SWRL Semantic Web Rule Language

Susana R. Novoa UNIK4710

Overview

- What is SWRL?
- What is Jess?
 - Installing Jess
 - Creating rules
- SWRL Rules
 - Atom Types
 - SWRLTab
- SQWRL
 - SQWRLTab
- SWRL Resources

What is SWRL?

- SWRL is an acronym for Semantic Web Rule Language.
- SWRL is intended to be the rule language of the Semantic Web.

 All rules are expressed in terms of OWL concepts (classes, properties, individuals).

What is SWRL?

Ontology languages do not offer the expressiveness we want \rightarrow Rules do it well.

What is Jess?

Jess system consists of a rule base, fact base, and an execution engine.

Available free to academic users, for a small fee to non-academic users.

Has been used in Protégé-based tools, e.g., SWRLJessTab, SweetJess, JessTab.

Install Jess

- JESS Download: http://herzberg.ca.sandia.gov/
- SWRL Tab Activation:
- Unzip Jess70p2.zip
- Copy Jess70p2\Jess70p2\lib\jess.jar to
- [Protégé install Folder]/plugins/edu.stanford.smi.protegex.owl/

Creating Rules

SWRL Rules		
Enabled	Name	Expression
V	Def-hasAunt	→ Person(?x) A hasParent(?x, ?y) A hasPireter(?u, ?e) = has funct(?u, ?e)
V	Def-hasBrother	Person(?x) A hasSibling(?x, ?y) A Ma
V	Def-hasDaughter	Person(?x) A hasChild(?x, ?y) A Won CIONE Delete
V	Def-hasFather	Person(?x) A hasParent(?x, ?y) A Mal
•	Def-hasMother	Person(?x) ∧ hasParent(?x, ?y) ∧ Woman(?y) → hasMother(?x, ?y)
•	Def-hasNephew	Person(?x) ∧ hasSibling(?x, ?y) ∧ hasSon(?y, ?z) →
•	Def-hasNiece	- Person(?x) ^ hasSibling(?x,?y) ^ hasDaughter(?y,?
V	Def-hasParent	Person(?y) A hasConsort(?y, ?z) A hasParent(?x, ?y
•	Def-hasSibling	Decop(2u) & hos(bild(2u, 2u) & hos(bild(2u, 2u) attoractExce(2u, 2u) Sibipa(2x, 2z)
V	Def-hasSister	
V	Def-hasSon	
✓	Def-hasUncle	
✓	Query-1	→ hasSon(?x, ?z) → query:select(?x, ?z)
V	Query-2	→ hasSon(?x, ?z) → query:select(?x) ∧ query:count(?z) ∧ query:orderByDescending(?z)

SWRL Rule

 Contains an antecedent part(body), and a consequent (head).

 The body and head consist of positive conjunctions of *atoms*:

Atom ^ Atom ... \rightarrow Atom ^ Atom

SWRL Rule

An atom is an expression of the form: *P(arg1 arg2,...)*

- P is a predicate symbol (classes, properties...)
- Arguments of the expression: arg1, arg2,... (individuals, data values or variables)

Example SWRL Rule:

Person(?p) ^ hasSibling(?p,?s) ^ Man(?s) \rightarrow hasBrother(?p,?s)

antecedent

consequent

Atom Types

SWRL provides seven types of atoms:

- Class Atoms owl:Class
- Individual Property atoms owl:ObjectProperty
- Data Valued Property atoms owl:DatatypeProperty
- Different Individuals atoms
- Same Individual atoms
- Built-in atoms

Class Atom

 Consists of an OWL named class or class expression and a single argument representing an OWL individual:

> Person(?p) Person (Fred)

- Person OWL named class
- ?p variable representing an OWL individual
- Fred name of an OWL individual.

Class Atom Example

 All individual of type Man are also a type of Person:

Man(?p) -> Person(?p)

 Of course, this statement can also be made directly in OWL.

Individual Property Atom

Consists of an **OWL object property** and two arguments representing OWL individuals:

hasBrother(?x, ?y)
hasSibling(Fred, ?y)

- hasBrother, hasSibling OWL object properties
- ?x and ?y variables representing OWL individuals
- Fred -name of an OWL individual.

Individual Property Atom Example

• Person with a male sibling has a brother:

Person(?p) ^ hasSibling(?p,?s) ^ Man(?s) -> hasBrother(?p,?s)

- Person and male can be mapped to OWL class called Person with a subclass Man
- The sibling and brother relationships can be expressed using OWL object properties hasSibling and hasBrother with a domain and range of Person.

