Antenna Patterns
(Radiation Patterns)

Antenna Pattern - a graphical representation of the antenna radiation
properties as a function of position (spherical coordinates).

Common Types of Antenna Patterns

Power Pattern - normalized power vs. spherical coordinate position.

Field Pattern - normalized |E| or |H| vs. spherical coordinate
position.

Antenna Field Types

Reactive field - the portion of the antenna field characterized by
standing (stationary) waves which represent stored energy.

Radiation field - the portion of the antenna field characterized by
radiating (propagating) waves which represent transmitted
energy.

Antenna Field Regions

Reactive Near Field Region - the region immediately surrounding
the antenna where the reactive field (stored energy - standing
waves) is dominant.

Near-Field (Fresnel) Region - theregion between the reactive near-
field and the far-field where the radiation fields are dominant
and thefield distribution is dependent on the distance from the
antenna.

Far-Field (Fraunhofer) Region - the region farthest away from the
antennawherethefield distribution is essentially independent
of the distance from the antenna (propagating waves).



Antenna Field Regions

Far-field region
(Fraunhofer region)

Radiating near-field region
(Fresnel region)

Reactive
near-field region

D = maximum antenna dimension



Antenna Pattern Definitions

| sotropic Pattern - an antenna pattern defined by uniform radiation
in al directions, produced by an isotropic radiator (point
source, anon-physical antennawhichistheonly nondirectional
antenna).

Directional Pattern - a pattern characterized by more efficient
radiationin onedirectionthananother (all physically realizable
antennas are directional antennas).

Omnidirectional Pattern - a pattern which is uniform in a given
plane.

Principal Plane Patterns - the E-plane and H-plane patterns of a
linearly polarized antenna.

E-plane - the plane containing the electric field vector
and the direction of maximum radiation.

H-plane - the plane contai ning the magnetic field vector
and the direction of maximum radiation.

Antenna Pattern Parameters

Radiation Lobe - a clear peak in the radiation intensity surrounded
by regions of weaker radiation intensity.

Main Lobe (major lobe, main beam) - radiation lobein the direction
of maximum radiation.

Minor Lobe - any radiation lobe other than the main lobe.

Sde Lobe - a radiation lobe in any direction other than the
direction(s) of intended radiation.

Back Lobe - the radiation lobe opposite to the main lobe.



Half-Power Beamwidth (HPBW) - the angular width of the main
beam at the half-power points.

First Null Beamwidth (FNBW) - angular width between the first
nulls on ether side of the main beam.

Antenna Pattern Parameters
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Maxwell’s Equations
(Instantaneous and Phasor Forms)

Maxwell’ s Equations (instantaneous form)

B
Vx(g>:—8=
ot
0%
VX = — +
ot d
V-9 =p,
V-%=0

& H D, B, 4 - iInstantaneous vectors [ & =&(X,Y,z,t), etc.]
p, - instantaneous scalar

Maxwell’ s Equations (phasor form, time-harmonic form)

VXE=-joB
VxH=jwD +J
V:-D=p
V-B=0

E, H, D, B, J - phasor vectors [E=E(X,Y,z), €tC.]
p - phasor scalar

Relation of instantaneous quantities to phasor quantities ...
E(X,y,zt) = Re{E(x,y,2)e“}, etc.



Average Power Radiated by an Antenna

Todeterminetheaverage power radiated by an antenna, westart with
the instantaneous Poynting vector # (vector power density) defined by

FP=EX H (V/m x A/m = W/n?)

Assume the antenna is enclosed by some surface S.
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Thetotal instantaneous radiated power &, leaving the surface Sisfound
by integrating the instantaneous Poynting vector over the surface.

P = Lds=¢ (&X #)-ds ds=Sds

) ds = differentia surface
S = unit vector normal to ds



For time-harmonic fields, the time average instantaneous Poynting
vector (time average vector power density) is found by integrating the
Instantaneous Poynting vector over one period (T) and dividing by the
period.

1
Pag = — ¢ (&X o) dt
TT
& = Re{Ee*Y}
= Re{He'*'}
The instantaneous magnetic field may be rewritten as
H#=Re{V2[ HE®' + H e *' ]}

which gives an instantaneous Poynting vector of

EX # = YRe{[E x H]eZ'+ [E x H']}

time-harmonic independent of time
(integratesto zero over T)

and the time-average vector power density becomes

1
P.. = —Re[E x H’] ¢dt
J 2T | ]ng

= B Re[E x H']

The total time-average power radiated by the antenna (P,,,) is found by
Integrating the time-average power density over S,

P = ¢ Puyds=%Re§ [E x H]-ds
S S



Radiation I ntensity

Radiation Intensity - radiated power per solid angle (radiated power
normalized to a unit sphere).

I:)rad - 98 I:)avg°dS
S

In the far field, the radiation electric and magnetic fields vary as 1/r and
the direction of the vector power density (P,,,) isradially outward. If we
assume that the surface Sis a sphere of radius r, then the integral for the
total time-average radiated power becomes

P =P F
avg

avg

ds = §ds = #r*sin0 d0 dd
27T

P = ffPavgrzsinedde)
00

If we defined P,,,r* = U(0,0) astheradiation intensity, then

2T T 2T T

P = f f U(0,0)sin0d0 do = f f U(0,0)dQ
00 00

wheredQ = sinBdBd¢ definesthedifferential solid angle. Theunitsonthe
radiation intensity are defined as watts per unit solid angle. The average
radiation intensity isfound by dividing the radiation intensity by the area
of the unit sphere (4) which gives

2n T
f f U(0,)dQ
00 P

U _ _ rad
e 41 41

Theaverageradiation intensity for agiven antennarepresentstheradiation
Intensity of a point source producing the same amount of radiated power
as the antenna.



Directivity

Directivity (D) - the ratio of the radiation intensity in a given direction
from the antenna to the radiation intensity averaged over all
directions.

