

Project no: 269317

nSHIELD

new embedded Systems arcHItecturE for multi-Layer Dependable solutions

Instrument type: Collaborative Project, JTI-CP-ARTEMIS

Priority name: Embedded Systems

D5.2: Preliminary SPD Middleware and Overlay Technologies Prototype

Due date of deliverable: M18 – 2013.02.28

Actual submission date: M22 – 2013.06.30

Start date of project: 01/09/2011 Duration: 36 months

Organisation name of lead contractor for this deliverable:

Selex Electronic Systems, SES

 Revision [Final]

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2012)
Dissemination Level

PU Public
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services) X
CO Confidential, only for members of the consortium (including the Commission Services)

Page ii Final

Document Authors and Approvals
Authors

Date Signature
Name Company

Andrea Morgagni SES
Andrea Fiaschetti UNIROMA1
Balázs Berkes S-LAB
Nikos Pappas HAI
Kostas Rantos TUC
Kostas Fysarakis TUC
Alexandros Papanikolaou TUC
Dimitris Geneiatakis TUC
Harry Manifavas TUC
Silvano Mignanti UNIROMA1
Andrea Lanna UNIROMA1
Gaetano Scarano UNIROMA1
Roberto Cusani UNIROMA1
Martina Panfili UNIROMA1
Vincenzo Suraci UNIROMA1
Francesco Delli Priscoli UNIROMA1
Panagiotis Soufrilas ATHENA

Reviewed by
Name Company

Elisabetta Campaiola SES
Approved by

Name Company
Cecilia Coveri SES

Final Page iii

Applicable Documents
ID Document Description
AD1 TA nSHIELD Technical Annex
AD2
AD3
AD4
AD5
AD6

Modification History
Issue Date Description
Draft A 07/01/2013 First ToC emission
Draft B 10/05/2013 First inputs
Final 30/06/2013 All

Page iv Final

Executive Summary

This document includes the preliminary Middleware & Overlay prototypes for the nSHIELD project and
represents the main output of the first development phase. As declared in the Technical Annex, these
prototypes are heterogeneous in shape and purpose, and their common objective is to provide the
Embedded System and Software domains with enriched technologies that hopefully could be integrated
into a common platform towards a demonstrator.

The document’s structure (for the available prototypes) is similar to D5.3, and in particular:

1. Introduction: a brief introduction to the document contents

2. Semantic technologies prototypes

3. Core serviced at Middleware level prototypes

4. SHIELD Policy Based Management prototypes

5. Overlay prototypes

6. Brief conclusions

7. References

Final Page v

Contents

 Introduction ... 11 1

 Semantic Technologies Prototypes .. 12 2

 OWL/ER Diagrams of the SHIELD semantic model 12 2.1

 Ontology for Intrusion Detection System ... 16 2.2

 Core Services at Middleware Level Prototypes 17 3

 Protocol for Secure Discovery ... 17 3.1

 Test 17 3.1.1

 Monitoring, filtering and intrusion detection module 20 3.2

 Module implementation ..20 3.2.1

 Adaptation of legacy systems ... 21 3.3

 Service Location Protocol ...21 3.3.1

 Middleware Protection profile .. 24 3.4

 SHIELD policy based access control .. 25 4

 SHIELD policy based access control architecture 25 4.1

 Description ..25 4.1.1

 Policy Definition .. 27 4.2

 Policy examples ..27 4.2.1

 Overlay Prototypes ... 31 5

 Security Agent Implementation ... 31 5.1

 Coloured Petri Nets (CPN) composition algorithms 32 5.2

 CPN tools model ...32 5.2.1

 Conclusions ... 43 6

 References ... 44 7

Page vi Final

Figures

Figure 2-1: SHIELD OWL .. 12

Figure 2-2: SHIELD XML ... 14

Figure 2-3: Domain Dependent Library E-R .. 15

Figure 2-4: OWL for IDS .. 16

Figure 3-1: Service Registration test. .. 17

Figure 3-2: Secure Service Registration test .. 18

Figure 3-3: traditional Service Request test .. 18

Figure 3-4: Secure Service Request test .. 19

Figure 4-1. Policy-based architecture.. 25

Figure 5-1: Security Agent Bundle structure ... 31

Figure 5-2: Decision Maker Engine Bundle structure.. 31

Figure 5-3: nSHIELD CPN model in the initial marking... 32

Figure 5-4: The definition of the colour sets in the nSHIELD model ... 33

Figure 5-5: The SPD functionality sub-module ... 33

Figure 5-6: the variables .. 34

Figure 5-7: the functions .. 35

Figure 5-8: Initial Marking of the system ... 36

Figure 5-9: initial marking of identification sub-module ... 36

Figure 5-10: initial marking of authentication sub-module .. 37

Figure 5-11: Marking M1 reached when t occurs in M0 ... 37

Figure 5-12: Marking M1 in the sub-modules .. 38

Figure 5-13: Marking m2 in the authentication sub-module ... 38

Figure 5-14: Marking m3 in the authentication sub-module ... 39

Figure 5-15: the marking Mf in the system page ... 40

Figure 5-16: The Coupling relation sub-module .. 40

Figure 5-17: the marking Mf1 in the coupling relation sub-module .. 41

Figure 5-18: The Marking MF1 IN THE system Page .. 41

Final Page vii

Figure 5-19: The marking MFn in the AUTHentication SUB-MODULE ..42

Figure 5-20: The marking MFf in the System page ..42

Page viii Final

Tables

Table 1-1: Prototype List ... 11

Table 3-1: Parts of the module “Monitoring, filtering and intrusion detection” 20

Final Page ix

Glossary

Please refer to the Glossary document, which is common for all the deliverables in nSHIELD.

