FREQUENCY RANGE AND TYPE OF WIRELESS COMMUNICATIONS

RAUL KHAYDARSHIN
RAULK@STUDENT.MATNAT.UIO.NO
UNIK4700 AUTUMN2014

ELECTRO MAGNETIC WAVES SPECTRUM

CHART SHOWING LOCATION OF 802.11 FAMILY SPECTRUM

TYPICAL WIRELESS NETWORK

	Release date	uency	Band- width (MHz)	data rate	Allowable MIMO streams	Modulation	Ap	proximate
802.11 protocol							range	
							Indoor	Outdoor
							(m)	(m)
-	Jun 1997	2.4	22	1, 2	N/A	DSSS, FHSS	20	100
a	Sep 1999	5	20	6, 9, 12, 18, 24, 36, 48, 54	N/A	OFDM	35	120
							-	5,000
b	Sep 1999	2.4	22	1, 2, 5.5, 11	N/A	DSSS	35	140
g	Jun 2003	2.4	20	6, 9, 12, 18, 24, 36, 48, 54	N/A	OFDM, DSSS	38	140
n	Oct 2009	2.4/5	20	7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2	4	OFDM	70	250
							10	200
			40	15, 30, 45, 60, 90, 120, 135, 150			70	250
							-	
ac	Dec 2013	5	20	7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2, 86.7, 96.3			35	
				15, 30, 45, 60, 90, 120, 135, 150, 180, 200	8			
			40	15, 30, 45, 60, 90, 120, 135, 150, 160, 200			35	
				32.5, 65, 97.5, 130, 195, 260, 292.5, 325, 390, 433.3				
			80				35	
				65, 130, 195, 260, 390, 520, 585, 650, 780, 866.7			2.	
			160				35	

IEEE 802.11 family

CHANNELS DISTRIBUTION FOR 2.4GHz RANGE

NONOVERLAPPING CHANNELS FOR USE IN 5 GHz RANGE OF 802.11 a

SHANNONS THEOREM

PATH LOSS FORMULA

$$L = 20 \; \log_{10} \left(\frac{4\pi d}{\lambda}\right) \quad \text{transmitter - receiver distribution}$$
 some constant
$$\text{wave length}$$

HOW POWER OF TRANSMITTED SIGNAL DECREASES ALONG THE WAY TO RECEIVER

HERE IS SHOWN HOW WAVES FADE AWAY WITH DISTANCE

CHART SHOWING RATE vs RANGE FOR .11b AND .11g Note that to different rates corresponds as a rule different coding/modulation types

CHART BER vs SNR

POSSIBLE SIGNAL PATH FROM AP TO USER

WHAT COULD HAPPEN TO SIGNAL ALONG THE WAY TO RECEIVER

TRANSMITTED SIGNAL SPECTRUM

DISTORTED RECEIVED SIGNAL SPECTRUM

BONDING CHANNELS

 $\label{prop:continuous} \mbox{Advertisible throughput is obtained by "sending and receiving" pure payload \ without any overhead$

Throughput varies based on a number of different factors. We can roughly approximate Wi - Fi throughput to be about half advertised throughput in the best case: LOS close to transmitter, no interferences and multipath ways.