D04y - VB _ 42U60)

avg rad
The directivity of an isotropic radiator is D(0,p) = 1.
The maximum directivity is defined as[D(0,0)],..x = D,
The directivity range for any antennais 0 <D(0,$) <D.,.

Directivity in dB

D(0,6) [dB] = 10log,,D(0,)

Directivity in terms of Beam Solid Angle

We may define the radiation intensity as
U@©.9) = B, F(0,¢)

where B, is a constant and F(0,¢) is the radiation intensity pattern
function. The directivity then becomes

DO.p) - 4n LOP) _ 4y p FO.H)
Prad ’ rad

and the radiated power is

2T T 2T T

P _ = [ [ U(0,$)sin0d0dd = B, [ [ F(0,0)sin0d0 dd



Inserting the expression for P, 4 into the directivity expression yields

D(O¢) = 4n L)

TT

f f F(0,0)sin0d0 do
00
The maximum directivity is
F(6,
D - [DO)],.. - 4= - [F(0,)] .. ) Zl;t
[ [ F8.¢)sin0dBdd 4
00

where the term Q, in the previous equation is defined as the beam solid
angle and is defined by

2T T

F(8.)sind do dd
[ [ sin

Q, = O = [ [ F_(0,4)sin0d0 dd

__FO®
F (0,9) =
OV e,

Beam Solid Angle - the solid angle through which al of the antenna
power would flow if the radiation intensity were [U(0,0)],. for all
anglesin Q,.



Example (Directivity/Beam Solid Angle/Maximum Directivity)

Determinethe directivity [D(0,$)], the beam solid angle Q, and the

maximum directivity [D,] of an antenna defined by F(0,p) =
sin?0 cos0.

D(0,0) = 4m FO.9)

2T T

F(8,d)sind do do
{ { sin

sinZ0 cos?0

=47

2T T

f f sin>0 cos?0 40 dd
00
sin*0 cos?0 = sin®0 (1 - sin’0) = sin®0 - sin0O

D(0.b) = 47 sin0 cos?0

27 f (sin®0 - sin°0)d0
0

f sin’xdx = —%(cosx)(sinzx +2)

. 4
f sin’xdx = - > 3;cosx - 145 (cosx)(sin’x + 2)

D(0.b) = 47 sin0 cos?0 4 sin0 cos0
8
15

2T 4_16
3 15




D(0,b) = % sin’0 cos’0

2nm
F(8,d)sin0 do db
{ { sin

4 [F(O,$)]_

In order to find [F(0,)] s We must solve

dF(0,9) _ d(

sin®0cos?0) = 0
do

(25sin6 cos0)cos?O + sin?0 (-2 cosOsind) = 0
sinB cos’0 - sin*0cosO = 0
sinB cosB (cos?0 - sin?0) = 0

sinBcosB (1 - 25sin’0) = 0

sin@ =0 0 =(0,m) (minimums)

cosO =0 0 = g (minimum)

1 -2sin%0 =0 0 -sint| T - £,3=n (maximums)
) 44

2| T of | _ 1
[F(0,0)] .. =sin ( 4) coS ( 4) 1



_ (8n/15) _ 32

., rad? = 6.70 rad?
/4y 15

D =T _4p (5) 185 - 1.875 (2.73 dB)

°Q, (327

MATLAB m-filefor plotting this directivity function

for i=1:100
theta(i)=pi*(i-1)/99;
d(i)=7.5*((cos(theta(i)))”2)*((sin(theta(i)))”"2);
end
pol ar (t het a, d)

180




Directivity/Beam Solid Angle Approximations

Given an antennawith one narrow major lobe and negligible radiation
In its minor lobes, the beam solid angle may be approximated by

Q,~0,0,
where 0, and 0, are the half-power beamwidths (in radians) which are

perpendicular to each other. The maximum directivity, in this case, is
approximated by

4 4 . .
= ~ 0,,0, in radians
o QA elez ( 1> 72 )

If the beamwidths are measured in degrees, we have

b . 4n(180/m)? _ 41,253
’ e162 6162

(0,,0, in degrees)

Example (Approximate Directivity)

A horn antenna with low side lobes has half-power beamwidths of
29° in both principal planes (E-plane and H-plane). Determine the
approximate directivity (dB) of the horn antenna.

. 41,253
292
D, (dB) =10log,,(49.05) = 16.9 dB

D

o

=49.05




Numerical Evaluation of Directivity

The maximum directivity of a given antenna may be written as

S /CTO)
? P

rad

[U(0,0)],

2T T

U(6,¢)sinb db d
{ { sin

e FODI,

2T T

f f F(0,0)sin0d0 dd

00

where U(0¢) = B,F(0,$). Theintegralsrelated to the radiated power in
the denominators of the terms above may not be analytically integrable.

In this case, the integrals must be evaluated using numerical techniques.
If we assume that the dependence of the radiation intensity on 0 and ¢ is

separable, then we may write

U(9,9) = B,F(0,0) = B, f(0)g(d)

The radiated power integral then becomes

2T T

P_ =B, [ [ £(0)g($)sind do do

:BO

f £(6)sin0 db
0

21
[e)dd
0



Notethat theassumption of aseparableradiation intensity pattern function
results in the product of two separateintegralsfor theradiated power. We
may employ avariety of numerical integration techniques to evaluate the
integrals. The most straightforward of these techniquesisthe rectangular
rule (othersinclude the trapezoidal rule, Gaussian quadrature, etc.) If we
first consider the O-dependent integral, the range of 0 is first subdivided
into N equal intervals of length

AB="
N

The known function f(0) is then evaluated at the center of each
subinterval. The center of each subinterval is defined by

0.-a0i-L|=2|;-1 i=1,2,..,N
' 2 N 2
The area of each rectangular sub-region is given by
[£(0,)sin0,]AD
/(8)sinoA £(8,)sind,
f(0,)sinB,
Vf(ez) sinB,

S(0y)sin0
S(Oy.1)sinB,
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The overall integral is then approximated by
b N N
f (0)sinBd0 ~ Y [£(8,)sin0 A0 = AB Y f£(6,)sind,
0 i=1 i=1

Using the same technique on the ¢-dependent integral yields

Ap = 2T

d)i:Ad)(j——) =—(j—%) j=12,..M
27 M M
[e(®)dd = 2; [g($)]Ad = Ad 21: g($)
0 J= J=

Combining the © and ¢ dependent integration results gives the
approximate radiated power.

