(Simulator/Plane data inputs) will be needed, however.

The IQ_Engine is set up to function as an Autopilot as described in the chapter “IQ_Engine current
status”. This will be implemented in an environment as similar as possible to the Selex/SES Ground

Station environment, and using UDP as means of
communications. The implementation is done I Norway,
based upon libraries and software sent to Alfatroll from
Selex/SES.

The ground station may very well be the one provided
by Selex/SES, including the Mission define function.

The purpose us to make sure the operating environment
fulfills the requirement for both parties, and that the
IQ_Engine can function in conjunction with the intended
Ground Control Station.

Proposed Step two: IQ_Engine integration in nSHIELD

The IQ_Engine is set up to function as a Ground Control
extension, giving commands to the simulated Autopilot as described in the chapter “IQ_Engine
requirements in nSHIELD”.

This will require a message protocol to be determined and put in place, operating in the Selex/SES
Ground Station environment, and using nSHIELD protocol layers. The implementation is done I Norway,
based upon libraries and software sent to Alfatroll from Selex/SES.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 31 of 61

The ground station is provided by Selex/SES, including the Mission define function.

The purpose us to make sure the operating environment fulfills the requirement for both parties, and that
the IQ_Engine can function in conjunction with the intended Ground Control Station.

6.4.5 Scenario proposal.

When selecting scenario, it is of vital interest to the nSHIELD project that all the communications links,
layers, and components are included for a proper testing of the whole.

One scenario 1 has been suggested:

• Two UAV’s are in flight above the work station. One UAV (A) loses its GPS signal, and is
unable to determine its position precisely. By using observations from the ground or the other
UAV (B) (vision or radar), the exact position is determined, and relayed on a frequent basis to
the UAV A with failing GPS.

This scenario may be hard to set up due to the uncertainty with determination of the exact position of the
UAV with the failing GPS (Alfatroll’s judgement). All components of the signal chain can be involved,
though.

One scenario 2 is suggested, which will likewise fulfil the requirements of including all components.

• Two UAV’s are airborne, one (A) is responsible for general surveillance, the other (B) is
hooked onto a target on the ground. The target may be a person, a car, a house etc, and A is
given the task to cover the object whether it is still or moving.
The GPS positioning af A fails, and B is reassigned to take over for A, until another UAV (C)
can be brought in to cover the general surveillance. Everything is controlled by tha ground
station by sending appropriate commands to the UAV’s.

Both scenarios fulfil the requirements for nSHIELD testing of the complete system, but the scenario 2,
since the logic of the autonomous action to be taken by the Alfatroll system in the ground station is more
demanding and realistic.

6.4.6 IQ_Engine Autopilot and Cognitive Pilot SPD f eatures

To be supplied.

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 32 of 61 Issue 1

6.5 Semantic model

The Semantic Model was delivered as a preliminary prototype in D5.2 [1], and is described in detail in
D5.3 [2].

The methodology adopted to produce the SHIELD semantic models is based on the definition of two
information repository: one for the subtract information and one for the domain dependent information.
The first one contains the ontology provided by the components and the second one contains the
parameters, relations or rules tailored by the domain experts once the system is deployed.

For the purposes of the demonstrator, two small but significant example of these repositories will be
provided.

• For the ontology, an XML template will be distributed to the prototypes providers to be filled
with relevant information: this files will be collected by the OSGI and stored in a specific
repository (that is not necessarily a Data Base but could be also a portion of RAM).

• For the domain dependent library, a set of entries will be prepared and manually inserted in
the OSGI, to be used for control purposes

6.5.1 Semantic model SPD features

The ontology file includes simply a list of SPD functionalities offered by a specific system component. For
each SPD functionality, some attributes are reported, in line with the procedures for metrics computation,
and these attributes are filled with the metric values elaborated following metrics guidelines (attack
surface and/or multimetrics).

The domain dependent library contains mainly: i) a set of inclusion/non-inclusion relations for the different
SPD components (if any), ii) the overridden values for the ontology attributes (if any) and iii) policies to
force the behaviour of the SHIELD system (if any).

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 33 of 61

6.6 Multi-metrics

Multi metric approach will address the procedure maintained by document 2.8 called “An Evolutionary-
Fuzzy Approach towards Multi-Metric Security Risk Assessment in Heterogeneous System of Systems”.
For this specific scenario the scenario owner should reflect the following procedure.

a) Select correct metrics for Railway scenario from document 2.5. This selection takes into account
the risks identified in the present document. The following table could be an example of selected
metrics:

Threat Metric

Interferences nº interferences/total messages

Access control

guarantee

cryptographic ley length for AUTH

nº accesses

Corruption
nº messages altered/total messages

nº message digest corrupted

(MD5/SHA1)

b) An analysis of selected metric should be featured as follows (this is a validation draft that could be
extended to more metrics analysis):

c) Expert system development according to scenario owner expertise. In this case, a specific
FUZZY-LOGIC IF- THEN algorithm will be issued according to 2.8 document.

d) Final Dashboard should be as follows:

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 34 of 61 Issue 1

layer S P D

Node (G,Y,R) (G,Y,R) (G,Y,R)

Network (G,Y,R) (G,Y,R) (G,Y,R)

Middleware (G,Y,R) (G,Y,R) (G,Y,R)

Overlay (G,Y,R) (G,Y,R) (G,Y,R)

Summarising, Scenario owners identify key metrics, normalise and analyse them, and finally with the help
of a fuzzy IF-THEN algorithm can obtain an aggregated heterogeneous multi metric measurement via this
dashboard.

