
Antenna Patterns
(Radiation Patterns)

Antenna Pattern - a graphical representation of the antenna radiation
properties as a function of position (spherical coordinates).

Common Types of Antenna Patterns

Power Pattern - normalized power vs. spherical coordinate position.

Field Pattern - normalized �E� or �H� vs. spherical coordinate
position.

Antenna Field Types

Reactive field - the portion of the antenna field characterized by
standing (stationary) waves which represent stored energy.

Radiation field - the portion of the antenna field characterized by
radiating (propagating) waves which represent transmitted
energy.

Antenna Field Regions

Reactive Near Field Region - the region immediately surrounding
the antenna where the reactive field (stored energy - standing
waves) is dominant.

Near-Field (Fresnel) Region - the region between the  reactive near-
field and the far-field where the radiation fields are dominant
and the field distribution is dependent on the distance from the
antenna.

Far-Field (Fraunhofer) Region - the region farthest away from the
antenna where the field distribution is essentially independent
of the distance from the antenna (propagating waves).



Antenna Field Regions



Antenna Pattern Definitions

Isotropic Pattern - an antenna pattern defined by uniform radiation
in all directions, produced by an isotropic radiator (point
source, a non-physical antenna which is the only nondirectional
antenna).

Directional Pattern - a pattern characterized by more efficient
radiation in one direction than another (all physically realizable
antennas are directional antennas).

Omnidirectional Pattern - a pattern which is uniform in a given
plane.

Principal Plane Patterns - the E-plane and H-plane patterns of a
linearly polarized antenna.

E-plane - the plane containing the electric field vector
and the direction of maximum radiation.

H-plane - the plane containing the magnetic field vector
and the direction of maximum radiation.

Antenna Pattern Parameters

Radiation Lobe - a clear peak in the radiation intensity surrounded
by regions of weaker radiation intensity.

Main Lobe (major lobe, main beam) - radiation lobe in the direction
of maximum radiation.

Minor Lobe - any radiation lobe other than the main lobe.

Side Lobe - a radiation lobe in any direction other than the
direction(s) of intended radiation.

Back Lobe - the radiation lobe opposite to the main lobe.



Half-Power Beamwidth (HPBW) - the angular width of the main
beam at the half-power points.

First Null Beamwidth (FNBW) - angular width between the first
nulls on either side of the main beam.

Antenna Pattern Parameters
(Normalized Power Pattern)



Maxwell’s Equations
(Instantaneous and Phasor Forms)

Maxwell’s Equations (instantaneous form)

������������� - instantaneous vectors [� =� (x,y,z,t), etc.]
�t - instantaneous scalar

Maxwell’s Equations (phasor form, time-harmonic form)

E, H, D, B, J - phasor vectors [E=E(x,y,z), etc.]
� - phasor scalar

Relation of instantaneous quantities to phasor quantities ...

� (x,y,z,t) = Re{E(x,y,z)ej�t}, etc.
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Average Power Radiated by an Antenna

To determine the average power radiated by an antenna, we start with
the instantaneous Poynting vector �  (vector power density) defined by

���������������������������(V/m × A/m = W/m2)

Assume the antenna is enclosed by some surface S.

The total instantaneous radiated power �rad  leaving the surface S is found
by integrating the instantaneous Poynting vector over the surface.

�rad���������ds = ��(������)��ds                ds = s ds

    ds = differential surface
  s = unit vector normal to ds
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For time-harmonic fields, the time average instantaneous Poynting
vector (time average vector power density) is found by integrating the
instantaneous Poynting vector over one period (T) and dividing by the
period.
                                                     1

Pavg  = ������(������) dt
                                                    T

�  = Re{Eej�t}

�  = Re{Hej�t}

The instantaneous magnetic field  may be rewritten as

�  = Re{½ [ Hej�t + H*e�j�t ]}

which gives an instantaneous Poynting vector of

�����������½ Re {[E � H]ej2�t + [E � H*]}
                                         ~~~~~~~~~~~~~~~    ~~~~~~~
                                                                time-harmonic             independent of time
                                                       (integrates to zero over T )

and the time-average vector power density becomes
                                                  1

Pavg  =  �� Re [E � H*] �dt
                                                 2T

                                             =  ½ Re [E � H*] 

The total time-average power radiated by the antenna (Prad) is found by
integrating the time-average power density over S.