2T T 2T T

P = f f U(8,$)sinbd0dd = B, f f F(0,$)sin0d0d ¢
00 00

N M
~ B AOAd 21: £(8,)sind, 21: g(d,)
1= Jj=
rm2B | XN . M
= lz:l:f(ei)smﬁi Jz:l:g(d)j)

Theapproximateradiated power for antennasthat areomnidirectional with
respect to ¢ [g(¢P) = 1] reducesto

27’B,

N
) f(8,)sind, | =

i=1

P _,=2nB A0

rad

N
) £(8,)sind,
i=1




Theapproximateradiated power for antennasthat areomnidirectional with
respect to O [ f(0) = 1] reducesto

4nBO
M

Prad z ZBoAd)

M M
Zlig(d)j) Zlig(d)j)
J= J=

For antennas which have aradiation intensity which is not separablein 6
and ¢, the a two-dimensional numerical integration must be performed
which yields

rniB N M |
P .~ N7 ;}zzl: [F (Gi,q>j)s1n9i]

Example (Numerical evaluation of directivity)

Determine the directivity of a half-wave dipole given the radiation

Intensity of
2
coSs ( il cosﬁ)

sin@Q

U@®,¢) = B, = B, f(0) [g(d) = 1]

[UO,d)],,.
=47
’ Prad
2mB

N
P~ v 2 zz=1: [f(ei)sinﬁi]

0 - %( i - %) i=12,..,N



The maximum value of the radiation intensity for a half-wave dipole
occurs at 0 = n/2 so that

COS(—COS—) ’
[U0,0)] =B 2 2 - B

. T
S —
2

2

D = 4nB, _ T

° 0)sin®, X |cos”| —cosO,
v ;f( ;)sind, 3 )
i=1 sin,
MATLAB m-file

sun¥0. 0;
N=i nput (" Enter the nunber of segments in the theta direction’)
for i=1:N
thetai =(pi/N)*(i-0.5);
sumesumt( cos((pi/2)*cos(thetai)))”2/sin(thetai);
end

D=(2*N)/ (pi *sum

N D,
5 1.6428
10 1.6410
15 1.6409
20 1.6409




Antenna Efficiency

When an antennais driven by avoltage source (generator), the total
power radiated by the antenna will not be the total power available from
the generator. Theloss factors which affect the antenna efficiency can be
Identified by considering the common example of a generator connected
to a transmitting antenna via a transmission line as shown below.

Z Pohmic (IOSSGS)
g [ ° |
Vg Z, P, = Zy| Pu=
Generator T-line Antenna

Z, - source impedance

Z, - antenna impedance

Z, - transmission line characteristic impedance

P., - total power delivered to the antenna terminals

P_mic - antenna ohmic (1°R) losses
[conduction loss + dielectric losg]

P..q - total power radiated by the antenna

The total power delivered to the antenna terminals is less than that
available from the generator given the effects of mismatch at the source/t-
line connection, losses in the t-line, and mismatch at the t-line/antenna
connection. Thetotal power delivered to the antennaterminals must equal
that lost to I1°R (ohmic) losses plus that radiated by the antenna.

p, =P, +P

rad ohmic



We may define the antenna radiation efficiency (e,) as

Praa’

Praa’
+ P

e
«d p p

in rad ohmic

which gives a measure of how efficient the antenna is at radiating the
power delivered to itsterminals. The antennaradiation efficiency may be
written as a product of the conduction efficiency (e.) and the dielectric
efficiency (ey).

ecd - eced
e, - conduction efficiency (conduction losses only)

e, - dielectric efficiency (dielectric losses only)

However, theseindividual efficiency termsare difficult to compute so that
they aretypically determined by experimental measurement. Thisantenna
measurement yields the total antenna radiation efficiency such that the
individual terms cannot be separated.

Note that the antenna radiation efficiency does not include the
mismatch (reflection) losses at the t-line/antenna connection. This loss
factor is not included in the antenna radiation efficiency becauseit is not
Inherent to the antenna alone. Thereflection loss factor depends on thet-
line connected to theantenna. We can define the total antenna efficiency
(e,), which includes the losses due to mismatch as

eo = ereced
e, - total antenna efficiency (all losses)
e - reflection efficiency (mismatch |osses)

The reflection efficiency represents the ratio of power delivered to the
antenna terminals to the total power incident on the t-line/antenna



connection. The reflection efficiency is easily found from transmission
line theory in terms of the reflection coefficient (I').

e.=1-|T?
P: ZA_ZO
ZA+ZO

Thetotal antenna efficiency then becomes
e, =e,(1-|T?)

The definition of antenna efficiency (specifically, the antenna radiation
efficiency) plays an important role in the definition of antenna gain.

Antenna Gain

Thedéefinitionsof antennadirectivity and antennagain areessentially
the same except for the power terms used in the definitions.

Directivity [D(0,$)] - ratio of the antenna radiated power density at a
distant point to the total antenna radiated power (P,,,) radiated
Isotropically.

Gain [G(0,0)] - ratio of the antenna radiated power density at a distant
point to the total antenna input power (P;,) radiated isotropically.

Thus, theantennagain, being dependent on thetotal power deliveredtothe
antennainput terminals, accountsfor the ohmiclossesintheantennawhile
the antennadirectivity, being dependent on the total radiated power, does
not include the effect of ohmic losses.