6.7 Surface metric

6.7.1 Surface metrics SPD features

Attach Surface Metric approach starts from the following considerations:

1 a threat is the origin of the fault chain (fault -> errors -> failures) for the dependability concerns
and as the potential for abuse of protected assets by the system for security concerns.

2 The attacker is the threat agent, it is a malicious human activity or non malicious event.

3 An attacker uses nSHIELD's entry and exit points to attack the system.

So it was introduced an entry and exit point framework to identify three relevant factors: Porosity,
Controls, Limitations.

An entry and exit point contribution to the attack surface reflects factors' likelihood of being used in
attacks. For example an entry point running a method with root privilege is more likely to be used in
attacks than a method running with non-root privilege. We introduce the notion of a damage potential-
effort ratio (der) to estimate porosity contribution.

A system’s attack surface measurement (Actual SPD Level) is the total contribution of the system’s
factors along the porosity, controls, and limitation.

Each supplier of a product or system that will be part of this demonstrator must provide the data needed
for the calculation of SPD level defined by the adopted metric approach.

These data will be provided by filling in an excel sheet which is being finalized and will contain all the
information necessary to Actual SPD level calculation.

The Attack surface metric approach definition and the details of data to be provided are contained in
deliverable D2.5 [2] (insert this reference in the reference list [2] nSHIELD, D2.5: Preliminary SPD
Metrics Specification)

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 35 of 61

6.8 Middleware Intrusion Detection System

The Intrusion Detection and Filtering Module was delivered as a preliminary prototype in D5.2 [1], and is
described in detail in D5.3 [2].

The IDS prototype operates as a TCP/UDP gateway, having network interfaces connected towards the
Middleware services present, and similar network interfaces towards other parts of the system accessing
the Middleware services. The main role of the preliminary IDS prototype is to filter requests towards
middleware functionality, received from network interfaces that utilize common and/or public network
infrastructure, also protecting against requests from compromised nSHIELD nodes. The IDS prototype is
created to operate autonomously after initial setup, but it also provides function interfaces for real-time
monitoring and control according to SPD requirements, implemented natively in the OSGI Framework
environment (see also Chapter 6.10, OSGI middleware).

6.8.1 IDS prototype interfaces

In its current status, the preliminary IDS prototype has generic network interfaces for receiving and
forwarding requests that are to be filtered. It is however anticipated that TAP / TUN virtual network
interfaces could be used to physically separate and protect internal (Middleware services) and external
(other components and networks besides Middleware) network domains. These changes could mostly be
implemented in a transparent manner for the system components using middleware services, but may
impact how connection methods towards middleware services should be implemented.

The network interfaces operate in a transparent manner, but require setting up network infrastructure so
that requests are received by the gateway instead of the middleware services natively. For this purpose,
the Intrusion Detection and Filtering Module provides additional function call interfaces towards the
middleware services that implement the use of the IDS – see next chapter about SPD features.

6.8.2 IDS prototype SPD features

The preliminary version of the Intrusion Detection and Filtering Module provides the following features for
the Middleware services utilizing the IDS. These features are controllable via function interfaces in the
Middleware environment in Java:

• Intrusion detection configurable per service

• Provides blacklisting and whitelisting for clients – operation mode and lists can be controlled from
the Overlay based on higher level semantic SPD information (e.g. based on trust level
associated with clients obtained from Secure Discovery)

• Critical Load Detection of Server

• Can be switched to whitelisted or blacklisted mode, or can switch automatically under critical load
(can be controlled according to required SPD level changes as well)

• Provides function interface to query Service Metrics that can be used to assess SPD level of the
prototype:

o totalIncomingRequestCount

o totalOutgoingResponseCount

o totalDroppedFromQueueCount

o currentQueueSize

o totalBlacklistRejection

o totalWhitelistRejection

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 36 of 61 Issue 1

6.9 Protection profile

The nSHIELD project has the ambitious to be a commercial standard for Security, Privacy and
Dependability regarding embedded systems. At this purpose the idea of a Protection Profile (at the
moment only for middleware layer) is a first step to define a security problem definition and security
objectives for embedded systems.

As defined in D5.3, a protection profile (PP) is a Common Criteria (CC) term for defining an
implementation-independent set of security requirements and objectives for a category of products, which
meet similar consumer needs for IT security. Examples are PP for application-level firewall and intrusion
detection system. PP answers the question of "what I want or need" from the point of view of various
parties. It could be written by a user group to specify their IT security needs. It could also be used as a
guideline to assist them in procuring the right product or systems that suits best in their environment.
Vendors who wish to address their customers’ requirements formally could also write PP. In this case, the
vendors would work closely with their key customers to understand their IT security requirements to be
translated into a PP. A government can translate specific security requirements through a PP. This usually
is to address the requirements for a class of security products like firewalls and to set a standard for the
particular product type.

Protection Profile defines the rules or rather the SPD requirements that must be met by prototypes
Integration that make up an embedded system aiming to be SHIELD compliant (as indicated above, at
this time are shown only the SPD requirements that the middleware of the system must meet).

6.9.1 Protection Profile SPD features

As indicated in the nSHIELD middleware PP [1] (insert this reference in the reference list … [1] nSHIELD
Middleware Protection Profile - nSHIELD Project - PP1.0 - 24.5.2013) Protection Profile (PP) applies to
middleware layer of a generic Embedded system which aim to be compliant to nSHIELD project, that we’ll
consider as Protection Profile Target of Evaluation (TOE).