Prad�����Pavg�ds = ½ Re � [E � H*]��ds
               S



S

Radiation Intensity

Radiation Intensity - radiated power per solid angle (radiated power
normalized to a unit sphere).

Prad�����Pavg�ds

In the far field, the radiation electric and magnetic fields vary as 1/r and
the direction of the vector power density (Pavg) is radially outward.  If we
assume that the surface S is a sphere of radius r, then the integral for the
total time-average radiated power becomes

If we defined Pavgr2 = U(�,�) as the radiation intensity, then

where d� = sin�d�d� defines the differential solid angle.  The units on the
radiation intensity are defined as watts per unit solid angle.  The average
radiation intensity is found by dividing the radiation intensity by the area
of the unit sphere (4�) which gives

The average radiation intensity for a given antenna represents the radiation
intensity of a point source producing the same amount of radiated power
as the antenna.



Directivity

Directivity (D) - the ratio of the radiation intensity in a given direction
from the antenna to the radiation intensity averaged over all
directions.

The directivity of an isotropic radiator is D(�,�) = 1.

The maximum directivity is defined as [D(�,�)]max = Do.

The directivity range for any antenna is 0 �D(�,�) �Do.

Directivity in dB

Directivity in terms of Beam Solid Angle

We may define the radiation intensity as

where Bo is a constant and F(�,�) is the radiation intensity pattern
function.  The directivity then becomes

and the radiated power is



Inserting the expression for Prad into the directivity expression yields

The maximum directivity is

where the term �A in the previous equation is defined as the beam solid
angle and is defined by

Beam Solid Angle - the solid angle through which all of the antenna
power would flow if the radiation intensity were [U(�,�)]max for all
angles in �A.



Example (Directivity/Beam Solid Angle/Maximum Directivity) 

Determine the directivity [D(�,�)], the beam solid angle �A and the
maximum directivity [Do] of an antenna defined by F(�,�) =
sin2�cos2�.



In order to find [F(�,�)]max, we must solve
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MATLAB m-file for plotting this directivity function

for i=1:100
   theta(i)=pi*(i-1)/99;
   d(i)=7.5*((cos(theta(i)))^2)*((sin(theta(i)))^2);
end
polar(theta,d)



Directivity/Beam Solid Angle Approximations

Given an antenna with one narrow major lobe and negligible radiation
in its minor lobes, the beam solid angle may be approximated by 

where �1 and �2 are the half-power beamwidths (in radians) which are
perpendicular to each other.  The maximum directivity, in this case, is
approximated by 

If the beamwidths are measured in degrees, we have

Example (Approximate Directivity)

A horn antenna with low side lobes has half-power beamwidths of
29o in both principal planes (E-plane and H-plane).  Determine the
approximate directivity (dB) of the horn antenna.



Numerical Evaluation of Directivity

The maximum directivity of a given antenna may be written as

where U(��) = BoF(�,�).  The integrals related to the radiated power in
the denominators of the terms above may not be analytically integrable. 
In this case, the integrals must be evaluated using numerical techniques.
If we assume that the dependence of the radiation intensity on � and � is
separable, then we may write

The radiated power integral then becomes



Note that the assumption of a separable radiation intensity pattern function
results in the product of two separate integrals for the radiated power.  We
may employ a variety of numerical integration techniques to evaluate the
integrals.  The most straightforward of these techniques is the rectangular
rule (others include the trapezoidal rule, Gaussian quadrature, etc.)  If we
first consider the �-dependent integral, the range of � is first subdivided
into N equal intervals of length

The known function f (�) is then evaluated at the center of each
subinterval.  The center of each subinterval is defined by

The area of each rectangular sub-region is given by



The overall integral is then approximated by

Using the same technique on the �-dependent integral yields

Combining the � and � dependent integration results gives the
approximate radiated power.

