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Abstract

In modern systems it is often necessary to distinguish between confidential (low-level) and non-confidential
(high-level) information. Confidential information should be protected and not communicated or shared with
low-level users. The non-interference policy is an information flow policy stipulating that low-level viewers
should not be able to observe a difference between any two executions with the same low-level inputs. Only
high-level viewers may observe confidential output. This is a non-trivial challenge when considering modern
distributed systems involving concurrency and communication.

The present paper addresses this challenge, by choosing language mechanisms that are both useful for
programming of distributed systems and allow modular system analysis. We consider a general concurrency
model for distributed systems, based on concurrent objects communicating by asynchronous methods. This
model is suitable for modeling of modern service-oriented systems, and gives rise to efficient interaction
avoiding active waiting and low-level synchronization primitives such as explicit signaling and lock opera-
tions. This concurrency model has a simple semantics and allows us to focus on information flow at a high
level of abstraction, and allows realistic analysis by avoiding unnecessary restrictions on information flow
between confidential and non-confidential data.

Due to the non-deterministic nature of concurrent and distributed systems, we define a notion of interac-
tion non-interference policy tailored to this setting. We provide two kinds of static analysis: a secrecy-type
system and a trace analysis system, to capture inter-object and network level communication, respectively.
We prove that interaction non-interference is satisfied by the combination of these analysis techniques. Thus
any deviation from the policy caused by implicit information leakage visible through observation of network
communication patterns, can be detected. The contribution of the paper lies in the definition of the notion
of interaction non-interference, and in the formalization of a secrecy type system and a static trace analysis
that together ensure interaction non-interference. We also provide several versions of a main example (a
news subscription service) to demonstrate network leakage.

Keywords: Concurrent Objects; Asynchronous Methods; Communication Patterns; Non-interference;
Information Flow; Secrecy; Confidentiality; Distributed Systems; Network Leakage; Inter-Object Leakage.

1. Introduction

Programming languages can provide fine-grained control for security issues because they allow accurate
and flexible security information analysis of program components [1]. In particular, to specify and enforce
information-flow policies, the effectiveness of language-based techniques has been established. Information-
flow policies are essentially specified based on a mapping from the set of logical information holders to
a lattice of security classes representing levels of information sensitivity. Moreover, these policies usually
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dictate that no execution of the program should lead to an information-flow from more sensitive to less
sensitive information holders [2], otherwise the information-flow is called “illegal”.

Since information-flow policies are hyper-properties [3], i.e., are characterized as sets of trace properties,
their specification, enforcement, and reasoning are difficult, especially in complicated systems. Therefore,
giving a precise definition of the policy regarding legal and illegal information flows is challenging and
highly dependent on the model of the system, the attackers, and their capabilities. Secure information
flows are often expressed by semantic models of program execution in the form of a non-interference policy.
Non-Interference stipulates that manipulation and modification of confidential data should be allowed in
programs, as long as their visible outputs do not improperly reveal information about the confidential
data. In addition, attackers are typically assumed to be able to view “low” information. The usual method
for showing that non-interference holds is to demonstrate that the attacker cannot observe any difference
between two executions that differ only in their confidential input [4]. In other words, if two possible input
states of a program share the same low values, then the observable behaviors of the program execution on
these states should be indistinguishable by the attacker [5]. Although the observable behavior is defined by
the program output, there is no limitation in specifying program behaviors, and there is no fixed limitation
on what is observable by the attackers. For example, when programs have runtime interactions with the
environment, attackers may also see intermediate outputs [6]. In addition, the attacker may observe the
progress of the program, e.g., absence or presence of the next observable value, which leads to the concept
of progress-sensitive non-interference [6].

In the setting of distributed concurrent objects communicating by asynchronous methods calls, variables
are encapsulated by objects and are not directly observable when forbidding remote variable access. Thus
illegal explicit flows in the sense of assignment of confidential (or high) variables to non-confidential (or
low) variables inside objects are not critical. In this setting, method calls and replies are represented by
messages sent over a network, and thus network traffic could be observable to attackers. Therefore, patterns
of network messages reflecting calls and replies can be informative to attackers and may reveal high-level
information. For example, consider the following code in which for a specific user role the program’s privileges
are temporary raised to allow the creation of a new user folder2:

t ry :
i f (URole ) :

o . r a i s e P r i v i l e g e s ( )
os . mkdir ( ‘ /home/ ’ + username )
o . l ow e rP r i v i l e g e s ( )

except OSError :
p r i n t ( ‘ Unable to c r e a t e new user d i r e c to ry ’ )
re turn Fal se

re turn True

where the syntax o.m(e) denotes a remote method call to o. An attacker may deduce confidential information
about the user role based on the observation of method calls because in the then-branch there is a call and
in the else-branch, which is empty in this case, there is no method call. This is a case of implicit information
flow, which may appear when the observable program behavior includes observation of method calls. In
addition, such information leakage can result in other successful critical attacks such as arbitrary code
execution in injection attacks, which have been among the Top Ten critical attacks for years [7]. Here the
essential information that makes the attack successful, is related to when and how to attack the program.
For instance in the above example, the attacker knows that in some executions the program only raises the
privilege level for a short while before lowering it again. After observation of the call in an execution, he
can find a useful step toward a successful attack, for instance by throwing an exception, which leads away
from the call to lowerPrivileges(). As a result, the program is indefinitely operating in a raised privilege

2This vulnerability has been exploited in SplitVT, which is a program for splitting terminals into two shells, and allowing
arbitrary code execution by attackers CVE-2008-0162.
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state, possibly allowing further exploitation to occur by the attacker such as calling privileged functions [8],
executing the attacker’s own code and launching an injection attack.

To prevent information leakages in distributed concurrent object systems, we enrich the notation of
non-interference by considering observability of interactions among objects by attackers. So, we introduce a
notion of Interaction Non-Interference, which stipulates program executions to be equivalent in the view of
attackers observing method call events. In addition, we are considering prevention of inter-object leakages
when an object improperly sends secret information to another object, that might be non-observable from
the network view. We also consider some special cases of network leakage based on sophisticated mechanisms
including suspension and non-blocking calls, which increase difficulties in specification and enforcement of
non-interference. For example, attackers might be able to distinguish between executions with the same
sequence of method calls that only differ in blocking or suspension behavior. However, we do not impose
unnecessary restrictions on information flows from more sensitive to less sensitive variables inside objects,
which make our approach more realistic than other pessimistic approaches based on static analysis, and thus
significantly reduces the rate of false positives.

Our setting. To formalize our approach we consider a high-level core language based on the chosen concur-
rency model, namely the paradigm of so-called active objects using asynchronous method calls as the only
interaction mechanism, thereby combining the Actor model and object-orientation. This language is derived
from Creol [9]. Shared variables as well as thread-based notification are avoided. Synchronization control
is achieved by cooperative scheduling: A local suspension mechanism allows an object to perform other
tasks while waiting for a condition to become true or for a method result to appear. In Creol, an object
can be seen as a black box in the sense that its content such as its fields are not observable from outside
the object, and the main observation of objects is through their interaction by means of method calls. In a
network this is observed through messages corresponding to invocations and completions of remote method
calls, and dynamic object creation. Underlying network protocols may ensure that an attacker may observe
but not alter the content of a message [2], and message content may be considered non-observable due to
encryption techniques [10]. We consider the case that the destination and source of a message is considered
observable, and in addition, we assume that an observer may be able to deduce the method name and
whether it reflects a method invocation or a method completion. In addition, confidential message content
communicated through the network to untrusted objects is also a source of secrecy leakage. Our approach
covers these kinds of information leakages, and is relevant in Actor-based systems since these are based on
message interaction. The notion of observable events may be further refined, for instance by considering
certain parts of the network secure, say locally created objects.

We present an extension of Creol called SeCreol, in which Creol is extended with awareness of secrecy
levels as well as secrecy type information. We show that programs respecting certain static restrictions,
including secrecy typing, satisfy interaction non-interference. Moreover, to ensure that a system preserves
secrecy of information, we use a combination of access control and information flow control of communicated
information capturing direct access, and tracking communication patterns to capture indirect accesses.

Contribution. The following are the main contributions of this paper: (i) Introducing interaction non-
interference for non-deterministic distributed systems communicating by message passing. (ii) Extending
the core Creol language by providing a security-type system and developing a static analysis approach for
detection of network leakage. (iii) Provably enforce the interaction non-interference property in programs
of the SeCreol language by static analysis.

There is evidence, for example in [8], showing that the interaction between components and objects,
e.g., the sequence of system and method calls, are valuable for attackers and can cause information leakage.
Therefore, interaction non-interference is a critical property in a variety of secure systems, and thus its
satisfaction and application are not limited to object-oriented systems.

Paper outline. Section 2 formalizes the observable behavior of object-oriented distributed systems by ex-
plaining their execution model, and discusses security and attack models, as well as system assumptions,
leading to the notion of interaction non-interference in Section 3. Section 4 introduces the SeCreol core lan-
guage and a subscription example, to demonstrate our approach. A type system for secrecy levels is given
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in Section 5, while network leakage is considered in Section 6. Section 7 shows soundness of the network
analysis, using the operational semantics of SeCreol given in Appendix A. Section 8 discusses related work,
and Section 9 concludes the paper points, and suggests possible future work.

2. Behavior of Object-Oriented Distributed Systems

We consider concurrent, distributed objects where each object has its own execution thread. An object
does not have access to the internal state variables of other objects. Object communication is only by method
calls, allowing asynchronous communication, implemented by means of asynchronous message passing. In
order to avoid undesirable waiting in the distributed setting, we allow mechanisms for non-blocking method
calls. By means of a suspension mechanism, unfinished method invocations in an object may be placed on
the object’s process queue, for instance while waiting for a response from another object. The process will
be enabled when the object receives the response. This allows flexible interleaving of incoming calls and
(enabled) suspended processes. Internally in an object, there is at most one process executing at any time.
Objects reflect concurrent system components, while data structure inside an object is defined by data types
using functional programming.

The execution of a distributed system can be represented by the sequence of communication events that
has appeared between the system components. This sequence is called the communication history (or trace)
[11, 12, 13], which in our case consists of invocation and completion events of the called methods. At any
point in time, the communication history abstractly captures the system state [14]. And we represent the
set of executions of a distributed system by its possible communication histories, letting infinite histories
represent non-terminating executions. The formalization of interaction non-interference, which we define
later, is given as a property over the communication history.

Definition 1. (Communication events) We consider the following events Ev of a system, where o, o0 are
objects, m is a method, and e is a list of expressions:

• the set of invocation events o! o0.m(e),

• the set of invocation reaction events o ⇣ o0.m(e),

• the set of completion events o o0.m(e),

• the set of completion reaction events o ⌘ o0.m(e),

• the set of object creation events o$ o0.newC(e)

o o0

o! o0.m(e)

o ⌘ o0.m(e0)

o ⇣ o0.m(e)

o o0.m(e0)

Figure 1: Illustration of method interaction: Object o calls a method m on object o

0 with arguments e. The long arrows
indicate message passing, and the bullets indicate generation of events. The corresponding event is written next to each bullet.
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Figure 2: Illustration of the categories of method-related events for an object o. Observable network events for o consist of
events from o (SNDo) and events to o (RCVo), while non-observable o events are the internal reaction events of o (RACo).

The arrows reflect the direction of the message sending, and a two-way arrow indicates a synchronization
event.

