
Securing Web Services
(WS-Security, SAML) 8

Gustavo Alonso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
alonso@inf.ethz.ch
http://www.iks.inf.ethz.ch/

Web Services Security Standards

©Gustavo Alonso, D-INFK. ETH Zurich 3

Security Standards Overview

TCP/IP

HTTP, JMS, SMTP
TLS/SSL

HTTPS

Transport

XML

SOAP
XML Encryption

XML Signature

WS-Security

X
M

L M
essaging

SAML, XACML, WS-Trust, … High Level

©Gustavo Alonso, D-INFK. ETH Zurich 4

Security Standards Stack

SOAP

WS-Security

WS-Trust
SAML

WS-Federation

WS-Authorization

WS-SecureConversation

WS-SecurityPolicy
XACML

XKMS

©Gustavo Alonso, D-INFK. ETH Zurich 5

Main Security Specifications
  XML Signature (XMLDSIG)

  Message Integrity and Sender/Receiver Identification
  XML Encryption (XMLENC)

  Message Confidentiality
  WS-Security (WSS)

  Securing SOAP Messages
  SAML

  Interoperable security metadata exchange
  XACML

  Access Control

©Gustavo Alonso, D-INFK. ETH Zurich 6

Other Security Specifications
  WS-Trust and WS-Federation

  Federating multiple security domains
  WS-SecureConversation

  Securing multiple message exchanges
  WS-SecurityPolicy

  Describing what security features are supported or needed
by a Web service

  XrML
  Digital Rights Management

  XKMS
  Key Management and Distribution

XML Signature

©Gustavo Alonso, D-INFK. ETH Zurich 8

XML Signature Overview
  Goals: Ensure integrity of XML messages; identify their

source/destination; ensure non-repudiation.
  XML signature prescribes how to compute, store and verify

the digital signature of:
  entire XML documents
  parts of XML documents
  “anything that can be referenced from an URL”, this

includes non-XML objects, such as Images.
  Complex and flexible standard:

  It is possible to apply multiple signatures over the same
XML content

  Supports a variety of codes and authentication protocols
  Joint W3C/IETF standard, August 2001

©Gustavo Alonso, D-INFK. ETH Zurich 9

XML Signature Structure
<Signature>
 <SignedInfo>
 (CanonicalizationMethod)
 (SignatureMethod)
 (<Reference (URI)?>
 (Transforms)?
 (DigestMethod)
 (DigestValue)
 </Reference>)+
 </SignedInfo>
 (SignatureValue)
 (KeyInfo)?
 (Object)*

</Signature>

Reference to what
has been signed

Hash of the reference

The actual signature

Key used to verify
the signature

©Gustavo Alonso, D-INFK. ETH Zurich 10

XML Signature Simplified Example
<Signature>
 <SignedInfo>
 <Reference URI=“http://www.google.com”/>
 </SignedInfo>
 <SignatureValue>Base-64 encoded </SignatureValue>
 <KeyInfo>…</KeyInfo>

</Signature>

©Gustavo Alonso, D-INFK. ETH Zurich 11

Generating the signature
  Reference Generation

1.  Dereference the <Reference URL> to access the XML content that
needs to be signed

2.  Apply the Transforms
3.  Compute the <DigestValue> applying the <DigestMethod> to the

transformed content
4.  Store the result in the <Reference> element

  Signature Generation
1.  Create the <SignedInfo> element
2.  Transform it to canonical form
3.  Compute the <SignatureValue> applying a <SignatureMethod>
4.  Bundle it all together with the <KeyInfo> and <Object> elements

  Note: what is actually signed is the <Reference>, which contains a digest
(hash) of the original content, which is only indirectly signed.

©Gustavo Alonso, D-INFK. ETH Zurich 12

Validating the signature
  Reference Validation

1.  Dereference the <Reference URL> to access the XML
content that needs to be validated against the digest

2.  Apply the same Transforms
3.  Compute a hash using the same <DigestMethod>
4.   Compare the <DigestValue> with the result.