The approximate radiated power for antennas that are omnidirectional with
respect to � [g(�) = 1] reduces to 



The approximate radiated power for antennas that are omnidirectional with
respect to � [ f(�) = 1] reduces to 

For antennas which have a radiation intensity which is not separable in �
and �, the a two-dimensional numerical integration must be performed
which yields

Example (Numerical evaluation of directivity)

Determine the directivity of a half-wave dipole given the radiation
intensity of



The maximum value of the radiation intensity for a half-wave dipole
occurs at � = �/2 so that

MATLAB m-file

sum=0.0;
N=input(’Enter the number of segments in the theta direction’)
for i=1:N
   thetai=(pi/N)*(i-0.5);
   sum=sum+(cos((pi/2)*cos(thetai)))^2/sin(thetai);
end
D=(2*N)/(pi*sum)

N Do

5 1.6428

10 1.6410

15 1.6409

20 1.6409



Antenna Efficiency

When an antenna is driven by a voltage source (generator), the total
power radiated by the antenna will not be the total power available from
the generator.  The loss factors which affect the antenna efficiency can be
identified by considering the common example of a generator connected
to a transmitting antenna via a transmission line as shown below.

Zg - source impedance

ZA - antenna impedance

Zo - transmission line characteristic impedance

Pin - total power delivered to the antenna terminals

Pohmic - antenna ohmic (I2R) losses 
[conduction loss + dielectric loss]

Prad - total power radiated by the antenna

The total power delivered to the antenna terminals is less than that
available from the generator given the effects of mismatch at the source/t-
line connection, losses in the t-line, and mismatch at the t-line/antenna
connection.  The total power delivered to the antenna terminals must equal
that lost to I2R (ohmic) losses plus that radiated by the antenna.



We may define the antenna radiation efficiency (ecd) as 

which gives a measure of how efficient the antenna is at radiating the
power delivered to its terminals.  The antenna radiation efficiency may be
written as a product of the conduction efficiency (ec) and the dielectric
efficiency (ed).

ec - conduction efficiency (conduction losses only)

ed - dielectric efficiency (dielectric losses only)

However, these individual efficiency terms are difficult to compute so that
they are typically determined by experimental measurement.  This antenna
measurement yields the total antenna radiation efficiency such that the
individual terms cannot be separated.

Note that the antenna radiation efficiency does not include the
mismatch (reflection) losses at the t-line/antenna connection.  This loss
factor is not included in the antenna radiation efficiency because it is not
inherent to the antenna alone.  The reflection loss factor depends on the t-
line connected to the antenna.  We can define the total antenna efficiency
(eo), which includes the losses due to mismatch as

eo - total antenna efficiency (all losses)

er - reflection efficiency (mismatch losses)

The reflection efficiency represents the ratio of power delivered to the
antenna terminals to the total power incident on the t-line/antenna



connection.  The reflection efficiency is easily found from transmission
line theory in terms of the reflection coefficient (�).

The total antenna efficiency then becomes

The definition of antenna efficiency (specifically, the antenna radiation
efficiency) plays an important role in the definition of antenna gain.

Antenna Gain

The definitions of antenna directivity and antenna gain are essentially
the same except for the power terms used in the definitions.

Directivity [D(�,�)] - ratio of the antenna radiated power density at a
distant point to the total antenna radiated power (Prad) radiated
isotropically. 

Gain [G(�,�)] - ratio of the antenna radiated power density at a distant
point to the total antenna input power (Pin) radiated isotropically.

Thus, the antenna gain, being dependent on the total power delivered to the
antenna input terminals, accounts for the ohmic losses in the antenna while
the antenna directivity, being dependent on the total radiated power, does
not include the effect of ohmic losses.



The equations for directivity and gain are

The relationship between the directivity and gain of an antenna may be
found using the definition of the radiation efficiency of the antenna.