In our model, a method call to m is reflected by the four communication events

o! o0.m(e); o ⇣ o0.m(e); o o0.m(e0); o ⌘ o0.m(e0)

as graphically illustrated in Fig. 1. The figure shows the time-line of the caller object o and the callee
object o0. An invocation message is sent from o to o0 when a method m is called, which is reflected by
the invocation event o ! o0.m(e) where e is the list of actual parameters. The invocation reaction event
o ⇣ o0.m(e) reflects that o0 starts execution of the method, and the completion event o o0.m(e0) reflects
method termination, where e0 is the list of returned values. Reading the reply in object o is reflected by
the completion reaction event o ⌘ o0.m(e0). Other events may be interleaved with these four events, and
in particular there might be an arbitrary delay between message receiving and reaction (due to message
queuing).

Object creation is similar to method interaction. The event o $ o0.newC(e) can be understood as the
sequence o! o0.C(e); o ⇣ o0.C(e); o o0.C(void); o ⌘ o0.C(void) where C represents the class constructor.

Fig. 2 categorizes communication events between objects. Messages sent from an object o are denoted
by SNDo and messages received by an object o are denoted by RCVo, while RACo denotes reactions events
of the object o, which are internal o events. For a given object o, these three event sets are disjoint.

SNDo ⌘ {o!, o} send events of o
RCVo ⌘ {! o, o } receive events of o
RACo ⌘ {⇣ o, o ⌘} reaction events of o

where o! denotes the set of invocation events from o and  o the set of completion events from o, while
! o denotes the set of invocation events to o and o the set of completions events to o, and so on. The set
SNDo represents output from o, while RCVo and RACo represent (external and internal) input to o. The
union of SNDo and RCVo represents events visible over the network, while RACo represents internal events
not visible over the network, as illustrated in Fig. 2.

Next, we define communication histories as a sequence of events.

Definition 2. (Communication histories) The communication history for a system at a given point in
an execution is a finite sequence of Ev events.

In our static analysis, we will consider finite traces (histories), representing executions up to a given
program point, or segments of such executions. The empty sequence is denoted empty and we let semicolon
denote sequence append (adding an event to the end of a sequence). Thus any sequence is either empty
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or can be seen as an appended sequence. We let t/S denote the projection of trace t by a set of events S
defined by empty/S = empty and (t;x)/S = if x 2 S then (t/S);x else t/S, and we overload the
notation by letting t/o denote the projection of a trace t by the set of events that has the object o as sender
or receiver, i.e., the subsequence of events that involve o.

2.1. Attack Model
We consider two levels of attacks: i) Inter-object leakage, where attackers appear as objects and im-

properly obtain secret information from other objects. ii) Network leakage, where attackers derive secret
information by observing the network traffic.

We consider the case that network attackers may know the whole system including program code and the
distribution, but can only observe observable runtime events at the network level. Based on the explained
behavioral model of object-oriented distributed systems, these events are passed as messages between objects.
Therefore, even when assuming encryption of message content, the source and the destination object of
messages are (implicitly) visible for attackers. Knowledge of the program code may allow an attacker to
sometimes deduce the methods name in an event and whether it is an invocation or a completion message. By
overestimating the attackers’ capabilities, we assume that the method name might be known to an attacker,
and therefore we assume that all aspects of a message except the parameters are observable. However,
reaction events are not observable by attackers since they are internal to an object.

Hence, possible leakage of information includes network leakages and inter-object leakages. Leakage of
network traffic is caused by observing the patterns of network traffic, while leakage to other objects occurs
when an object improperly sends secret information to the other object, something that might not be
observable from the network view, but from the other object.

Self-calls will not be observable over the network and do not cause network leakage. Similarly, commu-
nication to and from internal objects (for instance object generated by this at the same location) could also
be considered non-observable at the network level (as well as local communication over internal sub-nets,
assumed to be safe). However, for simplicity, we do not here include location awareness and treat all objects
as if they were in different locations. (Location awareness could easily be added.)

In a distributed object system, the relative execution speed of the objects is not known. This is reflected
in our model by letting the queue of incoming messages to an object be unspecified. Two messages sent
from one object to another may be handled in the reverse order. In general, the ordering of RACo events
in an execution may differ from the ordering of RCVo events in the same execution. This gives a certain
degree of non-determinism at the object level. At the network level one might consider message overtaking,
loss, and duplication. However this gives an even higher degree of non-determinism, and therefore a weaker
notion of leakage. We therefore ignore message overtaking, message loss, and message resubmission at the
network level, since sequence information represents the upper limit of what is observable at the network
level, assuming reasonable reliable and efficient networks. The order of messages in a sequence is then
observable and can be informative for attackers, and may cause network leakage.

This notion of network observability can be formalized as an equivalence relation over histories, called
observable network equivalence (⇡net), and will be used to compare the behaviors of two different execution
histories (� and �0) in order to detect leakage.

Definition 3. (Observable network equivalence)

� ⇡net �
0 ⌘ (obs(�) = obs(�0))

where obs expresses observable trace information, defined inductively over finite histories � by:

obs(empty) = empty

obs(�; (o! o

0
.m(e))) = obs(�); (o! o

0
.m) if o 6= o

0

obs(�; (o0  o.m(e))) = obs(�); (o0  o.m) if o 6= o

0

obs(�; (o$ o

0
.newC(e))) = obs(�); (o! o

0
.C)(o o

0
.C)

obs(�;x) = obs(�) otherwise
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The otherwise case is taken when no other equation applies (in this case when x is a reaction event).
Similarly, observable network equivalence relative to a particular object o is defined by

obs(�/o) = obs(�0/o)

The latter will be used when we do class-wise analysis, focusing on the object represented by this.

3. Interaction Non-Interference

As mentioned, non-interference ensures that an attacker should not be able to obtain confidential infor-
mation by observing the low input and output of an executions of a system. We therefore need to capture
the possible observations at a given point in an execution, represented by the communication history at that
point, and define a notion of low equivalence between histories. Intuitively, two histories are low equivalent
if they have the same low information, i.e., when ignoring non-observable events and arguments that are not
low.

Definition 4. (Low equality) � =L �0 is defined by low(�) = low(�0), defining the low projection over
histories and expressions as follows

low(empty) = empty

low(�; o! o

0
.m(e)) = low(�); o! o

0
.m(lowm(e))

low(�; o o

0
.m(e)) = low(�); o o

0
.m(lowm(e))

low(�; o$ o

0
.newC(e)) = low(�); o! o

0
.C(lowC(e)); o o

0
.C(void)

low(�;x) = low(�) otherwise

where lowm(e) is defined by the sublist of those parameters ei for which the ith parameter is declared as Low

according to the method declaration. Similarly, lowC(e) is the sublist of actual class parameters ei for which
the ith class parameter is declared as Low.

Observation. It follows directly from the definitions above that low equality is a stronger relation than
observable equality, i.e. � =L �0 implies � ⇡net �0.

Let ⌃ be the set of (finite or infinite) traces of events for all possible completed executions of a system,
letting finite traces represent terminating executions. Below � and �0 will range over ⌃. Non-interference of
an object o expresses that if two executions involving o are low equal up to a certain time i, then also the
low output will be the same, including the next step (after the given time), if it is an output (i.e., a SNDo

event). If the object is deterministic with respect to its input, this could be expressed by

8�,�0, i . (�/o)|i =L (�0/o)|i ^ (�/o)[i+ 1] 2 SNDo ) (�/o)| i+ 1 ⇡net (�
0/o)| i+ 1

where i represents the time relative to o (the number of o steps), �[i] denotes the ith element of � (i 2 Nat),
and �|i is the sequence prefix �[1..i] (or � if the length of � is less than i).

Since our objects are non-deterministic, due to non-deterministic queues of incoming messages and of
internal process queues, which in turn reflect non-deterministic network speed and object processing speeds,
this definition cannot be used. It would be too strong, since it essentially expresses that the next low output
(if any) from a given object o at a given time is deterministic. For instance if one possible execution at
a given time starts with a low output event x from o and another with an observally different low output
event x0 from o, interference would not be satisfied, since the execution that starts with x has next a low
output that is not observably the same as in all other executions.

In order to deal with non-determinism, we need to consider the set of possible executions, such that
observable network equivalence holds for the set of possible next steps, i.e., considering all possible continu-
ations of � after i compared to the set of all possible continuations of �0 after i. In general, equivalence of two
sets can be expressed by using existential quantification. We therefore express our notion of non-interference
using an existential quantifier, as follows.
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Pr ::= In⇤ Cl⇤ program
L ::= Low | High | ... secrecy levels
T ::= I | Int | Any | Bool | String | Void | List[T ] | ... types, here [ and ] are ground symbols
U ::= T | T : L type and secrecy level (default is Low)

In ::= interface I [extends I+] [with I]{D⇤} interface declaration
Cl ::= class C ([U cp]⇤) [implements I+]

{[U w [:= e]]⇤ [B] [[with I] M ]⇤} class definition
M ::= D B method definition
D ::= U m([U y]⇤) method signature
B ::= {[T x [:= e]; ]⇤ [s; ] return e} method blocks
v ::= x | y | w variables (local or field)
e ::= null | void | this | caller | cp | v | f(e) | e v e pure expressions, including level-checking
rhs ::= e | new C(e)[: L] | e.m(e) right-hand-sides
s ::= skip | s; s | v := rhs assignment

| e!m(e) | await v := e.m(e) | await e call statements and suspension
| if e then s [else s] fi | while e do s od if and while statements

Figure 3: SeCreol BNF language syntax, with C denoting class name, I interface name, m method name, cp formal class
parameter, w fields, y method parameter, x local variable. We let [ ]

⇤, [ ]+ and [ ] denote repeated, repeated at least once, and
optional parts, respectively.

Definition 5. (Interaction non-interference) We define interaction non-interference (INI o) for an
object (or a group of objects) o:

8�,�0, i . (�/o)|i =L (�0/o)|i^ (�/o)[i+1] 2 SNDo ) 9�00 . (�0/o)|i  (�00/o)^ (�/o)|i+1 ⇡net (�
00/o)|i+1

where  expresses the sequence prefix relation.

Here �,�0,�00 range over sequences of events reflecting possible completed executions (⌃). Thus the definition
implies liveness (progress sensitivity). Class-wise analysis implies that we are interested in a given object o.
The existential quantifier reflects possible non-determinism, and �00 allows to choose the non-deterministic
extension of �0 that follows � for the given object o. The definition says that if an execution (sigma) has an
output from o at time i+1 then any other execution with the same low o events up to time i has a possible
extension (�00) after time i with the observably same output event. Thus the set of observable output events
for a given object at a given time must be deterministic relative to the low inputs before this time.

This definition of interaction non-interference is sufficient to avoid leakage by network attackers.
Our goal is to statically detect the INI o property by means of two kinds of static analysis: i) a deductive

system for secrecy typing ii) a deductive system for trace analysis of network events, such that both analyses
are class-wise. In order to show this in some detail we will consider a high-level core language for the chosen
concurrency model.

4. The SeCreol Language

We define a minimal high-level language illustrating the concurrency model of concurrent objects com-
municating with asynchronous methods. The language, called SeCreol, builds on the concurrency model of
Creol [9], extended with secrecy constructs, including declaration of static secrecy levels for variables and
parameters, and testing of runtime secrecy levels of objects.

The syntax of SeCreol is given in Fig. 3. A program consists of a number of interfaces and classes. We
let the last class declared in the program be taken as the main class, which is instantiated automatically and
its body will start to execute. An interface may have a number of super-interfaces and method declarations.
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A method of an interface or class may have a cointerface, which gives the (minimal) interface of the caller
objects. (For simplicity an interface may only use one common cointerface for all its methods.) This allows
type-correct call-backs [9]. A class C takes a list of class parameters cp, defines fields w, and has an optional
method body for initialization B (also called the class constructor), followed by method definitions, with
the corresponding cointerfaces as declared in the interfaces. Class parameters cp are like fields apart from
being initialized through the new statement. Class parameters, the implicit class parameter this and the
implicit method parameter caller are read-only. A class may implement a number of interfaces, and for each
method of an interface of the class it is required that the class defines the method such that the cointerface
and types of each method parameter and return value are respected. Additional methods may be defined in
a class as well, but these may not be called from outside the class. For simplicity we omit class inheritance.

