
Electromagnetic Waves

Maxwell’s equations predict the propagation of electromagnetic
energy away from time-varying sources (current and charge) in the form of
waves.  Consider a linear, homogeneous, isotropic media characterized by
(:,,,F)  in a source-free region (sources in region 1, source-free region is
region 2).

We start with the source-free, instantaneous Maxwell’s equations written
in terms of E and H only.  Note that conduction current in the source-free
region is accounted for in the FE term.

Taking the curl of â 

and inserting ã gives



Taking the curl of ã

and inserting â yields

Using the vector identity

in æ and ç gives



For time-harmonic fields, the instantaneous (time-domain) vector F is
related to the phasor (frequency-domain) vector Fs by

Using these relationships, the instantaneous vector wave equations are
transformed into the phasor vector wave equations:

If we let

the phasor vector wave equations reduce to

The complex constant ( is defined as the propagation constant.

The real part of the propagation constant (") is defined as the attenuation
constant while the imaginary part ($) is defined as the phase constant.  The
attenuation constant defines the rate at which the fields of the wave are
attenuated as the wave propagates.  An electromagnetic wave propagates
in an ideal (lossless) media without attenuation ("= 0).  The phase constant
defines the rate at which the phase changes as the wave propagates.



Separate but equivalent units are defined for the propagation,
attenuation and phase constants in order to identify each quantity by its
units [similar to complex power, with units of VA (complex power), W
(real power) and VAR (reactive power)].

Given the properties of the medium (:,,,F), we may determine equations
for the attenuation and phase constants. 



Properties of Electromagnetic Waves

The properties of an electromagnetic wave (direction of propagation,
velocity of propagation, wavelength, frequency, attenuation, etc.) can be
determined by examining the solutions to the wave equations that define
the electric and magnetic fields of the wave.  In a source-free region, the
phasor vector wave equations are

The operator in the above equations (L 2) is the vector Laplacian operator.
In rectangular coordinates, the vector Laplacian operator is related to the
scalar Laplacian operator as shown below.

The phasor wave equations can then be written as

Individual wave equations for the phasor field components [(Exs, Eys, Ezs)
and (Hxs, Hys, Hzs)]can be obtained by equating the vector components on
both sides of each phasor wave equation.



The component fields of any time-harmonic electromagnetic wave
(described in rectangular coordinates) must individually satisfy these six
partial differential equations.  In many cases, the electromagnetic wave will
not contain all six components.  An example of this is the plane wave.

Plane Wave

(1.) E and H lie in a plane z to the direction of propagation.
(2.) E and H are z to each other.

Uniform Plane Wave

In addition to (1.) and (2.) above, E and H are uniform in the plane
z to the direction of propagation (E and H vary only in the direction
of propagation).



Example (Uniform time-harmonic plane wave)

The uniform plane wave for this example has only a z-component of
electric field and an x-component of magnetic field which are both
functions of only y.  An electromagnetic wave which has no electric or
magnetic field components in the direction of propagation (all components
of E and H are perpendicular to the direction of propagation) is called a
transverse electromagnetic (TEM) wave.  All plane waves are TEM waves.
The polarization of a plane wave is defined as the direction of the electric
field (this example is a z-polarized plane wave).  For this uniform plane
wave, the component wave equations for the only two field components
(Ezs, Hxs) can be simplified significantly given the field dependence on y
only.



The remaining single partial derivative in each component wave equation
becomes a pure derivative since Ezs and Hxs are functions of y only. 

The general solutions to the reduced waves equations are

where (E1, E2) are constants (electric field amplitudes) and (H1, H2) are
constants (magnetic field amplitudes).    Note that Ezs and Hxs satisfy the
same differential equation.  Thus, other than the field amplitudes, the wave
characteristics of the fields are identical.

The characteristics of the waves defined by the general field solutions
above can be determined by investigating  the corresponding instantaneous
fields.  We may focus on either the electric field or the magnetic field since
they both have the same wave characteristics (they both satisfy the same
differential equation).

Linear, homogeneous,
second order D.E.’s



The velocity at which this point of constant phase moves is the velocity of
propagation for the wave.  Solving for the position variable y in the
equations defining the point of constant phase gives

Given the y-coordinate of the constant phase point as a function of time, the
vector velocity u at which the constant phase point moves is found by
differentiating the position function with respect to time.
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Amplitude = E1 e"y

Phase = Tt + $y

grows in +ay direction
decays in !ay direction
(!ay traveling wave)

Tt + $y = constant
$y = constant ! Tt 

as t 8, y 9
(!ay traveling wave)
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Amplitude = E2 e!"y

Phase = Tt ! $y

decays in +ay direction
grows in !ay direction
(+ay traveling wave)

Tt ! $y = constant
$y = Tt ! constant

as t 8, y 8
(+ay traveling wave)
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Given a wave traveling at a velocity u, the wave travels one
wavelength (8) during one period (T ).