The equations for directivity and gain are

DO.6) - 4ng(6,d)) _ Uj(De,¢)
rad

4

rad

n n

4

The relationship between the directivity and gain of an antenna may be
found using the definition of the radiation efficiency of the antenna.

P P

rad = eca’ in

4nU(0,4) _ 4nU0,9) _ G(0,0)

D(0,9) = L p ,
cd” in

rad cd

G(0,9) = e, D(0,0)

GainindB

G(0,¢) [dB] = 10log,,G(0,)



Antenna | mpedance

Thecomplex antennaimpedanceisdefined intermsof resistive(real)
and reactive (imaginary) components.

Z,=R, +jX,

R, - Antenna resistance
[(dissipation ) ohmic losses + radiation]

X, - Antenna reactance
[(energy storage) antenna near field]

We may define the antennaresistance as the sum of two resistances which
separately represent the onmic losses and the radiation.

RA - Rr * RL
R - Antennaradiation resistance (radiation)

R - Antenna loss resistance (ohmic 10ss)

The typical transmitting system can be defined by a generator,
transmission line and transmitting antenna as shown below.

Z, — o

£ |

v Z Z,

g (]

O O |

Generator T-line Antenna

The generator is modeled by a complex source voltage V,, and a complex
source impedance Z,,.



In some cases, the generator may be connected directly to the antenna.

7 °

£ Y |

% y
o 4

. |

Generator Antenna

Inserting the complete source and antenna impedances yields

K=
I R |7,
.
_|_
Ve <T> Ry I/L
+
jXA VX
— 1

The complex power associated with any element in the equivalent circuit
IS given by

*

P=Vv I =

rms —rms

*

v .1

peak ~peak

N | —

where the ™ denotes the complex conjugate. We will assume peak values
for al voltages and currents in expressing the radiated power, the power
associated with ohmic losses, and the reactive power in terms of specific
components of the antenna impedance. The peak current for the ssimple
series circuit shown aboveis

V V
J = g — g
Z,+Z, (Rg+Rr+RL)+j(Xg+XA)



The power radiated by the antenna (P,) may be written as

P = lVrl* = l(er)l* = l|1|2Rr
2 2 2
4
1] - [ Vel
J(R,+ R, + R Y +(X, + X,)?
2
» V,I’R,

7

C2[(R,+ R, + R, + (X, + X,)]

The power dissipated as heat (P, ) may be written

1
P =-V
L

f_ 1 o 1
1 =5(IRL)I =5|l|2RL

2

P. =
2[(R, + R, + R, Y’ +(X, + X, )]

L

The reactive power (imaginary component of the complex power) stored
In the antenna near field (P,) is

PX—EVXI —5(][XA)I —5|l| XA
iV, X,
PX g

C2[(R, + R, + R, +(X, + X,)]



From the equivalent circuit for the generator/antenna system, we see that
maximum power transfer occurs when

Z,=2,
R,=R +R =R

X, =-X,

The circuit current in thiscaseis

V V

J = g — g
Z,+Z, 2(R.+R;)

The power radiated by the antennais
P, = lVrl* = l(er)l* = l|1|2Rr
2 2 2
P = 7 *R,
" 8(R +R,))

The power dissipated in heat is

1, 1 .1
PL:EVLI =5(IRL)I =5|l|2RL
P, = V"R,
L 2
8(R, +R;)

The power available from the generator sourceis

V2
v Vel

p=lyp-
2 8 4(R. +R,)




The power dissipated in the generator resistanceis

p o1 VelPRe V1T 1,
52 8(R, +R,)* 8(R.*R;) 2

, 1
(IR)I" = 5|[|2Rg =

Transmitting antenna system summary (maximum power transfer)

Power dissipated in

/ the generator [P/2]
Power available from

the generator [P] Power dissipated by the

/7 antenna [(1-e.))(P/2)]
\_\ Power delivered to

the antenna [P/2]

\ Power radiated by the

antenna [e (P/2)]

With an ideal transmitting antenna (e, = 1) given maximum power
transfer, one-half of the power available from the generator is radiated by
the antenna.



The typical recelving system can be defined by a generator (receiving
antenna), transmission line and load (receiver) as shown below.

Zy

o
>

I
VA Z Zre C

o

O O |

Generator (antenna) T-line Receiver (load)

Assuming the recelving antenna is connected directly to the recelver

Z,

7 =
VA Z rec
_ I

Antenna Receiver

+ V.- V- + V-

T

R R; JX,

7

rec

2O,

rec

For the receiving system, maximum power transfer occurs when

ZA = Zrec



The circuit current inthiscaseis
_ v, _ V,
Zg+ZA 2(Rr+RL)

The power captured by the recelving antennais

14 2
Pty - 7
2 4(R.+R;)

Some of the power captured by the recelving antenna is re-radiated
(scattered). The power scattered by the antenna (P.,,) IS

|VA|2Rr _ P
_e R

P _==VI-=
Cd2

1
scat 2 ¥ S(Rr 4 RL)2

The power dissipated by the receiving antennain the form of heat is

V,|*R
V,.I*= N Lzz(l—e P
8(R, +R;)

The power delivered to thereceiver is

2
)l*=l|l|2R _ |VA|2Rrec _ |VA| _
2 rec

(IR 1
8(R,+R, 8(R,+R;) 2

P

P =
rec rec

1
2



Receiving antenna system summary (maximum power transfer)

Power delivered to

/ the receiver [P/2]

Power captured by Power dissipated by the

the antenna [P] /7 antenna [(1-e.))(P/2)]

\_\ Power delivered to

the antenna [P/2]

Power scattered by the
antenna[e (P/2)]

With an ideal receiving antenna (e, = 1) given maximum power transfer,
one-half of the power captured by the antennaisre-radiated (scattered) by
the antenna.



