

György Kálmán, ABB Corporate Research, 11.11.2013

A tradeoff between security, safety and production continuity

Security Challenges
in Safety Instrumented Systems

Security Challenges in SIS Agenda

- What is SCADA and DCS
- What is a Safety Instrumented System
 - History
 - Current solutions
 - Challenges and development directions
- Time scales of automation tasks
 - Process control security
 - Automation and electric systems
- Security threats for SIS
 - Insider threats
 - External threats

Production continuity

- Tradeoff between safety and security
- Usable security
- Technical limits
- Security and safety in parallel operation
 - Fail-safe paradigm
 - Fail-operational paradigm
- State of the Art security solutions

Security Challenges in SIS Overview – automation systems - SCADA

Supervisory Control and Data Acquisition

- Remote control and monitor automation systems
- Typically low bitrate (this is changing)
- Large systems both in area and number of devices
- Access to systems through WAN connections
- Typical grace time in the seconds range

Typical examples:

- Power grid or any other public service like water, wastewater, traffic lights
- Oil and gas pipelines
- Remote oil production installations

Security Challenges in SIS Overview – automation systems - DCS

Distributed Control System

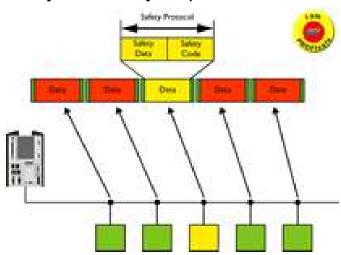
- Local control of automation tasks
- Typically LAN, using uplink towards Enterprise Resource Planning
- Covers a smaller geographic area
- Control of the process of manufacturing task
- Grace time depends on the actual task

Safety

Safety systems are typically placed on this level

Typical examples:

- Automation system inside a car plant
- Oil refineries
- Ships

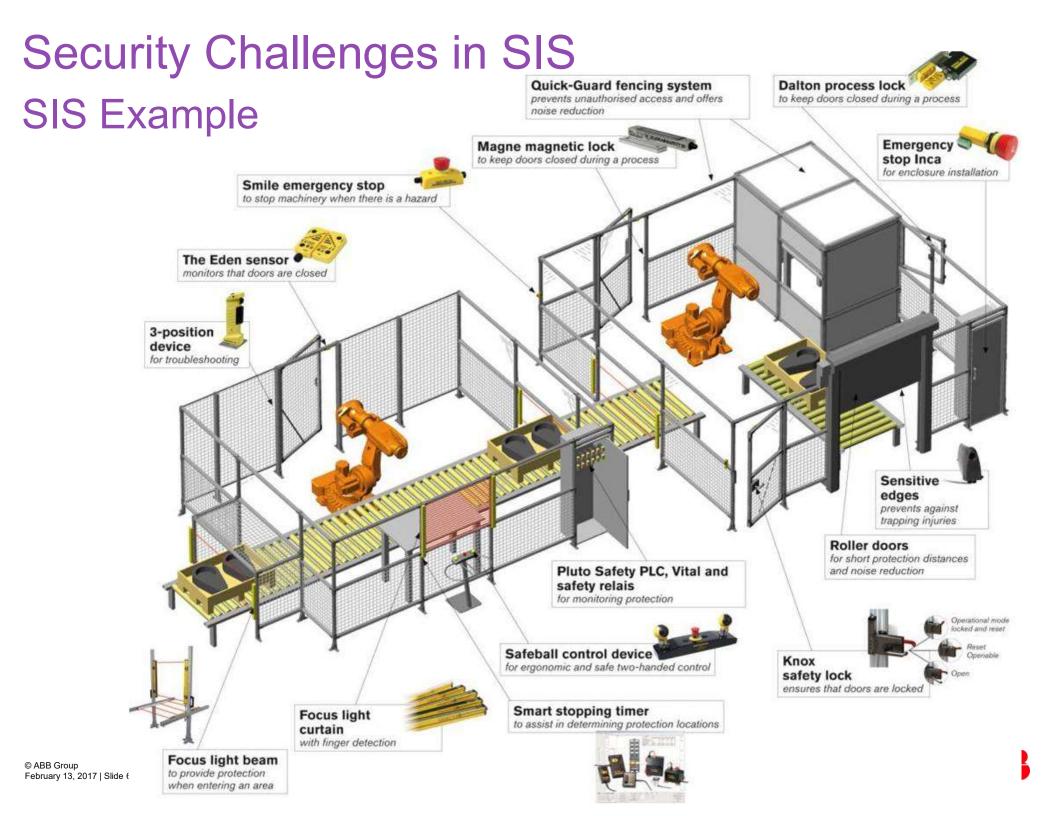

Security Challenges in SIS Safety Instrumented Systems

-Goal

•Ensures that if an operational problem occours, the system is taken into a safe state to avoid health, safety and environmental damage