The TOE is part of a system. It is a software and its purpose is to act as a glue for the different SPD
services offered by a nSHIELD compliant embedded system.

The TOE features security functions for:

• Identification & Authentication;

• Auditing;

• Data Integrity;

• Availability.

This generic identification of security functions can be mapped on TOE through the following statement:

• Orchestrator that improves services discovery/composition is able to identify and authenticate
services/devices (discovered/composed);

• TOE is able to record security relevant events;

• TOE is able to verify the integrity of composition command definition;

• TOE is able to grant services availability.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 37 of 61

6.10 OSGI middleware

The OSGI framework was delivered as a preliminary prototype in D5.2 [1], and is described in detail in
D5.3 [2]. This framework is the platform adopted to emulate the functionalities of a generic Middleware.
The considerations that lead to this choice are reported in the following and taken directly from the
pSHIELD documents, in which this choice was preliminarily investigated. In fact, considering the possible
available SOA open solutions, the decision was to select OSGi as the reference service platform to
implement the Middleware services. The main reasons leading to this decision are:

• OSGi is an open standard;
• OSGi has a number of open source implementation (Equinox, Oscar, Knopflerfish);
• OSGi can be executed even over lightweight nodes (Embedded Systems Devices);
• OSGi has been implemented using different programming languages (e.g. Java, C, C#);
• The Java implementations of OSGi is fast to deploy and it is much easier to learn, facilitating even

an active and collaborative prototype deployment among partners;
• OSGi plugins are available for a number of IDE tools (i.e. Eclipse, Visual Studio, etc.);
• OSGi can be easily deployed in Windows (XP, 7, Mobile), Linux, MAC and Google (Android) OSes.

More in particular it has been decides to use the open source Knopflerfish OSGi service platform.
Knopflerfish (hereafter referred as to KF) is a component-based framework for Java in which units of
resources called bundles can be installed. Bundles can export services or run processes, and have their
dependencies managed, such that a bundle can be expected to have its requirements managed by the
container. Each bundle can also have its own internal classpath, so that it can serve as an independent
unit, should that be desirable. All of this is standardized such that any valid Knopflerfish bundle can be
installed in any valid OSGi container (Oscar, Equinox or any other).
Basically, running OSGi is very simple: one grabs one of the OSGi container implementations (Equinox,
Felix, Knopflerfish, ProSyst, Oscar, etc.) and executes the container's boot process, much like one runs a
Java EE server. Like Java EE, each container has a different startup environment and slightly different
capabilities. The KF environment can be downloaded here: http://www.knopflerfish.org/

The KF start-up environment is shown below:

Figure 6-8 Knopflerfish start-up environment

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 38 of 61 Issue 1

6.10.1 OSGI middleware SPD features

One of the most important peculiarities of the KF OSGi is that it already offers a standard orchestration
environment that, once correctly setup, can act as the SHIELD Orchestration Core SPD Service. Thus the
Orchestration functionalities comes for free when using an OSGi framework, instead of using other SOA
implementations.

The prototype architecture derives directly from the architecture described in the previous section. Each
SHIELD Middleware component is mapped into an OSGi bundle and, when needed, decoupled into a
composition of interoperating bundles each providing a specific functionality. This modular approach
simplify the design, development and debugging of the whole system. Even the Innovative SPD
Functionalities have been implemented as OSGi bundles. Each OSGi bundle has its own dependencies,
provides a set of functionalities, requires a set of functionalities and is characterized by a specific SPD
level. Each bundle can be registered in the Service Registry to advertise itself, to maintain updated its
status in order to be discovered. Each bundle can also store its description in the Semantic Database, to
be semantically composed. Each bundle interfaces the rest of the architecture providing a set of
functionalities and requiring a set of functionalities, exactly as a software component does. More in
particular each bundle is decoupled into two parts: the interfacing part (API) and its implementation part
(IMPL). This separation between API and IMPL ease the substitution at runtime of a specific bundle, to
change from one implementation to another. This substitution can be due, as an example, to the necessity
to strengthen the SPD level of a specific functionality.

Figure 6-9 Bundle architecture

This framework will be installed on a Laptop and interconnected to the Gateway to drive the security
functions. At a preliminary analysis, the interaction will be done by means of Ethernet interfaces and
through the Intrusion Detection Bundle, that is just in the middle between the final system and the OSGI.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 39 of 61

6.11 Control Algorithms

The Control Algorithms was delivered as a preliminary prototype in D5.2 [1], and is described in detail in
D5.3 [2]. However the version of the control algorithms that will be included in the demonstrator will most
likely be the one delivered with the final prototypes, since it will be fully compliant with the mechanism for
metrics computations. The control algorithms work as follows: at first a set of candidate technologies is
identified as well as the SPD value desired by the user; then an algorithm is applied (a simple
optimization, an extensive graph search, a model driven control, ecc) whose result is a list of components
that should be activated to reach the desired objectives. Finally these solutions are filtered by including
the domain constraints/tailoring and, if there are no changes in the metric value, the solution is confirmed,
however it is reiterated taking into account the new inputs.