All variables and parameters are typed by data types or interfaces and for simplicity the syntax of the
data type language is omitted here. Classes are not allowed as types, which means that an object can only be
seen though an interface, and therefore, remote access to fields nor methods that are not exported through
an interface is not allowed. This limits the possible interactions between the concurrent objects, regardless of
where they are located, and in particular, shared variables concurrency is avoided. With respect to security
analysis, it has the advantage that no field is observable from outside of an object. Thus observable behavior
is limited to interaction by means of method-oriented communication.

Expressions e and functions f are side-effect free, and e is a (possibly empty) expression list, comma-
separated. Statements include standard constructs for assignment, skip, if, while, object generation, and
sequential composition. The simple call statement e!m(e) is like message passing; a message is sent to the
object expressed by e (the callee) indicating that it should execute method m (when the callee is free to
do this) with a list of actual parameters e. Thus the current object is not blocked, and will not receive
the return value. If the return value is desired by the calling object, it may use the blocking call statement
v := e.m(e) or the non-blocking call statement await v := e.m(e). The latter call statement forces the
caller object to suspend the current process, allowing it to continue with any enabled suspended process in
its process queue or perform an incoming call. Similarly, the conditional await statement await e suspends,
placing the current process on the process queue. This process is enabled when the Boolean condition e is
satisfied. The considered core language allows high-level and yet efficient method-based interaction between
concurrent objects, supporting both passive and active waiting. The operational semantics of the language
is given in Appendix A.

The language is strongly typed, and a typing system can be given in the style of [15]. We use a standard
notion of subtyping (subsuming subinterfacing). If T 0 is a subtype/subinterface of T , we say that T 0 is better
than T , and a method declaration D0 is better than D if they have the same method name and number of
parameters, the return type of D0 is better than that of D, and each formal parameter of D is better than
the corresponding one of D0 (i.e., contravariance). The type system will ensure that a class properly defines
all the methods of its declared interfaces (and superinterfaces), or better ones, and it ensures that each
method call will be bound to a method declaration. The self-call this.m(e) will be bound to the enclosing
class (which must have a type-correct declaration of m). When e is of interface I, the method call e.m(e)
will be bound to I (or the closest superinterface of I with a (type-correct) declaration of m). For simplicity,
we do not allow interfaces nor classes to declare several methods with the same name. Interface Any is the
most general interface, supported by any object.

A variable is typed either by an interface or by a data type, called object variable or data variable,
respectively. The runtime value of an object variable is an object identity (or null), and that of a data
variable is a data value. Data variables are passed by value and object variables are passed by reference
(i.e., the object identity is passed by value). Note that all object expressions are typed by an interface,
except this, which is typed by the enclosing class. In a well-typed program, we may assume that each call
is annotated by the interface/class of the callee, as in o.mI(e) where I will contain a declaration of m.

Secrecy Levels. We enrich the typing system with secrecy levels. Secrecy levels range over L of basic secrecy
descriptions with ordering v, such that (L, v) is a lattice, i.e., a partially ordered set with meets (u),
joins (t), a top element > and bottom element ?. Higher in the lattice means more secure; and thus
the top element is the most secure. For example, a simple multi-level secrecy system might have secrecy
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descriptions low, medium, and high, with ordering low v medium v high, where low =? and high = >. A
more expressive lattice could have several medium elements, indexed by object identities, or sets of object
identities, for controlling access rights. This is essential at runtime for controlling secrecy with respect to
objects; however, in our static analysis we will not use levels indexed by identities, since in general there is
limited static knowledge about object identities.

In the syntax, all fields, formal parameters, and return values are given a secrecy level, with level low
as default (if none is specified). Local variables do not have a declared secrecy level; their level starts as
Low but may change after each statement. At runtime, objects are assigned a secrecy level that protects
against unauthorized changes. Such a protected part is typical in policy enforcement research [16]. The
statically assigned level of a formal data parameter represents the maximal level of any actual parameter.
The declared secrecy level of an object variable expresses the secrecy of the object identity, which is typically
low, reflecting that object identities (as such) are considered non-secret, whereas the runtime secrecy level
of an object gives more detailed information, for instance about the access rights of the object. The static
analysis is class-based, and therefore the analysis is based on the (statically) declared levels, and not the
runtime object levels. However, the language allows specification of restrictions on the secrecy level of a new
object (as in x:=new C():Low) which determines the initial runtime secrecy level of the generated object.
At runtime an object generated by the statement x:=new C():l will get the level l u lthis where lthis is the
level of the parent object. Note that l u lthis v lthis, which ensures that the secrecy level of the generated
object will not exceed that of the parent object. As an object encapsulates local data and fields, these are
not accessible from outside of the object, and we do not need static control of write access to fields of an
object. At runtime the secrecy level of an object can be tested using the v operation in the program.

In the static analysis, we consider all statically assigned levels, and all possibilities for levels that can
be assigned at runtime. This allows us to detect a maximal secrecy level for each program variables at any
given point in a program (see Sec. 5). The next subsection describes an example of a network leakage, as
well as a non-leaking version.

A Subscription Example
A simple subscription example illustrates the different language mechanisms, including simple, blocking

and non-blocking method calls, and suspension mechanisms. Note the use of cointerfaces in Fig. 4, which
implies that the caller of subscr is of type Client, which in turn allows the field users in class SUBSCLIENT
to be typed as a list of Clients, thereby allowing the call users[i]!notify(n) in the class to be type correct since
users[i] then is of interface type Client. Here List is a predefined generic data type with generators empty
and insert, and with functions length and delete. All program variables in the example are declared as Low
(by default) except the parameters to notify and publish, allowing high level News information to be passed
to clients through these methods. The data type News may be defined as a String or a more complex data
structure. To control and limit the notification of high level news, the test n v first(user) is made before
notification. Thereby notification is restricted to client objects with a high enough runtime secrecy level.

We use the convention that class names are written in upper-case, interfaces and types are capitalized,
while variable, method, and function names are in lower-case characters. We omit return void at the end
of a class body. The non-blocking call await v := c. notify (n) makes a NEWSPROVIDER object send
notifications at a speed adjusted to the Client c, without blocking itself from responding to other calls. In
contrast, the notify method in class SUBSCLIENT uses a simple call, users [ i ]! notify (n), to notify each
client, without suspending nor waiting for each one to receive the call. Also, the main program (i.e., the
constructor of the main class) uses simple calls, in order to set up the initial system structure without
waiting for replies. The suspending call in make_subscr allows the SUBSCLIENT object to continue with
notifications and other requests while waiting for Subscriber s to respond. The main program declares a
subscriber s1 getting news from n1 and n2, and s1 notifies c and s2, while s2 further notifies a and b, as
illustrated in Fig. 5. Note that s1 and s2 play a dual role, that of a client and that of a subscriber, and
must therefore be of interface SubsClient. This makes the program well-typed.

The first version of the example poses a possible network leakage because a network observer may detect
which subscribed client objects are High, by comparing the network traffic from a given subscriber object
over time. The second version uses a dummy call in the else branch of notify to confuse a network observer
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interface Client {
Void notify(News:High n)
Bool make_subscr(s:Subscriber) }

interface Subscriber with Client {
Bool subscr()
Bool unsubscr() }

interface SubsClient extends Subscriber, Client {}
interface Publisher {Void publish(News:High n)}
class SUBSCLIENT() implements SubsClient{

List[Client] users := empty; // to store subscribers

Void notify(News:High n) {Nat i:=1;
while (i  length(users)) do
if n v users[i] // checking runtime sec.levels

then users[i]!notify(n) fi; // simple call

i:=i+1 od;
return void}

Bool make_subscr(s:Subscriber){Bool ok;
await ok:= s.subscr(); return ok}

with Client
Bool subscr(){

if caller 6= this
then users := insert(users,caller) fi;
return caller 6= this }

Bool unsubscr(){
users := delete(users,caller);
return true} }

class NEWSPROVIDER(Client c) implements Publisher {Void v;
Void publish(News:High n){v := await c.notify(n); return v}}

class MAIN() { {// main program

SubsClient s1 := new SUBSCLIENT():High;
SubsClient s2 := new SUBSCLIENT():High;
Client a := new SUBSCLIENT();
Client b := new SUBSCLIENT():High;
Client c := new SUBSCLIENT();
Publisher n1 := new NEWSPROVIDER(s1):High;
Publisher n2 := new NEWSPROVIDER(s1);
s2!make_subscr(s1);
a!make_subscr(s2);
b!make_subscr(s2);
c!make_subscr(s1) } }

Figure 4: A simple subscription example.

(which cannot see the news content). The third version reduces the need for dummy calls due to non-
deterministic background (self) activity that makes dummy calls when the object is not busy with other
things. Here a somewhat different version of notify is given.

It is noticeable that in our approach we are considering the worst case scenario. For instance, in the
subscription example, we consider that the set of subscribed and unsubscribed clients are known to the
attacker (i.e., by tracking the execution communication), otherwise an observer may not be sure that the
lack of notification to a client is due to unsubscription or the presence of high-level news.
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Figure 5: Illustration of the flow of news for the subscribers, clients, and news providers in the main program.

class SUBSCLIENT() implements SubsClient {
... // as before

Void notify(News:High n) {Nat i:=1;
while (i  length(users)) do
if n v users[i] // checking runtime sec.levels

then users[i]!notify(n)
else users[i]!notify(empty) fi; // async. call

i:=i+1 od;
return void }

}

Figure 6: Secure Class Server, second version – more secure, but generates dummy calls.

class SUBSCLIENT() implements SubsClient { List[Client] users := empty;
{ this!mask() } //initialization, starting internal background

activity by a self-call

...
Void notify(News:High n) { Nat i:=1;

if improper(n) then skip
else while (i  length(users)) do

users[i]!notify(n);
i:=i+1 od fi;
return void}

// send to all or none

Void mask(){Nat i:=1;
while (i  length(users)) do
await true;
users[i].notify(empty) ; // suspending call

i:=i+1 od;
this!mask();
return void}

}

Figure 7: Secure Class Server, third version
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5. Secrecy-Type System

Prevention of information flow from one information holder to another one with a lower level have been
considered in the literature. In our setting of active objects, characteristics such as information hiding and
encapsulation imply that there is no external access to class fields [9]. Instead, we need to prevent information
flow from one object to another, which we specify by means of static rules for acceptable information flow.
We enforce this policy in our secrecy-type system for any well-typed program. Hence, our static analysis
does not need to imply any restrictions inside a class such as limitations on information flows from high-level
variables to low-level ones (e.g. vHigh := vLow), unless high information can be revealed in communication
among objects or during suspension. Therefore, despite the fact that static analysis usually appears as a
rather pessimistic and restrictive technique implying a high rate of false positives [17], we are able to be less
restrictive. In order to make our static analysis as precise as possible, we allow the secrecy levels of program
variables differ with the different program points. This makes our analysis flexible. However, we rely on
level information about fields formulated in a way similar to a class invariant, to be respected upon leaving
a method invocation.