Current state of the art

- Integrated safety systems
- Shared communication
- Special diagnostics
- Leaky-bucket style operation



Integrity levels

- Safety Integrity Level 1-4
- SIL 3: extensive diagnostics, heterogenous computation paths
- SIL 4: SIL3+majority voting+more
- Current development
 - Model-based design
 - Automatic diagnostics generation
- No direct communication requirement!
- Not tamper proof or sabotage-protected!

Security Challenges in SIS Current security measures

History

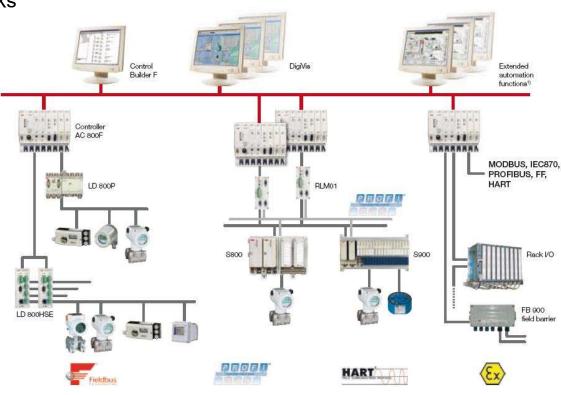
Isolated islands

Current state of the art

- Shared communication, not only changing to packet-switched, but also using public networks
- IP networking, Ethernet LANs
- Firewalls and network segmentation
- Integration into higher level systems e.g. IT management, ERP
- Cryptographic functions on controllers and above

Perimeter defense

•Firewall, IPS, DMZ

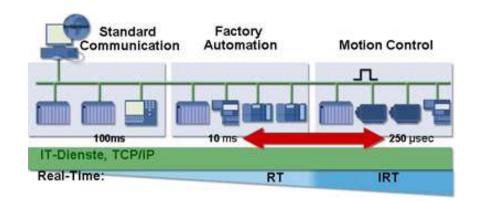

Internal security

- Firewall, IDS, DMZ
- Monitoring
- Active scanning

Evolution

- Security to the field level
- Evaluation of encryption/authentication of communication

Quality of Service?


Security Challenges in SIS Security with respect to Quality of Service

SCADA

- Low frequency operation
- Optimized communication
- Grace times and typical usage allows the inclusion of security measures without violating the service quality

DCS

- In Process control, a majority of applications are expected to accept a minor delay due to cryptographic functions or other security measures
- In motion control or bar protection, encryption is currently less feasible, authentication using HMAC is accepted but not widely used
- Industrial systems are interested in authenticityintegrity-confidentiality

Security Challenges in SIS Insider and external threats

Employees

- Accidental or conscious acts
- User credentials
- Special knowledge
- Non-compliance: messaging, P2P, video players, games on DCS workstations

-Access

- Physical access to devices
 - Social engineering
 - Insuffcient protection
- Network access
- Logical access to devices
 - Security through obscurity
- Device tampering
- Remote (unmanned) sites are backdoors to the control system
- Devices can be flashed on site
- Wireless

Mitigation

- Access control
- Logging
- Segmentation
- HR + education
- Deploy modern security solutions
- Device development with security in mind

Security Challenges in SIS Security, Safety and Production

Tradeoff

- Compare DCS and IT operation
- Safety functions need to operate also if the system is compromised
- Production continuity vs. sensitivity

Philosophical problems

- -Add 5 kg of security
 - Add crypto or authenticaion without knowledge of the undelying system
 - Unreacheable goals
- Whole picture, including life cycle
- Facing IT security threats by DCS operators
- Authenticity-Integrity-Confidentiality vs.
 Confidentiality-Integrity-Authenticity
- Low entropy on SCADA data
- Whitelist can work better in industry, other, nonscalable solutions can be relevant
- Default usernames, passwords, IP addresses

Problems contd.