  Signature Validation
1.  Canonicalize the <SignedInfo> element
2.  Get the Key following the <KeyInfo> element
3.  Compute the hash with the <SignatureMethod>
4.   Compare it with the <SignatureValue>

©Gustavo Alonso, D-INFK. ETH Zurich 13

XML Signature Position
  Enveloping Signature: the signature wraps the signed

element
  Enveloped Signature: the signature is contained inside the

signed element
  Detached Signature: the signature refers to a separate

element (inside or outside the document)

<Signature>
<Reference>

<XML>
<Signature>
<Reference>

<XML>

<Signature>
<Reference>

<XML>

©Gustavo Alonso, D-INFK. ETH Zurich 14

<Reference> Element
  The reference element points to the resource that is being

digitally signed (URI attribute)
  There must be at least one Reference element (but more are

possible in the same signature)
  Examples:

  An element of the same document
URI=“#CustomerInformation”

  The root of the container document
URI=“”

  An external XML document
URI=“http://www.swisscom.ch/order.xml”

  A fragment of an external document
URI=“http://www.swisscom.ch/order.xml#Total”

  An external non-XML resource
URI=“http://www.swisscom.ch/order.pdf”

©Gustavo Alonso, D-INFK. ETH Zurich 15

<Transformation> Element
  A Reference element contains a set of transform elements,

which are applied in a pipelined fashion to the content of the
referenced resource

  The same transformations (in the same order) should be used
when generating and validating a digest

  Standard Transforms:
  Canonicalization
  Enveloped Signature Transform
  Decrypt Transform

  Optional Transforms:
  Base-64
  XPath Filtering
  XSLT Transform

©Gustavo Alonso, D-INFK. ETH Zurich 16

Canonicalization (C14N)
  The problem:

  Signatures are sensitive to single bit changes
  XML data can have multiple (and equivalent)

serializations. Examples:
•  An XML document from a Windows system will use

CR+LF, but can still be parsed in UNIX
•  Whitespace can be represented with TAB

  Mismatch between data used by crypto algorithms (raw
bytestream: octets) and
the XML representation (XML Infoset)

  The solution:
  Give a precise (and standard) procedure for producing

XML “strings” out of XML infosets.
  This procedure is called Canonicalization

©Gustavo Alonso, D-INFK. ETH Zurich 17

Canonicalization Example
<?xml version="1.0"?>
<!DOCTYPE doc SYSTEM "doc.dtd">
< PurchaseOrder >
 <Customer name = “Swisscom Mobile” />
 <Date > 2005 11 22 < /Date>
 <!-- Time unknown -->
 <Items/>

</ PurchaseOrder>

<PurchaseOrder>
 <Customer name=“Swisscom Mobile”/>
 <Date> 2005 11 22 </Date>
 <Items></Items>

</PurchaseOrder>

Canonical Form

Original XML Document

©Gustavo Alonso, D-INFK. ETH Zurich 18

Some XML Canonicalization Rules
1.  UTF-8 encoding
2.  Linebreaks are normalized to LF (ASCII #xA)
3.  Character and entity references are replaced
4.  CDATA sections are replaced with their content
5.  XML declaration and DTD definition are removed
6.  <Empty/> elements converted to <Empty></Empty>
7.  Attribute value delimiters are set to double quotes
8.  Superfluous namespace declarations are removed
9.  Default attributes are explicity added to elements
10.  Namespace declarations are sorted before the attributes

(also sorted)
  For the whole set of rules, ref:

http://www.w3.org/TR/xml-c14n

©Gustavo Alonso, D-INFK. ETH Zurich 19

Enveloped Signature Transform
  This signature is needed in order to sign an element which is

the parent of the <Signature> (Otherwise, the signature
should be used as input to compute itself, which makes it
impossible to compute)