Our analysis is done class-wise. This is possible in our setting since remote access to fields is forbidden
and since all object interaction is done by methods declared in an interface. The secrecy analysis of a class
only depends on that class declaration, related interfaces, and the class parameter declaration of instantiated
classes (through the new construct). We assume a well-typed program and assume each method call e.m(e)
is augmented by annotating the method name m by the interface of the callee e (as in e.mI(e)), or the
enclosing class when e is this. The secrecy-type system for classes and methods are shown in Fig. 8. The
confidentiality of a class definition Cl is formalized by judgments of the form

` Cl ok

expressing that the class definition obeys the confidentiality rules. The confidentiality of a method definition
M is formalized by judgments of the form

C `M ok

where C is the enclosing class. The confidentiality of a statement s is formulated by considering judgments
of the form

C ` [�, pc] s [�0, pc0]

where C is the enclosing class, � is a mapping binding variable names to confidentiality levels for a given
program point, and pc is the confidentiality level of the current program point. As � and pc depends on
the program point, we let the “pre-binding” [�, pc] denote the bindings in the pre-state of s and the “post-
binding” [�0, pc0] those in the post-state of s. Finally, the confidentiality of expressions and right-hand-sides
rhs, given in Fig. 9, are formulated by judgments of the form

C ` [�, pc] rhs :: l

where l is the resulting confidentiality level of rhs. Post-bindings are not needed here as our expressions
and righ-hand-sides are side-effect free.

For simplicity, we let the mapping �C (corresponding to table look-up) represent the declared secrecy
levels of fields and class parameters for a class C as given in the class definition. If the secrecy level of a field
w is declared as l, the binding w 7! l is included in �C . In contrast, � expresses confidentiality information
depending on a particular program point. Since �-levels of class fields can increase and decrease, the type
rules insist that at the end of each method (and at each ion point) their resulting levels should not exceed
the declared secrecy level (or equal). This allows us to assume the declared level at each method start and
after suspension. Furthermore, the notation ⇤[I,m, i] denotes the level of the ith parameter of the method
as declared in interface I. And similarly for classes. For a class C, we let C also be the name of the class
constructor (initialization code).

According to Rule S-CLASS in Fig. 8, confidentiality of each class is satisfied, or simply is ok, if the
confidentiality of each method is satisfied. The confidentiality of a method (see Rule S-METHOD) is
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(S-class)

C ` Mi ok, for each Mi 2M

` class C(cp : U){w : U

0
; M} ok

(S-method)

C ` [�C [y 7! L(U), x 7! Low], Low] s [�, pc]

C ` [�, pc] e :: l

0

l

0 v l

�[w] v �C [w]

C ` T : l m(y : U){var x : T ; s;return e} ok

Figure 8: SeCreol confidentiality type system for classes and methods where �C denotes the declared secrecy levels for class
parameters and fields, in class C and � expresses confidentiality information depending on a particular program point.

Map notation A mapping M is given by a set of bindings zi 7! valuei for a finite set of disjoint identifiers zi, the domain.
The empty map is denoted ;. Map look-up is written M [z] where z is an identifier. A map update, written M [z 7! d], is the
map M updated by binding z to d, regardless of any previous bindings of z. Similarly M [S] denotes M updated with a set S

of (disjoint) bindings.

satisfied if its body satisfies confidentiality starting with the declared level bindings (for fields and class
parameters, method parameters, and local variables) and with Low as the starting pc level, and resulting
in some binding [�, pc] such that � respects the declared field and class parameter bindings levels (i.e.,
�[z] v �C [z] for each field/class-parameter z) and such that the returned value respects the declared output
level of the method. As stated before, we check �[z] v �C [z] because the secrecy level of program variables
is allowed to be changed in different program points. This is not unlike previous approaches such as [10],
except that we make no distinction between confidential and non-confidential variables as long as they do
not affect the communication behavior. However, a complication for object oriented programs is that the
order of method calls (and suspended processes) is not statically given, therefore the declared level of fields
(and class parameters) must be respected at each method return and suspension point. This allows us to
assume the declared level at method start and after suspension. This implies that the level of a field may
temporarily be higher than the declared level. As we will explain with more details in secrecy-type system,
it also implies that a simple fix-point calculation is required to be used when dealing with while-loops.

The SeCreol secrecy-type system for expressions and statements are shown in Fig. 9 and Fig. 10, re-
spectively. These figures present a collection of typing rules describing which secrecy type is assigned to
each occurrence of an expression and program variable. In general, based on these rules, the level of an
occurrence of an expression is determined using � and pc. The rules check that each occurrence of an actual
parameter (or return value) respects the declared level of the corresponding formal parameter (or method
return level), and that fields and class parameters respect the corresponding declared levels at suspension
points and at method returns. In our formalization this is checked by premises in the rules; thus if these
premises cannot be derived, the program will not be accepted as a program satisfying the secrecy rules.
Note that each statement may adjust �, but only if and while statements may affect pc. Thus the level of
variables and pc may differ at different program points, which for example means a call that is acceptable at
one program point, might be unacceptable at another point. Furthermore, the rules ensure that parameters
of calls made in a branch with a high condition will be high and may therefore not leak information.

Rule S-EXP states that the confidentiality of an expression e is achieved by �[e] t pc. We include pc
since it represents the context level of the current program branch. Thus a low level expression occurring in
a program branch with level pc, gets pc as its level, since it may reveal context information. We define �[e]
as follows: For a constant c (including null, this, void, and caller) �[c] is Low (i.e., ? ), �[e v e0] is High (i.e.,
>), and for other kinds of expressions (including function applications) �[e] is defined as tv2e �[v], where
v ranges over the variables textually occurring in e, and �[v] is its level recorded in �. For simplicity, we
here ignore so-called sanitizer functions, which are special functions resulting in a lower level than some of
its inputs. Moreover, Object identities are not confidential, thus object variables are typically declared with

14



(S-Exp)

C ` [�, pc] e :: �[e] t pc

(S-New)

C ` [�, pc] ei :: li li v �C0 [cpi]

C ` [�, pc] (new C

0
(e) : l) :: pc

(S-Call)

C ` [�, pc] ei :: li li v ⇤[I,m, i]

C ` [�, pc] e.mI(e) :: ⇤[I,m] t pc

(S-SelfCall)

C ` [�, pc] ei :: li li v ⇤[C,m, i]

C ` [�, pc] this.m(e) :: ⇤[C,m] t pc

Figure 9: SeCreol secrecy-type system for expressions and right-hand-sides.

(S-skip)

C ` [�, pc] skip [�, pc]

(S-composition)

C ` [�, pc] s1 [�1, pc1] C ` [�1, pc1] s2 [�2, pc2]

C ` [�, pc] s1; s2 [�2, pc2]

(S-simple-call)

C ` [�, pc] e.mI(e) :: l

C ` [�, pc] e!mI(e) [�, pc]

(S-rhs)

C ` [�, pc] rhs :: l

C ` [�, pc] v := rhs [�[v 7! l], pc]

(S-await)

C ` [�, pc] e :: l

�[w] v �C [w]

C ` [�, pc] await e [�+ �C , l]

(S-await-call)

C ` [�, pc] rhs :: l

�[w] v �C [w]

C ` [�, pc] await v := rhs [(�+ �C)[v 7! l], l]

(S-If)

C ` [�, pc] e :: l

C ` [�, l] s1 [�1, pc1]

C ` [�, l] s2 [�2, pc2]

C ` [�, pc] if e then s1 else s2 fi [�1 t �2, pc]

(S-While)

C ` [�i, pci] e :: li

C ` [�i, li] s [�
0
i, pc

0
i]

�i+1 = �i t �

0
i, pci+1 = pci t pc

0
i

C ` [�1, pc1] while e do s od [FIXi(�i), pc1]

i = 1, 2, . . .

Figure 10: SeCreol secrecy-type system for statements.

a Low level. However, the level of such variables in � is affected by the branch level pc as other program
variables. Thus the resulting level of object creation is pc as object identities as such are considered Low.
For the right-hand-side of a call or new corresponding other rules in Fig. 9, each actual parameter is required
to have a level not exceeding the declared level of the corresponding formal parameter. The resulting level
of the call right-hand-side is the declared return level of the method, joined with the current context level
pc. We observe that

C ` [�, pc] rhs :: l ) pc v l

which means the rhs level is always at least as high as pc. This fact can easily be proved by looking at each
case of an expression or right-hand-side rhs according to the SeCreol syntax (Fig. 3).

According to the secrecy-type system for statements in Fig. 10, skip does not change anything. Similarly,
a simple call does not change � nor pc, but the actual parameter levels must respect the declared levels
of the corresponding formal parameters (as above). For an assignment, object creation statement, or call,
v := rhs, with level l for rhs, the level of v in � is changed to l, which could imply a downgrade or an
upgrade (or no change) of level. The pc is not modified since such a statement is considered efficiently
terminating without any branching.

For an await statement we must ensure that the declared levels of all fields and class parameters are
respected, since the suspension may cause other processes to continue, for which we assume these declared
levels. As mentioned, the declared level of fields must be respected at the end/suspension of each process.
Levels of local variables will remain after an await statement since local variables are not affected by other
processes. We therefore use map composition (+) in the post-state of an await to overwrite the levels of
fields and class parameters by the declared levels (�C). In the case of a call, the effect of the assignment
part is added after the map composition since this assignment happens after suspension. A high await
condition may cause implicit leakage, since the presence of high information may be leaked through a low
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output, for instance await <leaving house>; x.report (true) where report takes low input. Therefore the pc
level resulting from an await is that of the await condition/right-hand-side (which is at least as high as the
former pc level).

With respect to typing of security levels, a blocking call v := e.m(e) can be seen as the sequence
e!m(e); v:= <returned value>, and the non-blocking call await v := e.m(e) can be seen as the sequence
e!m(e); await <long enough>; v:= <returned value>. The rules for blocking and non-blocking calls can be
derived from this understanding. Note that an await-statement may affect the pc. A high await condition
may reveal secret information that may be leaked. An example could be await <leaving home>; athome:= false.
where leaving one’s home is considered secret. By raising the level after the high await condition, the ath-
ome variable becomes high, and leakage through data values is avoided. Other indirect leakage of an await
statement is considered in the next section.

As mentioned an if statement may cause implicit leakage of high information, i.e., an if statement with
a high test may reveal secret information through branches with different low level values communicated
to other objects. To avoid this, Rule S-IF lifts the pc level of each branch by the level of the test. This
will make all expressions occurring in both branches at least as high as the if-test. Thereby this kind of
implicit leakage is avoided. (Note that l is at least as high as pc in the rule.) Since the static analysis does
not know which branch is taken at runtime, the resulting value of � for each variable is calculated as the
highest level of each branch. An if statement without an else-branch is like an if statement with skip in
the else-branch.

The treatment of while is similar to an if statement without an else-branch, except that the static
analysis cannot predict how many times the branch is iterated. Each iteration may lift the levels in � or pc.
However, a loop will have a finite number of program variables and since there is a finite number of levels,
there is a minimal fixpoint reachable in a finite number of approximations (typically i equal to one or two).
Rule S-while reflects this fixpoint calculation.

The secrecy typing ensures that there is no flow from high values to low values, and that values evaluated
in an if-branch with a high test are high (since they may depend on the test), and similarly for values
evaluated after an await with a high test or inside a while-loop with a high test. Thus the values of low
variables in any program state do not depend on high inputs. Furthermore, this ensures that for any event
generated by o, the values of parameters declared as low do not depend on high inputs. A proof of this
based on a semantics that includes runtime secrecy levels, is given in [18], which proves the soundness of
the secrecy rules presented here. 3

The subscription example. The subscription example in Fig. 4 has a straight forward secrecy typing. The
secrecy analysis of the while loop needs no iteration to reach the fixpoint. The notify call in class newsprovider
(as well as that in SUBSCLIENT) has a high actual parameter (n), which is acceptable since the notify method
in Client is declared with a high (formal) parameter. However, the if-statement has a high test, and at the
network level the pattern of notify calls could cause network leakage, which we consider in the next section.
The High annotations on the objects created in the main class concern the runtime level of these objects,
and not the variables declared in the main program. The second and third versions of the example have no
additional secrecy challenges, the argument empty is low which is always acceptable.