Page x Final

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 11 of 44

 Introduction 1
The SHIELD Middleware provides a set of innovative technologies to implement security functionalities as
well as composition for SPD purposes. In this document the following prototypes are presented:

Table 1-1: Prototype List

Partner Section of D5.2 Prototype Type

UNIROMA1 2.1
OWL/ER Diagrams of
the SHIELD semantic

model
OWL file / Diagrams

MGEP 2.2 Ontology for Intrusion
Detection System OWL file

UNIROMA1 3.1 Protocol for Secure
Discovery

Java Code of the OSGI
Bundle

SLAB 3.2 Intrusion Detection
Bundle

Java Code of the OSGI
Bundle

ATHENA 3.3 Adaptation of Legacy
Systems

Java Code of the OSGI
Bundle

SES 3.4 Middleware protection
profile (preliminary) PP Document

TUC 4.1

Policy Based Access
Control

Module implementation
(preliminary)

Java Code of the OSGI
bundle

TUC 4.2 Policy Definition
Example Policy code

UNIROMA1 5.1
Security Agent
Implementation

(preliminary)

Java Code of the OSGI
Bundle

UNIROMA1 5.2 Protection profile

UNIROMA1 5.2 (Composition
Algorithms) CPN Tool Simulations Simulations and source

code

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 12 of 44 Final

 Semantic Technologies Prototypes 2
 OWL/ER Diagrams of the SHIELD semantic model 2.1

The OWL and E-R Diagrams for the SHIELD semantic models are reported below and attached in the zip
file UNIROMA1_SHIELD_Semantic_Models.zip

Figure 2-1: SHIELD OWL

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 13 of 44

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >
 <!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <!ENTITY protege "http://protege.stanford.edu/plugins/owl/protege#" >
 <!ENTITY xsp "http://www.owl-ontologies.com/2005/08/07/xsp.owl#" >
 <!ENTITY TCP "http://www.owl-ontologies.com/Ontology1300273978.owl#TCP/" >
]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1300273978.owl#"
 xml:base="http://www.owl-ontologies.com/Ontology1300273978.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:TCP="http://www.owl-ontologies.com/Ontology1300273978.owl#TCP/">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://protege.stanford.edu/plugins/owl/protege"/>
 </owl:Ontology>
 <owl:Class rdf:ID="_Access">
 <rdfs:subClassOf rdf:resource="#AtomicSPDFunctionality"/>
 </owl:Class>
 <owl:Class rdf:ID="_Alarm">
 <rdfs:subClassOf rdf:resource="#Class_B"/>
 </owl:Class>
 <owl:Class rdf:ID="_Authentication">
 <rdfs:subClassOf rdf:resource="#Class_A"/>
 </owl:Class>
 <owl:Class rdf:ID="_Complexity">
 <rdfs:subClassOf rdf:resource="#AtomicSPDFunctionality"/>
 </owl:Class>
 <owl:Class rdf:ID="_Confidentiality">
 <rdfs:subClassOf rdf:resource="#Class_B"/>
 </owl:Class>
 <owl:Class rdf:ID="_Continuity">
 <rdfs:subClassOf rdf:resource="#Class_A"/>
 </owl:Class>
 <owl:Class rdf:ID="_Indemnification">
 <rdfs:subClassOf rdf:resource="#Class_A"/>
 </owl:Class>
 <owl:Class rdf:ID="_Integrity">
 <rdfs:subClassOf rdf:resource="#Class_B"/>
 </owl:Class>
 <owl:Class rdf:ID="_Non-Repudiation">
 <rdfs:subClassOf rdf:resource="#Class_B"/>
 </owl:Class>
 <owl:Class rdf:ID="_Privacy">
 <rdfs:subClassOf rdf:resource="#Class_B"/>
 </owl:Class>
 <owl:Class rdf:ID="_Resilience">
 <rdfs:subClassOf rdf:resource="#Class_A"/>

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 14 of 44 Final

 </owl:Class>
 <owl:Class rdf:ID="_Subjugation">
 <rdfs:subClassOf rdf:resource="#Class_A"/>
 </owl:Class>
 <owl:Class rdf:ID="_Trust">
 <rdfs:subClassOf rdf:resource="#AtomicSPDFunctionality"/>
 </owl:Class>
 <owl:Class rdf:ID="Access">
 <rdfs:subClassOf rdf:resource="#System"/>
 </owl:Class>
 <owl:Class rdf:ID="Anomalies">
 <rdfs:subClassOf rdf:resource="#Limitations"/>
 </owl:Class>
 <owl:Class rdf:ID="AtomicSPDFunctionality">
 <rdfs:subClassOf rdf:resource="#SPDFunctionality"/>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Class_A">
 <rdfs:subClassOf rdf:resource="#Control"/>
 </owl:Class>
 <owl:Class rdf:ID="Class_B">
 <rdfs:subClassOf rdf:resource="#Control"/>
 </owl:Class>
 <owl:Class rdf:ID="Complexity">
 <rdfs:subClassOf rdf:resource="#System"/>
 </owl:Class>
 <owl:Class rdf:ID="Concerns">
 <rdfs:subClassOf rdf:resource="#Limitations"/>
 </owl:Class>
 <owl:Class rdf:ID="Control"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="Exposures">
 <rdfs:subClassOf rdf:resource="#Limitations"/>
 </owl:Class>
 <owl:Class rdf:ID="Trust">
 <rdfs:subClassOf rdf:resource="#System"/>
 </owl:Class>
 <owl:Class rdf:ID="Vulnerabilities">
 <rdfs:subClassOf rdf:resource="#Limitations"/>
 </owl:Class>
 <owl:Class rdf:ID="Weaknesses">
 <rdfs:subClassOf rdf:resource="#Limitations"/>
 </owl:Class>
 <rdf:Description
</rdf:RDF>

Figure 2-2: SHIELD XML

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 15 of 44

Figure 2-3: Domain Dependent Library E-R

Authentica
tion

Indemnific
ation

Resilience

Subjugatio
n

Continuity

Non-
Repudiatio

n

Confidenti
ality

Privacy

Integrity

Alarm

ControlImplement

SPD
Functionality includesexcludes

Complexity Access Trust

Vulnerabilities

Weaknesses

Concerns

Exposures

Anomalies

hasLimitation
n

n

n

n

n

n

1

1

ID

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 16 of 44 Final

 Ontology for Intrusion Detection System 2.2
The Ontology for Intrusion Detection System is included in the zip file MGEP_SHIELD_IDS_Ontology.zip

The source code is not reported due to the excessive length (about 100 pages).