6.11.1 Control algorithms SPD features

The control algorithms are implemented by the Security Agent in the Overlay layer. On a practical point of
view, two solutions are envisaged to include them in the demonstrator, depending on the maturity level
reached by the implementation task: direct inclusion in the OSGI source code, or interfacing with an
external computation platform (i.e. Matlab) that provides the problem solutions. In both these cases the
interfaces between the control algorithms and the system are internal and can be easily managed

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 40 of 61 Issue 1

7 nSHIELD Dependable Avionic use cases

The application scenario for the nSHIELD project is the Avionic System for a Unmanned Aircraft System
(the demonstration will use prototype or laboratory equipment) used for a surveillance application.

To preserve the main functionalities represents an example application of great interest for theAvionic
System. In particular, in this use case, the following requirements have to be fulfilled:

• Secure and dependable handling of on-board computing and sensor processing capabilities
• Secure and dependable Ground Operator sensor control terminals

The nSHIELD philosophy will be applied to preserve the data for the following components

• AIR/GROUND DATA TERMINAL: the nSHIELD solution will guarantee that the data exchanged
between the UAV and Ground Station will be preserved by anomalous interface.

• Avionics Unit : the nSHIELD solution will guarantee that the data acquired by sensors are
protected against the possible corruption.

• Mission System: the nSHIELD solution will define solution for easy integration of new sensors
and/or replaced old version

• Ground Control System: the nSHIELD solution will be able to manage the different access to the
Unmanned System for the Mission Operators and Pilot

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 41 of 61

8 Dependable Avionic System demonstrator
integration

According to the architectural description above, the integration of the nS-ESD-GW gateway in the
OMNIA platform is needed with the aim to guarantee the link between the Avionic and the SHIELD worlds.
It will be possible to merge these two technologies developing the gateway in accordance to the IMA
standard.

Also, being the IQ_Engine the mission supervisor, it must be integrated into the IMA architecture in order
to ensure the proper level of SPD in respect of SHIELD and Avionic Demonstrator needs.

To ensure the communication between nodes and middleware according the nSHIELD addressed
standards, it will be used the SPD-driven Smart Transmission Layer board. The integration of this node
into the whole system is foreseen.

The integration methods and environment, the tools and platforms, integration tests and schedule
foreseen will be described in the next issue of the present document.

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 42 of 61 Issue 1

9 Dependable Avionic System demonstrator
validation and verification

9.1 Validation and Verification methods

The IEEE Guide to the Project Management Body of Knowledge5 defines validation and verification as
follows:

• "Validation. The assurance that a product, service, or system meets the needs of the customer
and other identified stakeholders. It often involves acceptance and suitability with external
customers. Contrast with verification."

• "Verification. The evaluation of whether or not a product, service, or system complies with a
regulation, requirement, specification, or imposed condition. It is often an internal process.
Contrast with validation."

The proposed method of Validation and verification is applying relevant parts of the V-Model of project
management used by several national standards [5]. This model clearly identifies the distinct steps during
all stages of the development process – from requirements and design specification to implementation,
testing, and operation.

In the case of nSHIELD project, the following methodology is proposed. Activities are identified together
with deliverables relevant to that stage, where outcomes are described. As per the V-Model, the overall
architecture must be designed to be testable. Specifically, all design elements and acceptance tests must
be traceable to design requirements – similarly, each design requirement must be addressed by at least
one design element and a corresponding acceptance test.

5 IEEE Guide--Adoption of the Project Management Institute (PMI®) Standard A Guide to the Project
Management Body of Knowledge (PMBOK® Guide)--Fourth Edition". p.452.
doi:10.1109/IEEESTD.2011.6086685. (http://ieeexplore.ieee.org/servlet/opac?punumber=6086683)

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 43 of 61

Figure 9-1: Validation and verification activities

Demonstrator Validation and Verification plan (the scope of the current document) deals with the following
activities:

• Validation of presented demonstrator scenarios against High level requirements for scenarios –
ensuring that the original requirements were adequately covered and demonstrated by use cases.
Stakeholders involved in Validation and Verification activities:

o Demonstrator owner as responsible for requirements and scenarios
Means of validation / verification:

o Analysis of requirements vs. Demonstrator scenarios
Justification of prototype, integrated prototype, and platform level validation and verification
results in the scope of the current Demonstrator – ensuring that the Demonstrator components
were developed as planned and all the lower level requirements were properly implemented.
Means of validation / verification:

o Analysis of former (lower-level) validation and verification results, tracing results from
prototypes and relevant functionality

• Verification of Demonstrator scenario execution – verifying that the specified use cases (derived
from Demonstrator Owner use cases relevant to high level requirements) were executed
according to specifications.
Stakeholders involved in Validation and Verification activities:

o Demonstrator owner and partner(s) responsible for scenarios
o Prototype owners and integrators responsible for implementation of relevant

functionality
Means of validation / verification:

o Comparison of Test results vs. description of scenario (expected behaviour)

The following chapters list information that is available at the current design and development stage about
the activities as listed above. The Validation and Verification results will be described in detail in the
nSHIELD deliverable D7.11 Dependable Avionic System demonstrator - Validation and Verification
Report.