Another example. A (quasi) example is given in Fig. 11 to illustrate possible changes in the levels of fields (xh
and xl) and local variables (x). Level changes are written to the right of each line, not repeating unchanged
information. The program satisfies the rules for confidentiality, i.e., the program does not leak information
in its explicit output and respects field levels at return/await statements. Note that the lowering of xh was
needed to make the check call allowed, that the higher level of the x was maintained over the await (since

3Alternatively, one could add a level to methods, letting this level be used as the starting pc level of the method body, and
require that methods called with high pc must be high. In the subscription example, the local variable u would then be high,
the notify call would be accepted, and the secrecy analysis of the while loop would need no iteration (as before). However, this
would mean that a high method is not observable and therefore do not cause leakage. All methods called by a high method
must also be high, which gives some limitations in what is allowed. If we believe that different notify patterns represent an
observable leakage, we can consider the generated pattern and check for leakage. This approach is explained below in Sec. 6.
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interface Passw{
Int:Low passw(Int:High x)// store password, return a ref number

Int:High check(Int:Low x)// check validity of password given ref

}

class TEST(Passw o){
Int:High xh;
Int:Low xl;

Int:High test(Int x){ xh 7! High . Note: all others are Low
xl := x; xl 7! Low
x := xh; x 7! High
xh := xl; xh 7! Low . Note: suspension is ok even with x high
await <low cond.>; xh 7! High, x 7! High . Note: all others are Low
xh := o.passw(x); xh 7! Low . Note: the call is ok with x high
x := o.check(xh); x 7! High . Note: the call is ok since xh now is Low
return x Note: return is ok with x High, since xh v High ^ xl v Low.

}}

Figure 11: An example showing level changes in fields and local variables (indicated to the right in each line).

x is local), that the higher level of x was acceptable in the passw call, and that the high level of the local
variable x is allowed at the return point (after which x is de-allocated). If the await condition had been
high, pc would be raised to high after the await, and the call to check would not be secrecy-type correct
since xh would then be high.

6. Network Level Leakage

We here consider enforcement of network-level non-interference (INI o) for SeCreol programs by means
of static trace analysis. We assume a given program that is secrecy-type correct, i.e., has passed the secrecy-
type analysis of Section 5. Moreover, we assume that await-, if-, and while-tests are decorated with the
levels resulting from the secrecy-type analysis, using the notation el, and we assume the interface of a callee
is known from the type analysis.

The static analysis is class-wise and we check that a class is not leaking network information, according
to INI this. The analysis is based on trace expressions, �, detected by means of static analysis applied to
method bodies. The trace expression of a method reflects the possible traces of an execution of that method
including calls generated and consumed by the method. Each trace expression may contain "high" subtraces,
caused by high if- and while-conditions. Therefore we check whether any high (sub)trace can be reduced
to a low (sub)trace (given the context of the class), as formalized below by INIcheck. In the class rule
of Fig. 12, the premise INIcheck(�mi) checks the INI property for the trace expression of each method
mi of the class. It must be checked that each trace expression reveals no high information, as detailed
further below. We let isOK denote that a class declaration satisfies interaction non-interference, and we let
M reveals � denote that a method declaration M reveals the trace set �. In the method rule, defaultT
denotes the default initial value for variables of type T . The substitution of default values for the local
variables makes the initial values explicit. In this analysis, we ignore the initial reaction event since it is
implicit for the given method.

For statements s we consider judgments of the form ` [�0] s [�]. Due to non-determinism caused by
suspension and process queues, we cannot estimate the exact history of a method body as a single trace,
but may estimate it as an (extended) regular expression, using (. . . | . . .) for choice, semicolon for sequential
composition, and superscript ⇤i for repetition, and in addition • for any (finite) sequence. The latter
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(class)

` mi(y){var x; s;return e} reveals �mi , for each mi 2M

INIcheck(�mi ) , for each i

` class C(cp){w;M} isOK

(method)

` [�] s [caller this.m]

` m(y){var T x; s;return e} reveals �[defaultT /x]

Figure 12: Network level rules for classes and methods.

represents unknown activities of the object during suspension. Thus a trace expression defines a set of
possible traces. Input events will not occur in the trace expressions, since they cannot be detected from the
code. But we include reaction events of the form this ⌘ o.m because they can be detected from the code
and give implicit information about the corresponding input events (this  o.m). So even though reaction
events are not directly observable in the class code; they implicitly restrict the time where the corresponding
observable input event this  o.m may occur. For instance, a blocking call to m on an external object o
gives the trace this! o.m; this ⌘ o.m while a simple call to m gives this! o.m. In the first case there will
not be any output from the object between the observed events this ! o.m and this  o.m, as opposed to
the second case which gives no restriction for how late the completion event may appear. So an observer
may distinguish a difference. Without the reaction events in the traces, the two cases will have the same
trace expressions and our system would be unsound since observable differences are not captured. Simple,
blocking, and suspending calls are observably different and are represented differently in the traces.

Furthermore, self-calls pose some non-trivial challenges. For instance, consider the code

if eHigh then v:=this.m1() else v:=this.m2() fi

If m1 makes the call o!n(true) and m2 makes the call o!n( false ), where the parameter is Low, the outcome
of the high if-test is leaked to object o. In order to handle such cases we include self-calls in the traces even
though they are not observable. The example will then not pass the INIcheck test. And in the example
if eHigh then this.m(true) else this.m(false) fi , the outcome of the if-test may seem to be leaked if m(x)
makes the call o.n(x) where o is an external object. However, in this example the argument to m must be
high in order to pass the secrecy-typing requirements, which means that there is no leakage.

Another challenge related to self-calls is that a call o.m(e) may be a self-call if o equals this, unless the
interface of o is not supported by the enclosing class (for instance when m is not implemented in the class).
This means that calls can be categorized as self-calls (calls to this), external calls (calls through interfaces
not supported by the enclosing class), and calls for which we do not know at static time if they are self-calls
or not. The analysis must deal with all these categories. The call events of external calls are visible to
an observer, but not for self-calls. However, for a self-call the activity caused by called method might be
important, but not for external calls since the output of such an invocation is not an output of this object.
Thus the static treatment is non-trivial.

In the analysis of statements, we employ backward trace analysis for detection of generated observable
events, by triples [�0] s [�] similar to Hoare triples, where � denotes a trace expression. Intuitively, it
means that the statement s generates the trace �0 (the pre-trace) when � is the trace generated after s has
terminated (the post-trace). The notation �[e/x] denotes the trace set expression � with all occurrences
of the variable x replaced by the expression e. The example if high then o:=o’; o!m(. . .) else o’!m(. . .) fi,
motivates that the effects of assignments should be considered in the analysis (in order to detect non-leakage
in this case). As we will explain later in this section, the above code satisfies the policy. Therefore, the
reason for doing a backward analysis is that the generated trace expressions contain program variables, and
therefore the effect of assignments must be considered. The handling of assignments can then be done by
backward substitution as in Hoare logic. Thus an assignment x := e causes the replacement of e for x in
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` [�] skip [�]

` [�[e/x]] x := e [�]

` [(this! o.m);�] o!m(e) [�]

` [(this! o.m); (this ⌘ o.m);�[fresh/x]] x := o.m(e) [�]

` [((this! x.C); (this ⌘ x.C);�)[fresh/x]] x := newC(e) [�]

` [(•)l;�] await el [�]

` [(this! o.m); •; (this ⌘ o.m);�[fresh/x]] awaitx := o.m(e) [�]

Figure 13: Trace axioms for basic statements. Here fresh denotes a fresh symbol.

(seq-comp)

` [�

00
] s [�

0
] ` [�

0
] s

0
[�]

` [�

00
] s; s

0
[�]

(if-else)

` [�1] s1 ["] ` [�2] s2 ["]

` [(�1|�2)l;�] if el then s1 else s2 fi [�]

(while)

` [�] s ["]

` [((�[fresh/w])l)
⇤i
;�

0
] while el do sod [�

0
]

Figure 14: Rules for trace analysis. In �

⇤i each fresh constant c is replaced by c

i, making freshness depend on the iteration,
and w is the list of program variables used in a right hand side inside an iteration.

the pre-trace, letting [e/x] denote the substitution. Similar substitutions are caused by object creation,
blocking, and non-blocking calls with assignment part x := rhs, except that here the value assigned to x is
not statically given, and is reflected by a fresh value.

In the axioms of Fig. 13 for basic statements, the pre-trace �0 is expressed by means of the post-trace,
given by a symbol �, consistent with left-constructive analysis. Based on these rules, skip does not have any
effect on a trace while in case of an assignment, the pre-trace is determined by replacement of x with e in the
post-trace. Moreover, in case of a simple call, a call event is added to the pre-trace (even if it is a self-call).
In the rules for await, the symbol • represents arbitrary traces caused by suspension. Since a high test in
a conditional await-statement may depend on high variables, its enabledness may reveal secret information.
For instance, an await statement with a condition testing raised privileges gives a high (sub)trace. Therefore
the • is considered high in this case, which affects the INIcheck. For instance, a program path going through
a conditional await testing raised privileges gives a high trace expression, which cannot be used to match
any low trace. The notation of �[fresh/x] in these rules denotes that all occurrences of the variable x is
replaced by a fresh constant.

Rules for trace analysis are shown in Fig. 14. The rule for sequential composition resembles that of Hoare
Logic. We may for instance derive ` [�0] skip; s [�] from ` [�0] s [�]. In Rule if-else we encode the traces
of the branches, �1 and �2, into a branching expression, (�1 | �2)l where l is the level of the if-expression
(as obtained by the secrecy-typing). The rule for while is similar, using superscript ⇤i for repetition where
the iteration index i allows us to refer to each iteration. In particular, this allows freshness to be dependent
on an iteration i, as captured by �⇤i. Remark that the nesting of if- and while-statements determine the
inner secrecy labels in a regular expression. For a loop with a counter variable j starting on 1 and such that
j := j + 1 occurs in the loop body as the only update of j, we simply use j as the iteration index, ignoring
the statement j := j+1 in the further analysis, and avoiding replacing j with a fresh constant, and thereby
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(�|�)l �! �

•; • �! •

(")l �! "

this! this.m;� �! � for a simple, recursive call to m outside a branch, if � does not start with [•; ]this ⌘ this.m

Figure 15: Simplification rules for the trace set of a method m. A self-call this! this.m is detected as simple if it is not followed
by this ⌘ this.m nor •; this ⌘ this.m. And a self-call is recursive if it is to the enclosing method m (as in method mask).

allowing more simplifications.

Subscription example. Consider the original notify method defined in Fig. 4. We need to find �0 such that
[�0] body [caller this.notify ] for the body . Using the rules (in a left to right manner) we determine �0 as

((this! users[i].notify | ")High)
⇤i; caller this.notify

which contains high subtraces. As explained below, it will not satisfy the INIcheck.
For the second version of notify, we get the trace expression

((this! users[i].notify | this! users[i].notify)High)
⇤i; caller this.notify

As explained below it simplifies to (this ! users[i].notify)⇤i; caller  this.notify , which does not contain
high subtraces, and satisfies the INI property.

For method make_subscr, we need to solve [�0] body [caller this.make_subscr ] for the method body .
We determine �0 as

this! s.subscr; •; this ⌘ s.subscr; caller this.make_subscr

which has no high subtrace, and is therefore not causing network leakage.

