NR Contributions to the overall Goal of the IoTSec Project

Norwegian Computing Center

Habtamu Abie

Gjøvik

24/10-2019
Goal: Safe and secure IoT-enabled smart power grid infrastructure

Case Studies
- Smart home
- Smart meters
- AMI (advanced metering Infrastructure)
- Smart Grid Security Center
- Education & internationalization

NR’s contributions: Anticipatory intelligence

1) - Measuring security & attack detection – EGT
2) - Privacy aware & adaptive security
 - adaptive authentication, semantic description of IoT
 - communication-efficient privacy-preserving, temporal anonymity, compromise-protection
 - EGT (Integrity & confidentiality)
 - adaptive data collection
3) - Security evaluation and analysis
 - white paper and presentation at sikkerthefestival 2019
4) - Adaptive data collection & analytics
5) - 2 Master students & 4 services to smart grid security center

IoTSec process
1) Infrastructure/Attack
 - measurable security
 - application-driven design
 - anomaly/attack detection

2) IoT security models
 - privacy-aware
 - adaptive security
 - semantic provability

3) System vs Goal analysis
 - Multi-Metrics
 - security usability
 - human/tech. interface

4) NR’s contributions:
 - Anticipatory intelligence

5) General
Case studies

- **Smart home**
 - Adaptive authentication, semantic description, data collection, adaptive cybersecurity framework

- **Smart meters**
 - privacy-preserving, temporal anonymity, compromise-protection
 - EGT

- **AMI (Advance Metering Infrastructure)**
 - EGT (integrity and confidentiality) attack-defense

- **Smart Grid Security Center**
 - Risk-based security design, adaptive security, scenario-based security analysis, user-centric security
Contributions to Smart Grid Security Centre

► Risk-based security design
 ▪ organization wide: governance, construction and operations

► Adaptive security
 ▪ detect and adjust to changes in the environment

► Scenario-based security analysis
 ▪ design and analysis of security services, toolkit consisting of scenarios, threats, metrics, and simulations

► User-centric security
 ▪ holistic model of smart grid systems and their users
Benefits of IoT based smart grid [1]

► Advanced metering infrastructure (AMI)
 ▪ Easily implementing the advanced metering infrastructure

► Improved reliability of the power system
 ▪ Intelligent grid that has the ability to quickly self-healing, in the event of any external or internal disturbances or threats

► Enhanced functions of SCADA
 ▪ A large number of sensors, actuators and smart meters deployed to monitor the whole power grid infrastructure
Benefits of IoT based smart grid [1] …

► Management of power in the grid
 ▪ bidirectional electric flow where the end-customer buys and sells any excess energy

► Demand response.
 ▪ managing load and demand response, enabling the effecting of dynamic energy pricing mechanisms.
Benefits of IoT based smart grid [1] …

► Interaction with end-customer
 ▪ real time, fast, and bi-directional data exchange provides better interaction with energy end-users

► Monitoring the status and operation of grid assets
 ▪ IoT helps to detect, predict and respond to emerging problems proactively
Impact of cyber-attacks on critical infrastructure, 2016

Critical Infrastructure Targets

- Energy: 54%
- Critical Mfg: 16%
- Transportation: 5%
- Communications: 5%
- InfoTech: 4%
- Water: 4%
- Govt Facilities: 3%
- Nuclear: 3%
- Commercial Facilities: 3%
- Public Health: 1%
- Postal / Shipping: 1%

Source: [1]
Four main types of attacks

► Device attack
 ▪ compromise and control a grid network device

► Data attack
 ▪ illegally insert, alter, or delete data or control commands

► Privacy attack
 ▪ learn about a user’s private or personal information

► Network attack
 ▪ denial of service (DoS)
Example - WP2 – Inter-tasks research integration

- Semantic Provability Models
- System description
- Privacy-aware Models
- Adaptive Security Models

Establish & prove

Privacy-aware adapt

Adapt & monitor
Future outlook

▶ Anticipatory intelligence
 ▪ collecting and analyzing information to identify new, emerging trends, changing conditions

▶ Emotion AI
 ▪ AI (replicating the way humans think) that measures, understands, simulates, and reacts to human emotions

▶ Explainable AI (XAI)
 ▪ solution that can be understood by human experts, an implementation of the social right to explanation

▶ Cognitive Security
 ▪ processing of increasing volume of data by interpreting, diagnosing and adapt to the environment without the need for human intervention

▶ SDGs (UN sustainable development goals)
 ▪ Contributions to solving challenges to one or more of the SDGs
Seminal Reference