
	

	

	

Grant Agreement Number: 248113/O70

Project acronym: IoTSec

Project full title:

Security in IoT for Smart Grids

D 2.1.2
Privacy-preservation framework

Due delivery date: M12

Actual delivery date: M12

Organization name of lead participant for this deliverable:

Simula Research Laboratory

Dissemination level

PU Public
RE Restricted to a group specified by the consortium X
CO Confidential, only for members of the consortium

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 2	

	

Deliverable number: D 2.1.2

Deliverable
responsible:

Ming-Chang Lee

Work package: WP2

Editor(s): Ming-Chang Lee

Author(s)

Name Organisation

Ming-Chang Lee Simula

Yan Zhang UIO and Simula

Document Revision History

Version Date Modifications Introduced

Modification Reason Modified by

V01 30.09.2016

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 3	

	

1 ABSTRACT
In this report, we introduce an executable model for modeling smart homes based on Real-Time

ABS, which is a formal executable language for modeling distributed systems. The purpose is to

model the communication protocols of smart-home devices and how these devices communicate

with each other. By modeling all above-mentioned properties, we are able to see whether

homeowners’ privacy will be exposed or not when some traffic analysis tool, such as

eavesdropping, are used.

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 4	

	

2 EXECUTIVE SUMMARY
This document summarizes deliverable D2.1.2 of project 248113/O70 (IoTSec), a research

project supported by the Research Council of Norway (RCN). Full information on this project

is available online at http://cwi.unik.no/IoTSec:Home

List of Authors

Ming-Chang Lee (Simula)

Yan Zhang (UIO and Simula)

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 5	

	

I. TABLE OF CONTENTS
1	 Abstract	 3	

2	 Executive	Summary	 4	

I.	 Table	of	contents	 5	

II.	 Table	of	Figures	and	Tables	 6	

3	 Introduction	 7	

4	 Background	and	related	work	 8	

5	 Our	model	 10	

6	 Conclusion	and	future	work	 13	

7	 References	 14	

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 6	

	

II. TABLE OF FIGURES AND TABLES
Figure	1	-	The	architecture	of	a	smart	home	with	SmartThings	devices.	...	9	

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 7	

	

3 INTRODUCTION
Currently, smart environments such as smart homes for the activities of daily living (ADL) are

widespread since the sensor devices get smarter, smaller and cheaper recently [1]. These sensor

devices can sense, monitor, or control our homes, our cars, or our bodies. Sensor data created by these

sensor devices can be collected and sent to data centers and to be analyzed. Typically, a smart home,

which is one of Internet of Things (IoT) applications, have various sensors to monitor the home

environment such that homeowners’ living experience can be improved.

As the popularity of smart home increases, security and privacy are two main issues. It is

necessary to ensure that devices of smart homes are secure and do not reveal homeowners’ privacy.

However, commercial off-the-shelf (COTS) IoT devices do not have proper authentication or data

encryption. Therefore, these devices might suffer Denial of Service (DoS) attacks, eavesdropping, or

other malicious attacks [2]. Furthermore, even though people use encryption technologies to protect

privacy, these technologies cannot protect the privacy of the sender or receiver, especially with regard

to the communication patterns such as how long, how often, what time, who, data formats, and the

length of message, present in the network traffic of each day [3]. These communication patterns offer

useful information for potential attackers to discover homeowners’ behavior or privacy. Using some

traffic analysis tools, potential attackers might be able to observe whether people live in their homes or

not, what the layouts of their homes are, the location of a specific room, and so forth.

In this report, we present an executable model to show that homeowners’ privacy might be

exposed by using traffic analysis. Our model targets on modeling the communication protocols of

smart-home devices and how these devices communicate with each other. The model is written in the

Real-Time Abstract Behavioral Specification language (ABS for short), which is a formal executable

modeling language focusing on modeling of distributed systems and virtualized software. The Real-

Time ABS language combines functional and imperative programming styles with a Java-like syntax

and a formal semantics.

The rest of this report is organized as follows. Section 2 shows the background and related work

of this report. Section 3 presents the details of our model. Section 4 concludes the report and outlines

our future work.

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 8	

	

4 BACKGROUND AND RELATED WORK
Yoshigoe et al. [2] studied the privacy of smart-home devices in home residence settings and

presented how homeowner’s privacy could be compromised via network traffic analysis. The authors

used Samsung SmartThings products [4][5] as a case study. Figure 1 illustrates the architecture of a

smart home with SmartThings devices. The authors collected the following four traffic patterns

between the SmartThings Hub and the Cloud Server:

1. No Active Events: After the SmartThings Hub was turned on, as long as no active events take

place, the authors have observed a regular traffic pattern, which is called the default traffic

pattern. The default traffic pattern consists of a TCP keepalive (KA) packet (60 bytes), the

associated ACK packet (54 bytes), a hub KA packet (123 bytes), and the associated ACK

packet for the hub (123 bytes). The TCP KA packets and Hub KA packets are sent

periodically every 10 seconds and 60 seconds, respectively.

