Introduction

* API

An application programming interface (APl) is a source code-based

specification intended to be used as an interface by software components
to communicate with each other.

* OWLAPI

The OWL API is a Java API and reference implementation for creating,

manipulating and serializing OWL Ontologies. The latest version of the API
is focused towards OWL 2

The OWL API is targeted primarily at representing OWL-DL.
(latest: Download the latest binary release (3.2.4) - 22nd July 2011)

http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/3.2.4/owlapi-3.2.4.zip/download

The OWL API includes the following components:

 An API for OWL 2 and an efficient in-memory reference
implementation;

 RDF/XML parser and writer.

e OWL/XML parser and writer.

* OWL Functional Syntax parser and writer.
* Turtle parser and writer.

* KRSS parser.

 OBO Flat file format parser.

» Reasoner interfaces for working with reasoners such as FaCT++,
HermiT, Pellet and Racer.

Why build an OWL API?

The use of a higher level data model can help to:

* insulate us from the vagaries of concrete syntax.
* make it clear what is happening in terms of functionality.
* increase the likelihood of interoperating applications.

=

OWL Interfaces

Implementation _ Implementation

OWL APl and OWL 2.0

* The latest version of the OWL API has been designed to meet the

needs xditors
and C OWLOntologylD d with
y tal B 1Rl
the O versioniRl - Rl
1
The | ber of
signifi th the
OWL OWLOntologyManager #7 OWLOntology {:-—* OWLAnNnotatlon 25 haS
been at was
provic model
upon
0
Unlike 1, the
OWLAXIom
repre: avel of

RDF tripies. inueeq, e uesign or e uvvL Art 1s airecuy vased on
the OWL 2 Structural Specification

What to do with OWL API?

* ACode examples
I

S|

Loading Ontologies - Shows how to load an an ontology
Saving Ontologies - Shows how to save an an ontology
Entities - Shows how to obtain references to entities (classes, properties, individuals etc.)
Data Ranges 1- Shows how to work with data types and other data ranges
Data Ranges 2 - Shows how to work with user defined data ranges (e.q. int = 10)
Literals - Shows how to wark with string, data values and language tags
Adding Axioms - Shows how to create an empty ontology, add axioms and save
Classes and Instances - Shows how to specify that an individual is an instance of a class
Property Asserions 1 - Shows how to specify that two individuals are related to each other.
Property Asserions 2 - Shows how to add an object property asserion (triple) to an ontology
Deleting Entities - Shows how to delete entities (classes, properties and individuals) from an ontology
Restrictions - Shows how to create restrictions and A*add them to classesA” as superclasses
WEL Rules - Shows how to create an ontology and add some rules
Reasoning - Shows how to interact with a reasoner
Visitors - Shows how to collect the properties that are used in restrictions on a given class
Annotations - Shows how to work with annotations such as labels and comments
Saving Inferred Axioms - Shows how to save inferred axioms into a new ontology, or back into an existing ontology
Merging Ontologies - Shows how twao (or more) ontologies can be merged in a simple way
Walking Asserted Structure - Shows how to ‘walk’ over the asserted structure of an ontology.
Using Ontology IR Mappers - Shows how to use OWLOntologylRIMappers to redirect loading and loading of imports.
Module Extraction - Shows how to extract a locality based module from an ontalogy.

ng,
\PI

What to do with OWL API?

“OWLOntologyManager manager =
OWLManager.createOWLOntologyManager(),”

 Besides the model interfaces for representing entities, class
expressions and axioms, it is necessary to have certain machinery
that allow applications to manage ontologies.

* The OWLOntologyManager provides a central point for creating,
loading, changing and saving ontologies, which are instances of the
OWLOntology interface. Each ontology is created or loaded by an
ontology manager. Each instance of an ontology is unique to a
particular manager, and all changes to an ontology are applied via
its manager.

What to do with OWL API?

Reasoner interface:

* The OWL API has various interfaces to support interacting with
OWL reasoners. The main interface is the OWLReasoner interface
which provides methods to perform the aforementioned tasks.

* The API allows a reasoner to be set up so that it listens for
ontology changes and either immediately processes the changes or
queues them in a buffer which can later be processed.

 The CEL, FaCT++, HermiT, Pellet, and Racer Pro reasoners
provide OWL API wrappers. This means that they are also available
as reasoner plugins to Protege-4.

36= public static void main(String[] args) throws OWLOntelogyStorageException {

37 /]
3 try]

39 OWLOntologyManager manager = OWLManager.createOWLOntologyManager();

44 ﬂHLDataFactnry factory = manager.getOLDataFactory();

41 i = IRI.create("file:///D:/Study/Softwares/StudySe ares;’F‘rntegE S‘EEH ErM

42

i ol ﬂﬂtﬂ

45 System.out.println{"IndividualsInSignature"+ ont. getIndlvldualsInilgnaturE E

46 System.out.printin{"ClassesInSignature™+ ont.getClassesInSignature()+"\n");

41

8 I/save ontalogy, Hypernusi

49 File file = new File("/C:/Users/Sichac Song/Desktop/HypermusicModified.owl”);

56 manager.saveOntology(ont, IRI.create(file.tolRI()));

51

52 [[entities

53 OWLClass cls = factory.getOWLClass(iri);

54 PrefixManager pm = new DefaultPrefixManager("file:///D:/Study/Softwares/StudySoftwares/Protege 3.4.8/Hyperbusicd");
55 OWLClass clsModified = factory.getOWLClass(":OntologyModified”, pm);

56

57 OWLOntology ontology = manager.createOntology(IRI.create("file:///D:/5tudy/Softwares/StudySoftwares/Protege 3.4.8/H
58 OWLDeclarationAxiom declarationAxiom = factory.getOWLDeclarationAxiom(clsModified);

59 manager. addAxiom{ontology, declarationAxiom);

il manager.saveOntology(ontology, new SystemOutDocumentTarget());

bl File filel = new File("/C:/Users/Sichac Song/Desktop/HypermusicModified l.owl");

b2 manager.saveOntology(ont, IRI.create(file.tolRI()));

b3 manager saveﬂntnlﬂgy(nntnlﬂgy, IRI cregte(filel.tolRI()));

' | k| " L | R