Order of activities

V
a

lid
a

ti
o

n
 a

n
d

 V
e

ri
fi
c
a

ti
o

n
 a

c
ti
v
it
ie

s
 Define high level

requirements for
scenarios (D2.2, D2.6)

Architecture specification
(D2.3, D2.4) and Layers

requirements (D2.2,
D2.6)

Prototypes and interfaces
specification (D2.3, D2.4,

D3.1, D4.1, D5.1) and
prototype requirements (D2.6)

Prototype development
(D3.2, D3.3, D4.2, D4.3,

D5.2, D5.3)

Integrated prototypes
Validation and

Verification (D6.3)

Prototype Validation
and verification

(D6.2)

Platform Validation
and Verification

(D6.6)

Demonstrator
Validation and

Verification (D7.9,
D7.10, D7.11, D7.12)

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 44 of 61 Issue 1

9.2 Validation of demonstrator scenarios

Insert table to list scenario requirements from D2.2 chapter 5.1, and a requirements traceability matrix to
show relevance of Scenarios under chapter 7.X w.r.t. high-level requirements (which scenario steps will
validate which requirements).

If certain High Level Requirements for Scenarios from [4] are not demonstrated by the Dependable
Avionic System Demonstrator Scenarios, please describe rationale (e.g. analogous functionality was
demonstrated by other Demonstrators).

9.2.1 Scenario n.1

(Description of relevant requirements from [4])

9.2.2 Scenario n.2

(Description of relevant requirements from [4]), e.g.

High Level Requirements for
Scenario

Use case steps
(from Chapter 7)

Description

REQ_AVXX Scenario X steps Y

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 45 of 61

9.3 Justification based on prototype and platform V alidation and
Verification

9.3.1 Validation and verification results for proto types

Summarize how results of D6.2 validate that prototypes included in current demonstrator are fit for the
purpose of the demonstrator.

The description of each component should show which of the original D2.6 requirements have been
fulfilled, possibly providing justification for the requirements that were not.

9.3.1.1 OMNIA

(reference to relevant validation and verification results for the prototype)

9.3.1.2 Gateway

(reference to relevant validation and verification results for the prototype)

9.3.1.3 SPD-driven Smart Transmission Layer

See chapter 4.3.4 in nSHIELD, D6.2: Prototype validation and verification Plan [3].

Relevant requirements being validated from nSHIELD, D2.2: Preliminary System Requirements
and Specifications [4]:

• REQ_NW01 Confidentiality
• REQ_NW02 Integrity
• REQ_NW04 Fault Tolerance
• REQ_NW05 Self-Management and Self-Coordination
• REQ_NW07 Availability
• REQ_NW13 Fault Recovery
• REQ_NW16 Reliable Transmission Methodologies
• REQ_NW19 Application-Based Configurability

9.3.1.4 IQ_Engine Autopilot and Cognitive Pilot

(reference to relevant validation and verification results for the prototype)

9.3.1.5 Semantic model

See chapter 6.3.1 in nSHIELD, D6.2: Prototype validation and verification Plan [3].

Relevant requirements being validated from nSHIELD, D2.2: Preliminary System Requirements
and Specifications [4]:
• REQ_MW6 Information retrieving
• REQ_MW9 Data management
• REQ_SH16 Data backup
• REQ_SH17 Data storage redundancy
• REQ_SH18 Data storage integrity
• REQ_SH19 Data storage confidentiality

9.3.1.6 Multi-metrics

(reference to relevant validation and verification results for the prototype)

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 46 of 61 Issue 1

9.3.1.7 Surface metric

(reference to relevant validation and verification results for the prototype)

9.3.1.8 Middleware Intrusion Detection module

See chapter 5.3.5 in nSHIELD, D6.2: Prototype validation and verification Plan [3].

Relevant requirements being validated from nSHIELD, D2.2: Preliminary System Requirements
and Specifications [4]:
• REQ_SH02 Information transmission integrity
• REQ_SH33 Automated testing tools
• REQ_MW7 Information filtering for intrusion detection
• REQ_MW17 Configurations selection
The relevant high-level requirements towards IDS prototype for the Dependable Avionics
System Demonstrator from the above list are REQ_SH02 and REQ_SH33.

9.3.1.9 Protection profile

(reference to relevant validation and verification results for the prototype)

9.3.1.10 OSGI middleware

No specific requirements have been foreseen for the OSGI framework, since it is a consolidate
heritage of the pSHIELD project, so there was no need to specify it again as a precondition

9.3.1.11 Control Algorithms

See chapter 6.3.4 in nSHIELD, D6.2: Prototype validation and verification Plan [3]

Relevant requirements being validated from nSHIELD, D2.2: Preliminary System Requirements
and Specifications [4]:
• REQ_MW15 Configurations definition
• REQ_MW16 Configurations quantification
• REQ_MW17 Configurations selection

9.3.2 Validation and verification results for integ rated prototypes

Summarize how results of D6.3 validate that prototypes included in current demonstrator will be fit for the
purpose of the demonstrator.

9.3.3 Platform validation and verification results

Summarize how results of D6.6 validate that prototypes included in current demonstrator will be fit for the
purpose of the demonstrator.

Insert table to list all prototypes from chapter 6.X and their relevant linkage to Scenarios in chapter 7.X
[Which scenario steps will validate high level functions of which prototypes]

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 47 of 61

9.4 Verification of Demonstrator scenario execution

9.4.1 Tools and platforms for execution of Demonstr ator scenarios

Please list tools and platforms used in verification of the Demonstrator scenarios.