Figure 2-4: OWL for IDS

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 17 of 44

 Core Services at Middleware Level Prototypes 3
 Protocol for Secure Discovery 3.1

The Prototype of the SHIELD Secure Service Discovery in included in the zip file
UNIROMA1_SHIELD_Secure_Service_Discovery.zip.

While the description of the OSGI bundle is reported in D5.3, in the following some practical results about
the prototype tests are presented.

 Test 3.1.1

To test and verify the Secure Service Discovery implemented, we have implemented an open source PKI
called OpenCA. Once done it, in particular once we have created a Certification Authority and a
Registration Authority, we set all system generating the two key.

From the point of view of the SLP, we have used a tool called SLP Daemon. This latter already
implements a user interface to monitor the exchange for of messages and the other activities. To try the
Secure Service Discovery we have implemented a new bundle java.

 Service Registration and Secure Service Registration 3.1.1.1

The first test consists in a request from a UA to a DA using the traditional SLP Service Registration
message including the digital signature. The test included the sending and the verifying of the signature
and the message. In the screenshot in Figure 3-1, we can see the log of the registration of service
“service:http//www.nosecure.it”.

Figure 3-1: Service Registration test.

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 18 of 44 Final

The follow figure (Figure 3-2) shows how happens when a request arrives using a Secure Service
Discovery. In this case we have required registering a service called “service:http//www.secure.it”. Note
the attribute “authentication=true”. It identifies the necessary of protected communication.

Figure 3-2: Secure Service Registration test

 Service Request and Secure Service Request 3.1.1.2

Figure 3-3: traditional Service Request test

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 19 of 44

In response at Service Registration and at Secure Service Registration messages, the DA reply through
the Service Replay and the Secure Service Replay, respectively,

If the registration was been in traditional or protected mode, the services visible are different. Using
traditional request, the UA could see only services for which do not require the authentication. The Figure
3-3 shows an example.

The follow screenshot shows, on the contrary, a request when the UA use protected messages. The UA
receives all information of whole system. The field ErrorCode of the Replay message indicates what error
happens (if one occurs).

Figure 3-4: Secure Service Request test

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 20 of 44 Final

 Monitoring, filtering and intrusion detection module 3.2
 Module implementation 3.2.1

 Filtering and Intrusion Detection Bundle 3.2.1.1

The latest version of the Filtering and Intrusion Detection Bundle is available at the SVN for WP5,
maintained by UNIROMA1, as well as in the attached SLAB_SHIELD_IDS.zip file.

The module implementation contains four major parts, from which the first two constitutes the necessary
functionality for the module; the latter two provides development and testing tools and examples:

Table 3-1: Parts of the module “Monitoring, filtering and intrusion detection”

Code part Description

CounterDoS DoS protection module (so/DLL/EXE) source with JNI wrapper for DLL

CounterDoSJ
Java wrapper class (with JNI interface to module)
Java classes for services and collection of services
OSGI Bundle Activator class for Filtering and Intrusion Detection Bundle

CounterDoSJDemo Java Demonstration class: a Bundle that utilizes DoS protection service

CounterDoSJTest Java test classes: verification test cases for main features of module

Please see README.TXT in respective code parts for description on compilation and usage.

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 21 of 44

 Adaptation of legacy systems 3.3
The source code of this prototype is included in the attached file ATHENA_SHIELD_Adaptation_
of_Legacy_Systems.zip.

 Service Location Protocol 3.3.1

For our deployment environmet we use the Knopflerfish framework and its plugin for Eclipse IDE.The
Knopflerfish Eclipse Plug-in is a tool for launching and debugging the Knopflerfish OSGi distribution. The
goal with the plug-in is to simply the use of Knopflerfish for developers using Eclipse as their IDE.

The basic configurations for our bundles is to use the R-OSGi,jslp-osgi ,R-OSGi SLP Service Discovery
services by importing there packages in our bundles.

• jslp-osgi-1.0.0.RC5.jar

• remote-1.0.0.RC4.jar

• service_discovery.slp-1.0.0.RC4.jar

Both the client (Legacy nodes) and Server sides (nSHIELD-GW) have to import to their bundles the R-
OSGi service.The client side has to additonaly import to its bundles the jslp-osgi , R-OSGi SLP Service
Discovery services in order to access the remote dervices provided by the nSHIELD-GW.

The ad-hoc software of the server side are bundles that register to R-OSGi the nSHIELD services in order
to make them visible outside.The ad-hoc software of the client side are bundles that connect to a GW and
get the service.

For our example to show the implementation of such scenario we created a very simple service Nservice
(Nshield service) that runs in server side and registers itself to R-OSGi.On the other hand the client side
runs a LeNoReSer (Legacy Node Service) that connects remotely to the server and gets access to the
service.

 Registering a service for remote access (service provider side) 3.3.1.1

package Nservice;

import java.util.Dictionary;
import java.util.HashMap;
import java.util.Map;
import java.util.Hashtable;
import java.util.Enumeration;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

import ch.ethz.iks.r_osgi.RemoteOSGiService;

public class Activator implements BundleActivator
{

 public void start(BundleContext bundleContext)
 {

 System.out.println("Hello started.");

 //Map properties = new HashMap(0);

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 22 of 44 Final

 Dictionary<String,Boolean> properties = new Hashtable();

 // this is the hint for R-OSGi that the service
 // ought to be made available for remote access

 properties.put(RemoteOSGiService.R_OSGi_REGISTRATION, Boolean.TRUE);
 bundleContext.registerService(Nservice.class.getName(), new Nservice(), properties);
 }

 public void stop(BundleContext bundleContext)
 {
 System.out.println("Hello stopped.");
 }
}

Now, other R-OSGi enabled peers can connect to the peer and get access to the service.