  This transform simply removes the <Signature> element from
the document

<Signature>
<Reference>
<Transform>

<XML> <XML>

Enveloped-Signature
Transform

©Gustavo Alonso, D-INFK. ETH Zurich 20

Describing and storing the signature
  These elements describe how a signature was computed and

store its value in encoded format:
  The <DigestValue> contains the Base-64 encoded value of

the digest
  The <SignatureValue> contains the Base-64 encoded value

resulting from encrypting the digest of the
<SignatureInfo> element with the key described in the
<KeyInfo>

  The <DigestMethod> describes the algorithm used to
compute the <DigestValue> (e.g., SHA1)

  The <SignatureMethod> describes how the
<SignatureValue> was computed (e.g., RSA-SHA1) using the
key

©Gustavo Alonso, D-INFK. ETH Zurich 21

<KeyInfo> element
  The <KeyInfo> provides information about the key used to

validate the <SignatureValue>
  It is quite flexible:

  The element can be omitted (The parties exchanging the
message agree on the key using an out-of-band
mechanism)

  Key is embedded in the message
  Key is referenced from the message
  It supports several kinds of Keys used with different

cryptographic standards:
•  DSA/RSA
•  X.509 certificates
•  PGP

  The same element is used in XML Encryption

©Gustavo Alonso, D-INFK. ETH Zurich 22

XML Signature and Security
XML Signature targets these security aspects:
1.  Integrity of the message content/external resource:

  Reference validation
2.  Integrity of the signature

  Signature validation
3.  Identity of the source of the document

  Signature validation
  Warning: only if using a <SignatureMethod> based on

public/private key

What you see is what you sign:
  Transforms modify and filter the data before it is signed,

so they should be used carefully

XML Encryption

©Gustavo Alonso, D-INFK. ETH Zurich 24

XML Encryption Overview
  Goal: ensure confidentiality of XML Messages
  Solution: obfuscate parts of an XML document, while

maintaining a correct XML syntax
  Features:

  End to End (Multi-hop scenario)
  Full or Partial encryption
  Flexibility: different parts of a message can be read by

different parties using different keys
  Challenges and problems:

  Is an encrypted XML document still XML?
  How to validate an encrypted XML document with respect

to its XML schema?
  W3C Recommendation, December 2002

©Gustavo Alonso, D-INFK. ETH Zurich 25

XML Encryption vs. XML Signature
  XML Encryption complementary to XML Signature
  Different purposes:

  XML Encryption = Confidentiality
  XML Signature = Integrity and Identity

  Some overlap in the specifications (e.g., <KeyInfo>)
  Difference:

  XML Encryption. Encrypted XML is replaced by the
<EncryptedData> element

  XML Signature: Signed XML is referenced from the
<Signature> element

  Warning: Encrypted data which is not signed can still be
tampered with!

©Gustavo Alonso, D-INFK. ETH Zurich 26

XML Encryption Scenario
  Guarantee confidentiality at the SOAP message level

(Selected parties may access different message parts)

Client

SOAP
Encrypted XML

HTTPS
Secure

Point to Point
Transport

Encrypted XML

Broker Service

SOAP
Encrypted XML

Encrypted XML

HTTPS
Secure

Point to Point
Transport

©Gustavo Alonso, D-INFK. ETH Zurich 27

XML Encryption Example
<Employee>

 <ID>222-654-456</ID>
 <Name>Markus Bach</Name>
 <Salary currency=“CHF”>100000</Salary>

</Employee>

<Employee>
 <ID><EncryptedData>…</EncryptedData></ID>
 <Name>Markus Bach</Name>
 <EncryptedData>…</EncryptedData>

</Employee>

Encrypted XML Document

Original XML Document

©Gustavo Alonso, D-INFK. ETH Zurich 28

XML Encryption Structure
<EncryptedData Id? Type? MimeType? Encoding?>
 <CipherData>
 <CipherValue>?
 <CipherReference URI?>?
 </CipherData>
 <KeyInfo>
 <EncryptedKey>
 <AgreementMethod>
 <ds:*>
 </KeyInfo>
 <EncryptionMethod/>
 <EncryptionProperties>

</EncryptedData>

Encrypted Value

Key Information
(extends KeyInfo of
Digital Signature)

Additional Metadata

Reference to
Encrypted Value

©Gustavo Alonso, D-INFK. ETH Zurich 29

<EncryptedData> Element
  The <EncryptedData> container tag replaces the document elements that

are sent in encrypted form
  Together with the encrypted elements <CipherData>, it contains metadata

and attributes describing how to decrypt them <EncryptionMethod>,
<KeyInfo>

  Attributes:
  Type = (element | content).