INIcheck. The INIcheck test of a class is done by checking INIcheck(�m) for each method m of the class
(including the constructor) where �m is the trace expression generated for the body of m. The test is
passed if �m can be reduced to a trace expression without high subtraces, using the simplification rules
defined in Fig. 15. If the simplified �m has high subtraces, we flatten �m to a set of trace expressions ti, by
flatting the branches, where each ti is defined as high if it goes through a path of �m with a high branch (or
subtrace), and otherwise low. For example, a trace such as �1; (�|�0)l;�2 is flattened to t1 = �1;�l;�2

and t2 = �1;�0l;�2. For each flattened high trace ti we must then check if it can be recreated from the
set of flattened low traces of the same method, considering also possible other activities during suspension.
This check is denoted

ti matches S

where S is the union of the set of low traces of the same method and the set of low traces of any background
self activity without the final non-observable completion events. The background self activity is captured by
the set of flattened traces of recursive methods, with a simple or non-blocking recursive self-call, and where
the method is called by a simple self-call from the class constructor (directly or indirectly). The rules for
detecting recreation is defined in Fig. 16. Thus a high trace ti passes the check if ti matches S following
from the rules, where as mentioned, S is the union of all low traces of the same method and low traces
representing self behavior. The final non-observable completion event is omitted in a trace representing self
behavior since this event is non-observable. Clearly, in order to match the final completion event of ti one
must involve a low trace of the same method, while self behavior may appear at suspension points.

The simplification rules in Fig. 15 are used to reduce an INIcheck. The rules are confluent and termi-
nating. The first rule says that a branch expression with two identical branches can be simplified, removing
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" matches S

t matches S if t 2 S

t; t

0 matches S if t matches S ^ t

0 matches S [ sscalls(t)

t; t

00 matches S if t; •; t0 matches S ^ t

00 matches S [ {t0} [ sscalls(t)

•; t matches S if t matches S

t; • matches S if t matches S

t; t

00 matches S if t; (t

0
)

⇤i
; t

00 matches S

t; t

0
; t

00 matches S if t; (t

0
)

⇤i
; t

00 matches S

(t; t

0
)

⇤i matches S if (t; •; t0)⇤i matches S

Figure 16: Rules to determine if a (high) trace matches a set of low traces, while adding any new suspended processes to S.
t is a branch-free trace expression, and S a set of such expressions. Here sscalls(t) denotes the set of low trace expressions,
without the final non-observable completion event, for each method with a simple self-call in t. (Exemplified in Fig. 17).

the level of the branch expression. The second rule says that suspending twice in a row is equivalent to
suspending once (since any number of enabled suspended processes may be taken during each suspension).
The last rule says that a simple recursive call (after the last suspension point of a trace) can be ignored
since the event is non-observable, the recursive invocation will be done later during suspension, and since
an irreducible trace must be revealed in a single invocation. Thus a leakage in a recursive method can be
found in the body without the recursive call. A call is detected as a self-call if it has the form this! this.m
and as recursive if m is to the enclosing method. An event this ! this.m in a flattened trace is detected
as a simple self-call if it is not followed by this ⌘ this.m nor •; this ⌘ this.m. In the rules we let sscalls(t)
denote the low traces of the methods called by simple self-calls in trace t, omitting the final completion
event (this  this), which is non-observable. In order to limit the amount of false positives, one may add
further rules, such as replacing (�|�0)l by (�0|�)l according to some ordering over trace expressions. And
one may add that an initial • in a branch can be removed, if the branch expression is preceded by a •, and
similarly for a final • in a branch. However, a more detailed study is beyond the scope of this paper.

The rules in Fig. 16 incorporate suspended behavior S of an object, by starting with a (low and flattened)
trace t in S and either stopping at a suspension point (•), adding the remaining part of t to S, and continuing
with another trace in S. We may add a suspension point at the front or at the end of trace in S, since
each such trace is starting from and ending in a suspension (explaining rule 5 and 6 of Fig. 16). And an
iteration may be included or skipped, and a bullet in an iteration may be ignored. Thus S is in general
infinite; however, in the context of checking whether a given flattened trace expression ti is in S, we may
expand S while matching ti from left to right. This can be done in finite time letting each application of a
rule match a lager part of ti.

The formalization of matching depends on the duration of network observations. If we assume the
observations are made over a short term, it is plausible that any method of an interface of the class has been
called before the observations starts, and its low traces should therefore be included in S. If the observation
is long term which we take as the default, this assumption is not appropriate, and the low traces of the
active self behavior may safely be included in S. Thus we consider here the worst case in this respect, but
the same approach can be used for the case of observations with short duration.

Examples. Fig. 17 explains the application of rules in INIcheck with some synthetic examples to cover
different possibilities. In the first example, the if statement has the trace (this! o0.m ; this ⌘ o0.m | this!
o0.m; this ⌘ o0.m)High simplified to this ! o0.m; this ⌘ o0.m using the simplification rules, which has no
high subtrace, and therefore there is no network leakage. Exp2 will not pass the INIcheck because m1 is
textually different from m2. Remark that if o = this and if m2 and m1 make the same calls, we have a false
positive. In the third example, there is no high subtrace, and therefore no leakage. The examples Exp4
to Exp7 do not satisfy the INIcheck because they have a pair of high traces (and here no background self
activity set S is given). In Exp7 the two self-calls may indirectly cause an observable difference, if m has
observable output, since the call in the then-branch makes this output happen before the current method
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(Exp1)

if e then o := o

0
; v := o.m

else v := o

0
.m fi

X : Trace: (this! o

0
.m ; this ⌘ o

0
.m

| this! o

0
.m; this ⌘ o

0
.m)High

Simplified to this! o

0
.m; this ⌘ o

0
.m

No high subtrace.

(Exp2)

if e then v := o.m1

else v := o.m2 fi

⇥ : Trace: (

t1z }| {
this! o.m1; this ⌘ o.m1

|

t2z }| {
this! o.m2; this ⌘ o.m2)High

Both t1, t2 are high.

(Exp3)

v := o.m1;

await eLow;

v := o.m2

X : Trace : this! o.m1; this ⌘ o.m1;

•; this! o.m2; this ⌘ o.m2

No high subtrace.

(Exp4)

if e then v := o.m

else await v := o.m fi

⇥ : Trace : (

t1z }| {
this! o.m; this ⌘ o.m

|

t2z }| {
this! o.m; •; this ⌘ o.m)High

No simplification, and t1, t2 high.

(Exp5)

if e then v := o.m

else o!m fi

⇥ : Trace : (

t1z }| {
this! o.m; this ⌘ o.m

|

t2z }| {
this! o.m)High, t1, t2 both high.

(Exp6)

if e then await v := o.m

else o!m fi
⇥ : Trace: (this! o.m; •; this ⌘ o.m

| this! o.m)High

(Exp7)

if e then await v := this.m

else this!m fi
⇥ : Trace : (this! this.m; •; this ⌘ this.m

| this! this.m)High

(Exp8)

mtd1(){
if (e)Low then v := o.m1 fi;
if (e

0
)Low then v := o.m2 fi;

if (e)High then v := o.m1

else v := o.m2 fi}
⇥ : Traces similar to EXP2.

(Exp9)

constructor(){this!n()}
n(){v := o.m1; this!n}

mtd1(){if e then v := o.m1 else skip fi}
X : Trace of mtd1 : (this! o.m1; this ⌘ o.m1 | " )High; caller  this.mtd1

Flattened : t1 = (this! o.m1; this ⌘ o.m1; caller  this.mtd1)High and t2 = caller  this.mtd1

Simplified trace of method n : tn = this! o.m1; this ⌘ o.m1

Here t1 = tn; t2 and t2 is low. So t1 matches S since both t1, tn are in S.

(Exp10)

n(){v := o.m1}
mtd1(){this!n();await eLow;if e then v := o.m1 else skip fi}

X : Trace of mtd1 : (this! this.n; •; (this! o.m1; this ⌘ o.m1 | ")High; caller  this.mtd1)

Flattened : t1 = this! this.n; •; (this! o.m1; this ⌘ o.m1)High; caller  this.mtd1

and t2 = this! this.n; •; caller  this.mtd1

Trace of n : tn = this! o.m1; this ⌘ o.m1; caller  this.n

Thus sscalls(this! this.n) = t

0
n = this! o.m1; this ⌘ o.m1

Then this! this.n; t

0
n; caller  this.mtd1 matches S since t2 2 S and t

0
n is in the extended S.

Figure 17: Examples of network level rule applications for INIcheck. Here e is high and X indicates success and ⇥ failure.

is finished (with a visible  this event) while this need not to be the case for the call in the else-branch.
Exp8 has a possibility of leakage, which is detected. This happens when more than one call happens at
runtime, in which case the second call reveals information about the high test. Otherwise, an attacker
cannot distinguish between the high or low if-tests. Moreover, as explained in the details in the figure, Exp9
satisfies the INIcheck because the high trace can be matched by low traces, and thus the execution traces
are indistinguishable from the attacker’s point of view. The last non-trivial example, Exp10, also satisfies
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the INIcheck. It is because the only high flattened subtrace in mtd1, i.e., t1 can be also recreated with the
combination of the low trace of the same method, i.e., t2 and the trace of simple self-call to method n in
mtd1, i.e., tn. In other words, the observer cannot distinguish t1 from an execution that includes t2 such
that tn happens at the suspension point. This example shows the application of sscalls(t) as the set of low
trace expressions for a method with a simple call in the matching rules in Fig. 16.

The subscription example revisited. The original notify method reveals

(this! users[i ].notify | ")⇤iHigh; caller  this.notify

where i is the iteration index. In order to remove the first high call we need to look at any other background
activity in this object. In the first version we do not have any such activity, so based on our simplification
rules, the call in the high branch cannot be removed, and not satisfaction on INIcheck is detected. However,
for the second version, the redefined notify method reveals the following trace expression

(this! users[i ].notify | this! users[i ].notify)⇤iHigh; caller  this.notify

which is simplified to
(this! users[i ].notify)⇤i; caller  this.notify

which means there is no leaking because due to textually equivalence of the two branches the high subscript
is removed. Therefore, this method passes the INIcheck test.

For the last version of the subscription example, the redefined version of notify reveals the trace expression

(" | (this! users[i].notify)⇤i)High; caller  this.notify

Flattening gives the low trace caller  this.notify , denoted t1, and the high trace t2 given by:

((this! users[i].notify)⇤i; caller  this.notify)High

We then need to show that t2 matches {t1}[S where S is the low traces of the background self activity. Since
t1 is without suspension, t2 must end with t1, and we need to show (this ! users[i].notify)⇤i matches S.
The constructor of class SUBSCLIENT has a simple self-call to mask and mask has a simple recursive
self-call. Thus S contains the trace expression of mask (ignoring the final non-observable completion event)

(this! users[i].notify ; •)⇤iLow; this! this.mask

where the simple recursive self-call can be removed based on the simplification rules. Thus we have

(this! users[i].notify ; •)⇤i matches S

Clearly, we also have (this ! users[i].notify)⇤i matches S by the last rule of Fig. 16. Therefore also this
example passes the INIcheck test! In contrast, the original notify method would need a masking method
that selects a subset of the users for notification for instance by using non-deterministic choice (if added to
the language).

7. Theoretical Results

In this section, we prove that by applying the proposed network trace analysis in Section 6, any possible
deviation from the INI policy defined in Section 3 will be detected. The possible execution traces � for our
language are defined by the operational semantics in Appendix A.