 Connect to a remote peer and get the service (service consumer side) 3.3.1.2

package LeNoReSer;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.BundleException;
import org.osgi.framework.ServiceReference;

import Nservice.Nservice;

import ch.ethz.iks.r_osgi.RemoteOSGiService;
import ch.ethz.iks.r_osgi.RemoteServiceReference;
import ch.ethz.iks.r_osgi.URI;

public class Activator implements BundleActivator {
 /* (non-Javadoc)
 * @see org.osgi.framework.BundleActivator#start(org.osgi.framework.BundleContext)
 */
 public void start(BundleContext context) throws Exception {

 // get the RemoteOSGiService
 final ServiceReference sref =
context.getServiceReference(RemoteOSGiService.class.getName());

 if (sref == null) {
 throw new BundleException("No R-OSGi found");
 }

 RemoteOSGiService remote = (RemoteOSGiService) context.getService(sref);

 // connect
 remote.connect(new URI("r-osgi://150.140.xxx.xxx:9278"));
 final RemoteServiceReference[] srefs = remote.getRemoteServiceReferences(new URI("r-
osgi://150.140.xxx.xxx:9278"), Nservice.class.getName(), null);

Nservice hi = (Nservice) remote.getRemoteService(srefs[0]);
 hi.Echo();*/
 }

 /* (non-Javadoc)
 * @see org.osgi.framework.BundleActivator#stop(org.osgi.framework.BundleContext)
 */

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 23 of 44

 public void stop(BundleContext context) throws Exception {
 }
}
With the call of the getRemoteService method, a local proxy for the remote service is created. The service
proxy is registered with the local service registry and can also be retrieved like a normal OSGi service. To
get rid of a remote service, you can call ungetRemoteService.

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 24 of 44 Final

 Middleware Protection profile 3.4
The middleware protection profile is attached in the file SES_SHIELD_Middleware_PP_v1.0.zip

A protection profile (PP) is a Common Criteria (CC) term for defining an implementation-independent set
of security requirements and objectives for a category of products, which meet similar consumer needs for
IT security. Examples are PP for application-level firewall and intrusion detection system. PP answers the
question of "what I want or need" from the point of view of various parties. It could be written by a user
group to specify their IT security needs. It could also be used as a guideline to assist them in procuring
the right product or systems that suits best in their environment. Vendors who wish to address their
customers’ requirements formally could also write PP. In this case, the vendors would work closely with
their key customers to understand their IT security requirements to be translated into a PP. A government
can translate specific security requirements through a PP. This usually is to address the requirements for
a class of security products like firewalls and to set a standard for the particular product type.

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 25 of 44

 SHIELD policy based access control 4
 SHIELD policy based access control architecture 4.1

While a Policy Based Access Control description is reported in the following, the source code for some
implementations is included in the zip file TUC_SHIELD_Policy_Based_Access_Control.zip.

 Description 4.1.1

The SHIELD policy based access control architecture targets heterogeneous embedded systems and
features provisions for interoperability with existing standards, facilitating communication over diverse
networks. The proposed framework is DPWS-compliant, utilizing the relevant specifications and existing
work to provide message-level security and fine-grained security policy functionality while maintaining
interoperability with the standard. It consists of several components that run on different nodes of the
nShield architecture. These components are the Policy Enforcement Points (PEP), the Policy
Administration Point (PAP), the Policy Decision Points (PDP) and the Policy Information Point (PIP), the
interconnection of which can be seen in Figure 4-1.

Figure 4-1. Policy-based architecture

A node, depending on its capabilities and the available resources, might include one or more of these
functional components. The policy-based management prototypes utilize the technologies listed below.

I. Nano node
a) Role

i) DPWS Device hosting services and their operations.
ii) Policy Enforcement Point

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 26 of 44 Final

b) Underlying technologies
i) Operating system: Contiki
ii) Network: 802.15.4/6LoWPAN
iii) DPWS platform: uDPWS stack (C)

c) Prototype platforms
i) Zolertia Z1 motes

(1) http://www.zolertia.com/ti
II. Micro node

a) Role
i) DPWS Device hosting services and their operations.
ii) Policy Enforcement Point
iii) Bridge between 802.15.4/6LoWPAN and IPv4/IPv6 networks (optional)

b) Underlying technologies
i) Operating system: A lightweight Linux distribution
ii) Network: 802.15.4/6LoWPAN (optional), IPv4/IPv6
iii) Bridge between 802.15.4/6LoWPAN and IPv4/IPv6 networks (optional)
iv) DPWS platform: WS4D-gSOAP (C)

c) Prototype platforms
i) Beaglebone

(1) http://beagleboard.org/bone
III. Power node

a) Role
i) DPWS peer (device & client)
ii) Responsible for interfacing with OSGi (Knopflerfish) framework.
iii) Bridge between 802.15.4/6LoWPAN and IPv4/IPv6 networks
iv) Policy Administration Point
v) Policy Information Point – Policy Administration Point

b) Underlying technologies
i) Operating system: A lightweight Linux distribution with desktop environment
ii) Network: 802.15.4/6LoWPAN, IPv4/IPv6
iii) DPWS platform: WS4D-JMEDS (Java), WS4D.Comoros (DPWS-OSGi interface)
iv) OSGi functionality: Knopflerfish framework

c) Prototype platforms
i) Beagleboard xM

(1) http://beagleboard.org/hardware-xm
ii) Beagleboard

(1) http://beagleboard.org/hardware

http://www.zolertia.com/ti
http://beagleboard.org/bone
http://beagleboard.org/hardware-xm
http://beagleboard.org/hardware

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 27 of 44

 Policy Definition 4.2
The following example on policy definition and implementation are taken from D5.3

 Policy examples 4.2.1

 Policy classification and identification by a hierarchical point of view 4.2.1.1

The following examples are taken from real life situations from different corporations where the operators
applied these policies without a systematic and structured approach. Thus, the values for each
classification criterion were derived manually, since none of these policies were systematically refined.
For each example, the level of abstraction is given and possible values for each of the above classification
criteria are indicated. Examples 1 and 2 are used to show the components of a policy definition, whereas
example 3 illustrates the splitting of a “composite” policy into separate policies after which the
transformation and refinement process can be applied.