Gain in dB



Antenna Impedance

The complex antenna impedance is defined in terms of resistive (real)
and reactive (imaginary) components.

RA - Antenna resistance
   [(dissipation ) ohmic losses + radiation]

XA - Antenna reactance
   [(energy storage) antenna near field]

We may define the antenna resistance as the sum of two resistances which
separately represent the ohmic losses and the radiation.

Rr - Antenna radiation resistance (radiation)

RL - Antenna loss resistance (ohmic loss)

The typical transmitting system can be defined by a generator,
transmission line and transmitting antenna as shown below.

The generator is modeled by a complex source voltage Vg and a complex
source impedance Zg.



In some cases, the generator may be connected directly to the antenna.  

Inserting the complete source and antenna impedances yields

The complex power associated with any element in the equivalent circuit
is given by

where the * denotes the complex conjugate.  We will assume peak values
for all voltages and currents in expressing the radiated power, the power
associated with ohmic losses, and the reactive power in terms of specific
components of the antenna impedance.  The peak current for the simple
series circuit shown above is



The power radiated by the antenna (Pr) may be written as

The power dissipated as heat (PL) may be written

The reactive power (imaginary component of the complex power) stored
in the antenna near field (PX) is



From the equivalent circuit for the generator/antenna system, we see that
maximum power transfer occurs when

The circuit current in this case is

The power radiated by the antenna is

The power dissipated in heat is

The power available from the generator source is



Power dissipated in 
the generator [P/2]

Power available from
the generator [P]

Power delivered to 
the antenna [P/2]

Power radiated by the
antenna [ecd (P/2)]

Power dissipated by the
antenna [(1�ecd)(P/2)]

The power dissipated in the generator resistance is

Transmitting antenna system summary (maximum power transfer)

With an ideal transmitting antenna (ecd = 1) given maximum power
transfer, one-half of the power available from the generator is radiated by
the antenna.



The typical receiving system can be defined by a generator (receiving
antenna), transmission line and load (receiver) as shown below.

Assuming the receiving antenna is connected directly to the receiver 

For the receiving system, maximum power transfer occurs when



The circuit current in this case is

The power captured by the receiving antenna is

Some of the power captured by the receiving antenna is re-radiated
(scattered).  The power scattered by the antenna (Pscat) is

The power dissipated by the receiving antenna in the form of heat is

The power delivered to the receiver is



Power delivered to 
the receiver [P/2]

Power captured by 
the antenna [P]

Power delivered to 
the antenna [P/2]

Power scattered by the
antenna [ecd (P/2)]

Power dissipated by the
antenna [(1�ecd)(P/2)]

Receiving antenna system summary (maximum power transfer)

With an ideal receiving antenna (ecd = 1) given maximum power transfer,
one-half of the power captured by the antenna is re-radiated (scattered) by
the antenna.



Antenna Radiation Efficiency

The radiation efficiency (ecd) of a given antenna has previously been
defined in terms of the total power radiated by the antenna (Prad) and the
total power dissipated by the antenna in the form of ohmic losses (Pohmic).

The total radiated power and the total
ohmic losses were determined for the
general case of a transmitting antenna
using the equivalent circuit. The total
radiated power is that “dissipated” in
the antenna radiation resistance (Rr).

The total ohmic losses for the antenna are those dissipated in the antenna
loss resistance (RL). 

Inserting the equivalent circuit results for Prad and Pohmic into the equation
for the antenna radiation efficiency yields

Thus, the antenna radiation efficiency may be found directly from the
antenna equivalent circuit parameters.



Antenna Loss Resistance

The antenna loss resistance (conductor and dielectric losses) for many
antennas is typically difficult to calculate.  In these cases, the loss
resistance is normally measured experimentally.  However, the loss
resistance of wire antennas can be calculated easily and accurately.
Assuming a conductor of length l and cross-sectional area A which carries
a uniform current density, the DC resistance is

where � is the conductivity of the conductor.  At high frequencies, the
current tends to crowd toward the outer surface of the conductor (skin
effect).  The HF resistance can be defined in terms of the skin depth �.

where � is the permeability of the material and f is the frequency in Hz.