Data Valued Property Atom

A data valued property atom consists of an **OWL data property** and two arguments (OWL individual, data value)

hasAge(?x, ?age)
hasHeight(Fred, ?h)
hasAge(?x, 232)

Data Valued Property Atom Example

 All persons that own a car should be classified as drivers

Person(?p) ^ hasCar(?p, true) -> Driver(?p)

- This rule classifies all car-owner individuals of type Person to also be members of the class Driver.
- Named individuals can be referred directly:

Person(Fred) ^ hasCar(Fred, true) -> Driver(Fred)

This rule works with a known individual called Fred in an ontology, and new individual can not be created using this rule.

Different & Same Individuals Atom

SWRL supports sameAs and differentFrom atoms to determine if individuals refer to the same underlying individual or are distinct, and can use **owl:sameAs**, **owl:allDifferents:**

differentFrom(?x, ?y)
differentFrom(Fred, Joe)
 sameAs(?x, ?y)
sameAs(Fred, Freddy)

Different & Same Individuals Atom Example

 If two OWL individuals of type Author cooperate on the same publication that they are collaborators:

Publication(?a) ^ hasAuthor(?x, ?y) ^
hasAuthor(?x, ?z) ^ differentFrom(?y, ?z) ->
cooperatedWith(?y, ?z)

Built-In Atom

A built-in is a predicate that takes one or more arguments and evaluates to true if the arguments satisfy the predicate.

Core SWRL built-ins are preceded by the namespace qualifier **swrlb**.

SWRL allows new libraries of built-ins to be defined and used in rules.

Built-In Atom Example

Person with an age of greater than 17 is an adult:

Person(?p) ^ hasAge(?p, ?age) ^
swrlb:greaterThan(?age, 17) -> Adult(?p)

 Person's telephone number starts with the international access code "+":

Person(?p)^hasNumber(?p, ?number) ^
 swrlb:startsWith(?number, "+") ->
 hasInternationalNumber(?p,true)

SWRLTab: Displaying Results

Before Jess Reasoning:

SWRLTab: Displaying Results

After Jess Reasoning

SQWRL

- A rule antecedent can be viewed as a pattern matching specification, i.e., a query
- With built-ins, language compliant query extensions are possible.

SWRLQueryTab: Displaying Results

TestBuiltInsWithResults Protégé 3.2 beta (file:\C:\swrl\kbs\TestBuiltInsWithResults.pprj, OWL / RDF Files)			
<u>F</u> ile <u>E</u> dit <u>P</u> roject <u>O</u> WL <u>C</u> ode <u>T</u> ools <u>W</u> indow <u>H</u> elp			
D C II of II i i i i i i i i i i i i i i i i i i			
🔶 Metadata (Ontology1154994098.owl) 🛑 OWLClasses 🗖 Properties 🔶 Individuals 🗧 Forms 🔿 SWRL Rules			
SWRL Rules 🔂 🛱 🛃 😨 🛈			
Name Expression			
Rule-1 $rightarrow A(?a) \land hasIntProperty1(?a, ?i1) \land hasIntProperty2(?a, ?i2) \land swrlb:add(?i3, ?i1, ?i2) \rightarrow hasIntPrcRule-2rightarrow C(?c) \land hasStringProperty1(?c, ?s1) \land hasStringProperty2(?c, ?s2) \land swrlb:stringConcat(?s3, ?s1Rule-3rightarrow C(?c) \land hasStringProperty1(?c, ?s1) \land hasStringProperty2(?c, ?s2) \land swrlb:equal(?s1, ?s2) \rightarrow hasRule-4rightarrow C(c2) \land swrlb:stringConcat(?s3, "ABC", "DEF") \rightarrow hasStringProperty3(c2, ?s3)Rule-5rightarrow C(c4) \land hasStringProperty1(c4, ?s1) \land hasStringProperty2(c4, ?s2) \land swrlb:stringEqualIgnoreCaseRule-6rightarrow C(ccc) \land hasStringProperty1(c4, ?s1) \land hasStringProperty2(c4, ?s2) \land swrlb:stringLength(?l1, ?s1)Rule-7rightarrow C(?ccc) \land hasStringProperty1(?ccc, ?d) \rightarrow query:select(?ccc, ?d)$			
?ccc ?d			
C2 Billy			
c3 Joe c1 Ricky c4 JOe			
Run rule Close Save			

SWRL Resources

• SWRL Language:

 Specification: http://www.daml.org/2003/11/swrl/

- SWRL Tab:
 - http://protege.stanford.edu/plugins/owl/swrl/ind ex.html
- SWRLAPI:

http://protege.stanford.edu/plugins/owl/swrl/SW
 RLFactory.html