Example 1:

”The exchange of data between the company’s headquarters and its remote production sites is to be done
between 18:00 and 22:00 hours in encrypted mode.” The degree of detail in this policy is very limited and
thus, we can only record it as a high level policy of the following format with several dimensions to be
further specified:

• level of abstraction: high level policy

• classification criteria:

o life time: long-term (no end specified)

o trigger mode: periodic (daily between 18:00 and 22:00 hours)

o activity: enforcement (no reaction is specified if the time interval or the security level are
not obeyed – a separate policy for this purpose would be necessary)

o mode: obligation

o geographical criterion: corporate headquarters and production sites

o organizational criterion: unspecified

o service criterion: unspecified

o type of targets: unspecified

o functionality of targets: unspecified

o management scenario: enterprise management

o management functionality within a management scenario: security management for
enterprise management

Analyzing and refining this policy further leads to a number of low level policies, depending on the way the
encryption is achieved. The following two policy descriptions illustrate this, the first enforcing the
encryption by activating either encryption modems or scramblers, the second by activating the encryption
mode for data transfer in the application software. This also shows that a policy can be applied in several
different ways without changing the management goal.

• level of abstraction: low level policy

This is because the policy applies to MOs which, in this case, are abstractions of network devices,
i.e. modems or scramblers

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 28 of 44 Final

• classification criteria:
o life time: long-term (no end specified)

o trigger mode: periodic (daily between 18:00 and 22:00 hours)

o activity: enforcement

o mode: obligation

o geographical criterion: corporate headquarters and production sites

o organizational criterion: networking department

o service criterion: data transfer service

o type of targets: encrypting modems or scramblers

o functionality of targets: data transfer or encryption

o management scenario: network management

o management functionality within a management scenario: security management for
network management

• level of abstraction: low level policy

This is because the policy applies to MOs which, in this case, are abstractions of the application
software based on a client-server architecture e.g. distributed CAD or word processing
applications.

• classification criteria:

o life time: long-term (no end specified)

o trigger mode: periodic (daily between 18:00 and 22:00 hours)

o activity: enforcement

o mode: obligation

o geographical criterion: corporate headquarters and production sites

o organizational criterion: systems department

o service criterion: application software installation and software maintenance

o type of targets: general distributed applications based on a client-server architecture,
which therefor transfer data across the network.

o functionality of targets: applications with encryption

o management scenario: application management

o management functionality within a management scenario: security management for
systems and application management

Looking back at the policy hierarchy introduced in Section 4.2.1.2.3, it can be noted that the above policy
was refined to neither different low-level MO-based policies, without specifying task oriented policies nor
functional policies. This is because there were no management tools or management functions which
could have been used to enforce this policy at a higher level. However, if these had been available, a task
oriented policy could have specified the way to use a management tool for the configuration of modems or
scramblers, or a functional policy could have defined the manner in which to use a certain encryption
management function.

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 29 of 44

Example 2:

”If workstation access is protected by a password mechanism, passwords must be at least 6 characters
long, if they combine upper-case and lower-case letters, or at least 8 characters long, if in monocase. No
other password structure is allowed.”

• level of abstraction: managed-object based policy

This is a low-level or managed-object based policy, as it specifies the characteristics of the
specific password mechanism, i.e. a specific implementation of e.g. an authentication
management function. Provided a Managed Object for the password mechanism exists, the policy
can already be used to set the attributes’ values. It is not a functional policy, because the
attributes and not the functionality of the password mechanism are affected by the policy.

• classification criteria:

o life time: long-term

o trigger mode: asynchronously triggered (e.g. by execution of the UNIX command passwd)

o activity: monitoring, reacting (to a wrong password structure), and enforcing (setting the
password mechanism’s characteristics)

o mode: obligation

o geographical criterion: global

o organizational criterion: corporate

o service criterion: data processing (authentication)

o type of targets: workstations

o functionality of targets: authentication/password mechanisms

o management scenario: systems management

o management functionality within a management scenario: security management within
systems management

Example 3:

”Travel agencies are to be connected to the central booking office through leased lines. In case of failure,
dial-in lines are to be provided, and the agencies must authenticate themselves with their login-IDs and
login-keys.”

This policy obviously mixes aspects of several levels of abstraction, the level of corporate policies, the
level of functional policies, and the level of MO-based policies. The policy should be split into separate
policies of specific levels of abstraction e.g.: (3a, corporate) ”the network operations center at the central
booking office is to provide and maintain leased lines to the agencies, and modems for dial-in
connections”, (3b, functional) ”in case of failure of a leased line, modems are to be activated for dial-in
connections”, (3c, functional) ”dial-in connections are to be protected by an authentication procedure.” and
(3d, MO-based) ”the authentication mechanism MO must guarantee the use of non-empty login-ids and
login-keys”. For the sake of brevity we will not discuss the classification of these policies here further. Yet,
these examples clearly show that this classification allows us to find commonalities among policies and
that this form of classification is a necessary first step towards finding the components of a formal policy
definition. The transformation process will only be able to refine some components/attributes further,
depending on the management information available to the process.

