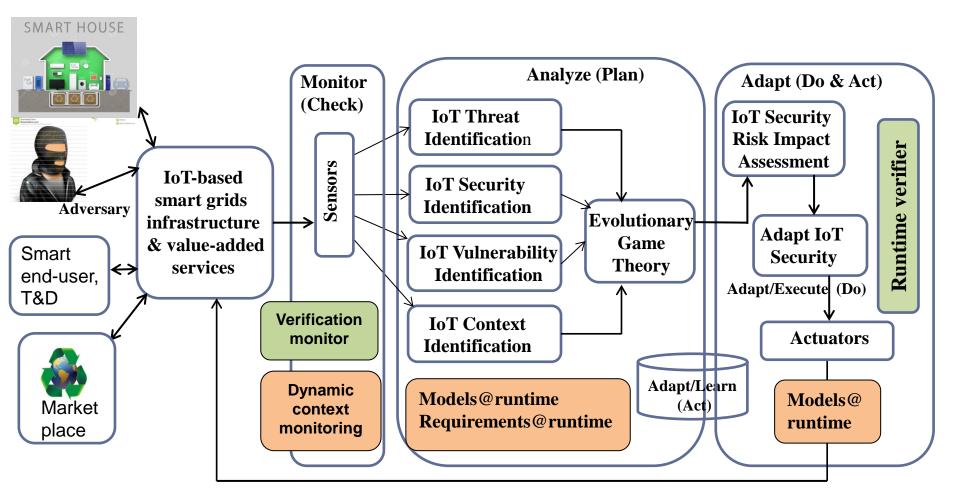


Adaptive Security Model for IoTSec

IoTSec Project 248113/O70 General Meeting


Habtamu Abie, Norwegian Computing Center

Oslo/NR

02-12-2015

Anticipatory adaptive security + semantic provability

 \bigcirc

Later this will be integrated with machine learning for Integrated analysis and decision making, and optimized adaptation

Feedback control loops: Monitor-Analyze-Adapt (PDCA)

- Monitor (Check)
 - Application requirements
 - Environment sensors
 - Network environment
 - User context
- Analyze (Plan)
 - Inference
 - Uncertain reasoning
 - Economic models
 - Rules and policies
 - Game theory
 - Risk analysis

- Adapt (Do & Act)
 - Risk analysis
 - Decision theory
 - Hypothesis generation
 - Managed things
 - Record strategies
 - Inform users or sys admin

Monitor

- Collects relevant data that reflect the current state of the system
 - environmental sensors
 - other sources
- Questions
 - What is the required sample rate
 - How reliable is the sensor data
 - Is there a common event format across sensors
 - What is granularity of self-monitoring

Analyze

- Analyzes the collected data
- Questions
 - How is the current state of the system inferred?
 - How much past state may be needed in the future?
 - What data need to be archived for validation and verification?
 - How faithful is the model to the real world?
 - Can an adequate model be derived from the available sensor data?

Adapt

- Makes decisions about how to adapt in order to reach a desirable state and implements the decisions via available actuators and effectors
 - Decide: Risk analysis, Decision theory, Hypothesis generation
 - Act: Managed things, Record strategies, Inform users or sys admin
- Questions
 - How is the future state of the system inferred?
 - How is a decision reached (e.g., with off-line simulation or utility/goal functions)?
 - What are the priorities for adaptation across multiple control loops and within a single control loop?

Adapt ...

- More questions?
 - When should the adaptation be safely performed?
 - How do adjustments of different control loops interfere with each other?
 - Does centralized or decentralized controls help achieve the global goal?
 - Does the control system have sufficient command authority over the process — i.e., can the action be implemented using the available actuators and effectors?
 - Caveat: Adaptors
 - Cannot blindly apply adaptations since it might have a negative impact on functionality or even worse it could create new faults altogether

Adaptive Human-Computer Interaction

Analyzing feedback types from

- human-computer interaction, collected information and how this is used in the adaptation
- Devising novel mechanisms for
 - exposing the control loops to the users, keeping the users of self-adapting systems "in the loop" to ensure their trust
- Visual feedback of the adaptation
- Give the users the option to
 - disable the self-adaptive features and
 - the system should not contradict this

To measure human behavior in a security context

Taken verbatim from "Socio-Technical Security Metrics" seminar: http://drops.dagstuhl.de/opus/volltexte/2015/4974/pdf/dagr

ep_v004_i012_p001_s14491.pdf

- what behaviors we can expect to see;
- what triggers behaviors;
- what the range of behaviors is;
- what behaviors we want to encourage or discourage;
- what the differences between individual and group behaviors are;
- what triggers for sharing are;
 - what attitudes lead to what behaviors.