The skin depth for copper (� = 5.8×107 �/m, � = �o = 4�×10�7 H/m) may
be written as



If we define the perimeter distance of the conductor as dp, then the HF
resistance of the conductor can be written as

where Rs is defined as the surface resistance of the material. 

For the RHF equation to be accurate, the skin depth should be a small
fraction of the conductor maximum cross-sectional dimension. In the case
of a cylindrical conductor (dp � 2�a), the HF resistance is

f � R

0 � RDC = 0.818 m�

1 kHz 2.09 mm ~

10 kHz 0.661 mm RHF = 1.60 m�

100 kHz 0.209 mm RHF = 5.07 m�

1 MHz 0.0661
mm

RHF = 16.0 m�

Resistance of 1 m of #10 AWG (a = 2.59 mm) copper wire.



The high frequency resistance formula assumes that the current through the
conductor is sinusoidal in time and independent of position along the
conductor [Iz(z, t) = Iocos(	t)].  On most antennas, the current is not
necessarily independent of position.  However, given the actual current
distribution on the antenna, an equivalent RL can be calculated.

Example (Problem 2.44) [Loss resistance calculation]

A dipole antenna consists of a circular wire of length l.  Assuming the
current distribution on the wire is cosinusoidal, i.e.,

         Equivalent circuit equation
         (uniform current, Io - peak)

        Integration of incremental 
         power along the antenna



Thus, the loss resistance of a dipole antenna of length l is one-half that of
a the same conductor carrying a uniform current.



+z directed
waves

�z directed
waves

Lossless Transmission Line Fundamentals

Transmission line equations (voltage and current)

                                                                   ~~~~~~~      ~~~~~~~





Transmitting/Receiving Systems with Transmission Lines

Using transmission line theory, the impedance seen looking into
the input terminals of the transmission line (Zin) is

The resulting equivalent circuit is shown below.

The current and voltage at the transmission line input terminals are



The power available from the generator is 

The power delivered to the transmission line input terminals is

The power associated with the generator impedance is

Given the current and the voltage at the input to the transmission line, the
values at any point on the line can be found using the transmission line
equations.

The unknown coefficient Vo
+ may be determined from either V(0) or I(0)

which were found in the input equivalent circuit.  Using V(0) gives



where

Given the coefficient Vo
+, the current and voltage at the load, from the

transmission line equations are

The power delivered to the load is then

The complexity of the previous equations leads to solutions which are
typically determined by computer or Smith chart.



MATLAB m-file (generator/t-line/load)

Vg=input(’Enter the complex generator voltage                ’);
Zg=input(’Enter the complex generator impedance              ’);
Zo=input(’Enter the lossless t-line characteristic impedance ’);
l=input(’Enter the lossless t-line length in wavelengths    ’);
Zl=input(’Enter the complex load impedance                   ’);
j=0+1j;
betal=2*pi*l;
Zin=Zo*(Zl+j*Zo*tan(betal))/(Zo+j*Zl*tan(betal));
gammal=(Zl-Zo)/(Zl+Zo);
gamma0=gammal*exp(-j*2*betal);
Ig=Vg/(Zg+Zin);
Pg=0.5*Vg*conj(Ig);
V0=Ig*Zin;
P0=0.5*V0*conj(Ig);
Vcoeff=V0/(1+gamma0);
Vl=Vcoeff*exp(-j*betal)*(1+gammal);
Il=Vcoeff*exp(-j*betal)*(1-gammal)/Zo;
Pl=0.5*Vl*conj(Il);
s=(1+abs(gammal))/(1-abs(gammal));
format compact
Generator_voltage=Vg
Generator_current=Ig
Generator_power=Pg
Generator_impedance_voltage=Vg-V0
Generator_impedance_current=Ig
Generator_impedance_power=Pg-P0
T_line_input_voltage=V0
T_line_input_current=Ig
T_line_input_power=P0
T_line_input_impedance=Zin
T_line_input_reflection_coeff=gamma0
T_line_standing_wave_ratio=s
Load_voltage=Vl
Load_current=Il
Load_power=Pl
Load_reflection_coeff=gammal

Given Vg = (10+j0) V, Zg = (100+j0) � and l = 5.125�, the following results are found.