Antenna Radiation Efficiency

Theradiation efficiency (e,,) of agiven antennahas previously been
defined in terms of the total power radiated by the antenna (P,,,) and the
total power dissipated by the antennain the form of ohmic losses (Pc)-

e = Praa’ _ Praa’
‘ Pin Prad * Pohmic
The total radiated power and the total Re HA—=—7 |
ohmic losses were determined for the L&AV
general case of a transmitting antenna L L.
using the equivalent circuit. The total 7o 'TL i
radiated power is that “dissipated” in X7
the antenna radiation resistance (R,). -
2
Prad:Pr: |Vg| er
8(R, +R;)

Thetotal ohmic losses for the antenna are those dissipated in the antenna
loss resistance (R).

2
pp . GIR:
8(R,+R,)

Inserting the equivalent circuit resultsfor P,,, and P,;. into the equation
for the antenna radiation efficiency yields

Thus, the antenna radiation efficiency may be found directly from the
antenna equivalent circuit parameters.



Antenna L oss Resistance

Theantennalossresi stance (conductor and dielectriclosses) for many
antennas is typically difficult to calculate. In these cases, the loss
resistance is normally measured experimentally. However, the loss
resistance of wire antennas can be calculated easily and accurately.
Assuming aconductor of length | and cross-sectional area A which carries
auniform current density, the DC resistanceis

/
R..=_"_
D€~ oy

where o is the conductivity of the conductor. At high frequencies, the
current tends to crowd toward the outer surface of the conductor (skin
effect). The HF resistance can be defined in terms of the skin depth 6.

/

VEfPO

where u is the permeability of the material and f is the frequency in Hz.

6:

The skin depth for copper (o = 5.8x10" O/m, u = p, = 47nx10 " H/m) may
be written as
o = 66.1 (mm) [frequency in Hz]
W



If we define the perimeter distance of the conductor as d,, then the HF
resistance of the conductor can be written as

-~

For the R, equation to be accurate, the skin depth should be a small
fraction of the conductor maximum cross-sectional dimension. In the case
of acylindrical conductor (d, ~ 2ra), the HF resistance is

p - b mfp_ I |fu
HE oma o 2a\ o

f o R
0 oo Roc = 0.818 mQ

1 kHz 2.09 mm ~
10kHz | 0.661 mm | R,=1.60 mQ
100kHz | 0.209mm | R,z =5.07 mQ

1MHz | 00661 | R, =16.0mQ
mm

Resistance of 1 m of #10 AWG (a = 2.59 mm) copper wire,



Thehighfrequency resistanceformulaassumesthat the current through the
conductor is sinusoidal in time and independent of position along the
conductor [l1(zt) = I,cos(wt)]. On most antennas, the current is not
necessarily independent of position. However, given the actual current
distribution on the antenna, an equivalent R, can be calculated.

Example (Problem 2.44) [Loss resistance calculation]

A dipole antenna consists of a circular wire of length |. Assuming the
current distribution on thewireis cosinusoidal, i.e.,

TEZ/ / / /
I(z,t) =1(z)cos (wt) =1 cos e cos (wt) ) <z'< 5
T - A
1)
5 z=l/2
@%dz -
=12 =0 =2
— z=( (negligible gap)
p - 1 I’R Equivalent circuit equation
L~ A5 to™tL :
2 (uniform current, |, - peak)
o P, = fdPL(Z) Integration of incremental

power along the antenna



1 /
dP,(z) = 5 [{(z)PdR;(2) Ry = st
p
- Lueop| %= R,
2 d
p
:llozcosz nz)| dz p
2 /| ) 2nta °
I’R
=2 scosz(n—)dz
Ta
)
P, = f dP,(z)
)
2R 2
=2 f cos?| M2 | gz
4Tta /
)
_ lost l . 2Tz in
= z+—sin| ===
8ma 27 _iIn
I’R]
) 8ma
1,2
- 510 RL
Ryp

1 1
R.=—-_°_ _ar
L 9292qa % 2

Thus, the loss resistance of a dipole antenna of length | isone-half that of
athe same conductor carrying a uniform current.



L ossless Transmission Line Fundamentals

Z, |— ——
Vgé ZO ZL
. . |
Generator T-line Load
. . >
z=0 z—1
Transmission line equations (voltage and current)
V(i2)=V, e P+ ol
I(z) = [0+e Bz 4 10- e’ P?
+zdirected -zdirected
waves waves
Vi,V (voltage coefficients, forward and reverse waves)
1,1, (current coefficients, forward and reverse waves)
() 1 :
B=— (phase constant) U= —— (wave velocity)
u 1/“6
=-—=Z, (characeristic impedance)
IO 10
Z = Rrjol (lossy line)
\ G+joC

(lossless line)

Qﬂ“ﬂ




. V.. .
V)=V, e P |1 + 2 /2P| = Voe'fﬁz[l +T'(2)]

+

VO
v, v, . v, _
I(z) = e 7|1 - —2e/P= 2o P[] -T(2)]
Z, v, Z,
VO_ f . . . e,
I'(z) = —2 e/?P? (reflection coefficient definition)
v,

T'C) = Z, -2, 0/2B(z-1) (reflection coefficient at any point
Z,+Z on a terminated t-line)
T()=T, = Z, -2, (reflection coefficient at the load

L Z, +Z of a terminated t-line)

_e _, Zy +jZtan[P(1-2)] (input impedance

Zin(Z) ) .
1(z) Z +jZtan[B(I-z)] at any point)
0) = no) _, Z, +jZ,tan(B) (input impedance
" 10y °Z +jZtan(Bl) at t-line input)
max Imax 1+ |FL | . .
§= = = (standing wave ratio)
Vmin Imin 1 - | FL |

(| reflection coefficient | at the load)



Transmitting/Receiving Systems with Transmission Lines

1(0) 1)
é 2 N
v, Z. = V(0) Z, nn |z
Generator | T-line I Lolad
=0 o >,

Using transmission line theory, the impedance seen looking into
the input terminals of the transmission line (Z,) is

_ 0) _ Z, +jZ tan(B/)

Zin(o) T o .
(0) Z +jZ tan(B/)

The resulting equivalent circuit is shown below.