9.4.1.1 Validation and Verification tools for IDS p rototype

Chapter 5.3.5 in nSHIELD, D6.2: Prototype validation and verification Plan [3] lists validation steps that
are carried out using code for automated testing of Intrusion Detection and Filtering Module:

• Basic functionality test (SendReceiveTest)
• load generation (CriticalLoadTest)
• Information filtering tests (BlackListTest and WhiteListTest)

The testing code referred here is described in [2] and included as source code in [1]. These test cases are
available for use in the Railway Demonstrator scenarios developed, or may be used as templates to
implement Validation and Verification test cases executed automatically in the Scenarios.

9.4.2 Other HW and SW resources for execution of De monstrator scenarios

Please list resource to be used in verification of the Demonstrator scenarios, such as measurement,
automated testing and input generation, logging, etc. tools, devices, and software.

• IDS prototype uses logging functionality provided by the OSGI Framework (Java package
‘org.knopflerfish.log’)

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 48 of 61 Issue 1

10 Conclusions
In this deliverable, we presented the integration and validation plan for the Dependable Avionic System
scenario demonstrator.

Starting from the description of the dependable avionic scenario, we provided an overview of the involved
technologies and we illustrated the solution proposed by the prototypes with their SPD functionalities.

Finally, the document presents the integration, verification and validation approach, in order to
demonstrate and validate the nSHIELD framework in the reference application.

The next issue of document will be improved with the detailed description of interface exposed by each
component and the clarification of the integration activities.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 49 of 61

11 References
[1] nSHIELD, D5.2: Preliminary SPD Middleware and Overlay technologies prototype

[2] nSHIELD, D5.3: Preliminary SPD Middleware and Overlay technologies prototype Report

[3] nSHIELD, D6.2: Prototype validation and verification Plan

[4] nSHIELD, D2.2: Preliminary System Requirements and Specifications

[5] V-Model - http://en.wikipedia.org/wiki/V-model

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 50 of 61 Issue 1

Appendix A Interface Control Documents

A.1 Interface Control Document OMNIA

The OMNIA prototype is capable to exchange data, acquired from the aircraft sensor, in terms of
descrete and digital signals, ARINC 429 data, RS422 and 1553 messages.

The interfaced exposed by OMNIA will be provided in the next set of documents.

A.1.1 Introduction

A.1.2 Protocol Formats

A.1.3 OMNIA – nSHIELD Data Interchange

A.1.3.1 OMNIA Message Format

Message Types

Destination/Source IDs

A.1.3.2 Message Type Description

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 51 of 61

A.2 Interface Control Document Gateway

The interfaced exposed by the Gateway will be provided in the next set of documents.

A.2.1 Introduction

A.2.2 Protocol Formats

A.2.3 nS-DI – nSHIELD Data Interchange

A.2.3.1 nS-DI Message Format

Message Types

Destination/Source IDs

A.2.3.2 Message Type Description

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 52 of 61 Issue 1

A.3 SPD-driven Smart Transmission Layer

A.3.1 Introduction

This Interface Control Document (ICD) specifies the interfaces between the Smart Transmission Layer
and other relevant modules, as to be in compliance with requirements specified for the Dependable
Avionic Scenario.

A.3.2 Protocol Formats

Peer 1 Peer 2 Protocol PHY Rate

Smart
Transmission
Layer

nS-ESD-GW nS-DI Ethernet 10/100 Mbps

A.3.3 nS-DI – nSHIELD Data Interchange

The nSHIELD Data Interchange (nS-DI) is used for communications between the SPD-driven Smart
Transmission Layer board (OMBRA) and the nSHIELD Gateway (nS-ESD-GW). nS-DI is a full duplex
protocol designed to handle asynchronous reads and writes from both parties. nS-DI does not specify
any means of control flow, ACKs or NACKs, or command/response. These features must be
implemented at the application layer.

The nS-DI protocol is based on Simple Object Access Protocol (SOAP). SOAP is a protocol specification
for exchanging structured information in the implementation of Web Services in computer networks. It
relies on XML Information Set for its message format, and usually relies on other Application Layer
protocols, most notably Hypertext Transfer Protocol (HTTP) or Simple Mail Transfer Protocol (SMTP), for
message negotiation and transmission. Within this scenario, nS-DI protocol uses SOAP-over-UDP
standard covering the publication of SOAP messages over UDP transport protocol, providing for One-Way
and Request-Response message patterns.

A.3.3.1 nS-DI Message Format

A nS-DI SOAP message is an ordinary XML document containing the following elements:

• A required Envelope element that identifies the XML document as a SOAP message.
• An optional Header element that contains header information
• A required Body element that contains call and response information.

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 53 of 61

Figure 11-1 Generic SOAP message structure

Message Types

Possible messages are summarized in the following table. These messages are received and interpreted
by the Smart Transmission Layer hardware platform.

Message Type Name Sink

Control turnOn Smart Transmission Layer
(OMBRA)

Control turnOff Smart Transmission
Layer(OMBRA)

Control setRadioID Smart Transmission Layer
(OMBRA)

Control setTxPower Smart Transmission Layer
(OMBRA)

Control setCarrierFrequency Smart Transmission Layer
(OMBRA)

Control setWaveform Smart Transmission Layer
(OMBRA)

Control setCrypto Smart Transmission Layer
(OMBRA)

Control setCryptoKey Smart Transmission Layer
(OMBRA)

TX sendData

RX

Status

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 54 of 61 Issue 1

A.3.3.2 Message Type Description

A.3.3.2.1 Common nS-DI response

The majority of the functions from the SPD-driven Smart Transmission Layer server return a
common response format.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ombraRemote:errorResponse>
 <m-eErrorCode>OR-SUCCESS</m-eErrorCode>
 <m-sErrorString></m-sErrorString>
 </ombraRemote:errorResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The errorCode field is an enumeration and the value can be OR-SUCCESS (if the function
succeded), OR-FAILED (if the function failed) or OR-TOBEIMPLEMENTED (if the function is not
implemented yet.

