

SP3 - Technology Line WP22 - Development and Implementation of Technologies

Roadmap towards a more secure and privacy-aware society

Josef Noll, Toktam Ramezani, Christian Johansen

secure connected trustable things

SCOTT today

Expectations when visiting our site:

- Security "SCOTT will present a framework for security"
- Safety "The link between Safety and Security"
- Privacy "Privacy label? changing the rule the game?"
- Usability "Are solutions rez"
- Trustability "Can I *** Norwegian?"

- ongoing work:
- 16 use cases
- >40 Building Blocks
- ements

arco Steger, partners: VTT, AVL, Johannes Kepler Universität, TUG, UiO,

Leader: Achim Berger, partners: AVL, Johannes Kepler Universität, SBA (883.1.F)

eader: Andreas Springer, partners: Johannes Kepler Universität, Linz Center of Mechatronics GmbH,

BB3.1.H Real-time configuration of secure zones, Leader: Ken Brown, partners: University College Cork, Tyco, VEMCO,

BB3.1.J Reliable Wireless Multi-hop Communications, Leader: Salvador Santonja, partners: Instituto Tecnologico de Informatica,

BB3.1.L Routing and scheduling in real-time WSN, Leader: Rafael C. Socorro Hernández, partners: Tecnalia, Acciona (883.1.L)

BB3.1.M Safety WSN Adapter, Leader: Salvador Santonja, partners: Instituto Tecnologico de Informatica, INDRA (883.1.M)

BB3.1.N SCOTT Security Library, Leader: Marco Steger, partners: AVL, VEMCO, Politechnika Gdanska, INDRA, UIO, TUG, Johannes Kepler Universität, F-SECURE, SBA, HiOA, TU Delft, Virtual Vehicle Research Center, EyeNetworks (883.1.N)

BB3.1.O Security Core - Identification, Authentication and Communication, Leader: Silke Holtmanns, partners: CISC, EAB, F-SECURE, Linz Center of Mechatronics GmbH, PRE, UiO, SBA, VTT, VEMCO, Nokia, Virtual Vehicle Research Center (883.1.0)

BB3.1.P Spatial-based authorization and authentication, Leader: Mateusz Rzymowski, partners: VEMCO, Politechnika Gdanska,

BB3.1.Q Towards a Safe Virtual Coupling, Leader: Francisco Parrilla, partners: INDRA, Universidad Politécnica de Madrid, SAGOE

BB3.3.A Energy efficient security implementation in WSNs, Leader: Andreas Springer, partners: Johannes Kepler Universität, AVL,

- BB3.3.B Energy efficient & resource optimized component concepts for WSNs, Leader: Stefan Drude, partners: NXP NL, NXP AT,
- BB3.3.C Energy storage for WSNs, Leader: Rafael C. Socorro Hernández, partners: UiO, Acciona, Tecnalia (883.3.C)
- BB3.3.D Energy supply to on track segment, Leader: Javier Uceda, partners: Universidad Politécnica de Madrid, INDRA (883.3.0)
- BB3.3.E Improved energy harvesting, Leader: Rafael C. Socorro Hernández, partners: Acciona, Tecnalia (883.3.E)
- BB3.3.F In-vehicle WSN, Leader: Achim Berger, partners: Linz Center of Mechatronics GmbH, AVL, Johannes Kepler Universität,
- BB3.3.G System level availability, Leader: Willem van Driel, partners: NXP AT, HH, VEMCO, Instituto Tecnologico de Informatica, Politechnika Gdanska, AVL, Tecnalia, Acciona, CISC, VTT, Philips Lightning, Nokia (883.3.0)
- BB26.J IoT/M2M over satellite, Leader: Xavier Alberti, partners: INDRA (8838.J)

27Sep2017 SCOTT Roadmap

SCOTT - SP3 - Impact from SCOTT

- Our goals with respect to impact
 - change security in Europe
 - key selling arguments for European industry
 - Attraction for SMEs
- Change Security in Europe
 - from attack-centric to security classes
- Key selling arguments for European industry
 - applied Trust through Privacy Labels
- Attraction for SMEs
 - Architecture with APIs

SCOTT vision per WP here: WP21, elaborated from WP28

- Problem situation An elderly person wants to live at home but his family is concerned about him or her falling and not being able to get help.
- Basic Innovation The emergency unit consists of a wireless sensor that automatically detects a patient's fall along with critical body sensor information that helps neighbours, relatives or the response team to quickly respond.
- Options include:
 - provides emergency responders quick access to the patient's home.
- is worn directly on the skin
- Why SCOTT
 - focussing on a trusted cloud environment following the user perceptions, moving away from "everything goes to the ... cloud
 - TRUST, here means
 - privacy: focussing on "positive surveillance", with the user having full control on the data, storage and distribution.
 - reliability: ensuring that the person carries the sensor and that the sensor is working

Domain specific applicability: Automotive

- Suggested methodology:
- The car as a system of systems
- For each subsystem, perform
- Security classes: 1-5
 - Exposure analysis of components
 - Impact analysis

Roadmap for a more secure and privacy-aware society

- "Vulnerability analysis" is not sufficient
 - novel threats occur
 - installation base for 5-20 years

example: increase in DDoS attack

capability

- Business advantage for European industries
 - Security classes/levels

Security Classes and measurable security

- Security Class in IoT
 - Consequence
 - Exposure
- Consequence
 - as in risk map
- Exposure
 - Physical exposure
 - people, building, physical ports,...
 - IT exposure
 - ports, firewall, connectivity

New postulate of security class

Exposure

Consequence				
5	Class 5	Class 5	Class 5	Class 5
4	Class 4	Class 4	Cu	Class 5
3	Class 3	ourit	y Class	Class 4
2	Class 1	Secur	ciass 3	Class 3
1	Class 1	Class 1	Class 2	Class 2
Impact/Exposure	1	2	3	4+

Upcoming work: Roadmap for technologies

- Technology Roadmap for uptake
 - Segment specific (car, home, cloud,)
 - best praxis
 - obstacles

- Expected outcome from SCOTT
 - harmonised Security functionality
 - Privacy labelling
 - Security classes
 - increased Trust
 - how represented in the specific domains

SP3 Conclusions

SCOTT from a helicopter perspective

- overall vision broken down into showcases
- interconnected activities
- contributor to EU discussion
- Example WP21
 - positive surveillance
 - privacy-aware
 - including neighbours, family, friends
- EU-wide impact
 - competitive advantage, e.g.:
 - privacy label
 - security classes
 - security and privacy ontology
 - reference architectures for sectors

New postulate of security class

5	Class 5	Class 5	Class 5	Class 5
4	Class 4	Class 4	Class 4	Class 5
3	Class 3	Class 4	Class 4	Class 4
2	Class 1	Class 3	Class 3	Class 3
1	Class 1	Class 1	Class 2	Class 2
Impact/Exposure	1	2	3	4+