For a uniform plane wave propagating in a given medium, the ratio
of electric field to magnetic field is a constant.  The units on this ratio has
units of ohms and is defined as the intrinisic wave impedance for the
medium.  Assuming a +ay traveling uniform plane wave defined by an
electric field of

the corresponding magnetic field is found from the source free Maxwell’s
equations.

Note that the direction of propagation for this wave is in the same direction
as E×H (az×ax = ay).  This characteristic is true for all plane waves.



The intrinsic impedance of the wave is defined as the ratio of the
electric field and magnetic field phasors (complex amplitudes).

In general, the intrinsic wave impedance is complex.  The magnitude of the
complex intrinsic wave impedance is



Summary of Wave Characteristics ! Lossy Media (General case)

Lossy media Y (F>0, := :r:o, ,= ,o,r)

Summary of Wave Characteristics ! Lossless Media

Lossless media Y (F=0, := :r:o, ,= ,o,r)



The figure below shows the relationship between E and H for the
previously assumed uniform plane wave propagating in a lossless medium.
The lossless medium propagation constant is purely imaginary ((= j$)
while the intrinsic wave impedance is purely real.

Note that the electric field and magnetic field in a lossless medium are in
phase.

For a lossy medium, the only difference in the figure above would be
an exponential decay in both E and H in the direction of wave propagation.
The propagation constant and the intrinsic wave impedance of a lossy
medium are complex ((="+ j$ , 0=*0*e j20) which yields the following
electric field and magnetic fields:

The electric and magnetic fields in a lossy medium are out of phase an
amount equal to the phase angle of the intrinsic impedance.



Wave Propagation in Free Space

Air is typically very low loss (negligible attenuation) with little
polarization or magnetization.  Thus, we may model air as free space
(vacuum) with F=0, ,=,o, and :=:o (,r=1, :r=1).  We may specialize the
lossless medium equations for the case of free space.

Wave Propagation in Good Conductors (F oT,)

In a good conductor, displacement current is negligible in comparison
to conduction current.

Although this inequality is frequency dependent, most good conductors
(such as copper and aluminum) have conductivities on the order of 107 É/m
and negligible polarization (,r=1, ,=,o=8.854×10!12 F/m) such that we
never encounter the frequencies at which the displacement current becomes
comparable to the displacement current.  Given FoT,, the propagation
constant within a good conductor may be approximated by



                                    

Note that attenuation in a good conductor increases with frequency.  The
rate of attenuation in a good conductor can be characterized by a distance
defined as the skin depth.

Skin depth (*) ! distance over which a plane wave is attenuated by
a factor of e!1 in a good conductor.
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The velocity of propagation, wavelength and intrinsic impedance within the
good conductor is

Example (skin depth)

Uniform plane wave ( f = 1 MHz) at an air/copper interface.

In the air,



In the copper,

Electromagnetic Shielding

The previous results show that we may enclose a volume with a thin
layer of good conductor to act as an electromagnetic shield.  Depending on
the application, the electromagnetic shield may be necessary to prevent
waves from radiating out of the shielded volume or to prevent waves from
penetrating into the shielded volume.



Skin Effect

Given a plane wave incident on a highly-conducting surface, the
electric field (and thus current density) was found to be concentrated at the
surface of the conductor.  The same phenomenon occurs for a current
carrying conductor such as a wire.  The effect is frequency-dependent, just
as it is in the incident plane wave example.  This phenomenon is known as
the skin effect.

Maxwell’s curl equations for a time-harmonic current in a good
conductor are

where the displacement current is assumed to be negligible in the good
conductor.  We would like to determine the governing PDE for the current
density within the conductor.  If we take the divergence of ã, we find

If we then take the curl of â, we find

Using ã, we may write both the phasor electric and magnetic fields in
terms of the current density.



If we let !jT:F =T 2, the governing equation for the conductor current
density becomes

The constant T in the vector wave equation may be written in terms of the
skin depth of the conductor.

For the special case of a cylindrical conductor (radius = a) lying along
the z-axis, assuming only a z-component of current density which does not
vary with  respect to N or z, the wave equation of ä (in cylindrical
coordinates) becomes

The differential equation governing the
wire current density is Bessel’s
differential equation of order zero.  The
solution to the differential equation may
be written in terms of Bessel functions.



F - wire conductivity
a - wire radius
Eso - electric field at the wire surface
FEso - current density at the wire surface
J0 - Bessel function of the first kind, order 0

Example

Consider a copper wire of 1mm radius.  Plot the magnitude of the
current density as a function of D at  f = 1kHz, 10kHz, 100kHz, 1MHz, and
1GHz.

