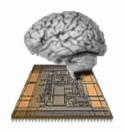
University of Genova Department of Biophysical and Electronic Engineering



nSHIELD project

DIBE research unit expertise, roles and expectations

DIBE research group for nSHIELD project is coordinated by Prof. Regazzoni and is composed by

- 3 Full Professors
- 2 Assistant Professors
- 5 PhD students

(some of them)

Main research topics:

- Communication and Cognitive Radio
- **Smart Embedded Application**
- Microelectronic systems for telecommunications

Research group expertise

- Communication and Cognitive Radio Area:
 - Radio-Mobile Channels Modeling
 - Terrestrial, Satellite and Indoor Communication Systems Simulation
 - Signal Processing for Cognitive Radio Systems
 - Advanced Pattern Recognition, Automatic Decision and Reasoning for Cognitive Radio Systems
 - □ Signal Processing for Advanced Localization Systems
- Smart Embedded Application
 - Computational intelligence models and applications
 - Objective assessment of visual quality
 - Text and document clustering
 - Security intelligent data/signal processing
 - Network Security intelligent methods for Intrusion Detection and Defense
 - Embedded electronic systems design and realization
- Design and development of mixed-mode (analog/digital) Integrated Circuits for telecommunication systems (wireless and wireline)
 - Design of a full custom PLL Integrated Circuit in a 0.8 µm CMOS technology for 25 - 50 - 75 MHz CK frequency generation
 - Adaptive equalization of digital transmission channels based on a neural network approach and its real-time implementation through mixed-mode microeletronic systems. Application to xDSL and fastEthernet.
 - Design of IF A/D converters with 10 12 bits accuracy

- T3.4 (Dependable self-x Technologies) 20 mm:
 - Study of reconfigurable hardware SPD platforms
- T3.5 (Cryptographic technologies) 15 mm:
 - Study of elliptic curve cryptography (ECC) Koblitz curves
- T4.1 (Smart SPD driven transmission) 20 mm:
 - Study of novel techniques for radio resources usage improvement for embedded applications
- T4.2 (Distributed self-x models) 5 mm:
 - Study of multiple antennas or cooperative terminals for improving radio resources usage

- The main expectations of the research group with respect to the nSHIELD project are related to:
 - Study and development of novel algorithms for improving SPD of the nSHIELD architecture at the node and network levels
 - Innovative techniques for improving the usage of available radio resources
 - Improved cryptograpy algorithms at hardware level
 - New concepts in reconfigurable hardware platforms