For an execution trace �, the subtrace involving a given object o, denoted �/o, consists of output events
SNDo, input events RCV o, and internal (input) events RAC o. The rules for generating trace expressions �
of an object o talk about the events generated by o, namely SNDo and RAC o, as well as •. Non-observable
self calls are included in the traces � and trace expressions �.
Lemma 1 (Traces correspond to the operational semantics). Consider a trace expression generated by the
trace analysis of a given method m. The trace expression will cover all traces possible by an execution of
m according to the operational semantics (Appendix A) in the sense that each execution of m gives a trace
that is an instantiation of one of the flattened trace expressions, when restricted to events generated by the
method execution.
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Proof outline. Consider a given class C and method m with method body s. We show that the trace
expression � generated for m, based on the trace axioms (TAx) of Fig. 13 and the trace analysis rules (TSt)
of Fig. 14, is according to the operational semantics, in the sense that the events generated at runtime by
any invocation of m is an instantiation of one of the flattened traces of � (instantiating the variables in
�). To obtain the subtrace generated by an invocation of m we let the events generated by the rules of
the operational semantics be tagged by the unique identity of the invocation, given by the value of �[callId ]
where � is the state of the object in the left-hand-side of the rule. In the trace generated by an execution
we may then extract the subtrace with a given callId tag, called an invocation trace, which will consist of
output and reaction events generated by the object (i.e., SNDo and RACo events) with the completion event
of the method as the last event.

Consider an arbitrary invocation trace of an arbitrary execution of the given method m. We may then
prove that the invocation trace is equal to an instantiation of a flattened trace expression. Each triple
[�] s [�0] in the trace analysis can be understood as the Hoare triple [h 2 {�}] s [h 2 {�0}] where h is the
local communication history (trace), using for instance a reasoning system similar to [19] (without futures).
The soundness of the axioms and rules of Figs. 13 and 14 follows from the soundness of the reasoning system
for histories in [19], using this translation to Hoare logic. In particular, the events generated in the pre-traces
in the axioms of Fig. 13 correspond exactly to the events generated in the operational semantics, and the
substitutions in the assignment-like statements in Fig. 13 correspond to those of Hoare logic. ⇤

Theorem 1 (INI Deviation Detection). The interaction non-interference policy is satisfied for a set of
objects if the corresponding INIcheck is satisfied by the corresponding classes of those objects. For each
object o of a class C we have

INIcheckC ) INI o

Proof outline. Let us prove INIcheckC ) INI o by contradiction, i.e., INIcheckC ^ ¬INI o. We assume
that there is a class C that based on the rules in Fig. 12 satisfies isOK and that there is an object o of
that class that does not satisfy INI, i.e., ¬INI o. This means that for each method m in that class with s as
the method body, � is calculated in the form of [�] s [caller  this.m] based on Fig. 13 and 14. According
to Lemma 1, � reflects the communication traces obtained from the operational semantics. Due to the
satisfaction of INIcheck, we know that each high trace t obtained after simplification and flattening of �
(using the simplification rules in Fig. 15) can be recreated by the set S of low traces of m and background
self activity (i.e., t matches S), using the rules in Fig. 16.

And, based on ¬INI , there are sequences of events � and �0, and some i, such that:

(�/o)|i =L (�0/o)|i ^ (�/o)[i+ 1] 2 SNDo^
@�00 . (�0/o)|i  �00 ^ (�/o)|i+ 1 ⇡net (�00/o)|i+ 1

where �, �0 and �00 range over possible execution traces. Therefore, based on ¬INI there is not any execution
trace �00 which contradicts that the flattened t is matched by the set S of suspension behaviors. The set of
trace expressions representing background self activity provides an underestimation of the process queue of
o when an invocation of m is made. Thus there is an execution that continues with an instance of t after
(�0/o)|i.

It suffices to consider � and �0 such that the inputs to o from other objects come as late as possible, i.e.,
a call o0 ! o comes just before o0 ⇣ o and such that a completion o  o0 comes just before o ⌘ o0 (for o0

different from o). This can be made possible by considering executions where the objects generating calls
or completions to o are slowed down. This has no effect on the behavior of o, and it allows us to derive the
missing RCVo events from a flattened trace expression.

It is also clear that if for each object oi of class Ci the trace analysis of Ci is OK, and thus INI oi is satisfied,
then for a set of such objects O, INIO is satisfied as well. Since any receive event for an object must happen
after the corresponding send event, we consider the subset of executions where the inner send events match
the corresponding receive events. We may assume � is in this set. Formally, consider any �, �0 (in this set),
and i. We may assume the left side of the implication, i.e. (�/O)|i =L (�0/O)|i ^ (�/O)[i+ 1] 2 SNDO and
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need to prove 9�00 . (�0/O)|i  (�00/O)^ (�/O)|i+ 1 ⇡net (�00/O)|i+ 1. We have that (�/O)[i+ 1] 2 SNDO

and thus there must be an object o in O such that (�/o)[i+1] 2 SNDo. This means that we can apply INI o
since �/o and �0/o are determined by �/O and �0/O and we may choose �00 such that o is scheduled in the
next step (as in �). ⇤

8. Related Work

As stated in the introduction, programming languages can provide fine-grained control for security issues,
and a large amount of work is based on Denning’s paper on information flow security [20]. Substantial
contributions have been made to prevent disclosure of confidential information based on static, dynamic, or
hybrid information flow control approaches.

Statically checking information flow to protect confidentiality and integrity is a promising technique as
it provides increased precision [20] and low runtime overhead of dynamic security classes [21]. To enforce
information flow control policies using static program analysis, program elements are annotated with nec-
essary information. Volpano et al [22] were the first ones to formulate Denning’s approach [20] based on
program certification, as a type system and proved soundness of a version of non-interference theorem for a
core deterministic language. To track information flow in Java, Myer [21] extended the type system of Java
and proposed a decentralized label model. The extended type system was later implemented in Jif compiler.
In another adaptation, type system of functional language OCaml, was extended to Flow Caml [23] by
annotating ML types with security labels. Major challenges pertaining to static approaches are that they
usually require complicated type annotations and often result in a significant degree of false positives [24].
Although, theorem proving techniques are used in [25, 26] to improve precision of static program analysis.

In contrast, dynamic mechanisms such as [27, 28] are more permissive, imposing high overhead and may
require changes to the runtime systems, e.g. special schedulers. Additionally, in a majority of real time
systems, security policies vary dynamically [29] and cannot be determined at compile time. In [29] Zheng et
al expanded the scope of information flow control by providing mechanism to update label values of program
elements during run time. Tse and Zdancewic facilitate dynamic flow control by proving non-interference for
a security-typed lambda calculus with runtime principals and enable more expressive security polices [30].
Sabelfeld and Russo [31] compare and contrast static with dynamic program analysis, and deduce (using
simple imperative language) that both techniques assure the same level of termination-insensitive non-
interference.

Exploration of both static and dynamic approaches are made in [32], and hybrid mechanisms such
as [33, 34, 35], are provided to enhance the information flow capability and increasing permissiveness, by
realizing static analysis by security type systems and realizing dynamic analysis by monitors. This hybrid
approach was also employed in the development of a new system and language, Fabric [36], which is used
to build secure distributed information systems. Fusion of static and dynamic mechanisms of analysis for
concurrent programs has been proposed by Guernic [37], using an automaton to monitor the information
flow for a single execution of a concurrent program. Most of the work in programming language research
that provides information flow control is based on the principle of non-interference.

M. Miller [38] explores language-based capabilities in the context of the object capability model in
his Ph.D. thesis. This model is useful for investigating object communication and computation aspects.
However, it focuses on robustness issues rather than security issues. Additionally, Hammer and Snelting
[39] propose information flow control based on program dependency graphs, and demonstrates significant
reduction in annotation overhead and improved program analysis precision [40].

Our proposed approach falls in the category of static analysis. However, in this approach we have pre-
vented a high false positive rate since, due to hiding and encapsulation in our distributed object-oriented
setting, we do not impose unnecessary restrictions on information flow inside objects. In addition to a
new security type- and effect-system for the considered language, we propose a new kind of class-wise trace
analysis to restrict the flow of control among objects communicating by asynchronous methods, to avoid
indirect leakage observable at the network level. Moreover, while most of the related work aims at prevent-
ing traditional progress-insensitive non-interference, we are considering progress-sensitive non-interference,
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where an attacker can indirectly observe the progress of an object, caused by e.g. process termination or
suspension. To the best of our knowledge, there is no prior work considering a concept similar to interac-
tion non-interference, which stipulates indistinguishability of interactions between distributed objects for a
network viewer observing the messages exchanged through method calls on the communication channels in
the network, given that the communicated low input values are the same.

In general, techniques that come with different goals might also have some similarities. For example,
model-based verification has a significant different goal than our work. For instance, the main difference
between our work and [41] is that in our case there is no exploitable bug in the program. Instead, we consider
legal program behavior that might be informative to attackers. The attack model and assumptions make
remarkable differences as well. For example, in our setting, there is no direct interaction with the malicious
agent, the interaction is indirect though asynchronous method calls. With respect to non-interference, we
are focusing on security leakages where the attacker is capable of observing the interactions between agents,
which for example is totally different from works where attackers have interactions with the system, e.g. [42].
However, by our trace analysis, we are also looking at runtime state changes and try to prevent reaching states
that may result in information leakage according to interaction non-interference. This has similarities to to
model-based verification techniques such as Hoare logic, model checking, or state-based analysis approaches.
In contrast to Hoare logic we avoid verification conditions requiring (non-trivial) theorem proving, and in
contrast to model checking we transform a program to a trace expression used for further analysis.

9. Conclusion

We have studied non-interference for concurrent distributed object systems communicating by means
of asynchronous method calls. The concurrent objects may communicate confidential and non-confidential
information, restricting confidential information to method parameters/returns declared as safe channels for
confidential information. Due to the non-deterministic nature of such systems and due to the non-trivial
implicit information flow leakage related to observation of communication patterns, standard definitions of
non-interference are not suitable. We have defined a notion of interaction non-interference and have shown
how to enforce it by static analysis, using a type and effect system for secrecy levels and using analysis
of communication traces addressing indirect network leakage. The analysis is modular and is done class-
wise, and we have outlined a proof for soundness. We have considered an object-oriented language centered
around the chosen concurrency model. The setting of concurrent objects and object-orientation gives some
benefits as well as some challenges, compared to other settings. The benefits include:

• protection of state. Each object encapsulates its state in the sense that remote access is not allowed.
This means that we do not restrict information flow between confidential and non-confidential variables
as long as they do not affect communication behavior to cause a leakage. All fields are private and
their secrecy level may vary dynamically with the static knowledge of their values and with the implicit
context of high level if- and while-tests.

• concurrency control. The high level await mechanism allows cooperative scheduling with explicit
control of process suspension and resumption without low level mechanism such as locking or signaling
mechanisms. This enables a compositional analysis.

• message-oriented communication. The underlying message passing mechanism for method interaction
defines one-way as well as two-way interactions. Based on our analysis, the implicit leakage at the
network level can then be addressed by expressing communication traces for each method.

• inflation of high levels. Our approach does not lead to inflation of high levels, since method calls in a
high context do not require methods to be high, and since fields and program variables may go from
a high level to a low level.

However, this setting implied some challenges, which we have addressed:
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• secrecy level invariants. The presence of suspension points imply that secrecy levels of fields may
change during suspension. We use an approach similar to class invariants for controlling the level of
fields during suspension. Secrecy levels of fields must be maintained upon suspension and method
completion. In contrast, the levels of local variables may change freely since their values are not
modified during suspension.

