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1 ABSTRACT 

In this report, we present an overview of privacy-aware models and related measures of 

privacy for smart meters. A presentation of privacy concepts such as privacy threat actors 

and privacy threats applicable to smart meters are provided.  

 

Detailed objectives 

In this task, we will build privacy-preserving among the key entities in a distributed manner 

without relying on an online trusted party. We will also design and implement privacy 

designs for metering and control of grid-connected devices and protocols. In addition, we 

will carry out privacy impact analysis and deploy user-centric privacy technology. This will  

 establish privacy-preserving communication among the customers and the service 

providers to protect end users’ private information 

 establish privacy requirements and a security model 

 efficiently handle communication failures while ensuring privacy  

Specifically, we suggest non-interactive privacy-preserving aggregation, since this avoids 

the high smart meter communication interaction and encryption overhead quadratic to the 

number of users. For this task, we will propose and implement a scheme that supports 

dynamic group management, which thus avoids the disadvantages of full key redistribution 

of joining and leaving meters. Privacy-preserving billing will be considered if time allows.  
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2 EXECUTIVE SUMMARY 

This document summarizes deliverable D2.1.1 of the IoTSec project (248113/O70), a 
research project supported by the Research Council of Norway (RCN).  
 
Full information on this project is available online at http://cwi.unik.no/IoTSec:Home 
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3 INTRODUCTION 

The purpose of this report is to provide an overview of privacy-preserving schemes for the 

smart grid/smart metering scenario. A presentation of privacy concepts such as privacy 

threat actors and privacy threats, which are applicable to smart meters, is provided.  

Privacy pertains to individual users and their personal data. Privacy is in essence motivated 

by the need for protection of personal data, actions, or even identities, such as social security 

numbers. The need for protection is eventually motivated by someone or something that 

represents threats to the privacy of an individual. Threat actors include data controllers and 

data processors, and external parties. Thus, a threat model is assumed. In agreement with 

this reasoning, we refer to this category of privacy as threat-motivated privacy.  

In “classic” energy systems, the power delivery from energy supplier to homes is one-

directional in the sense that the electricity is distributed from the power stations through the 

power distribution network to the end consumers. Such systems give a predictable, 

controllable and centralised power generation. Grid systems allow several energy sources to 

be connected to the distribution system, which provide decentralization and add more 

variables in the system. The smart grid introduces IT systems for communication, sensors 

and automation. The smart grid is in other words a dynamic system that allows distribution 

system operators (DSO) to actively manage the varying power generation and demand. 

Advanced meter infrastructure (AMI) is an integrated system that measures, collects and 

analyses energy usage by using smart meters. Smart meters allow two-way communication 

and automatic fine-grained measurement reporting at short time intervals, e.g., every hour, to 

the head-end systems of the electricity providers. The two-way communication allows utilities 

to remotely control smart meters, for instance to remotely cut off electricity supply to 

households in cases where users have not paid their bills. Hence, security measures are 

imperative in this context. 

It is claimed that fine-grained end-user measurements increase utilities’ and grid operators’ 

control and monitoring of electric consumption and network loads, i.e., load monitoring and 

load management, which is not possible with traditional meters. At times when the collective 

consumption reaches peaks or lows in the distribution networks, it is desirable to smooth the 

peaks and lows to even the load distributions. Demand response is such a measure for load 

management, which are programs that offer consumers economic incentives in order to 

adapt their usage of electricity in response to wholesale market price signals.  

In essence, smart meters are deployed because of their ability to provide fine-grained 

measurements, which provide increased operational control and allows for dynamic billing 

regimes and flexible pricing models in accordance with hour-to-hour variable tariffs. 

Moreover, two-way smart meter communication allows utilities to remotely issue commands 

to smart meters. 
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4 PRIVACY TAXONOMY 

When designing privacy-preserving systems, relevant privacy threats need to be identified. 

When threats are identified, a set of privacy requirements can be formulated, which 

correspond with privacy properties that are necessary to protect against the privacy threats.  

The concepts of privacy and security are often confused, and it can be useful to point out 

relevant distinctions. Figure 1 shows what properties pertain to privacy and security. 

Confidentiality (secrecy) pertain to both.  

 

 

Figure 1. Privacy and security properties 

 

In order to build privacy designs for the smart grid scenario, it is necessary to establish 

relevant privacy threats and the types of privacy threat actors.  

 

4.1 Privacy threat actors 

Threat actors we consider relevant are: 

 Honest-but-curious electric utility/distribution system operator (DSO).  