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 30 of 44 Final

 XACML Policy implementation example 4.2.1.2

<?xml version="1.0" encoding="UTF-8"?>
<Policy
 xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os
 access_control-xacml-2.0-policy-schema-os.xsd"
 PolicyId="urn:oasis:names:tc:xacml:2.0:conformance-test:IIA1:policy"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-
overrides">
 <Target/>
 <Rule
 RuleId="urn:oasis:names:tc:xacml:2.0:conformance-test:IIA1:rule"
 Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">nshield_user</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">Freight_ACDevice</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">SetTemperature</AttributeValue>
 <ActionAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
</Policy>

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 31 of 44

 Overlay Prototypes 5
 Security Agent Implementation 5.1

Apart from the definition of proper control algorithms, a significant effort has been put to design and
implement the structure of the Bundle that implement the behaviour of the Security Agent as defined in
the Architecture document. The basic architecture is reported in the following, while the bundle is included
in the zip file UNIROMA1_SHIELD_Security_Agent.zip.

Figure 5-1: Security Agent Bundle structure

Figure 5-2: Decision Maker Engine Bundle structure

Discovery
Bundles

Composition Bundle

Semantic
DB

SPD Security Agent

Context
Engine

(EX Semantic Knowledge)

semanticComposition(…)

setDesiredSPDLevel()

configureContext ()

serviceDiscovery(…)

OSGi
Framework

Start/Stop/Update…

Enforcement
Engine

Decision
Maker Engine

(see ZOOM)

Monitoring
Engine

Other SPD
Security
Agents

setDesiredSPDLevel()

getCommands()
(EX getPolicy())
setCommand()

startService(…)
(ex runBundle(…))

getMeasures()getContext()

Security Agent
getActions()

Decision Maker Engine

Decision Core

Metrics
Evaluator

System
Modeller

(EX System/Context
Modeller)

Policy Decision
Point

Knowledge
Repository

getMetrics()
(EX Metric())

getModels()
(EX Context())

getPolicies()
(EX Policy())

getMetricsInformation()
(EX getMetric())

getModelsInformation()
(EX getContext())

getPoliciesInformation()
(EX getPolicy())

getCommands()
(EX getPolicy())
setCommand() getContext()

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 32 of 44 Final

 Coloured Petri Nets (CPN) composition algorithms 5.2
The source code of the prototype described in the following is available in the attachment
UNIROMA1_SHIELD_Petri_Net_Models.zip

 CPN tools model 5.2.1

The model of nSHIELD system is based on Coloured Petri Net formalism as described in the nSHIELD
Deliverable 5.3: Preliminary SPD middleware & Overlay technologies prototype Report. The Coloured
Petri Net, that represents the system, is edited and simulated with the CPN Tools ([1], [2]) available on
line at http://cpntools.org/.

The model of nSHIELD system has a single page Functionalities. This page has N+M transitions which all
are substitution transitions and represent respectively N SPD Functionalities and M type of
relation/constraint between SPD functionalities. For the sake of simplicity, in this document, we consider
only two SPD functionalities and only two types of relation (N = M = 2). In particular, we consider the
following SDP functionalities: authentication and identification, and the following types of relation: coupling
and mutual exclusion.

A CPN model is usually created as a graphical drawing; in the Figure 5-3 the basic CPN model of the
nSHIELD system is shown.

Figure 5-3: nSHIELD CPN model in the initial marking

The CPN model, in Figure 5-3, contains: i) nine places (drawn as ellipses), ii) four transitions (drawn as
rectangular boxes), iii) a number of directed arcs connecting places and transitions, and iv) textual
inscriptions next to the places, transitions, and arcs. CPN tools are based on CPN ML programming
language an extension of the Standard ML language. Places and transitions (the nodes) with the directed
arcs constitute the net structure. Note that an arc is always a connection place-transition or transition-
place ([2]).

As described in nSHIELD Deliverable D5.3, the system state is represented by the places. In particular
each place can be marked with one or more tokens, and each token can carry a data value called token
colour. The number of tokens in each place, together with the associated token colours represents the
state of the system and is called the marking of the CPN model. Otherwise the place marking indicates
the tokens on a precise place. Then in our model the state of each SPD functionality nSHIELD system is
modelled by the place Desired (level of SPD desired), one place Implemented for each functionality and

http://cpntools.org/

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 33 of 44

one place Warning for each type of relation/constraint. The tokens on each place can be assumed in a
determinate set called colour set of the place. By convention the colour set is written near the place. The
colour set of all the places in our model are defined in Figure 5-4.

Figure 5-4: The definition of the colour sets in the nSHIELD model

Considering, for example, the three places Desired, with the same colour set, SPD, defined as a union of
colour set SPDvalue (a limited set of integers) and colour set SPDname (a limited set of strings formed
by, at least two - up to five, alphabetic characters). In these places the token can be assume either an
integer value in the interval [0,100], that represent the desired SPD level or a string with at least two - up
to five, alphabetic characters that indicates a particular functionality implementation.

The places Functionality Implemented have the colour set SPDfnc, defined to be the set of Cartesian
product of the values in SPDvalue and SPDname colour sets (note that each component is identified by a
unique label so that each field is position-independent). The SPDfnc colour set is used to identify the
functionality implementation, with its name and the corresponding SPD value (depending by the metric).
The remaining places have the colour set BOOL, defined to be the set of Boolean values ({true,
false}) bool.

Figure 5-5: The SPD functionality sub-module

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 34 of 44 Final

In Figure 5-3, next to places desired, AUTH implementation and ID implementation, it is possible to see,
respectively, the inscriptions: 1`value(2), {v=0,n="null"} and {v=0,n="null"}, that specifies the
initial marking of these places. This initial marking M0 indicates that that the initial state of the system is: i)
no functionality enabled and ii) desired SPD value equal to 2.

As explained previously our CPN model is organised as a set of hierarchically related modules. The main
feature of hierarchical structure is the association of a sub-module with a substitution transition (in CPN
Tools, substitution transitions can be recognised by the double boxes and with a rectangular sub-module
tag). Intuitively, the sub-module, extended in a new page, presents a more detailed view of the behaviour
represented by the substitution transition.

The Figure 5-5 shows the SPD functionality module. The structure of this module is the same for all SDP
functionalities, while the token colours in the several places could be different.