Determine whether the plaintext is an entire XML element or only the
content has been encrypted.

  MimeType. Optional attribute describing the type of the encrypted
non-XML element

  Encoding. How the non-XML has been encoded
  The <EncryptionMethod> specifies which algorithm has been used to

encrypt the data. Currently supported are:
  Triple-DES
  AES (Advanced Encryption Standard) with 128, 256 (required) or 192

(optional) bit key

©Gustavo Alonso, D-INFK. ETH Zurich 30

Base 64 Encoded

<CipherData> Element
  This element stores or refers to the encrypted data:

  <CipherValue>
container for binary encrypted data

<CipherData>
 <CipherValue>BA234C96D1</CipherValue>
</CipherData>

  <CipherReference>
reference to an URL of the encrypted data.
Can include a pipeline of Transform elements like XML
Signature, that specify how to filter the referenced data
before it is decrypted

©Gustavo Alonso, D-INFK. ETH Zurich 31

<KeyInfo> Element
  Describe the key used to encrypt the data.
  Whereas in XML Signature, this is usually a public key, in XML Encryption

this is usually a shared encryption key.
  In general, public keys can be safely included with a message. Instead, it is

not safe to embed shared keys!!
  XML Encryption provides several mechanisms to agree/retrieve the

decryption key:
  Key is omitted (out-of-band)
  Key is referenced: <KeyName> <RetrievalMethod>

These elements are used to identify which of the secret keys (shared
between the parties) should be used and how the shared key should be
retrieved.
With them, the same key can be used to encrypt different parts of the
same document

  Key is regenerated:<AgreementMethod>
  Key is included in encrypted form: <EncryptedKey>

©Gustavo Alonso, D-INFK. ETH Zurich 32

Sharing keys within the same message
  It is possible to reuse the same <EncryptedKey> element to

decrypt multiple <EncryptedData> elements.

<EncryptedKey>
<CarriedKeyName>
MyKey

<EncryptedData>
 <KeyInfo>
 <KeyName>MyKey

<XML Document>
<EncryptedData
id=“Salary”>

<EncryptedData
id=“CreditCard”>

<EncryptedKey>
<ReferenceList>
<DataReference
URI=“#Salary”/>
<DataReference
URI=“#CreditCard”/>

©Gustavo Alonso, D-INFK. ETH Zurich 33

Using XML Encryption
  Encryption Process
1.  Choose an algorithm (3DES, AES)
2.  Choose a key and define how to represent it

  Key is generated or looked up
  Key is omitted from the message
  Key is described in the <KeyInfo> section

3.  Serialize the XML data to a byte stream
  Element (with tags)
  Content (tags omitted)

4.  Encrypt the byte stream
5.  Encode the result in the <CipherData> element
6.  Build the <EncryptedData> element with the information

required to decrypt it

©Gustavo Alonso, D-INFK. ETH Zurich 34

Using XML Decryption
  Decryption Process
1.  Determine algorithm (3DES, AES)
2.  Determine key

  Key and algorithm could be agreed upon in advance
  If Key is encrypted, decrypt it (this is recursive)

3.  Decrypt data
  CipherValue (decode the embedded Base-64 byte stream)
  CipherReference (dereference the URI and apply the specified

Transforms before the data is decrypted)
4.  Process XML content: parse the serialized XML and substitute the

original <EncryptedData> element with the decrypted XML
element (or content)

5.  Process non-XML content described by the MimeType and
Encoding attributes of the <EncryptedData> element.

Using XML Encryption
together with XML Signature

©Gustavo Alonso, D-INFK. ETH Zurich 36

XML Signature and XML Encryption
  Message Confidentiality and Integrity are both important

requirements of a secure message exchange.
  XML Signature and XML Encryption have been designed to

work together to achieve this.
  Problem: in which order should they be applied? Sign or

encrypt first?
  Encryption metadata is sent in clear.