The sErrorString field can contain a human readable string specifying an internal message from
the server.

A.3.3.2.2 status()

This section shows the XML format for the request corresponding to the status function and the
related response from the Smart Transmission Layer (OMBRA) server.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ombraRemote:status>
 </ombraRemote:status>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This function has no parameters. The response is in the common nS-DI format.

A.3.3.2.3 turnOn()

This section shows the XML format for the request corresponding to the turnOn function and the
related response from the Smart Transmission Layer (OMBRA) server.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 55 of 61

 <ombraRemote:turnOn>
 </ombraRemote:turnOn>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This function has no parameters. The response is in the common nS-DI format.

A.3.3.2.4 turnOff()

This section shows the XML format for the request corresponding to the turnOff function and the
related response from the Smart Transmission Layer (OMBRA) server.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ombraRemote:turnOff>
 </ombraRemote:turnOff>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This function has no parameters. The response is in the common nS-DI format.

A.3.3.2.5 setRadioID()

This section shows the XML format for the request corresponding to the setRadioID function and
the related response from the Smart Transmission Layer (OMBRA) server.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ombraRemote:setRadioID>
 <radioID></radioID>
 </ombraRemote:setRadioID>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This function has the following parameter:

• radioID: is an alphanumeric string containing the identifier for the radio.

The response is in the common nS-DI format.

A.3.3.2.6 setTxPower()

This section shows the XML format for the request corresponding to the setTxPower function
and the related response from the Smart Transmission Layer (OMBRA) server.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 56 of 61 Issue 1

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ombraRemote:setTxPower>
 <power>0</power>
 </ombraRemote:setTxPower>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This function has the following parameter:

• power: is an integer containing the transmission power level to be set on the radio.

The response is in the common nS-DI format.

A.3.3.2.7 setCarrierFrequency()

This section shows the XML format for the request corresponding to the setCarrierFrequency
function and the related response from the Smart Transmission Layer (OMBRA) server.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ombraRemote:setCarrierFrequency>
 <tx>0</tx>
 <rx>0</rx>
 </ombraRemote:setCarrierFrequency>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This function has the following parameters:

• tx: is an integer containing the transmission carrier frequency to be set on the radio;

• rx: is an integer containing the receiving carrier frequency to be set on the radio.

The response is in the common nS-DI format.

A.3.3.2.8 setWaveformType ()

This section shows the XML format for the request corresponding to the setWaveformType
function and the related response from the Smart Transmission Layer (OMBRA) server.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ombraRemote:setWaveformType>
 <param-1>WF-1</param-1>
 </ombraRemote:setWaveformType>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 57 of 61

This function has the following parameter:

• param-1: is an enumeration containing waveform id to be set on the radio. Currently,
possible values are WF_1, WF_2 or WF_3.

The response is in the common nS-DI format.

A.3.3.2.9 setCrypto ()

This section shows the XML format for the request corresponding to the setCrypto function and
the related response from the Smart Transmission Layer (OMBRA) server.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ombraRemote:setCrypto>
 <param-2>CRYPTO-OFF</param-2>
 </ombraRemote:setCrypto>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This function has the following parameter:

• param-2: is an enumeration containing the type of cryptography to be enabled on the
radio. Currently, possible values are CRYPTO_OFF, CRYPTO_HH_1 (for default device
cryptography) or CRYPTO_ELL_CURVE (for elliptic curve cryptography).

The response is in the common nS-DI format.

A.3.3.2.10 setCryptoKey ()

This section shows the XML format for the request corresponding to the setCryptoKey function
and the related response from the Smart Transmission Layer (OMBRA) server.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote">
 <SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ombraRemote:setCryptoKey>
 <key></key>
 </ombraRemote:setCryptoKey>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This function has the following parameter:

• key: is an alphanumeric string containing the cryptography key to set on the radio.

The response is in the common nS-DI format.

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 58 of 61 Issue 1

A.3.3.3 WSDL for Ombra service

The following is the WSDL (Web Services Description Language) file describing the functionality offered
by the Smart Transmission Layer (OMBRA) web service:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="ombra"
 targetNamespace="http://localhost/ombra.wsdl"
 xmlns:tns="http://localhost/ombra.wsdl"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote"
 xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:HTTP="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/"
 xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

 <schema targetNamespace="urn:ombraRemote"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ombraRemote="urn:ombraRemote"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <simpleType name="eErrorCode"><!-- ombraRemote__eErrorCode -->

 <restriction base="xsd:string">
 <enumeration value="OR-SUCCESS"/><!-- ombraRemote__eErrorCode::OR_SUCCESS -->
 <!-- = 0 -->
 <enumeration value="OR-FAILED"/><!-- ombraRemote__eErrorCode::OR_FAILED -->
 <!-- = 1 -->
 <enumeration value="OR-TOBEIMPLEMENTED"/><!-- ombraRemote__eErrorCode::OR_TOBEIMPLEMENTED
-->
 <!-- = 2 -->
 </restriction>
 </simpleType>
 <simpleType name="eCryptoType"><!-- ombraRemote__eCryptoType -->