1(0)

N
0!

Jr

£

Generator ~ Equivalent Load

The current and voltage at the transmission line input terminals are

10) = Vs

Z +Z
g in



Z
o) =10)Z =V 7
) =10)Z,, =V~ "
g in
The power available from the generator is

| 2

1 1V
P,=—V,I0)= 2
2 2(Z,+7,)

The power delivered to the transmission line input terminalsis

2
g

/Z + 7.

g in

PO) - Lyoyr (o) - 2
2 2
The power associated with the generator impedanceis

g

Z +7Z
g in

N | —

P
Zg

[V, - KO (0) = £

Given the current and the voltage at the input to the transmission line, the
values at any point on the line can be found using the transmission line
eguations.

| v, | .
Vz)=V, e P 1+ 2 e/2P = pre P[] + T(2)]

+

VO
|2 V.o v:o
Iz) = —2e7P7|] - 2 /27| = _° e-JBZ[l - I‘(Z)]
Z, v Z,

o

The unknown coefficient V; may be determined from either V(0) or 1(0)
which were found in the input equivalent circuit. Using V(0) gives



A
)=V, " - - 7 [1 +T(0)]

g n
where
T'(z) = Z, -2, o/2B(z-1) R T(0) = Zy - Z, o J2B1
ZL + Zo .+ Y4
Zin
Vg
pro O *Z%+Z,
? 1 +T(0) _
- ZL Zoe-ﬂﬁl

Z, +Z,

Given the coefficient V;, the current and voltage at the load, from the
transmission line equations are

| . Z, -Z
V)=V, e P [1+T@)| =V e/P 1+ L 2
Z, +Z,

V' V' Z -Z

()= —2e7P[1-T())=—2e7P1 - L
(l) Zo [ (l)] Zo ZL+ZO

The power delivered to theload isthen

P(l) = % I ()

The complexity of the previous equations leads to solutions which are
typically determined by computer or Smith chart.



MATLAB m-file (generator/t-line/load)

Vg=i nput (' Enter the conpl ex generator voltage

Zg=i nput (' Enter the conpl ex generator inpedance
Zo=input (' Enter the lossless t-line characteristic inpedance
| =i nput (" Enter the lossless t-line length in wavel engths ")
Zl =i nput (" Enter the conplex | oad inpedance

j =0+1j;

bet al =2*pi *1 ;

Zi n=Zo* (Zl +j *Zo*tan(betal ))/ (Zo+j*ZlI *tan(betal ));

gamual =(ZI - Zo) / (Zl +Zo) ;

gamuaO=ganmal *exp(-j *2*betal );

I g=Vag/ (Zg+Zi n);

Pg=0. 5*Vg*conj (1g);

VO=I g* Zi n;

P0=0. 5*V0*conj (1 g);

Vcoef f =V0/ ( 1+gamma0) ;

VI =Vcoef f *exp(-j *betal ) *( 1+gammal ) ;

Il =Vcoef f*exp(-j *betal )*(1-ganmal)/ Zo;

Pl =0. 5*VI *conj (I1);

s=(1+abs(gammal ))/ (1-abs(ganmmal));

format conpact

Cener at or _vol t age=Vg

Generator_current=Ilg

Cener at or _power =Pg

Gener at or _i npedance_vol t age=Vg- VO

Gener at or _i npedance_current=Ig

Cener at or _i npedance_power =Pg- PO

T_l'i ne_i nput _vol t age=V0

T line_input_current=lg

T_l'ine_i nput _power =P0

)
)
);
)

T_l'i ne_i nput _i npedance=Zi n

T_ line_input_reflection_coeff=gamma0
T_line_standi ng_wave_rati o=s
Load_vol t age=VI

Load current =l

Load_power =PI
Load_refl ecti on_coeff=ganmal

GivenV, = (10+j0) V, Z, = (100+j0) Q and | = 5.125A, the following results are found.

z |z | 7, |IT@I=r0O| P, | s | P
100 | 75 96+)28 0.1429 0.25 1.3333 | 0.1224
100 | 100 100 0 0.25 1 0.125
100 | 125 | 98-j22 0.1111 0.25 1.25 0.1235
75 | 100 | 72-j21 0.1429 0.2864 | 1.3333 | 0.1199
100 | 100 100 0 0.25 1 0.125
125 | 100 | 122+j27 0.1111 0.2219 1.25 0.1219




Antenna Polarization

The polarization of an plane waveis defined by the figure traced by
theinstantaneouselectric field at afixed observation point. Thefollowing
are the most commonly encountered polarizations assuming the wave is

approaching.

2
7

Iertical linear Horizontal linear

4—_-~N 0 4—_-~N 0
-~ - L
4 s\ é 4 s\ é
’ N ’
’ \ ’ \

G \ 4 \
1 \ ’ \
] 1 I W
1 1
\ [ T
N ] \ ]

\ ’ \ ’

\ ,' \ ,'
‘\ ’ \\ .
~ P IS P4
~~- —‘ N‘- —‘

- 0 - - el
”—’— —‘~~~é ’4’— ‘NNé
’ ~
4 w A ¢ A
5 \
{ L M
T T
N ’ N W
A .
L4

Right-hand elliptical Lefi-hand elliptical



The polarization of the antenna in a given direction is defined as the
polarization of the wave radiated in that direction by the antenna. Note
that any of the previous polarization figures may be rotated by some
arbitrary angle.

Polarization loss factor

Incident wave polarization
E.=a.F.

1 1 1

Antenna polarization
E =a E

a a a

Polarization loss factor (PLF)

PLF = |a; a,|* = |cosy,|?