If not signed, encrypted data/metadata could be
corrupted by an attacker to prevent decryption of the
message.

  If signatures are sent in the clear, attackers could strip
them from a message or replace them entirely without
the recipient noticing.

©Gustavo Alonso, D-INFK. ETH Zurich 37

Example 1: Encrypt the signed data
<Document>

 <Order id=“order”>
 <Customer id=“1235312”>
 <Address>…</Address>
 </Customer>
 <Items>
 <Item id=“Book123”><Price currency=“CHF”>99</Price></Item>
 </Items>
 </Order>
 <Signature>
 <SignedInfo>
 <Reference URI=“#order”>…</Reference>
 </SignedInfo>
 <SignatureValue>…</SignatureValue>
 <KeyInfo><X509Data>…</X509Data></KeyInfo>
 </Signature>

</Document>

©Gustavo Alonso, D-INFK. ETH Zurich 38

Example 1: Encrypt the signed data
<Document>

 <EncryptedData id=“encryptedData”>
 <CipherText>
 <CipherValue>…</CipherValue>
 </CipherText>
 <KeyInfo>
 <EncryptedKey>…</EncryptedKey>
 <KeyInfo>
 </EncryptedData>
 </Document>

  The signature is hidden inside the encrypted XML
  The order is clear: 1. decrypt; 2. verify signature
  Problem: the Encryption metadata is not protected with a

signature

©Gustavo Alonso, D-INFK. ETH Zurich 39

Example 2: Sign the encrypted data
<Document>

 <EncryptedData id=“encryptedData1”>
 <CipherText>
 <CipherValue>…</CipherValue>
 </CipherText>
 <KeyInfo>
 <EncryptedKey>…</EncryptedKey>
 <KeyInfo>
 </EncryptedData>
 <Signature>
 <SignedInfo>
 <Reference URI=“#encryptedData1”>…</Reference>
 </SignedInfo>
 <SignatureValue>…</SignatureValue>
 <KeyInfo><X509Data>…</X509Data></KeyInfo>
 </Signature>

</Document>

©Gustavo Alonso, D-INFK. ETH Zurich 40

Decrypt Transform in XML Signature
  When a message is received, it may not be clear in which order signature

validation and decryption should be applied.
  To make the order of encryption and signature explicit, the Decrypt

transform has been added to the XML signature standard
  This transform is used to distinguish whether the signature applies to

the <EncryptedData> or to the decrypted data.
 <Transform Algorithm=“…decrypt#XML”>

 <Except URI=“#encryptedDataID”>
</Transform>

  The XML Signature processor will decrypt all referenced <EncryptedData>
elements except the one identified by the <Except> element.

  With this solution, default processing always applies decryption before
signature verification; unless such transform is specified by the sender.

WS-Security

©Gustavo Alonso, D-INFK. ETH Zurich 42

WS-Security Overview
  The WS-Security standard applies XML security (XML

Encryption and XML Signature) to implement secure SOAP
message exchange across multiple and independent trust
domains

  Goals: security at the message level (end-to-end)
  Solution: apply encryption and signatures within a SOAP

message independent of the transport.
Parts of the message body can be encrypted, signatures are
stored in the header.