 External adversaries 

We assume an honest-but-curious utility that do not deviate from the defined protocol, but 

will attempt to learn all information possible from the received messages. Realtime 

monitoring and registration of electric usage constitute invasive factors into the privacy of the 

consumers. From the users’ perspective, the utility therefore constitutes a privacy threat 

actor to the users, since their smart meters are continuously submitting user-sensitive 

measurement data to the utility.  

We will in this task not distinguish between electric utility and DSO, since the users are 

subject to both and from the user perspective constitute a single privacy threat actor.  
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Also from the users’ perspective, external parties and other users may constitute not only 

security threats but privacy threats.  

From the utility’s perspective, users do not represent privacy threats, but rather potential 

security threats given the possible motivation of cheating the utility. More specifically, an 

advanced user may be capable to replay former messages or to create valid messages with 

false consumption values. This is equivalent with an active external adversary that is able to 

modify messages that are in transmission. However, such threats fall into the category of 

security threats. Nevertheless, this could be considered.  

 

Figure 2. Threat actors and threat targets 

 

4.2 Privacy threats 

“Personal data” is a generic term that pertains to data that relate to a person, usually data 

with a degree of sensitivity. In this context, privacy relates to the relationship between a 

person, his or her personal data, and how personal data are collected, processed and stored. 

This includes also what types of personal data are being collected. Privacy also relates to the 

relationship between a person and actions carried out by that person. For example, the 

sensitivity of identifying information may depend strongly on context, like the nature of 

situations it could link a person to.  

There is a privacy property for every privacy threat, so that given a privacy threat there exists 

a privacy property that corresponds to and neutralizes that threat. Table 1 shows a mapping 

between the privacy properties included in Figure 1 and pertaining privacy threats.  

These properties are characterized in Deng (2011) as “hard privacy, and pertain typically to 

visibility of user data (confidentiality), user/data-relationships (linkability) and user behaviour. 

Threat models where data controllers and data processers are not trusted are reasonable 

and common, which lead the user to seek to submit as little personal data as possible and to 

decouple links between himself and personal data. Privacy measures orient towards user 

data minimization, increase the abstraction level of user data, and “hiding” user data. 

In contrast, “soft privacy” focuses for instance on transparency, intervenability, specific 

purposes for data processing, user consent, policies and audit. According to Hansen (2012), 

transparency includes the 1) users’ right to access their personal data, 2) information about 

how this personal data is being processed, 3) for what purposes personal data is being 

processed, 4) with whom personal data is shared, and 5) how are personal data acquired. 

Intervenability regards measures for data controllers to effectively control data processors. 

For data subjects, intervenability includes the right of rectification of incorrect user data, the 

right to erasure of data (“the right to be forgotten”) and the right to withdraw consent.  
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Privacy threat Privacy property 

Linkability Unlinkability: Hiding the link between two or more 

identities, pieces of information or actions. 

Identifiability Anonymity: Unlinkability with regard to subjects: 

Hiding the link between a user or a user’s identity, 

and a piece of information or an action pertaining 

to that user.  

Anonymity can be realized by pseudonyms 

(pseudonymity), which are identifiers of subjects 

that are not the real name.  

Non-repudiation Plausible deniability: The ability to deny having 

performed an action that other parties can neither 

confirm nor contradict. 

Detectability Undetectability: Hiding of messages and users’ 

activities. Regarding messages, undetectability 

means that an adversary is not able to distinguish 

between messages, e.g., from random noise.  

For example, given only ciphertexts, an adversary 

is not able to know whether a specific plaintext 

exists of not. 

Information disclosure  Confidentiality: Hiding of data content. According 

to NIST, confidentiality is preserving authorized 

restrictions access and disclosure, including 

means for protecting personal privacy and 

proprietary information. 

Table 1. Privacy threats and properties 

 

Table 2 is included for the sake of completeness, and it shows the relationships between 

security threats and security properties. Notice that confidentiality can be regarded both as a 

security property and privacy property. Also, note that the non-repudiation security property 

is a privacy threat, since this property represents evidence that proves something that a user 

has said or done. 

 

Security threat Security property 

Unauthorized information 

disclosure 

Confidentiality 

Spoofing Authentication 

Tampering Integrity 

Repudiation Non-repudiation 

Table 2. Security threats and properties 
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5 PRIVACY-AWARE AMS MODELS 

Sections 4 discussed privacy threats and threat actors that are relevant to the AMS scenario. 