PLF indB
PLF(dB) = 10log,,(PLF)




General Polarization Ellipse

T =tilt angle

Thevector electricfield associated with a+z-directed planewavecan
be written in general phasor form as

E=(Ea,+Ea)e ~Jkz

where E, and E, are complex phasors which may be defined in terms of
magnitude and phase.

E =E_o'* E =E, "

X X0



The instantaneous components of the electric field are found by
multiplying the phasor components by €“' and taking the real part.

4 (zt) =Re[E o/ ®x g ikz e/ =E_cos(wt-kz+ )

@i(z’t) - Re [Eyoej-¢ye—j-kze]-mt] :EyOCOS((A)t —kz + d)y)

Therdativepositionsof theinstantaneous el ectric field componentsonthe
general polarization elipse defines the polarization of the plane wave.

Linear Polarization

If we define the phase shift between the two electric field
components as

Ab =, -,
we find that a phase shift of
A¢:¢y—¢x:nn n=0,1,2,..

defines alinearly polarized wave.

% (Zt) =E_cos(wt —kz + )
n even
4 (Zt) =E cos(wt-kz +¢_+nn)=+E cos(wt-kz+ )
o g Y n odd

Examples of linear polarization:

If E,=0 = Linear polarization in the x-direction (t = 0)
If E,=0 = Linear polarization in the y-direction (t = 90°)
If E,,=E,andniseven — Linear polarization (t = 45°)
If E,,=E,andnisodd = Linear polarization (t = 135°)



Circular Polarization

If E,,=E,and
Ap=6¢,-¢, =(2n+ ) n=0,1,2,..

then

% (z1)=E_cos(wt-kz + )

& (z1) =E_cos[wt-kz+¢_+(2n+Y2)n]=-E_sin(owt-kz+d)

Thisisleft-hand circular polarization.
If E,,=E,and
A¢:¢y—¢x:—(2n+1/2)n n=0,1,2,..

then

& (z,1) = E_cos(wt-kz+¢ )

4(2t) =E_cos[wt-kz+ - (2n+Y%)n] =E_sin(wt - kz + )

Thisisright-hand circular polarization.

Elliptical Polarization

Elliptical polarization follows definitions as circular polarization
except that E,, # E,.

Eo* Eo Ad=(2n+Qn — left-hand eliptical polarization
Eo# Eo Ad=-(2n+n — right-hand eliptical polarization



Antenna Equivalent Areas

Antenna Effective Aperture (Area)

Given a recelving antenna oriented for maximum response,
polarization matched to the incident wave, and impedance matched to its
load, the resulting power delivered to thereceiver (P,..) may bedefined in
terms of the antenna effective aperture (A,) as

Prec = SAe (W)

where S is the power density of the incident wave (magnitude of the
Poynting vector) defined by

S==|E.xH, | (W/m?)

1 1

1
2
According to the equivalent circuit under matched conditions,

R —o—l
A 7
VA Rrec RA = RI‘ + RL = Rrec
Antenna Receiver

P :iV ]*:LL =VA - |VA|2
ree gt T2 2| 2R, 8R,

We may solve for the antenna effective aperture which gives

A:Prec:|VA|2: |VA|2
° S 8SR, 8S(R +R))




Antenna Scattering Area

Thetotal power scattered by the receiving antennais defined as the
product of theincident power density and theantenna scattering area (A).

P =SA

From the equivalent circuit, the total scattered power is

V. |12R
Ps _ | A| 7
8(R,+R,)
which gives
P V,|I?R
A = s [ Val°R, s
S  8S(R.+R))
Antenna Loss Area

Thetotal power dissipated as heat by thereceiving antennaisdefined
as the product of the incident power density and the antenna loss area

(A).

P, =84,
From the equivalent circuit, the total dissipated power is
VPR,
P, =
8(R, +R,)
which gives
Py |V4I*Ry

A4, =

S 8S(R +R,)



Antenna Capture Area

Thetotal power captured by the receiving antenna (power delivered
totheload + power scattered by the antenna+ power dissipated intheform
of heat) is defined as the product of the incident power density and the
antenna capture area (A,).

P =84,
Thetotal power captured by the antennaiis
) Nk
Pc _Prec +Ps +PL B
4(R. +R;)
which gives
P v, |?
A4 =—C= 74l
8§ 4S(R +R))

Notethat A.= A, + A, + A



Maximum Directivity and Effective Aperture

Assume the transmitting and recelving antennas are lossless and
oriented for maximum response.

N

Transmit Receive

Transmitter Antenna Antenna Receiver
<>
R

A, D, - transmit antenna effective aperture and maximum directivity
A, D, - receive antenna effective aperture and maximum directivity

If weassumethat thetotal power transmitted by the transmit antennaisP,,
the power density at the receive antenna (W,) is

W il
" 4mR?

ot

Thetotal power received by the receive antenna (P,) is

PtDotAer
Pr = WrAer -
4T R?
which gives
P
D, A, =—"4nR?
Pt

If we interchange the transmit and receive antennas, the previous
equation still holds true by interchanging the respective transmit and
receive quantities (assuming alinear, isotropic medium), which gives



D,_A,=—"4nR?
Pt
These two equations yield
DotAer = DorAet
or
Dot Dor
Aet _ Aer

D =1 A ="
ot et 4TE

which gives

D, _an
A 22

er

(for any antenna)

Therefore, the equivalent aperture of alossless antennamay be defined in
terms of the maximum directivity as

2
[ 2o,

e

41

The overall antenna efficiency (e,) may be included to account for the
ohmic losses and mismatch losses in an antenna with |osses.