Zo ZL Zin ��(0)�=��(l)� Pg s P(l)

100 75 96+j28 0.1429 0.25 1.3333 0.1224

100 100 100 0 0.25 1 0.125

100 125 98�j22 0.1111 0.25 1.25 0.1235

75 100 72�j21 0.1429 0.2864 1.3333 0.1199

100 100 100 0 0.25 1 0.125

125 100 122+j27 0.1111 0.2219 1.25 0.1219



Antenna Polarization

The polarization of an plane wave is defined by the figure traced by
the instantaneous electric field at a fixed observation point.  The following
are the most commonly encountered polarizations assuming the wave is
approaching.



The polarization of the antenna in a given direction is defined as the
polarization of the wave radiated in that direction by the antenna.  Note
that any of the previous polarization figures may be rotated by some
arbitrary angle.

Polarization loss factor

Incident wave polarization

Antenna polarization

Polarization loss factor (PLF)

PLF in dB



General Polarization Ellipse

The vector electric field associated with a +z-directed plane wave can
be written in general phasor form as

where Ex and Ey are complex phasors which may be defined in terms of
magnitude and phase.



�x (z, t)

�x (z, t)

�y (z, t)

�y (z, t)

The instantaneous components of the electric field are found by
multiplying the phasor components by e j� t and taking the real part.

The relative positions of the instantaneous electric field components on the
general polarization ellipse defines the polarization of the plane wave.

Linear Polarization

If we define the phase shift between the two electric field
components as

we find that a phase shift of

defines a linearly polarized wave.

Examples of linear polarization:

If Eyo = 0   �   Linear polarization in the x-direction (� = 0)
If Exo = 0   �   Linear polarization in the y-direction (� = 90o)
If Exo = Eyo and n is even   �   Linear polarization (� = 45o)
If Exo = Eyo and n is odd   �   Linear polarization (� = 135o)



�x (z, t)

�x (z, t)

�y (z, t)

�y (z, t)

Circular Polarization

If Exo = Eyo and

then

This is left-hand circular polarization.

If Exo = Eyo and

then

This is right-hand circular polarization.

Elliptical Polarization

Elliptical polarization follows definitions as circular polarization
except that Exo � Eyo.

 Exo � Eyo,   �� = (2n+½)�   �   left-hand elliptical polarization
 Exo � Eyo,   �� = �(2n+½)�   �   right-hand elliptical polarization



Antenna Equivalent Areas

Antenna Effective Aperture (Area)

Given a receiving antenna oriented for maximum response,
polarization matched to the incident wave, and impedance matched to its
load, the resulting power delivered to the receiver (Prec) may be defined in
terms of the antenna effective aperture (Ae) as

where S is the power density of the incident wave (magnitude of the
Poynting vector) defined by

According to the equivalent circuit under matched conditions,

We may solve for the antenna effective aperture which gives



Antenna Scattering Area

The total power scattered by the receiving antenna is defined as the
product of the incident power density and the antenna scattering area (As).

From the equivalent circuit, the total scattered power is

which gives

Antenna Loss Area

The total power dissipated as heat by the receiving antenna is defined
as the product of the incident power density and the antenna loss area
(AL).

From the equivalent circuit, the total dissipated power is

which gives



Antenna Capture Area

The total power captured by the receiving antenna (power delivered
to the load + power scattered by the antenna + power dissipated in the form
of heat) is defined as the product of the incident power density and the
antenna capture area (Ac).

The total power captured by the antenna is

which gives

Note that Ac = Ae + As + AL.



Maximum Directivity and Effective Aperture

Assume the transmitting and receiving antennas are lossless and
oriented for maximum response.