In essence, the privacy literature that pertains the AMS scenario focuses on protecting user 

privacy – leaving the utility as the threat actor. The literature therefore proposes privacy 

measures with regard to preserving user privacy.  

The majority of privacy-preserving schemes for the AMS scenario relate to privacy in the 

context of electric consumption measurements that address the following purposes and 

functions:  

 Operational control 

 Billing 

Operational control. Operational control measures are not concerned with the consumption 

of individual users, but rather total loads on power lines and units in the network. Although 

there are control units at all levels in the power distribution grid, additional control is 

achievable by collecting fine-grained consumption measurements from users. As long as it is 

assured that individual measurements do not originate from specific identifiable users, but 

rather from a specific group of users, cf. anonymity sets (Pfitzmann, 2009), the privacy of the 

individual users is protected. User groups could, for instance, be established according the 

substation they are connected to.  

Billing. In contrast to operational control, billing pertains to the consumption of individual 

users. Users must, at the time of billing, be linked to their consumption, which constitutes a 

loss of privacy for the users.  

Attribution is the ability to identify the originator of a message that has been sent. Attribution 

pertains to whether measurements are linkable to specific smart meters or not, and relates 

therefore to linkability, which is a privacy threat as previously noted. In the privacy literature, 

unlinkability (non-attribution) is a common privacy goal. Measurements must be attributable 

for the utility to carry out billing, unless the billing is carried out at the user side, for instance 

by trusted devices such as trusted platform modules (TPM) or that verifiable means are used 

for user-side billing computation. On the other hand, attribution is not necessary for 

operational control purposes.  

Operational control measures (load monitoring, load management) and variable-tariff billing 

require fine-grained measurements. Smart meters enable fine-grained measurement 

reporting, which pose a threat to user privacy in cases where measurements are attributable.  

 

5.1 Privacy-preserving billing 

In the AMS scenario, billing assumes fine-grained measurements. The overall privacy goal 

from the users’ perspective is unlinkability, so that measurements cannot be linked to a 

specific user. This is in particular with regard to the utility, since the users do not necessarily 

trust the utility. This privacy requirement is contradictory with regard to the utility carrying out 

the billing function, since linkability is necessary for billing.  

In the literature, essentially three approaches have been proposed: 

1. Meter-side billing computation using trusted platform modules (TPM) 

2. Meter-side billing computation using utility-side correctness verification by means of 

homomorphic cryptographic commitments 

3. Utility-side billing computation by means of a trusted third party 
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The two first approaches suggest that billing computation is carried out at the smart meter, 

which hides measurements from the utility. Privacy is therefore assured, but requires that the 

billing computations are correct (i.e., assurance that the user did not cheat) and that the 

transmission of the billing amount is secure. 

In the third approach, attributable measurements are disclosed, but sending them to an 

online TTP that does not reveal them to the utility, privacy is obtained with regard to the 

utility. 

 

5.1.1 Trusted platform modules (TPM) 
Petrlic et al. (2010) proposed to use trusted platform modules (TPM) integrated in smart 

meters for billing computation. No measurements are sent from the meter. The goal is to 

ensure the utility that the billing operations are correctly carried out, since the utility does not 

necessarily trust the users. This requires that price information must be securely transmitted 

from the utility and that the resulting amount information is securely transmitted from the 

TPM to the utility. 

 

5.1.2 Commitments 
Instead of sending measurements to the utility, the smart meter provides a proof (i.e., a 

commitment) to the utility for each measurement value, without revealing the actual 

measurement. At the end of the billing period, the meter computes and sends the billing 

amount to the utility. The already received commitments act as proof that the bill was 

computed correctly, providing assurance that the user did not cheat. Hence, the received 

billing amount is verifiable to the utility. 

The idea is that for each measurement m, the smart meter sends a commitment C that is 

computed as a function of C and a secret random value r. Given a commitment C it is 

computationally hard to obtain m and r. At the time of billing, the smart meter computes and 

releases the dot-product r’ of the random values and tariff vector. Due to homomorphicisms 

of commitment schemes, the utility uses r’ conjunction with each commitment C and the tariff 

vector to verify that the billing price is correct. Commitment-based billing schemes are 

proposed in (Jawurek, 2011), (Rial, 2011) and (Borges, 2014). 

5.1.3 TTP 
Billing could alternatively be carried out by the assistance of a trusted third party (TTP). A 

straight-forward variant is that the smart meters authenticate and forward their consumption 

values to the TTP, which then computes the charging price that it forwards to the utility. 

