Patch Antennas

UNIK9700 Radio and Mobility

Johan Tresvig PhD Candidate Dept. of Physics, UiO j.l.tresvig@fys.uio.no

Outline

- Introduction Patch antennas
- Theory Rectangular patch antenna
- Case study Design of a patch antenna

Microstrip Antennas

- First proposed in 1953
- Commercialized in the 70s
- Inexpensive
- Compatible to PCB
- Easy to manufacture
- Low profile
- Used in the >1GHz range

Meandering Monopole antenna

Loaded Stub Antenna

Folded Dipole antenna

YAGI antenna

Rectangular Patch Antenna

- Popular type of microstrip antenna
 - High gain
 - Wide beam
 - Lower efficency
 - Lower bandwidth
- Antenna bandwidth
 - Measured in % -> $\% = \frac{BW}{f_0}$
 - increases with substrate thickness
 - decreases with substrate permitivity
 - Efficency deceases with substrate permitivity
 - WLAN uses air as substrate

Rectangular Patch Antenna

• Calculating the antenna dimensions

-
$$L = 0.49\lambda_d = \frac{\lambda_0}{\sqrt{\varepsilon_r}}$$

$$- \frac{W}{L} = 1.5$$

-
$$f_0 = \frac{c}{2(L+2\Delta L)\sqrt{\varepsilon_r}}$$
, where $\Delta L = f(h, W)$

Resonance frequency (f_0) is influenced by:

- ground plane size
- copper thickness
- Impedance width

Signal Feeding

- Coaxial probe feed (a)
 - Simple feed
 - Probe reactance must be considered
 - Used for standalone antennas
- Inset feed (b)
 - Used for antenna arrays
 - Allows for more flexible impedance matching
- Proximity feed (c)
 - More complex
 - Reduces emissions from the feed line
- Aperture feed (d)
 - reduces radiation from feed line
 - Some back radiation
 - Probe reactance not an issue

TEM - Mode

• Transversal Electro Magnetic (TEM_{xyz}) field distribution

Patch antennas denoted TM₁₀ using cavity theory

 λ 2 < Impedance width < λ

CAD model

- Patch cavity resonator
 - CAD modeling
 - Simplified model of a patch antenna
 - Applicable for patch antennas with a thin substrate
 - CAD modeling can be used when antenna complies with TM_{10}

Circular Polarization

- Signal split in two
- Vertical and horizontal radiator
- One feed phase shifted by 90 Deg.

STAR

Space Technology And Research center

- Cooperation between the Space- and Plasma Physics group and Electronics group
- Investigate plasma density and turbulence in the ionosphere
- Mitigate satellite communication outage
- multi-Neddle Langmuir Probe (m-NLP)

(Top): A neddle Langmuir probe. **(Bottom):** GPS signal interference induced by scintillation in the ionosphere

Sub-Payload

- Sensors •
 - M-NLP -
 - Gyro -
 - Magnetometer -
- Data budget •
 - Data rate: ~200Kbit/s -
 - Coverage: <2000m -
- Radio link •
 - 250kBaud -
 - Minimum Shift Keying (MSK) modulation scheme

UiO **Contemport of Physics** University of Oslo

Sub-Payload Antenna Measurements

- Antenna coverage
- Receiver antenna: constrained by the launch team at Andøya Rocket Range (ARR)
- Selected prefered antennas from ARR
 - Polarization: Linear
 - Gain: 0 3dB

MAxiDusty Campaign

- Rocket campaign from Andøya Rocket Range (ARR)
- Timetable:
 - 1. Hardware integration Jan.2013
 - 2. Hardware integration April 2013
 - Launch Aug. 2013
- Objectives
 - Perform proof of concept
 - Perform 3D ion density measurements

CAD model of MaxiDusty and the Hotel section

Sub-Payload Patch Antenna

- Low profile
- Half-Sphere radiation pattern
- Circular polarization
- Mounted on opposite sides of the subpayload
- Antenna design
 - Multiphysics simulation tool
 - Measurements in antenna chamber

CAD simulation model of the patch antenna

Sub-Payload Patch Antenna

University of Oslo

Patch Antenna Measurments

Patch Antenna Measurements

University of Oslo

References

[1] The Basic of Patch Antennas, D. Orban & G.J.K. Moernaut, Orban Microwave Inc

[2] Antenna Engineering Handbook, Chapter 7, D.R. Jackson, McGraw-Hill Inc

[3] The Fundamentals of Patch Antenna Design and Performance, G. Breed, High Frequency Design, p.48-50

[4] CAD OF RECTANGULAR MICROSTRIP ANTENNAS, D.R. Jackson et al

Questions?