As frequency increases, the current becomes concentrated along the outer
surface of the wire.
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The following is an equivalent model of a conducting wire at high
frequency (*n a).

The equivalent model is a ring of
uniform current density along the
outer surface of the conductor
(depth equal to one skin depth).

The DC resistance formula is only valid if the current density if uniform.
We may use the DC resistance formula for the high frequency model of the
conductor.

Note that the high frequency AC resistance could have been found by
folding out the skin depth cross-section around the perimeter of the wire
into an approximate rectangular cross section given by a length of 2Ba and
a height of *.



ÆÉÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÉÉÉÇ
define as complex

permittivity ,c

Complex Permittivity

The total current on the right hand side of Ampere’s law consists of
a conduction current term and a displacement current term.  These two
terms can be combined into one using the concept of a complex-valued
permittivity.

The ratio of the imaginary part of the complex permittivity (,O) to the real
part of the complex permittivity (,N) is the ratio of the magnitude of the
conduction current density to the magnitude of the displacement current
density.  This ratio is defined as the loss tangent of the medium.



Poynting’s Theorem and the Poynting Vector

Poynting’s theorem is the fundamental energy-conservation theorem
for electromagnetic fields.  Using Poynting’s theorem, we can identify all
sources of energy related to electromagnetic fields in a given volume.  The
corresponding Poynting vector defines the vector power density (direction
and density of power flow at a point). To derive Poynting’s theorem, we
start with the time-dependent Maxwell curl equations.

The product of E and H gives units of W/m2 (volume power density,
analogous to volume current density).  As shown for the uniform plane
wave, the direction of E×H gives the direction of wave propagation (the
direction of power flow).  Thus, we seek a relationship defining the cross
product of E and H.  Using the vector identity,

letting A=E and B=H, we may obtain the necessary terms on the right
hand side of ä by dotting â with H and ã with E. 

Inserting å and æ into ä yields
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flow out of V
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within V

The three terms on the right hand side of ç may be rewritten as

which gives

Integrating è over a given volume V (enclosed by a surface S) and applying
the divergence theorem yields



The quantity under the integrand on the left hand side of Poynting’s
theorem is defined as the Poynting vector.

For a time-harmonic field, the time average Poynting vector is found by
integrating the instantaneous Poynting vector over one period and dividing
by the period.

The time-average Poynting vector can actually be determined without
integrating if we use phasors.  If we write the instantaneous electric and
magnetic fields as

then the instantaneous Poynting vector is

Using the trigonometric identity,

the instantaneous Poynting vector can be written as

The time-average Poynting vector is then



The time-average Poynting vector reduces to 

Note that the time-average Poynting vector above is determined without
integration.  The equation above is the vector analog of the time-average
power equation used in circuit (phasor) analysis:

The term in brackets in é is defined as the phasor Poynting vector and is
normally represented by S.

All representations of the Poynting vector represent vector energy densities.
Thus, to determine the total power passing through a surface, we must
integrate the Poynting vector over that surface.  The total time-average
power passing through the surface S is



Example (Poynting vector / power flow in a resistor)

Assume a DC current I in an ideal resistor
as shown below.  Determine the instantaneous
Poynting vector, the time-average power, and
the total power dissipated in the resistor.

From Ampere’s law, the magnetic field in the
resistor is

The instantaneous Poynting vector is

The time-average Poynting vector is

The total power dissipated in the resistor is found by integrating the power
flow into the resistor volume.



ÆÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÉÇ
ave (D=Do)

The total power dissipated in the resistor is equal to the power flow into the
volume of the resistor.



Plane Wave Reflection/Transmission at a Dielectric Interface

When a plane wave propagating in a homogenous medium encounters

an interface with a different medium, a portion of the wave is reflected

from the interface while the remainder of the wave is transmitted.  The

reflected and transmitted waves can be determined by enforcing the

fundamental electromagnetic field boundary conditions at the media

interface.

Given a z-directed, x-polarized uniform plane wave incident on a

planar media interface located on the x-y plane, the phasor fields associated

with the incident, reflected and transmitted fields may be written as

9

Incident

wave

fields

9

9

Transmitted

wave

fields
Reflected

wave

fields ' - Reflection coefficient

J - Transmission coefficient



Enforcement of the boundary conditions (continuous tangential electric
field and continuous tangential magnetic field) yields 

Solving these two equations for the reflection and transmission coefficients
gives

The total fields in the two media are

Special cases



Special Case #1

If we let Eso = *Eso*e jN and !j =  e! j(B/2), the instantaneous fields in the
dielectric are

Note that the position dependence of the instantaneous electric and
magnetic fields is not a function of time (standing wave).