Efthymiou et al. (2010) proposed using a TTP for both billing and operational control 

measures. Each smart meter is assigned two distinct long-term identifiers — one anonymous 

identifier (pseudonym) for fine-grained (high frequency) measurement reporting and one non-

anonymous “regular” identifier for coarse-grained (low frequency) measurement reporting. 

Since the TTP that knows the mapping between these two identifiers, the TTP becomes a 

focal point of trust, with disadvantages such as vulnerability to insider threats. 

 

5.2 Privacy-preserving operational control 

The following approaches have been proposed for privacy-preserving operational control: 

1. Privacy-preserving aggregation 

2. Group signatures 

3. Pseudonyms 
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The overall privacy goal is to give users assurance that their measurements are not made 

attributable to the utility. To obtain unlinkability, there must exist a number of possible meters 

that measurements can originate from, which is related to the terms anonymity sets and 

anonymity networks. As previously noted, another suggested approach is including an online 

trusted third party that both users and utility trust. 

 

5.2.1 Privacy-preserving aggregation 
Privacy-preserving aggregation for smart meters are secure-sum schemes that provide 

consumption aggregates from groups of smart meters. Aggregation schemes should be 

collusion-resistant to ensure privacy despite a number of colluding parties, including the 

utility.  

Privacy-preserving aggregation schemes in general involve zero-sum blinding techniques. 

Measurements are blinded by means of randomness. When the blinded measurements from 

a group of smart meters are aggregated, the randomness is cancelled out, resulting in the 

sum of the measurements. The purpose of the blinding is to hide the individual measurement 

values, so that only the sum is realized. Most aggregation schemes have homomorphic 

properties, which is integral to the blinding. 

We distinguish between two categories of privacy-preserving aggregation: 

1) Interactive privacy-preserving aggregation. 

2) Non-interactive privacy preserving aggregation. 

We describe these categories next. 

 

Interactive privacy-preserving aggregation  

The majority of schemes in this category involve peer-to-peer message-exchange between 

all smart meters in a group. 1  More importantly, interactive scheme implies a high 

communication overhead that is the square of the number of meters and a computational 

overhead linear to the number of meters.  

Schemes in this category usually work along the lines as follows:  

a. Each meter randomly splits each measurement value into a number of partial shares. 

Comment: The (unpredictable) randomness causes the blinding. 

b. Each meter sends one blinded share to each other meter, which then adds the received 

shares. Comment: Since a meter receives a blinded share from the other meters, 

confidentiality is achieved. The downside is the high amount of interaction.  

c. Each partial sum is then transmitted to a central aggregator (the utility) that adds the 

partial sums. Comment: The utility has no way to deduce original measurements, and 

confidentiality is thus achieved.  

This infers a round where each meter sends and then aggregates received partial shares 

and a second round where the aggregated partial shares are sent to the central utility. For n 

smart meters, the interaction overhead is therefore 𝑛2 messages. 

Regarding confidentiality, encryption may strictly speaking not be necessary due to that this 

is achieved by means of the blinding. Many, if not most, schemes use Pailler public key 

encryption, which have additive homomorphic properties. However, public key encryption 

does not provide message authentication.  

                                                           

1 The scheme in (Busom, 2015) has in contrast bidirectional message exchange between each smart meter and the utility, 

which therefore makes this an interactive scheme as well. 
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Interactive privacy-preserving aggregation schemes commonly does not require a TTP.  

The scheme proposed by Garcia et al. (2011) uses additive homomorphic encryption, for 

instance the Pailler cryptosystem. Each meter Mi encrypts the random partial shares with the 

public key of the other meters Mj , i <> j, respectively, and sends the n ciphertexts to the 

utility. The utility multiplies ciphertexts pertaining to each public key respectively, and sends 

the results back to the pertaining meters that each decrypts its received multiplied 

ciphertexts. Due to the homomorphic properties of the employed cryptosystem, the 

decryption restores the corresponding partial sums. These are sent to back to the utility that 

aggregates them. interaction overhead is therefore 𝑛2 + 2𝑛 . The scheme provides user 

privacy if at least two meters are not corrupted.  

(Klenze, 2014) is similar to (Garcia, 2011), but includes the user in such way that the user 

can contribute by randomness and check the execution of the protocol. A comment is that 

due to that measurements are reported periodically, it is therefore impractical to involve 

users.  