 <restriction base="xsd:string">
 <enumeration value="CRYPTO-OFF"/><!-- ombraRemote__eCryptoType::CRYPTO_OFF -->
 <!-- = 0 -->
 <enumeration value="CRYPTO-HH-1"/><!-- ombraRemote__eCryptoType::CRYPTO_HH_1 -->
 <!-- = 1 -->
 <enumeration value="CRYPTO-ELL-CURVE"/><!-- ombraRemote__eCryptoType::CRYPTO_ELL_CURVE -->
 <!-- = 2 -->
 </restriction>
 </simpleType>
 <simpleType name="eWaveformType"><!-- ombraRemote__eWaveformType -->

 <restriction base="xsd:string">
 <enumeration value="WF-1"/><!-- ombraRemote__eWaveformType::WF_1 -->
 <!-- = 0 -->
 <enumeration value="WF-2"/><!-- ombraRemote__eWaveformType::WF_2 -->
 <!-- = 1 -->
 <enumeration value="WF-3"/><!-- ombraRemote__eWaveformType::WF_3 -->
 <!-- = 2 -->
 </restriction>
 </simpleType>
 </schema>

</types>

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 59 of 61

<message name="status">
</message>

<message name="errorResponse">
 <part name="m-eErrorCode" type="ombraRemote:eErrorCode"/><!--
ombraRemote__status::m_eErrorCode -->
 <part name="m-sErrorString" type="xsd:string"/><!-- ombraRemote__status::m_sErrorString -->
</message>

<message name="turnOn">
</message>

<message name="turnOff">
</message>

<message name="setRadioID">
 <part name="radioID" type="xsd:string"/><!-- ombraRemote__setRadioID::radioID -->
</message>

<message name="setTxPower">
 <part name="power" type="xsd:int"/><!-- ombraRemote__setTxPower::power -->
</message>

<message name="setCarrierFrequency">
 <part name="tx" type="xsd:int"/><!-- ombraRemote__setCarrierFrequency::tx -->
 <part name="rx" type="xsd:int"/><!-- ombraRemote__setCarrierFrequency::rx -->
</message>

<message name="setWaveformType">
 <part name="param-1" type="ombraRemote:eWaveformType"/><!--
ombraRemote__setWaveformType::_param_1 -->
</message>

<message name="setCrypto">
 <part name="param-2" type="ombraRemote:eCryptoType"/><!-- ombraRemote__setCrypto::_param_2 --
>
</message>

<message name="setCryptoKey">
 <part name="key" type="xsd:string"/><!-- ombraRemote__setCryptoKey::key -->
</message>

<portType name="ombraPortType">
 <operation name="status">
 <documentation>Service definition of function ombraRemote__status</documentation>
 <input message="tns:status"/>
 <output message="tns:errorResponse"/>
 </operation>
 <operation name="turnOn">
 <documentation>Service definition of function ombraRemote__turnOn</documentation>
 <input message="tns:turnOn"/>
 <output message="tns:errorResponse"/>
 </operation>
 <operation name="turnOff">
 <documentation>Service definition of function ombraRemote__turnOff</documentation>
 <input message="tns:turnOff"/>
 <output message="tns:errorResponse"/>
 </operation>
 <operation name="setRadioID">
 <documentation>Service definition of function ombraRemote__setRadioID</documentation>
 <input message="tns:setRadioID"/>
 <output message="tns:errorResponse"/>
 </operation>
 <operation name="setTxPower">
 <documentation>Service definition of function ombraRemote__setTxPower</documentation>
 <input message="tns:setTxPower"/>
 <output message="tns:errorResponse"/>
 </operation>
 <operation name="setCarrierFrequency">
 <documentation>Service definition of function
ombraRemote__setCarrierFrequency</documentation>
 <input message="tns:setCarrierFrequency"/>
 <output message="tns:errorResponse"/>

D7.3 nSHIELD Dependable Avionic System demonstrator - integration and validation plan nSHIELD

 CO

D7.3 CO

Page 60 of 61 Issue 1

 </operation>
 <operation name="setWaveformType">
 <documentation>Service definition of function ombraRemote__setWaveformType</documentation>
 <input message="tns:setWaveformType"/>
 <output message="tns:errorResponse"/>
 </operation>
 <operation name="setCrypto">
 <documentation>Service definition of function ombraRemote__setCrypto</documentation>
 <input message="tns:setCrypto"/>
 <output message="tns:errorResponse"/>
 </operation>
 <operation name="setCryptoKey">
 <documentation>Service definition of function ombraRemote__setCryptoKey</documentation>
 <input message="tns:setCryptoKey"/>
 <output message="tns:errorResponse"/>
 </operation>
</portType>

<binding name="ombra" type="tns:ombraPortType">
 <SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="status">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="turnOn">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="turnOff">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="setRadioID">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="setTxPower">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>

nSHIELD D7.3 nSHIELD Dependable Avionic System demonstrator - integration and
validation plan

 CO

 CO D7.3

Issue 1 Page 61 of 61

 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="setCarrierFrequency">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="setWaveformType">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="setCrypto">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="setCryptoKey">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <SOAP:body use="encoded" namespace="urn:ombraRemote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
</binding>

<service name="ombra">
 <documentation>Remote Communication Interface for ombra</documentation>
 <port name="ombra" binding="tns:ombra">
 <SOAP:address location="http://localhost:31000"/>
 </port>
</service>

</definitions>