2. Door Open/Close: When the Hub receives a message from the door sensor that is activated,

implying the corresponding door is opened/closed, a particular traffic pattern can be obtained.

More specifically, the Hub sends a 123-byte packet to the Cloud Server and the Cloud Server

responds the Hub with a packet of the same size. This handshaking will repeat twice. This

event might reset the timers for sending both TCP KA packets and Hub KA packets.

3. Motion Event: When the Hub receives a message from a motion sensor that is triggered, a

particular traffic pattern can be obtained as follows: When a motion sensor senses a

movement, the Hub sends a 123-byte packet to the Cloud Server and the Cloud Server

responds the Hub with a packet of the same size. This handshaking will repeat for three times,

and it might reset the timers for sending both TCP KA packets and Hub KA packets as well.

4. LED Control: When a homeowner turns on/off his/her LED bulb through the SmartThings

application on his/her smartphone, a particular traffic pattern can be obtained as below: When

a homeowner remotely turns on/off a LED bulb by using his/her smartphone application. The

Cloud Server will first send a 139-byte packet to the Hub and the Hub replies the Cloud Server

with a 123-byte packet. The handshaking will repeat for five times, except that the fourth

packet sent from the Hub is 139 bytes, instead of 123 bytes. Similar to the other three events,

this event might reset timers for sending both TCP KA packets and Hub KA packets.

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 9	

	

Figure 1 - The architecture of a smart home with SmartThings devices.

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 10	

	

5 OUR MODEL
In the section, we model the communications of each component in Figure 1. We limit our code

presentation to the main interfaces of our model to simplify the description. Our model consists of the

following six interfaces:

interface	Hub;		
interface	CloudServer;	
interface	Door;	
interface	Motion;	
interface	Phone;	
interface	Bulb;	

 The SmartThings Hub implements interface	Hub, which has the following six methods:

interface	Hub{	
			Unit	sendTCPKA(String	hub,	CloudServer	server,	String	tcpKA,	Int	size);	
			Unit	sendHubKA(String	hub,	CloudServer	server,	String	hubKA,	Int	size);	
			Pair<String,	Int>	receiveDeviceKA(String	noDevice,	CloudServer	server,	String	deviceKA,	Int	size);	
			Pair<String,	Int>	sendRemoteControlKA(String	noDevice,	Bulb	bulb,	String	deviceKA,	Int	size);	
			Unit	sendApplicationFollowup(String	noDevice,	Server	CloudServer,	String	application,	Int	size);	
			Unit	receiveApplicationFollowup(String	noDevice,	String	ACK,	Int	size);	
}	

Method sendTCPKA is used to model sending a message to the Cloud Server every 10 seconds

from the SmartThings Hub. The message includes the ID of the Hub, the information of the Cloud

Server, a TCP KA packet (denoted by tcpKA), and the associate packet size (60 bytes).

Method sendHubKA is used to model sending a message to the Cloud Server every 60 seconds

from the Hub. The message includes the ID of the Hub, the information of the Cloud Server, a Hub

KA packet, and the corresponding packet size (123 bytes).

Method receiveDeviceKA allows the Hub to receive a KA packet from a smart device. The packet

content includes the ID of the device, the information of the Cloud Server, the KA packet sent from

the device, and the corresponding size.

Method sendRemoteControlKA is used to send a message to the LED Bulb from the Hub. The

message includes the ID of the device, the information of the Bulb, the KA packet sent from the

device, and the corresponding size.

Method sendApplicationFollowup is used to send a message to the Cloud Server from the Hub.

This message includes the ID of the device, the information of the Cloud Server, an application

follow-up packet sent from the Hub, and the associate size (60 bytes).

Finally, method receiveApplicationFollowup is used to receive an ACK message from a smart

device. This ACK message includes the ID of the device, the KA ACK packet sent from the device,

and the corresponding size.

The Cloud Server implements interface	CloudServer, which has the following six methods:

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 11	

	

interface	CloudServer	{	
		Pair<String,Int>	receiveTCPKAACK(String	hub,	String	ack,	Int	size);		
		Pair<String,Int>	receiveHubKAACK(String	hub,	String	ack,	Int	size);	
		Pair<String,Int>	receiveDeviceKAACK(String	hub,	String	ack,	Int	size);	
		Pair<String,	Int>	sendRemoteControlKA(String	noDevice,Bulb	bulb,Hub	hub,String	deviceKA,	Int	size);		
		Unit	receiveApplicationFollowup(String	noDevice,	String	ack,	Int	size);	
		Unit	sendApplicationFollowup(String	noBulb,	Hub	hub,	String	application,	Int	followup_size);	
}	

Method receiveTCPKAACK is used to model replying a message to the Hub every 10 seconds

from the Cloud Server. The message includes the ID of the Hub, a TCP KA ACK packet (denoted by

ack), and the associate packet size (54 bytes).