The scheme proposed by Erkin et al. (2012) uses homomorphic encryption such as the 

Pailler scheme. There is no central utility. Instead of sending blinded partial measurements, 

each meter generates a random blinding value for each meter that it sends encrypted to the 

respective meters. Each meter aggregates the n-1 values it sent and the n-1 received 

random values, and encrypts the measurement and the aggregate random values w.r.t. each 

other meter and sends these ciphertexts to the other meters. At reception, each meter 

multiplies and decrypts, and obtains the aggregated measurement due to the 

homomorphicism. A “temporal consumption” scheme is also presented for privacy-preserving 

billing computation. 

Dimitriou et al. (2016) proposed two schemes. The authors claim that the second scheme 

seeks “robustness” to account for when messages are dropped during execution of the 

protocol and modified. This is claimed to be achieved by means of a zero-knowledge 

mechanism. The second scheme is similar to (Erkin, 2012) and uses the Pailler 

cryptosystem. Instead of sending blinded partial measurements, each meter generates a 

random blinding value for each meter that it sends encrypted to the respective meters. Each 

meter aggregates its own random values and the received random values to the 

measurements, and sends the result encrypted to the utility that finally aggregates them. It is 

not clear if the robustness goal actually holds, because the meters have no way to be sure if 

sent messages actually are received. The overall problem is the lack of authentication 

mechanism, which would contribute to solve the mentioned problem. 

Busom et al. (2016) presented a scheme that is based on the ElGamal public key 

cryptosystem. Each smart meter has its own public key that it uses to encrypt measurements 

that it additively blinds by a random integer. The utility multiplies (“aggregates”) one of the 

ElGamal ciphertext integers, and sends the product to each meter, which applies its private 

key and blinding integer to compute a decryption share that it sends back to the utility. 

Combining the decryption shares, the utility restores the aggregated consumption.  

A point is that such schemes generally do not provide message authentication or entity 

authentication, which makes them susceptible to attacks such as replay attacks. Adding 

security measures such as message authentication codes (MAC) establishes message 

authentication. 

 

Non-interactive privacy-preserving aggregation 

Non-interactive schemes assume unidirectional communication from individual smart meters 

to the utility, which results in both low communication and computational overhead. In 
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principle, only one message needs to be sent from each meter. Group management of 

schemes that belong to category is predominantly static. This means that when a new meter 

joins a group or a meter leaves a group, then new keys must be securely generated and 

distributed to all pertaining meters and the aggregator. This implies the necessity of a trusted 

key center, which represents a single point of trust. From a privacy perspective, introducing a 

centralized single point of trust is in principle not desirable, because if this center is 

compromised, then all participants can be easily compromised too. Another point is potential 

vulnerabilities of insider threats.  

The schemes presented by Shi et al. (2013) and Joye et al. (2014) require an offline trusted 

key center that is responsible for generating long-term keys. Given the long-term keys of a 

group of n smart meters, the key center computes an aggregated key that it securely assigns 

to the utility. Since the utility holds an aggregated key, individual meter keys are unknown to 

the utility. The most important disadvantage is that events of joining and leaving meters 

require a full key/share redistribution for all meters.  

The scheme in (Leontiadis, 2014) is based on (Shi, 2013) and (Joye, 2014) and requires no 

key dealer, and therefore avoids a key center, representing a single point of trust. Each 

meter key is generated independently. However, for practical smart metering systems it can 

be argued that this is not a real issue, since smart meter manufacturers supply encryption 

keys into the smart meters at production. The mentioned scheme introduces an online semi-

trusted entity, the ‘collector’, whose function is to aggregate so-called auxiliary shares 

provided by each meter. The downside is that if the collector and aggregators collude, then 

individual measurement values can be obtained, and privacy is breached.  

A variation of the mentioned schemes are presented in (Benhamouda, 2016), which uses so-

called smooth projective hashing.  

All the mentioned non-interactive schemes employ timestamps and have therefore non-

reusability/freshness assurance. 

 

5.2.2 Group signatures 
Group signatures provide a proof that the signer is associated with a group, but does not 

reveal the identity of the actual signer. However, group signature schemes have a feature 

that allows a group manager to reveal the original signer. For the purpose of operational 

control measures, group signatures provide unlinkability for smart meters that continually 

transmit fine-grained measurements to a utility. For examples, see (Zargar, 2013) and 

(Kishimoto, 2017).  

Group signatures can also be used for billing, but then the utility’s billing center has the 

authority to reveal signers (Chan, 2014), in which case the billing center has the equivalent 

role of a trusted third party and becomes a focal point of trust, which is not desirable. Another 

downside is that group signatures are computational intensive. 