Assuming for simplicity that N = 0o (the phase of the incident electric
field is 0o at the media interface), the instantaneous electric field in the
dielectric is

 

The locations of the minimums and maximums of the standing wave
electric field pattern are found by



Special Case #2

Note that standing waves exist only in region 1.



The magnitude of the electric field in region 1 can be analyzed to determine
the locations of the maximum and minimum values of the standing wave
electric field.

If 02 > 01 ( ' is positive), then

If 01 > 02 ( ' is negative), and the positions of the maximums and
minimums are reversed, but the equations for the maximum and minimum
electric field magnitudes in terms of *'* are the same.



The standing wave ratio (s) in a region where standing waves exist
is defined as the ratio of the maximum electric field magnitude to the
minimum electric field magnitude.

The standing wave ratio (purely real) ranges from a minimum value of 1
(no reflection, *'*=0) to 4 (total reflection, *'*=1).  The standing wave
ratio is sometimes defined is dB as

Example (Plane wave reflection/transmission)

A uniform plane wave in air is normally incident on an infinite
lossless dielectric material having ,=3,o and :=:o.  If the incident wave
is Ei=10cos (Tt!z) ay V/m, find (a.)  T and 8 of the waves in both regions,
(b.) Hi , (c.) ' and J , (d.) The total electric field and time-average power in
both regions.



(a.)

(b.)

(c.)

(d.)



In general, the power flow for a plane wave may be written as

For a plane wave propagating in a lossless dielectric (0 is real, 20= 0), the
power flow reduces to 

For this problem,



Arbitrarily Directed Plane Wave

In order to define an arbitrarily directed plane wave, we define a
vector wavenumber or propagation vector (k).

The electric field of an az-directed plane wave (in a lossless medium) may
be written as

The electric field of an ak-directed plane wave (in an arbitrary medium)
may be written as

where



The fields of an arbitrarily directed plane wave can be written concisely in
terms of the dot product (scalar product) of the position vector r and the
propagation vector k.

Note that the components of k define the plane wave phase shift (and
attenuation, in the case of a lossy medium) in the component directions.
The unit vectors aE and aH are located in the plane perpendicular to the
direction of propagation defined by ak.

Obliquely Incident Plane Waves

Any plane wave which is obliquely incident on a planar media
interface can be represented by a linear combination of two special cases:
parallel polarization and perpendicular polarization.  In order to define
these polarization geometries, we must first define the plane of incidence.

Plane of incidence - the plane containing the propagation vector of
the incident wave ki and the unit normal to the interface.

Parallel polarization - the electric field of the incident wave lies in
the plane of incidence.

Perpendicular polarization - the electric field of the incident wave
lies normal to the plane of incidence.



Parallel Polarization

For the media interface shown below, the plane of incidence
containing the propagation vector and the normal to the interface is the x-z
plane.  The electric field of the incident wave also lies in the plane of
incidence such that this wave orientation is defined as parallel polarization.



Using the basic concepts of the reflection and transmission coefficients, the
phasor electric and magnetic fields associated with the incident, reflected
and transmitted waves may be written as 

The reflection and transmission coefficients are found by enforcing the
boundary conditions on the tangential electric and magnetic fields at the
interface (z=0).

The resulting equations are

Equations â and ã must be valid for any value of x on the interface.  This
requires that the exponential terms found in â and ã must be equal.



Equating the complex exponential terms found in â and ã yields

or

where n1 and n2 are the refractive indices of the two media.  The refractive
indices may be written as

If the media properties and angle of incidence are known, we may use
Snell’s law to determine the angle of transmission 2t.  Given that all of the
complex exponential terms in â and ã are equal, these equations reduce
to 

Solving ä and å for '2 and J2 yields

Equations æ and ç are commonly referred to as the Fresnel equations for
parallel polarization.  These equations reduce to the normal incidence
equations when 2i=0.



According to equation æ, it is possible to achieve total transmission
('2=0) at angle which is dependent on the properties of the two media.
This angle is called the Brewster angle (2B2) which for two lossless
dielectrics is defined by

The Brewster angle can be used in the design of optical lenses to transmit
specific polarizations.  The output of a laser source (random polarization)
can be passed through a glass plate positioned at the Brewster angle to
provide a polarized output.



Perpendicular Polarization

For perpendicular polarization, the electric field of the incident wave
is perpendicular to the plane of incidence (x-z plane for the example
below).



The electric and magnetic fields of the incident, reflected and
transmitted waves in the case of perpendicular polarization are

Enforcement of the boundary conditions and solving for the reflection and
transmission coefficients yields the Fresnel equations for perpendicular
polarization.
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