Method receiveHubKAACK is used to model replying a message to the Hub every 60 seconds

from the Cloud Server. The message includes the ID of the Hub, a Hub KA ACK packet, and the

corresponding packet size (123 bytes).

Method receiveDeviceKAACK allows the Cloud Server to receive a KA ACK packet from the

Hub. The packet content includes the ID of the Hub, the KA ACK packet sent from the device, and the

corresponding size.

Method sendRemoteControlKA sends the message to control the LED Bulb. The message

includes the ID of the device, the information of Bulb, the information of the Hub, the KA packet sent

from the device, and the associate size.

Method receiveApplicationFollowup is used to receive an ACK message from the device, this

ACK message includes the ID of the device, a KA ACK packet sent from the device, and the

corresponding size.

Finally, method sendApplicationFollowup is used to send an application follow-up message to

the Hub. The application follow-up message includes the ID of the Bulb, the information of the Hub,

an application follow-up packet, and the associate size (60 bytes).

The Door Sensor implements interface	Door with a sendDoorKA method to send the ID of the

Door, the information of the Hub, the information of the Cloud Server, a Door KA packet (denoted by

doorKA), and the corresponding size (123 bytes).

interface	Door{	
		Unit	sendDoorKA(String	noDoor,	Hub	hub,	CloudServer	server,	String	doorKA,	Int	size);	
}	

The Motion Sensor implements interface	Motion with a sendMotionKA method to send the ID

of the Motion, the information of the Hub, the information of the Cloud Server, a Motion KA packet,

and the associate size (123 bytes).

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 12	

	

interface	Motion{	
		Unit	sendMotionKA(String	noMotion,	Hub	hub,	CloudServer	server,	String	motionKA,	Int	size);		
}	

The Smart Phone implements	interface	Phone with a sendBulbKA method to send the ID of the

Bulb, the information of the Bulb, the information of the Hub, the information of Cloud Server, a Bulb

KA packet, and the corresponding size (139 bytes).

interface	Phone{	
		Unit	sendBulbKA(String	noBulb,	Bulb	bulb,	Hub	hub,	CloudServer	server,	String	bulbKA,	Int	size);	
}	

The LED Bulb Sensor implements interface	Bulb with a receivedRemoteControlKA method to

send the ID of the Bulb, a Bulb KA packet, and the associated size.

interface	Bulb{	
		Pair<String,Int>	receivedRemoteControlKA(String	noBulb,	String	bulbKA,	Int	size);	
}	

Based on the above modeling, we are able to capture different traffic patterns between the

SmartThings Hub and the Cloud Server under different events. In this way, as long as a packet traffic

matches one of these modeled traffic pattern, the corresponding event and the corresponding smart

devices can be identified, implying that the corresponding homeowner’s privacy are exposed.

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 13	

	

6 CONCLUSION AND FUTURE WORK
In this report, we have built an executable model to simulate different traffic patterns between

smart devices, the SmartThings Hub, and the Cloud Server. We found that smart devices in a smart

home will expose homeowners’ privacy by using traffic pattern analysis to distinguish different traffic

patterns. In our future work, we would like to extend this model to see if the layout of a smart home

can be inferred by analyzing traffic data sent from smart devices and smart sensors. In addition, we

would like to accordingly propose a privacy-preservation framework to avoid attackers from

guessing/obtaining/inferring homeowners’ privacy or behaviors.

IoTSec	–	D2.1.2	–	Privacy-preservation	framework	 	 14	

	

7 REFERENCES
[1] Park, H., Basaran, C., Park, T., & Son, S. H. (2014), “Energy-Efficient Privacy Protection

for Smart Home Environments Using Behavioral Semantics,” Sensors, 14(9), 16235-

16257.

[2] Yoshigoe, K., Dai, W., Abramson, M., & Jacobs, A. (2015, December), “Overcoming

invasion of privacy in smart home environment with synthetic packet injection,” In TRON

Symposium (TRONSHOW), 2015 (pp. 1-7). IEEE.

[3] J. Raymond, “Traffic analysis: Protocols, Attacks, Design Issues, and Open Problems,”

Designing Privacy Enhancing Technologies, pp. 10-29, Springer Berlin Heidelberg, 2001.

[4] Security Announcement from SmartThings,

https://community.smartthings.com/t/security-announcement-from-smartthings/10950,

2015.

[5] SmartThings, https://www.smartthings.com/ (2016.09.29)