The SPD functionality sub-module contains several transitions and place. For the sake of simplicity we will
limit the description to the relevant nodes. The place desired is an input port, the places implemented; ck
and warning are three output ports (in CPN Tools, port places can be recognised by the rectangular port-
type tags). These places constitute the interface through which the SPD Functionality module exchanges
tokens with its environment (i.e., the other modules). On the other hand, in the main page, the input/output
places of substitution transitions, called input/output sockets, constitute the interface of the substitution
transition. To complete the hierarchical model, each input/output port must be associated to the related
input/output socket (the port assignment, which maps the port places of the sub-module to the socket
places of the substitution transition). The remaining places are internal places, which are only relevant to
the SPD functionality module itself; in particular the place feasible represents the list of available
functionality implementations.

The transitions represent the events, when a transition occurs, it removes tokens from its input places and
it adds tokens to its output places. The tokens colours involved in the transition are determined by the arc
expressions. This inscription is written in the CPN ML programming language and is built from typed
variables, constants, operators, and functions ([2]). The Figure 5-6 and Figure 5-7 show the variables and
functions defined in our CPN model.

Figure 5-6: the variables

The arc expression are used to define the input-output behaviour, furthermore the arc expressions on the
input arcs, together with the tokens on the input places, determine whether the transition is enabled, For
an enabled transition it must be possible to find a binding of the variables involved in the transition. When
a transition occurs with a given binding, i) it consumes, on each input place, the multi-set of token colours,
corresponding to the evaluation of the related input arc expression, and analogously ii) it produces on
each output place, the multi-set of token colours, corresponding to the evaluation of output arc
expression.

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 35 of 44

Figure 5-7: the functions

In the following there are brief descriptions of relevant transitions in SDP Functionality module:

• t1 removes the desired value that is expressed as an SPDvalue (integer) from desired place and
adds it to the place dsr val;

• t2 removes the desired value that is expressed as a SPDname(string) from desired place and
adds it to the place dsr name;

• select by name:

o it removes the desired name (SPDname: string) from the place dsr name,

o it verifies if in the place feasible (that represents the available functionality
implementations) there is an implementation with name equal to desired name and value
greater than or equal to desired value (SPDvalue: integer) taken from place dsr val,

o if the previous point is satisfied then it adds the candidate functionality implementation to
the place nList, else no token is added;

• select by value adds, to nList place, the functionality implementation with the minimum value that
is greater than or equal to desired value. Note that this transition is enabled if one or more values
associated to the available functionality implementations (one or more record in SDPlist), from
place feasible, are greater than or equal to token colour on dsr val place;

• change: this transition change the functionality implementation by removing the token from place
implemented (the old implementation) and by adding in this place the token removed from place
nList (new implementation, previously selected);

• off_fnc removes an implementation record from feasible place or implemented place; this means
that the removed implementation of the functionality has become unavailable.

• new_fnc adds a new implementation record to feasible place; this means that a new
implementation of the functionality is now available.

For the sake of simplicity, we consider that the each functionality can be enabled by three different
implementations, each one with its own SPD value, as defined in the follow:

• AUTHENTICATION:

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 36 of 44 Final

o Password Authentication Protocol (PAP) with SPD value equal to two, thus, its associated
record is {v=2,n="PAP"};

o Extensible Authentication Protocol (EAP) with SPD value equal to three, thus, its
associated record is {v=3,n="EAP"};

o Challenge-Handshake Authentication Protocol (CHAP) with SPD value equal to eight,
thus, its associated record is {v=8,n="CHAP"};

• IDENTIFICATION:
o PIN with SPD value equal to two, thus, its associated record is {v=2,n="PIN"};
o Password with SPD value equal to five, thus, its associated record is {v=5,n="PSW"};
o Token with SPD value equal to eight, thus, its associated record is {v=8,n="TKN"};

As explained previously the initial state of the system is defined by initial marking M0, in Figure 5-8 -
Figure 5-10 are respectively shown the initial marking of the main page system and of the two sub-module
identification and authentication.

Figure 5-8: Initial Marking of the system

Figure 5-9: initial marking of identification sub-module

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 37 of 44

Figure 5-10: initial marking of authentication sub-module

The initial marking of place desired contains a single token with colour 2. This means that the variable des
must be bound to1, and since the arc, coming from Desired, is the only input arc of the transition t, then
this transition is enabled and the only possible binding is: des = 2. An occurrence of transition t, in the
main page, with this binding, removes the token with colour 2 from the input place desired and adds a
same token both to desired auth and desired ID, according to the result of evaluating the arc expression.
Figure 5-11 shows the CPN model in the new marking M1.

Figure 5-11: Marking M1 reached when t occurs in M0

Considering the marking M1 all the substitution transitions are concurrently enabled. The fragment of
interest in each sub-module is shown in Figure 5-12. In other words the place desired, in all subpages,
contains the token colour 2, thus the transition t1 are concurrently enabled in all sub-modules, with only
possible following binding: v1 = 2, v2 = 0. Note that the transition t2 is disabled because the token
colour in the place desired is not a string (SPDname colorset) but an integer (SPDvalue colorset).

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 38 of 44 Final

Figure 5-12: Marking M1 in the sub-modules

Considering, in the sub-module authentication, the occurrence of transition t1, with the binding previously
defined, then the new marking M2 is shown in Figure 5-13.

Figure 5-13: Marking m2 in the authentication sub-module

As shown in Figure 5-13, the transition select by value is enabled, in particular the expressions on the
arcs of the input and output are evaluated and the guard conditions (the inscriptions at the top right of the
transition) are met. In the follow, the guards are detailed:

• l<>[]: in the place feasible there is at least one implementation available,
• b is a Boolean value used to enable the transition only after a significant change, such as the

desired value,
• (ck(l,vd)) this function returns true if in the place feasible there is an implementation with the

associated SPD value greater than or equal to the desired one. In other words there is an
available implementation that satisfies the requirement on SPD value:

fun ck(l:SPDlist,e:SPDvalue)=

if l=[] then false

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 39 of 44

else if #v(hd(l))>=e then true

else ck(tl(l),e),

• ((#v(f1)<vd)orelse ck1(l,vd,#v(f1))) this condition is true if the SPD value
associated to the implemented functionality (in place implemented) is less than desired value or in
place feasible is available an implementation with the associated SPD value that is i) greater than
or equal to the desired one and ii) less than the value of implemented functionality.