  WS-Security features support for:
  Multiple signature technologies
  Multiple encryption technologies
  Multiple security token formats

  OASIS standard, April 2004

©Gustavo Alonso, D-INFK. ETH Zurich 43

Message Security vs. Transport Security
Message Security

Disadvantages
  Immature standards only partially

supported by existing tools
  Securing XML is complicated

Advantages
  Different parts of a message can

be secured in different ways.
  Asymmetric: different security

mechanisms can be applied to
request and response

  Self-protecting messages
(Transport independent)

Transport Security
Advantages

  Widely available, mature
technologies (SSL, TLS, HTTPS)

  Understood by most system
administrators

Disadvantages
  Point 2 Point: The complete

message is in clear after each hop
  Symmetric: Request and response

messages must use same security
properties

  Transport specific

©Gustavo Alonso, D-INFK. ETH Zurich 44

Protecting SOAP Messages
  Security Threats to a SOAP message:

  A message could be read by an attacker
  A message could be modified by an attacker
  A message could be sent by an attacker

  To address these threats, WS-Security applies a combination
of:
1.  Encryption

(Ensure the confidentiality of the message)
2.  Signatures

(Verify the origin and the integrity of a message)
3.  Security Tokens

(Authorize the processing of the message based on the
credentials associated with the message)

  Messages with invalid signatures and incorrect or missing
tokens are rejected.

©Gustavo Alonso, D-INFK. ETH Zurich 45

A Secure SOAP Message

Envelope

Body
Encrypted Body

Signatures for Body
and for Tokens

Header
wsse:Security

Security Tokens

©Gustavo Alonso, D-INFK. ETH Zurich 46

Security Tokens
  WS-Security supports a variety of authentication and authorization

mechanisms by including the corresponding tokens into the Security
header of the message:
  Simple tokens

•  Username/Clear Password
•  Username/Password Digest

  Binary Tokens
•  X.509 certificates
•  Kerberos

  XML Tokens
•  SAML assertions
•  XrML (eXtensible Rights Markup Language)
•  XCBF (XML Common Biometric Format)

  Token reference
•  WS-SecureConversation

©Gustavo Alonso, D-INFK. ETH Zurich 47

Security Tokens and Identity
  A security token can be used to claim the identity of the source of

a message
  Username/PasswordText is the simplest token used to convey

identify but it is also not secure
(SOAP messages should not contain passwords in clear)

  Username/PasswordDigest deals with this problem:
<UsernameToken>

 <Username>Scott Tiger</Username>
 <Password Type=“PasswordDigest”>XYZAAA9</Password>
 <Nonce>123521</Nonce>
 <Created>2005-11-24T15:00:00Z</Created>

</UsernameToken>
  To produce the digest, the password is hashed together with a

timestamp and a nonce.
  Protection against reply attacks
  The server must store the plain-text password

©Gustavo Alonso, D-INFK. ETH Zurich 48

Security Tokens and Authentication
  A security token can be signed to authenticate a claim made by

the sender of the message
  Signatures associated with tokens can be verified by the recipient

to authenticate the identity of the sender.
  Example: X509 certificates (public keys) should be signed in order

to provide authentication of the sender (proof of possession of the
corresponding private key)

Requester
Web

Service

X509
Token

Signature Private Key Public Key

©Gustavo Alonso, D-INFK. ETH Zurich 49

Federated Security Domains
  Different systems may belong to different security domains

that use different security mechanisms and policies.
  Although SOAP enables interoperability between these

systems, the translation of security metadata between
different domains remains a problem.

  WS-Security is a first step towards providing standardized
syntax and semantics for representing security information.

  WS-Trust adds a standard interface for a security token service
provider used to:
  Issue and Renew Security Tokens to be attached to a SOAP

message with WS-Security
  Validate Security Tokens from a different domain
  Translate Security Tokens across domains that share a trust

relationship (WS-Federation)

©Gustavo Alonso, D-INFK. ETH Zurich 50

WS-Trust Interface

Putting it all together

Requester Web
Service

Security
Token

Service

1. Issue Token

Token

2. Send Message

3. Validate Token

©Gustavo Alonso, D-INFK. ETH Zurich 51

WS-SecureConversation
  The security handshake involving the creation of tokens and their

validation may impose a high performance overhead.
  WS-SecureConversation defines a shared security context to be

reused across the exchange of multiple messages.
  The same combination of security credentials (authentication,

authorization) and encryption keys can be reused
  Once the conversation is established, the requester and the service

share a secret:
  The client does not have to include the security metadata for

each message
  The service does not have to revalidate the same tokens for

each message
  This is implemented using a special token:

<SecurityContextToken>

SAML
Security Assertion Markup Language

©Gustavo Alonso, D-INFK. ETH Zurich 53

SAML Overview
  The Security Assertion Markup Language (SAML) predates WS-Security,

as it was standardized at OASIS in November 2002 (v1.0), August 2003
(v1.1), March 2005 (v2.0)

  Goal: enable loosely coupled identity management.
  Solution: define a format and protocol for interoperable exchange of

security information (or assertions) about subjects (human users or
computer systems) that have to be identified within a certain security
domain.

  Use cases supported by standard profiles:
  Single Sign On (SSO) and Single Logout
  Identity Federation
  Privacy-preserving identification
  Securing Web service messages: SAML assertions are used as WS-

Security tokens.
  SAML also defines protocol for clients to request assertions from “SAML

authorities” and for services to verify assertions with trusted “SAML
authorities”.

©Gustavo Alonso, D-INFK. ETH Zurich 54

Portable and Federated Identity
  SAML enables Single Sign On and the transfer of identity

credentials across different trust domains.
  Credentials established at the initial service, where the user is

authenticated, are forwarded to other services that can trust
them.

  This is done without a centralized authentication registry that
should be shared and trusted
by everyone (example: Project Liberty).

Client
Application

Web
Service
(Airline)

Web Service
(Travel Agency)

Web
Service
(Hotel)

©Gustavo Alonso, D-INFK. ETH Zurich 55

SAML Concepts
  SAML uses XML to describe

security assertions that can be
understood across security
domains.

  SAML defines a standard
protocol to generate,
exchange and process
assertions.

  SAML bindings map how a
SAML document is
transported:
  SAML requires HTTPS
  SAML can be used inside

SOAP messages to
represent
WS-Security tokens.

 SAML Assertions and the
corresponding protocols are
used for:

  Authentication – verification
of identity credentials.

  Attributes – information
associated with subjects (e.g.,
the user address or its the
current balance status of the
account).

  Authorization – grant (or deny)
access to a resource for an
authenticated subject. (As of
SAML 2.0, this feature uses
XACML).

  Custom assertions

©Gustavo Alonso, D-INFK. ETH Zurich 56

SAML Assertion Metadata Example
<Assertion Version=“2.0” AssertionID=“123042134”

 IssueInstant=“2005-11-23...”>
 <Issuer>saml.ethz.ch</Issuer>
 <Subject>
 <NameID Format=“emailAddress”>
pautasso@inf.ethz.ch</NameID>
 <SubjectConfirmation Method=“holder-of-key”>
 <SubjectConfirmationData>
 <ds:KeyInfo>…</ds:KeyInfo>
 </SubjectConfirmationData>
 </SubjectConfirmation>
 </Subject>
 <Conditions NotBefore=“2005-11-23…”

 NotOnOrAfter=“2005-11-24…”><OneTimeUse/>
 </Conditions>
 …statements…

</saml:Assertion>

©Gustavo Alonso, D-INFK. ETH Zurich 57

Authentication Assertions

  An Authentication Assertion Statement is produced by an
authentication authority (issuer) to claim that:
  a subject (with some identification)
  with a certain method (or context class)
  at a certain time

  was successfully identified.
  Depending on the method, the authentication assertion can

be trusted with a certain level of confidence to represent the
digital identity of the subject for some period of time

Authentication
Authority

Credentials
(User, Password)

Authentication
Assertion

©Gustavo Alonso, D-INFK. ETH Zurich 58

Authentication Methods
  To describe how a subject identity was authenticated, SAML 2.0 defines

the following authentication context classes:
  Internet Protocol Address
  UserName/Password over HTTP or HTTPS
  Secure Remote Password
  IP Address and Username/Password
  SSL/TLS Certificate Based Client Authorization
  Kerberos Ticket
  Public Key (X.509, PGP, SPKI, XML Signature)
  Smartcard: One Factor, Two Factor
  Telephone Number
  Mobile: One Factor, Two Factor
  Previous Session
  Unspecified

