UNIVERSITY GRADUATE CENTER

Strategic Workshop - Malaga - May 2013

Measurable Security for the Internet of Things

Josef Noll

Center for Wireless

Innovation Norway

cwin.no

CWI

Norway

Prof. at University Graduate Studies (UNIK), University of Oslo (UiO) Chief technologist at Movation AS Steering board member, Norway section at MobileMonday Oslo Area, Norway

Outline

- Measurable Security
 - Application in the IoT
 - threat, goal, architecture
- Approach
 - Ontologies for security, system, component functionality
 - Metrics based assessment
 - context-aware security
- Discussion
 - Specific ontologies for each threat
 - Sensor/device standardisation
 - distributed or universal metrics
- Conclusions

IoT paradigm

- From "Internet of PCs" towards the "Internet of Things" with 50 to 100 billion devices connected to the Internet by 2020. [CERP-IoT, 03.2010]
- Things have their own identity, communicate with other things and humans (IoPTS)
 - The speed of development

The Semantic Dimension

Fig. 1. "Internet of Things" paradigm as a result of the convergence of different visions. May 2013

CW

The IoT technology and application domain

CW

Security challenges

- heterogeneous infrastructures
 - sensors, devices
 - networks, cloud
 - services, app stores
- BYOD bring your own device
 - you can't control
 - concentrate on the core values
- Internet of People, Things and Service (IoPTS)
 - content aware
 - context aware
 - user centric: "Life Management Platform"
- Measure your values

IoT success, more than technology

- Creating business
 - openness, competitive
 - climate for innovation
- Public authorities
 - -trust, confidence
 - -demand
- Consumers
 - (early) adapters
 - education
- Infrastructure
 - -broadband, mobile

UNIVERSITETET I AGDER

- competition

S

Universitetet

The Center for Wireless Innovation Norway - CWIN.no - Enabling Collaborative Research

ff

UNIVERSITETET

NTNU

Internet usage in Scandinavia

[Robert Madelin, Directorate-General for Information Society and Media, EU commission, Aug 2011]

Internet service usage

The Center for Wireless Innovation Norway - CWIN.no - Enabling Collaborative Research

9

Create a successful ecosystem

Høgskolen i Telemark

May 2013, Josef Noll

attack

security

layer

Sensor Network Architecture

Reasoning.

inference

engines

processing &

nanagement

BS

Sø

Energy8

Dower

Client application

Service interfaces

Application semantics Service descriptions Security, QoS, energy, policy Mapping rules data integration Network Sensor, Observation device & node Domain Semantics

Semantic dimension

- Application
- Services
- Security, QoS,
- Policies
- mapping

System

UNIK

- sensor networks
- gateway
- base station

Source: Compton et al., A survey of semantic specification of sensors, 2009

Client application

Security &

management

QoS

newSHIELD.eu approach

- Security, here
 - security (S)
 - privacy (P)
 - dependability (D)
- across the value chain
 - from sensors to services
- measurable security

Traditional approach

[source: http://securityontology.sba-research.org/]

Measurable Security in IoT

CWI

Limitations of the traditional approach

- Scalability
 - Threats
 - System
 - Vulnerability
- System of Systems
 - sensors
 - gateway
 - middleware
 - business processes

1 diagram per topic: 1 diagram per topic: -security - system - threats

[source: http://securityontology.sba-research.org/]

Measurable Security in IoT

May 2013, Josef Noll **14**

CW

The nSHIELD approach

- nSHIELD is an JU Artemis project
- focus on "measurable security" for embedded systems
- Core concept
- Threat analysis
- Goal definition
- Semantic security description
- Semantic system description
- Security composability

http://newSHIELD.eu

Security description

CW

Norwa

May 2013, Josef Noll

17

- based on application specific goal, e.g. high reliability
- Specific parameters for each application?

Goal description

- availability = 0.8
- confidentiality = 0.7

this way?

- reliability = 0.5

- more specific
- easier to understand(?)

Common approach? - SPD = level 4

 universal approach – code "red"

Threat description through Metrics

Measurable Security in IoT

Factor

Elapsed Time

Value

My special thanks to

- JU Artemis and the Research Councils of the participating countries (IT, HE, PT, SL, NO, ES)
- Andrea Fiaschetti for the semantic middleware and ideas
- Inaki Eguia Elejabarrieta, Andrea Morgagni, Francesco Flammini, Renato Baldelli, Vincenzo Suraci for the Metrices
- Przemyslaw Osocha for running the pSHIELD project

- Cecilia Coveri (SelexElsag) for running the nSHIELD project
- Sarfraz Alam (UNIK) and Geir Harald Ingvaldsen (JBV) for the train demo
- Zahid Iqbal and Mushfiq
 Chowdhury for the semantics
- Hans Christian Haugli and Juan Carlos Lopez Calvet for the Shepherd ® interfaces
- and all those I have forgotten to mention

May 2012, Josef Noll

Universitetet i Stavanger