Aet, Dot - transmit antenna effective aperture and maximum directivity
Aer, Dor - receive antenna effective aperture and maximum directivity

If we assume that the total power transmitted by the transmit antenna is Pt,
the power density at the receive antenna (Wr) is

The total power received by the receive antenna (Pr) is 

which gives

If we interchange the transmit and receive antennas, the previous
equation still holds true by interchanging the respective transmit and
receive quantities (assuming a linear, isotropic medium), which gives



These two equations yield

or

If the transmit antenna is an isotropic radiator, we will later show that

which gives

Therefore, the equivalent aperture of a lossless antenna may be defined in
terms of the maximum directivity as

The overall antenna efficiency (eo) may be included to account for the
ohmic losses and mismatch losses in an antenna with losses.

The effect of polarization loss can also be included to yield



Friis Transmission Equation

The Friis transmission equation defines the relationship between
transmitted power and received power in an arbitrary transmit/receive
antenna system.  Given arbitrarily oriented transmitting and receiving
antennas, the power density at the receiving antenna (Wr) is

where Pt is the input power at the terminals of the transmit antenna and
where the transmit antenna gain and directivity for the system performance
are related by the overall efficiency

where ecdt is the radiation efficiency of the transmit antenna and �t is the
reflection coefficient at the transmit antenna terminals.  Notice that this
definition of the transmit antenna gain includes the mismatch losses for the
transmit system in addition to the conduction and dielectric losses.  A
manufacturer’s specification for the antenna gain will not include the
mismatch losses.

The total received power delivered to the terminals of the receiving
antenna (Pr) is 

where the effective aperture of the receiving antenna (Aer) must take into



account the orientation of the antenna.  We may extend our previous
definition of the antenna effective aperture (obtained using the maximum
directivity) to a general effective aperture for any antenna orientation.

The total received power is then

such that the ratio of received power to transmitted power is

Including the polarization losses yields

For antennas aligned for maximum response, reflection-matched and
polarization matched, the Friis transmission equation reduces to 



Radar Range Equation and Radar Cross Section

The Friis transmission formula can be used to determine the radar
range equation.  In order to determine the maximum range at which a given
target can be detected by radar, the type of radar system (monostatic or
bistatic) and the scattering properties of the target (radar cross section)
must be known.

Monostatic radar system - transmit and receive antennas at the
same location.

Bistatic radar system- transmit and receive antennas at separate
locations.



Radar cross section (RCS) - a measure of the ability of a target to reflect
(scatter) electromagnetic energy (units = m2).  The area which intercepts
that amount of total power which, when scattered isotropically,
produces the same power density at the receiver as the actual target.

If we define 
� = radar cross section (m2)
Wi = incident power density at the target (W/m2)
Pc = equivalent power captured by the target (W)
Ws = scattered power density at the receiver (W/m2)

According to the definition of the target RCS, the relationship between the
incident power density at the target and the scattered power density at the
receive antenna is

The limit is usually included since we must be in the far-field of the target
for the radar cross section to yield an accurate result.  



The radar cross section may be written as

where (Ei, Hi) are the incident electric and magnetic fields at the target and
(Es, Hs) are the scattered electric and magnetic fields at the receiver.  The
incident power density at the target generated by the transmitting antenna
(Pt, Gt, Dt, eot, �t, at) is given by

The total power captured by the target (Pc) is

The power captured by the target is scattered isotropically so that the
scattered power density at the receiver is

The power delivered to the receiving antenna load is



Showing the conduction losses, mismatch losses and polarization losses
explicitly, the ratio of the received power to transmitted power becomes

where

aw - polarization unit vector for the scattered waves
ar - polarization unit vector for the receive antenna

Given matched antennas aligned for maximum response and  polarization
matched, the general radar range equation reduces to 



Example 

Problem 2.65  A radar antenna, used for both transmitting and
receiving, has a gain of 150 at its operating frequency of 5 GHz.  It
transmits 100 kW, and is aligned for maximum directional radiation and
reception to a target 1 km away having a cross section of 3 m2.  The
received signal matches the polarization of the transmitted signal.  Find the
received power.