Suppose that an event occurs and the transition select by value fires. The Figure 5-14 shows the binding
(the yellow box) and new marking M3 in the AUTH sub-module. It is important to note that the output value
is not shown; in fact this value is evaluated by the following function:

fun sel(vd:SPDvalue, l:SPDlist)=

if l=[] then{v=0,n=""} else

if #v(hd(l))>=vd then hd(l)

else sel(vd,tl(l));

In particular this function returns the record with the minimum value that is greater than or equal to the
desired one.

Figure 5-14: Marking m3 in the authentication sub-module

The Figure 5-15 shows the system state (marking Mf) after all transitions in both sub-modules are fired, in
particular, the transitions are change and on func in the sub-module AUTH, and t1, select by value,
change and on func, in the sub-module ID.

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 40 of 44 Final

Figure 5-15: the marking Mf in the system page

The Coupling Relation sub-module (Figure 5-16), corresponding to the substitution transition Coupling in
the main page shown in Figure 5-8. In this sub-module we have three input port: the place warning, the
place ck and the place ck1; an output port, the place desired. The relevant internal places are ID and
AUTH; these places represent the list of the functionalities that requires a particular coupling. For
example, as shown in Figure 5-16 (initial marking of ID) we suppose that the PIN implementation of ID
functionality requires the EAP implementation. In particular, the Figure 5-16 shows the marking Mf in the
Coupling Relation sub-module; it is important to note that the transition Coupling ID is enabled, meaning
that there is a coupling constraint to satisfy.

Figure 5-16: The Coupling relation sub-module

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 41 of 44

The following Figures (from Figure 5-17 to Figure 5-20) show how the system model “detects” a coupling
constraint and then “reacts” to satisfy it. In particular, the marking Mf1, obtained after that the Coupling ID
transition fires, is shown in the Figure 5-17 and in the Figure 5-18, respectively, considering the Coupling
Relation Sub-module and the System page. These figures, simply, show that a token, that carries the
name of the implementation to be enabled in order to satisfy the coupling constraint, is added to place
desired. The Figure 5-19 shows an intermediate marking Mfn in the Authentication sub-module, after the
firing of transition selecy by name, to highlight that the transition change is enabled and the place Warning
contains a token carrying the value false; meaning that both constraint (desired SPD value and coupling
constraint) are met. Finally the Figure 5-20 show the final marking Mff in the system page.

Figure 5-17: the marking Mf1 in the coupling relation sub-module

Figure 5-18: The Marking MF1 IN THE system Page

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 42 of 44 Final

Figure 5-19: The marking MFn in the AUTHentication SUB-MODULE

Figure 5-20: The marking MFf in the System page

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

 RE D5.2

Final Page 43 of 44

 Conclusions 6
In this document the major prototypes for the SHIELD Middleware have been included, with the objective
of providing the building blocks for the common platform and the demonstrator.

The major achievements are:

• the intrusion detection bundle, that implement the monitoring and filtering capabilities required for
a “real time” control of SPD level,

• the definition of the Middleware protection profile, i.e. the first step towards the SHIELD
standardization

• the identification of a new semantic to describe the SHIELD system

• the identification and instantiation of a framework for Policy Based Management/Access.

Further results will be developed in the second phase of the project, trying to:

i. enrich the current solutions,

ii. define new ones and, above all,

iii. harmonize the components with the metric approach

The final target is to build a common Middleware platform that, using these components, is really able to
implement the SPD composability.

Advances with respect to this document will be available in D5.4.

D5.2 Preliminary SPD Middleware and Overlay Technologies Prototype nSHIELD

 RE

D5.2 RE

Page 44 of 44 Final

 References 7
[1] A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S. Stissing, M. Westergaard,

S. Christensen, and K. Jensen. CPN Tools for Editing, Simulating, and Analysing Coloured Petri
Nets. Proc. of 24th International Conference on Applications and Theory of Petri Nets (Petri Nets
2003). Lecture Notes in Computer Science 2679, pp. 450-462, Springer-Verlag Berlin, 2003.

[2] K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling and
Validation of Concurrent Systems. International Journal on Software Tools for Technology
Transfer (STTT) 9(3-4), pp. 213-254, 2007.

	1 Introduction
	2 Semantic Technologies Prototypes
	2.1 OWL/ER Diagrams of the SHIELD semantic model
	2.2 Ontology for Intrusion Detection System

	3 Core Services at Middleware Level Prototypes
	3.1 Protocol for Secure Discovery
	3.1.1 Test
	3.1.1.1 Service Registration and Secure Service Registration
	3.1.1.2 Service Request and Secure Service Request

	3.2 Monitoring, filtering and intrusion detection module
	3.2.1 Module implementation
	3.2.1.1 Filtering and Intrusion Detection Bundle

	3.3 Adaptation of legacy systems
	3.3.1 Service Location Protocol
	3.3.1.1 Registering a service for remote access (service provider side)
	3.3.1.2 Connect to a remote peer and get the service (service consumer side)

	3.4 Middleware Protection profile

	4 SHIELD policy based access control
	4.1 SHIELD policy based access control architecture
	4.1.1 Description

	4.2 Policy Definition
	4.2.1 Policy examples
	4.2.1.1 Policy classification and identification by a hierarchical point of view
	4.2.1.2 XACML Policy implementation example

	5 Overlay Prototypes
	5.1 Security Agent Implementation
	5.2 Coloured Petri Nets (CPN) composition algorithms
	5.2.1 CPN tools model

	6 Conclusions
	7 References

