
ContextIDS
Presentation of program

Slides
Premise
Reservations
Implementation in protege

Result
Problems

Implementation in python
Result
Problems

Comparison
Classes
Rules

Live demo

How did protege help
Potential improvements
Result

Thoughts
Live demo interaction
Questions?

Application Scenario
Intrusion Detection Systems often have no context

○ Know nothing about victim
○ Know nothing about attacker

What can we do with context once we have it?
○ Give analyst basic insight on systems
○ Enrich context with rules

No Context

Integration

Reputation User Computer

Potential
What can we do with the context?

Dynamic criticality
Based on users
Based on machines
Based on attacker

Context aware rules
Attack matching victim

Protege - implementation
Classes Object properties Data properties

Protege - implementation
(2)

Vulnerability Victim User Machine Software Attacker Attack

hasMachine x

hasUser x

hasVictim x

hasVulnerability x

hasHostname x

hasCriticality x x x x

hasUsername x

hasSoftware x x

hasReputation x

Protege - Problems
Initially, I used entities instead of properties

○ Simplified implementation
○ But no swrl over properties where calculations are

needed

When implementing I had to use properties (and swrl)
○ Could not make protege 4.2 set properties with rules
○ Therefore, all rules are what I believe is correct, but

not checked in protege.

Python - implementation
Python, with SQLAlchemy as data backend, and Flask as frontend (html)

Python - problems
Mostly straightforward.
Retrieving objects and working with them
require much more code than in Protege
Harder to fix code when changing structure

Comparison - Classes

Comparison - Rules (1)
Description
Initially, the attack criticality is based on vulnerability criticality

Protege
Attack(?a), hasVulnerability(?a, ?v), hasCriticality(?v, ?result) -> hasCriticality(?
a, ?result)

Python
vulnerability = session.query(Vulnerability).filter(Vulnerability.software ==
attack.software).first()
if vulnerability:

attack.criticality = vulnerability.criticality

Comparison - Rules (2)
Description
Use the criticality of the victim user to modify the overall criticality of the attack

Protege
Attack(?attack), hasCriticality(?attack, ?crit), hasVictim(?attack, ?victim),
hasUser(?victim, ?user), hasCriticality(?user, ?ucrit), swrlb:add(?result, ?crit, ?
ucrit) -> hasCriticality(?a, ?result)

Python
 if attack.victim:
 if attack.victim.user:
 attack.criticality += attack.victim.user.criticality

[attack.criticality = attack.criticality + attack.victim.user.criticality]

Comparison - Rules (3)
Description
If attacker is a known malware distributor, and the attack is a malware attack,
chances are it is a true attack, so we escalate.

Protege
MalwareAttack(?a), hasAttacker(?a, ?attacker), MalwareAttacker(?attacker),
hasCriticality(?a, ?c), swrlb:add(?result, ?c, 5) -> hasCriticality(?a, ?result)

Python
 if attack.attacker:
 if attack.vulnerability:
 if isinstance(attack.attacker, MalwareAttacker):
 if isinstance(attack.vulnerability, MalwareVulnerability):
 attack.criticality += 5

Comparison - Rules (4)
Description
If an attack uses a vulnerability which the victim is known to be vulnerable to,
we want to escalate.

Protege
Attack(?a), hasVictim(?a, ?victim), hasMachine(?victim, ?machine),
hasSoftware(?machine, ?software), hasVulnerability(?a, ?v), hasSoftware(?v, ?
software) hasCriticality(?a, ?crit), swrlb:add(?result, ?crit, 5) -> hasCriticality(?a,
?result)

Python
 if attack.victim:
 if attack.victim.machine:
 for x in attack.victim.machine.software:
 if attack.vulnerability:
 if x.name == attack.vulnerability.software:
 attack.criticality += 5

Live demo
(Say a prayer to the demo-gods, and will away
the demon Murphy)

Potential improvements
More types (attacks) - Classes
Multiple types on each attacker
Dynamic criticality through dependencies
Rules over time, context in the time axis
Multiple types on each victim

User
Machine

Thoughts
Protege as a prototyping/modeling tool
Not using OWL in code

My development road
Protege has an overhead
But: can be used as an interactive modeling
tool

○ Rules in protege (pure logic) is relatively easily
translated to code

Easy to prototype since
○ Classes/data can quickly be set up
○ Changes do not require massive change in code
○ Rules allow simple reasoning over data

■ without sqwrl, it is harder to work over sets

Questions?