2 2
A =e A—]Dozecd(l—|1‘|2)( A )DO

e o

41 ﬁ

The effect of polarization loss can also be included to yield

)\,2
A=e (1-1T1 Z2—|D |a-a |?
e cd( | |)( 41_[] 0| t r|



Friis Transmission Equation

~
~
~
~

P, G(0,,d,) i
®,.4,) ©,.4,)

) —\/ Recewer
- R

Pr’ Gr(er ’¢r)

The Friis transmission equation defines the relationship between
transmitted power and received power in an arbitrary transmit/receive
antenna system. Given arbitrarily oriented transmitting and receiving
antennas, the power density at the receiving antenna (W) is

P G.(0 P’.D 0
7 e O "’d”)_e"’jnR7 (000

where P, is the input power at the terminals of the transmit antenna and
wherethetransmit antennagain and directivity for the system performance
arerelated by the overall efficiency

Gt(et’d)t) - eotDt(et’d)t) - ecdt(l B |Ft|2)Dt(et’¢t)

where e, is the radiation efficiency of the transmit antennaand I’ is the
reflection coefficient at the transmit antenna terminals. Notice that this
definition of thetransmit antennagai nincludesthe mismatch lossesfor the
transmit system in addition to the conduction and dielectric losses. A
manufacturer’s specification for the antenna gain will not include the
mismatch losses.

The total received power delivered to the terminals of the receiving
antenna (P,) is

Pi‘ = WI‘Aei‘

where the effective aperture of the receiving antenna (A,) must take into



account the orientation of the antenna. We may extend our previous
definition of the antenna effective aperture (obtained using the maximum
directivity) to a general effective aperture for any antenna orientation.

2
A, =e, ( 4A—] D, (oriented for max response)
|

}LZ

4—) D (0.,6,) (arbitrarily oriented)
T

Aer(er’q)r) = eor(

Thetotal received power isthen

)\. 2
Pr = €560t (M) Dr(er> d)r)Dt(et’ q)t)Pt

such that the ratio of received power to transmitted power is

P, 2 NERE
?:ecdrecdt(1_|rt| )(1_|Pr| ) m Dr(erad)r)Dt(et:d)t)

t

Including the polarization losses yields

P" 2 2
T = ecdrecdt(l B |Ft| )(1 B |Pr| )

t

X Ay o (2
(4nRJ D,(8,.6,)D,(8,.¢,)|a,a,|

(General Friis transmission formula)

For antennas aligned for maximum response, reflection-matched and
polarization matched, the Friis transmission equation reducesto

P, A )2
- | a5 Got Gor
P 4R

t



Radar Range Equation and Radar Cross Section

The Friis transmission formula can be used to determine the radar
range equation. Inorder to determinethemaximum rangeat whichagiven
target can be detected by radar, the type of radar system (monostatic or
bistatic) and the scattering properties of the target (radar cross section)
must be known.

Monostatic radar system - transmit and receive antennas at the

same location.
/ Incident
Transmitter- wave
Receiver >>> —> < << Target
\\ Scattered
wave
R =R,

Bistatic radar system- transmit and receive antennas at separate
locations.

Incident

< i
<

—/ wave
Transmitter )>> —>

Scattered

1'/& wave




Radar cross section (RCS) - a measure of the ability of atarget to reflect
(scatter) €lectromagnetic energy (units= m?). Theareawhichintercepts
that amount of total power which, when scattered isotropicaly,
produces the same power density at the recelver as the actual target.

If we define
o = radar cross section (m?)
W, = incident power density at the target (W/m?)
P. = equivalent power captured by the target (W)
W, = scattered power density at the receiver (W/m?)

Incident
>>> _ 5 Wwave RCS=0

Transmitter <

Scattered
wave

Accordingtothedefinition of thetarget RCS, the relationship between the
Incident power density at the target and the scattered power density at the
recelve antennais

_ oW,
lim

R oo

= Ws

4nR3

Thelimitisusually included since we must bein the far-field of the target
for the radar cross section to yield an accurate result.



The radar cross section may be written as

o = lim
R,

. | | T 2 |Hs
= lim = lim |4 TR,
Ry |E

/4
4mR’—=

i

where(E;, H,) aretheincident electric and magnetic fields at thetarget and
(E, H,) arethe scattered electric and magnetic fields at thereceiver. The
Incident power density at the target generated by the transmitting antenna
(Pt’ Gt’ Dt’ eot’ R, at) isgiven by

W, = G,.(0,.9,)
4nR

The total power captured by thetarget (P,) is

PCZOWI G(et,d))_ D(etad))
4nR 4mR?

i

The power captured by the target is scattered isotropically so that the
scattered power density at the receiver is

Pc eotoPt
4nR} (4mRR)Y

The power delivered to the recelving antennaload is

)Lz
P=WA =W. e D(,ob)—
r s~ er s or t( t¢t)4n

2
P

t

. D@SIDES)( 2
of ~or 4T 4R R,




Showing the conduction losses, mismatch losses and polarization losses
explicitly, theratio of the received power to transmitted power becomes

cdt ~ cdr

%:e e.|1 - IT2)1 - |7, 2)
L o PA80)D,0,.9,)
41

Y 2
) a, a,|*

4nRiRs

(radar range equation)

where

a,, - polarization unit vector for the scattered waves
a. - polarization unit vector for the receive antenna

Given matched antennas aligned for maximum response and polarization
matched, the general radar range equation reduces to

2

A
4nRiRS

ot ~ or

41

P, G,G
— =0
Pt




Example

Problem 2.65 A radar antenna, used for both transmitting and
recelving, has a gain of 150 at its operating frequency of 5 GHz. It
transmits 100 kW, and is aligned for maximum directional radiation and
reception to a target 1 km away having a cross section of 3 m? The
recelved signal matchesthepolarization of thetransmitted signal. Findthe
recelved power.

GotGor )\« 2
P =Po
41 4R R,
P =10 W R,=R =10’ m G, =G, =150
8
A=C =30 ms 606 m
S 5x10° Hz
) 2
P =(1093) 20| 006 1150
4n | 4m10°
p 5
w=—"tG=19 150-1.19 wim?

AmR} 47108
P =oW,=(3)(1.19) =358 W

P
o= e = 338 _ses wim?

" 4mR? 4ml0°

0.067

G, = 285%107°
4T

150 = 12.2 nW