• modularity. For a given object, the precise timing of observable input events, reflecting method in-
vocation and completion to the object, cannot be detected statically since these events cannot be
determined from the program code. This makes the trace analysis less direct. We solve this by consid-
ering trace expressions that include reaction events. These are by definition non-observable, but give
partial information about the timing of the corresponding input events, which makes the analysis less
direct.

• implicit self-calls. Self-calls pose non-trivial challenges for the modular analysis, since the static anal-
ysis cannot in general detect if a call o.m(. . .) is a self-call or not, and since a self-call may indirectly
have observable effects (when the called method calls external objects). We solve this by including
self-calls in the trace expressions, making special considerations for calls detected as self-calls (i.e.,
calls to this).

The considered language is small, but includes mechanisms for process control, which often is defined by the
underlying operating system. With a dedicated virtual machine this makes it possible to limit attacks from
within the underlying operating system.

Future Work. As future work, we will consider other language features such as inheritance, which was not
considered here, enrich our static analysis, and providing a hybrid approach to satisfy the interactive non-
interference policy combining runtime and static analysis. The latter point requires an operational semantics
assigning runtime level to objects as well as to values of program variables.

Inheritance and late binding will complicate the analysis in that the binding of a method call is not
in general static. As our approach depends on static binding to be able to compute the traces, it cannot
be extended to deal with inheritance in a straight forward manner. However, the approach for partial
correctness reasoning used in [43, 44] allows modular reasoning for each (sub)class with static binding of self
calls, based on the assumption that the runtime class of the considered object is the same as the considered
class. Calls other than (explicit) self-calls are statically controlled by interfaces (as in SeCreol). This
means that trace sets of inherited methods need to be recalculated in a subclass (due to possible renewed
bindings of Self-calls). Using the approach of [43], we may extend the current class-wise static analysis of
non-interference to deal with inheritance and late binding.

The concept of cointerface was used in the language to allow type-correct callbacks to external caller
objects. This concept gives the possibility of stating minimal security requirements to callers of methods of
an interface. We would like to explore this possibility in future work.

To enrich the static analysis, we aim to use the program dependency graphs (PDGs) by considering the
effects of program control flow and data flow [45] on interactive communication among objects with security
levels which is also proven at least as powerful as security type systems in detecting potential information
flows [46] while it can decrease false positives even more in progress-sensitive approaches. In addition, to
improve the enforcement, we consider dynamic labeling and decentralized label model (DLM) [36] to provide
a hybrid enforcement mechanism as future work.
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Appendices
A. Operational Semantics

We here present the operational semantics of the core language. The main purpose of this semantics
is to understand the communication traces appearing at runtime. We therefore omit the complication of
assigning runtime secrecy levels to objects and values of program variables. An operational semantics with
secrecy levels is presented in [18]. The semantics formalizes the notion of process queue (PQ), idleness, and
generation of events (as labels on the transition relation). Thus a sequence of execution steps gives rise to a
sequence of events, capturing the history. Generation of identities for objects and method calls is handled
by underlying semantics functions and implicit attributes. The operational semantics uses an additional
construct get to deal with (the completion of) call statements, letting get u appear as a right-hand-side,
where u denotes a method call identity. The query v:=get u will block while waiting for completion of u and
v:=await get u will suspend. We use the notation explained above for mappings, and a denotes an object
expression, b denotes a Boolean expression, o denotes an object identity, u denotes a method identity, and
d denotes a value (a data value or an object identity).

For simplicity we omit rules for while. While can be handled by expanding a while-statement to be
executed to an if-statement with an inner while upon execution of the the while-statement. The semantics
of the while-statement while b do s od is equivalent to that of if b then s; while b do s od fi. The semantics
of an if-statement without else-part, if b then s; while b do s od fi, is equivalent to if b then s else skip fi.

The operational semantics of the core language is given in Fig. 18. A runtime configuration of a system is
seen as a multiset of objects and messages (using blank-space as a binary multiset constructor). Each rule in
the operational semantics deals with only one object o, and possibly messages, reflecting that we deal with
concurrent distributed systems communicating asynchronously. When a subconfiguration c can be rewritten
to a c0, this means that the whole configuration . . . c . . . can be rewritten to . . . c0 . . ., reflecting interleaving
semantics. Each object o is responsible for executing all method calls to o as well as self-calls. An object has
at most one active process, reflecting a method execution, and a sequence of suspended processes organized
in a process queue PQ. Remote calls and replies are handled by messages. Objects have the form

o : ob(�, s)

where o is the object identity, � is the current object state, and s is a sequence of statements ending with a
return, representing the remaining part of the active process, or idle when no active process. A message
have the form

msg o! o0.m(e)

representing a call event, where o is caller, o0 callee, m the method and e the actual parameter values, or

msg o o0.(u, d)

representing a completion event where d is the returned value and u the identity of the call.
In the operational semantics rules, pc is the confidentiality level of the object that is going to execute

an instruction at the current program point. Moreover, the operational semantics uses some additional
variables, like PQ for holding the process queue and nextId and nextOb for generating unique identities
for calls and objects. These appear as fields in the operational semantics. Furthermore, this is handled
as an implicit class parameter, while callId and caller appear as implicit method parameters, holding the
identity of a call and its caller, respectively. The operational semantics uses an additional query statement,
[await] get u, for dealing with the termination of call/await call statements. The syntax [await] denotes
an optional await. The query get u is blocking while waiting for the method response with identity u,
and await get u is a suspending query.

The state of an object is given by a twin mapping, written (↵|�), where ↵ is the state of the field
variables (including PQ, nextId, nextOb) and class parameters cp (including this), and � is the state of the
local variables and formal parameters (including callId and caller) of the current process. Look-up in a twin
mapping, (↵|�)[z], is simply given by (↵+�)[z]. For an expression e, the notation ↵[z := e] abbreviates ↵[z 7!
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alpha[e]], and the notation (↵|�)[v := e] abbreviates if v in � then (↵ |�[v 7! (↵|�)[e]]) else (↵[v 7!
(↵|�)[e]] |�), where in is used for testing domain membership.

The process queue PQ is the queue of suspended processes, of form (�, s)). The operations enq(PQ, p)
and deq(PQ,↵) are used to add a process p to the queue, and to select an enabled process (if any) from the
queue, respectively. The latter results in the sequence (p;PQ0) of the selected enabled process p and the
remainder of the queue PQ0 (depending on the specific scheduling policy), or the empty sequence empty
if no process is enabled. A process (�, s) is enabled if it starts with an enabled statement. A conditional
await statement is enabled if the condition evaluates to true (in state ↵|�), and an await call statement
is not enabled (unless reduced by the query rule). All other statements are enabled.

Asynchronous (simple) method invocation is captured by the rule simple call/call. The generated
call identity is locally unique (and globally unique in combination with the parent object). The call identity
generated by this rule is passed through an invocation message, which is to be consumed by the callee
object by the rule start. When an object has no active process, denoted idle, a suspended process may be
continued (by rule continue), given that the process is enabled, or a method call is selected for execution
by rule start. The invocation message is removed from the configuration by this rule, and the identity of
the call is assigned to the implicit parameter callId. With rule return, a return value is generated upon
method termination and passed in a completion message together with the call identity stored in callId. The
return value is fetched by rule query. Note that a query statement blocks until the corresponding future
value is generated by rule return.

The query rule says that an occurrence of await v := get u, or v := get u, in object o is replaced
by the assignment v := d when the completion msg o o0.(u, d) appears. The keyword await is removed
when in front of such a query statement. Note that rule query removes the completion message from the
configuration, which is possible since any corresponding get will be found in the object when the completion
message appears There is at most one such occurrence (in the first statement of either the active statement
list or a process in PQ). If object o does not contain get u then the completion message is removed without
any effect on o. This happens when the corresponding call was a simple call. In Rule start, we assume
that m is bound to a method with local state � (including default values) and code s. Note that bindings
for the parameters y and the implicit parameter nextId are added to the local state.

Object creation is captured by the rule new. The generated object identity is locally unique, and also
globally unique since the object identity is given by a generator term embedding the parent object. The
generated object gets this identity. Here initC denotes the initialization statements (the constructor) of class
C, and �C denotes the initial state of class C with default/initial values for the fields. The binding of class
parameters and this is added explicitly (by this 7! �[nextOb] and cp 7! �[e]). We obtain an active object
by letting init initiate internal activity, using simple self-calls to allow the object to interleave continued
internal activity with reaction to external calls. The initialization statements of a program will typically
create the other initial objects.

In the case that an await statement is not enabled, the current process is placed on the process queue
and the object becomes idle, as described by rule suspend. An idle object may next start a new process
(according to rule start) or continue with an enabled process from the process queue (according to rule
continue). This choice depends on the underlying scheduling inside an object. The given language fragment
may be extended with constructs for local (stack-based) method calls, e.g., by using the approach of [47].
As we focus on inter-object communication, this is omitted here. For simplicity we omit runtime secrecy
levels and therefore the result of evaluating a secrecy comparison (by v) is not defined in the operational
semantics.

For a given program (and starting object) the operational semantics defines a set of executions, each
given by a sequence of global states (configurations). The state of an execution E at time t is the state
given by E[t]. A sequence of execution steps E[i]

ei�! E[i + 1]
ei+1���! E[i + 2]

ei+2���! . . . generates the trace
ei; ei+1; ei+2 . . .. Even if an execution E may be infinite, our analysis will deal with finite segments. In
our concurrency model the objects compute independently at their own speed (when not blocked), and we
assume that one object is not unboundedly delayed (unless blocked). Thus for our concurrency model we
may assume inter-object fairness.
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skip: o : ob(�,skip; s)
empty����! o : ob(�, s)

assign : o : ob(�, v := e; s)
empty����! o : ob(�[v := e], s)

if-true : o : ob(�,if b then s1 else s2 fi; s)
empty����! o : ob(�, s1; s)

if �[b] = true

if-false : o : ob(�,if b then s1 else s2 fi; s)
empty����! o : ob(�, s2; s)

if �[b] = false

new : o : ob(�, v := new C(e); s)
o $ �[nextOb].C(�[e])��������������! o : ob(�[v := nextOb, nextOb := next(nextOb)], s)

�[nextOb] : ob(�C [this 7! �[nextOb], cp 7! �[e]], initC)

simple call : o : ob(�, a!m(e); s)
o!�[a].m(�[nextId,e])�������������! o : ob(�[nextId := next(nextId)], s)

msg o! �[a].m(�[nextId, e])

call : o : ob(�, [await] v := a.m(e); s)
o!�[a].m(�[nextId,e])�������������! o : ob(�, [await] v := get �[nextId]; s)

msg o! �[a].m(�[nextId, e])

start : msg o0 ! o.m(u, d)
o : ob((↵|�0), idle)

o0⇣o.m(u,d)��������! o : ob((↵|(�[caller 7! o0, callId 7! u, y 7! d])), s)
where m is statically bound to (m, y,�, s) in the class of this

return : o : ob(�,return e)
�[caller] �[this].(�[callId],�[e])������������������! o : ob(�, idle)

msg �[caller] �[this].(�[callId], �[e])

query : msg o o0.(u, d)
o : ob(. . . [await] v := get u . . .)

o⌘o0.(u,d)�������! o : ob(. . . v := d . . .)

await : o : ob(�,await b; s)
empty����! o : ob(�, s)

if �[b] = true

continue : o : ob((↵|�0), idle)
empty����! o : ob((↵[PQ 7! rest ])|�), s)

if deq(↵[PQ],↵) = ((�, s); rest)

suspend : o : ob((↵|�), s)
empty����! o : ob((↵[PQ 7! enq(↵[PQ], (�, s))], "), idle)

if s starts with await

Figure 18: Operational rules reflecting small-step semantics of SeCreol (without secrecy levels).
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