- No patching, 10 year old OS-es can be present
- No personal authentication
- As-built analysis

Safety function operation

Security Challenges in SIS Security and Safety

-Reason

- Connected because security threats are resulting in safety threats, which have to be mitigated
- Different fields but approaching similar problems
- •The process behind is completely different: safety deals with a static statistical process, while security problems are the result of an active, changing process

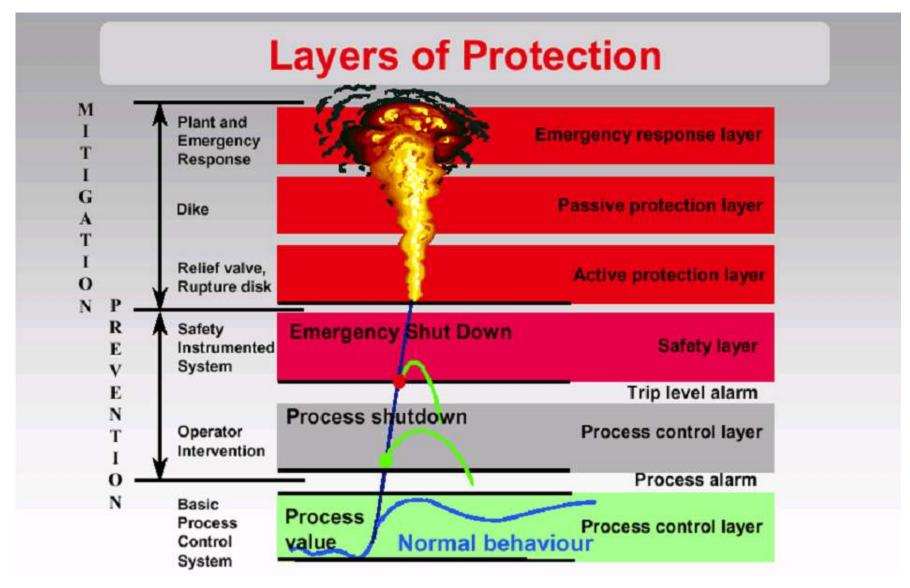
Security

Stopping somebody to do something to avoid damage

Safety

 Even if something has happened, avoid or limit damage

Cyber-physical interactions


- IT security is not covering this field
- Safety is focusing on the physical interactions
- Safety is using extensive diagnostics to check itself
- Timescale of protection and data validity

Security of safety diagnostics

- Device tamper resistance
- Predefined vectors
- Predefined, internal expected results
- Basic safety function is standalone
- Pairing of devices (e.g. drive with motor)

Security Challenges in SIS Security and Safety

From: The Rocky Relationship Between Safety and Security

Security Challenges in SIS Security and Safety – Fail reaction

Fail-safe

- This is the approach what we use in security
- In case of a breach detection, take down the interface to limit the damage (e.g. refinery or train)
- Lockout of user if too many bad password tries (not acceptable for automation)
- Start virusscan

Industrial environment

- •QoS must be kept
- Safety function must stay intact
- If security measures are not able to confine the intrusion, safety is expected to provide a secondary protection layer and trap

Fail-operational

- Keep operation intact (e.g power grid, plane)
- Confine damage
- Check if performace indicators are still acceptable and avoid safety trap

Dependability and safety

- An industrial system is expected to be operational
- Production interruption has direct physical implications
- Retrofit of old installations

Security Challenges in SIS State of the Art

Controller level

- Industrial firewalls
- Network interface flood protection
- Tamper resistant hardware
- Firmware protection
- Internal diagnostic

Fieldbus level

- Message authentication
- E.g. IEC 61850 non-routeable with HMAC

Control network level

- Segmentation
- Message authentication
- Encryption, PKI

Servers and workstations

- IT practices are relevant
- PKI
- Office software and solutions

- SCADA (WAN)

- VPN
- Firewalling
- Strict access control and logging

Security Challenges in SIS Recommended articles

- Bowen et al.: Designing Host and Network Sensors to Mitigate the Insider Threat, IEEE Security and Privacy, Vol.7, number 6, 2009
- •Giusebbe Buja, Roberto Menis: *Dependability and Functional Safety*, IEEE Industrial Electronics, Vol.6, Nr. 3, 2012
- •Markus Brandle, Martin Naedele: Security for Process Control Systems, An Overview, IEEE Security and Privacy, Vol. 6, Nr. 6, 2008
- •ISA/IEC 62443-2-1 Industrial automation and control systems security management system
- Operations and Security from Emerson:
- http://www2.emersonprocess.com/siteadmincenter/PM%20DeltaV%20Documents/Whitepapers/WP_Operations_Security.pdf
- The Rocky Relationship Between Safety and Security from ABB:
- http://www05.abb.com/global/scot/scot296.nsf/veritydisplay/3e234b767729aaa0c1257aa60064b129/\$file/3B
 US095673 en Whitepaper The Rocky Relationship between Safety and Security.pdf
- Stuxnet, Boden wastewater incident in Queensland, Australia.

