Criteria for Security Classification of Smart Home Energy Management Systems

Manish Shrestha Christian Johansen Josef Noll Department of Mathematics and Natural Science University of Oslo/eSmart Systems

Criteria for Security Classification of Smart Home Energy Management Systems

This talk is about applying Security Classification to Smart Home Energy Management Systems

Standards and Certifications existing today do not adapt well with changing IoT world

Our Security Classification Methodology

Exposure is calculated from Connectivity and Protection Level

Impact and Exposure gives Security Class

Catastrophic	A	С	Ε	\mathbf{F}	F
Major	А	В	D	Ε	F
Moderate	А	В	С	Ε	Е
Minor	А	А	В	D	D
Insignificant	А	А	А	С	С
$\operatorname{Impact}/$	E1	E2	E3	E4	E5
Exposure					

Put some examples to pop up

A commercial Smart Home Energy Management Systems (SHEMS) from e2U Systems

- IoT hub (IoT Gateway)
- IoT Devices
- Residential Gateway
- Communication Channels
- Backend System
- Application and Network Data
 - Sensor readings
 - Control Signals

[1] Ghirardello, K., Maple, C., Ng, D., Kearney, P.: Cyber security of smart homes: Development of a reference architecture for attack surface analysis (2018)

Criteria for Security Classification of Smart Home Energy Management Systems

Impacts

- Safety
- Increased Electricity Bills
- Grid Stability [2]
- Agents for other cyberattacks
- Privacy

[2] Soltan, S., Mittal, P., Poor, H.V.: Blackiot: Iot botnet of high wattage devices can disrupt the power grid, 2018

Protection Criteria are extracted from available standards and guidelines

Protection Criteria	Source
Data Encryption	ISO 27002, OWASP, ETSI
Communication and Connectivity Protection	IIC, ISO 27002, ETSI
Software/Firmware Security	ISO 27002, OWASP, ETSI
Hardware-based Security Controls	CSA
Access Control	ISO 27002, OWASP, IIC, CSA, ETSI
Cryptographic Techniques	IIC, ISO 27002
Physical and Environmental Security	ISO 27002, OWASP, CSAs
Monitoring and Analysis	ISO 27002, OWASP, IIC, CSA, ETSI

• Talk abouto iso, owasp what they are and short description

Defining protection levels based on security functionalities

Protection	Security Functionality	P5	P4	P3	P2
Uriteria	Ensemption of data between output				
	Encryption of data between system components	x	x	x	x
D (Strong encryption mechanism	x	x	x	
Data	Credentials should not be exposed in the network	x	x	x	
Encryption	End-to-end encryption	x	x		
	Should not use custom encryption algorithms	x	x		
	Sensitive stored data should be encrypted	х	х		
Communication	Have a minimal number of network ports open	х	x	х	
and	Devices should not be accessible from the Internet	x	x	х	
Connectivity	Only authorized components can join the network	х	х	х	
Protection	Use only standard communication protocol	х	х		
	Updatability of device firmware	х	х		
Software	Updatability of the operating system	х	х		
/Firmware	Automatic updates available	х	х		
Security	Encryption of update files	х	х		
	Signing update files before installing	х	x		
Hardware-	Using Trusted Platform Modules (TPM)	х	х		
based	Use of Memory Protection Units (MPUs)	х	x		
Security	Incorporate Physically Unclonable Functions (PUFs)	х	x		
Controls	Use of Cryptographic Modules	х	x		
	Disable remote access functionality	х			
Access Control	Only authorized devices can join the network	x	x	x	
	Default and weak passwords should not be used	x	х	x	
	Secure bootstrapping	х	х		
	Secure key generation	х	x		
Cryptography	Secure key storage	х	х		
Techniques	Secure key distribution	х	х	x	
	Secure key rotation	х	x		
	Message integrity	х	x	x	
	Tamper resistance	х	х		
Physical and	Minimal physical ports available	х	x	x	
Environmental	Physical security of connections	х	x	x	
Protection	Ability to disable external ports and only minimal-				
	ports enabled	x	x		
	Only authorized physical access	x	x	x	
Monitoring	Monitoring system components	х	х		
and	Analysis of monitored data	х	х		
Analysis	Act on analyzed data	х			

- Enycryption of data between components
- Strong encryption mechanism
- Credentials should not be exposed in the nw
- End-to-end encryption
 - Should not use cunsom encryption mechanism
 - Stored data should be encrypted

IoTSF also propose checklist based approach in their compliance framework

We evaluate security class for control signals component typically used for demand control in household

Applying the security class methodology on: Scenario I: Centralized Control Scenario II: Edge control

Scenario I: Centralized Control

Scenario I: Centralized Control has Exposure E3

P1	E4	E4	E5	E5	E5
P2	E3	E4	E4	E5	E5
P3	E2	E3	E3	E4	E4
P4	E1	E1	E2	E2	E3
P5	E1	E1	E1	$\mathrm{E1}$	E2
Protection /	C1	C2	C3	C4	C5
Connectivity					

Scenario I: Centralized Control has Exposure E3

P1	E4	E4	E5	E5	E5
P2	E3	E4	E4	E5	E5
P3	E2	E3	E3	E4	E4
P4	E1	E1	E2	E2	E3
P5	E1	E1	E1	E1	E2
Protection/	C1	C2	C3	C4	C5
Connectivity					

Data encryption, communication and connectivity protection, access control and monitoring and analysis are relevant protection criteria for this component

Data encryption, communication and connectivity protection, access control and monitoring and analysis are relevant protection criteria for this component

Protection	Security Functionality	D5	P4	РЗ	P 2
Criteria	Security Functionality	1.0	1 4	1.0	1 4
	Encryption of data between system components	х	х	х	х
	Strong encryption mechanism	х	x	х	
Data	Credentials should not be exposed in the network	x	x	х	
Encryption	End-to-end encryption	x	x		
	Should not use custom encryption algorithms	x	x		
	Sensitive stored data should be encrypted	x	x		
Communication	Have a minimal number of network ports open	х	х	х	
and	Devices should not be accessible from the Internet		x	х	
Connectivity	Only authorized components can join the network		x	х	
Protection	Use only standard communication protocol		x		
	Disable remote access functionality	х			
Access Control	Only authorized devices can join the network	х	x	х	
	Default and weak passwords should not be used	x	x	х	
Monitoring	Monitoring system components		х		
and	Analysis of monitored data		x		
Analysis	Act on analysed data	х			

- Disable remote access functionality
- Only authorized devices can join the network
- The APIs calls should be authenticated and authorized
- Default and weak passwords should not be used

Scenario I: Centralized Control

Criteria for Security Classification of Smart Home Energy Management Systems

Conclusion and Discussion

- Security classification for Smart Home
- Appropriate security functionalities for
 - Scenario I -> class D
 - Scenario II-> class B, single device leads to class A
- Security Classification Method provides to end users
 - transparency and
 - security awareness
- Current Work
 - Aggregation mechanism to calculate overall class for the system
 - Assurance mechanism to validate the expert judgement

Thank you for your attention

manish.shrestha@esmartsystems.com

Questions?

Compare other method or related work