 

5.2.3 Pseudonyms 
Some authors propose using pseudonyms as a means for anonymization and privacy (Afrin, 

2016). In order for a pseudonym to be trustable, it must be verifiable. This could be realized 

by means of anonymous certificates, which requires an issuing trusted third party. Schemes 

using anonymous certificates are found in (Efthymiou, 2010) and (Petrlic, 2010). The 

downside is the trusted third party. Disclosure of the secret pseduonym/meter-relationship 

compromises the privacy. Another point is that certificate-based pseudonyms are static, 

which limits the efficacy of the unlinkability. Finally, certificates require asymmetric 
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cryptography, which is considerably more computational intensive than symmetric 

cryptography. 

 

5.3 Combined: Operation & billing 

Borges et al. (2014) presented an aggregation scheme for operation monitoring that includes 

billing verification. It uses Pailler encryption and Pedersen commitments. The billing charge 

is computed at the meter side, so tariff data need to be transmitted to the meters. The 

commitments are used by the utility to verify the correctness of the meter-side billing 

computation.  

Other combined privacy-preserving schemes for billing and operation are found in (Rial, 

2011) and (Efthymious, 2010). 

 

5.4 Literature surveys 

Erkin et al. (2013) present an overview of four aggregation schemes for smart meters, 

whereof three are presented in this report.  

A survey of privacy-preserving schemes for the two noted areas of billing and operation is 

provided in (Asghar, 2017). Table 3 shows a list and comparison of papers with regard to the 

chosen method of a paper and supposed privacy and security properties. The claimed 

properties may not be actual for some of the papers.  

Ferrag et al. (2016) provide an overview according to the categories 1) Smart grid with the 

advanced metering infrastructure, 2) Data aggregation communications, 3) Smart grid 

marketing architecture, 4) Smart community of home gateways, and 5) Vehicle-to grid 

architecture. 

 

5.5 Predictive analysis on encrypted smart meter measurements 

Statistical predictive analysis may be desirable to carry out. In (Habtemariam, 2016), the 

authors present the case where the utility has outsourced the task of statistical predictive 

analytics to a separate untrusted third party (the cloud?), which accordingly must be 

prevented from reading actual measurements. Hence, user privacy is to be preserved with 

regard to the untrusted third party, not the utility. The authors propose regression 

computations to be carried out on measurements that are encrypted using the homomorphic 

Pailler encryption algorithm. Regression results remain encrypted, and are sent back to the 

utility that decrypts them.  

 

5.6 Recommended directions 

The mentioned privacy-preservation methods are based on the assumption of anonymity 

sets, which assumes that smart meters in operation belong to a group. Physical proximity is 

a natural decision factor to determine group membership. We consider the ability of dynamic 

group membership (new smart meters added to a group and existing meters leaving the 

group) as to be a relevant requirement. It should also be convenient to establish and add 

meters to a new group.  
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Group signatures and pseudonyms are suitable for operation monitoring, but not billing 

verification, since this operation requires the link between a user identity and the user’s 

consumption, where the latter may be represented as a verifiable dot product of the 

measurement and tariff vectors. Group signatures are computational intensive and do not 

conform to dynamic group memberships. Pseudonyms are mainly used for anonymization, 

which is not the primary privacy goal here: They also rely strongly on a trusted third party 

and/or digital certificates, where the latter have the downside of being computational 

intensive.  

For privacy-preservation of smart meters we suggest non-interactive aggregation, since this 

avoids the disadvantages of the high smart meter communication interaction and encryption 

overhead that pertain to interactive schemes. For this task, we will propose and implement a 

non-interactive privacy-preserving aggregation scheme that supports dynamic group 

management, which will avoid the disadvantages of having full key redistribution of joining 

and leaving meters. If time allows it, privacy-preserving billing will be considered.  
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6 CONCLUSIONS 

In this report, we present an overview of privacy-aware models and related measures of 

privacy or smart meters. A presentation of privacy concepts such as privacy threat actors 

and privacy threats, that is applicable to smart meters, is also provided. We suggest non-

interactive privacy-preserving aggregation, considering its comparatively low message and 

computational overhead. Dynamic group management support avoids the disadvantages of 

full key redistribution of joining and leaving meters, and is highly desirable regarding 

practicality. This feature will therefore be investigated for this task. Privacy-preserving billing 

will be considered if time allows 
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