Getting reliable data [Socio-Technical Security Metrics Seminar]

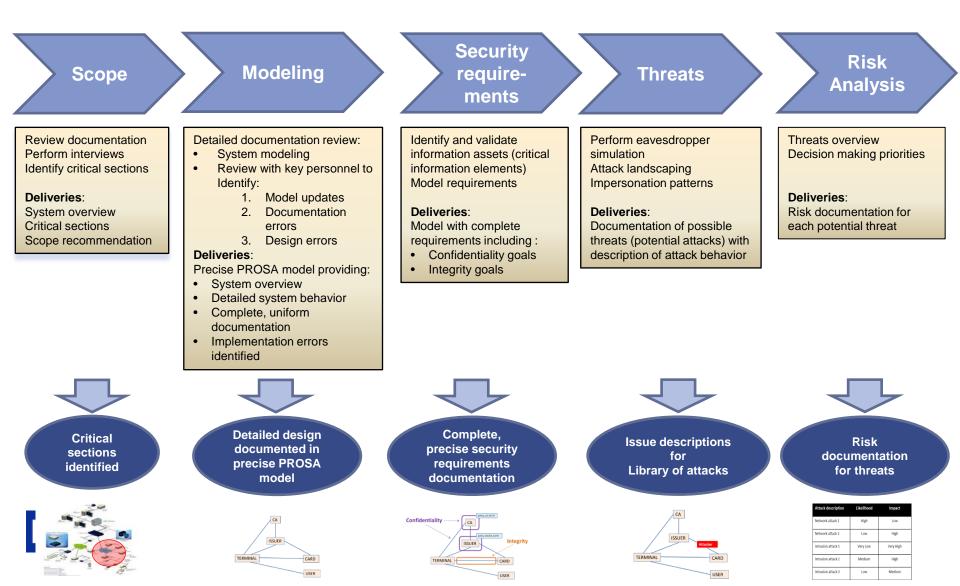
- They formulated the following problems and recommendations:
 - Use metrics that are as explicit as possible;
 - People collecting data need hands-on experience of risk analysis – this is currently often confused with requirements analysis;
 - Predict risk level after changes have been implemented;
 - Combine risk analysis with other techniques to check risk model;
 - Use two risk models before and after;
 - Combine with other measures, e.g. vulnerability scans, to check predictions – program and functional testing.

Methodologies and methods

- Risk analysis (basis for security decision)
- Evolutionary theory (conflicting incentives)
- Control theory (attack strategies seeds)
- Distributed behavioral analysis (computational capabilities)
- Adaptive Systems and Interaction (Contextual intelligence) http://research.microsoft.com/en-us/groups/adapt/
- Machine learning (optimization), reinforcement learning and/or Inverse reinforcement learning (learning the reward function)
- Prosa (security protocol specification)

Evolutionary game theory

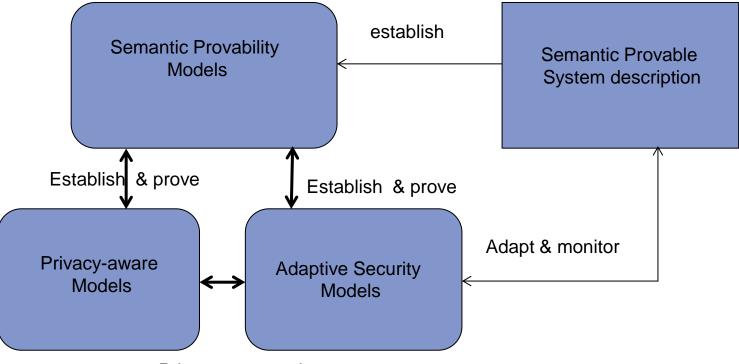
- bridges concepts from
 - biology
 - evolution
 - non-linear dynamics, and
 - game theory
- populations of players
 - different strategies
 - a process similar to natural selection is used to determine how the population evolves
- allows us to deal with evolutionary threats



Control theory

- The control loop
 - a central element of control theory
- control theory provides
 - well established mathematical models, tools, and techniques to analyze system performance, stability, sensitivity, or correctness
 - Instruction how to compute plans (sequences of actions) that are optimal with respect to maximizing an objective
- interactions of control loops
 - explicit and expose how these interactions are handled

The Prosa Process



Discussions

- How should integrate with other activities
- Should we make our feedback control loops and their features explicit
- What activities and methods should we use in each loops
- Can you help us answer questions we have raised and for how many of them you can answer

WP2 – Inter-tasks research integration

Privacy-aware adapt