©Gustavo Alonso, D-INFK. ETH Zurich 59

Attribute Assertions

  An authority asserts that the subject is associated with the specified
attributes:
  SAML profiles show how to apply attributes to standardize access to

directories of user attribute information:
•  LDAP/X.500
•  DCE PAC (Privilege Attribute Certificate)
•  XACML (eXtensible Access Control Markup Language)

  Additionally, attributes can model accounting related information:
what is the credit amount left in the account or the payment status for
a user.

Attribute Issuing
Authority

Authentication
Assertion

(Subject Identity)

Attribute
Assertion

(Subject Metadata)

©Gustavo Alonso, D-INFK. ETH Zurich 60

SAML Protocols

SAML
Authority

Name
Identifier
Mapping

Subject Web Service

SAML
Authority

Single
Logout

Authentication
Request

Assertion
Query

Subject
Management

©Gustavo Alonso, D-INFK. ETH Zurich 61

Putting it all together

Client Service
Provider

SAML
Authority

1. SOAP Request

2. Auth Needed

7. SOAP Response

Trust
Relationship

3. Authentication Request (Login)

4. Authentication Assertion (AA)

5. Forward (AA)

SA
M

L P
ro

to
co

l

6. Verify (AA)

O
pt

io
na

l

XACML
eXtensible
Access Control Markup Language

©Gustavo Alonso, D-INFK. ETH Zurich 63

XACML Overview
  Goal: represent access control policies in XML
  Solution: define an XML schema for representing authorization

rules to grant (or refuse) subjects the access to target resources to
perform specific actions.

  Features:
  Fine grained control: targets referenced using URLs
  Consistent with and building upon SAML

  Benefits:
  Interoperability of different security tools

(Migration of rules through import/export)
  Uniform way to specify access control policies
  Reuse of generic access control service
  Enable the consolidation of access control policies across the

enterprise: centralization reduces costs
  OASIS Standard released February 2003 (v1.0), August 2003 (v1.1)

and March 2005 (v2.0)

©Gustavo Alonso, D-INFK. ETH Zurich 64

What is Access Control?
  Authorization is the permission granted to a subject to

perform some action on some target resource.

Authorization Rule

  Rights management tools control whether a subject is
granted the authorization rights.

  Access rights can be granted to individual subjects, but also
to groups of subjects (or roles).

Subject Action Target
Resource

©Gustavo Alonso, D-INFK. ETH Zurich 65

XACML Rule Example (Simplified)
<Rule RuleId=“1” Effect=“Permit”>
<Description>Allow Daniel to send a message</Description>
<Target>

 <Subjects>
 <Subject><SubjectMatch MatchID=“string-equal”>
 <AttributeValue>Daniel</AttributeValue>
 <SubjectAttributeDesignator AttributeId=“subject-id”/>
 </SubjectMatch></Subject>
 </Subjects>
 <Resources><Resource><ResourceMatch MatchID=“anyURI-equal”>
 <AttributeValue>uri:message</AttributeValue>
 <ResourceAttributeDesignator AttributeID=“resource=id”/>
 </ResourceMatch></Resource></Resources>
 <Actions><Action><ActionMatch MatchID=“string-equal”>
 <AttributeValue>send</AttributeValue>
 <ActionAttributeDesignator AttributeID=“action-id”/>
 </ActionMatch></Action></Actions>

</Target>
</Rule>

©Gustavo Alonso, D-INFK. ETH Zurich 66

XACML Architecture

Repository

Policy
Access

Point (PAP)

XACML
Policy

Policy Decision Point
(PDP)

Policy Enforcement
Point (PEP)

Access
Requester

2

3 6

4

5

1

1 – Policy Definition

2 – Access Request

3 – SAML Request

4 – Policy Lookup

5 – Policy

6 – SAML Response

  XACML works together with SAML to implement an authorization
authority

Target
Resource

Environment

